The Home of Machine Learning at Leibniz University Hannover

  • The TNT is excited to announce that we are part of the Horizon Europe funded project Satellites for Wilderness Inspection and Forest Threat Tracking (SWIFTT). The project's goal is to use machine learning to enable affordable, simple, and early forest threat detection. SWIFTT's first press release can be found here.

  • Our paper Deep Reinforcement Learning for Autonomous Driving using High-Level Heterogeneous Graph Representations has been accepted to ICRA 2023! The accepted version is available here, code will be published shortly.

The “Institut für Informationsverarbeitung” (Institute for Information Processing) is the home of machine learning at the Leibniz University Hannover. We focus on three main research directions, namely (I) computer vision & representation learning, (II) signal processing & -coding and (III) automated machine learning. Our methods range from deep learning, automated machine learning, reinforcement learning, image analysis, remote sensing and compression of audio, image, video as well as DNA to biomedical data. Our efforts are directed towards making efficient use of multi-modal and high dimensional data for reliable predictions, ultimately supporting end-users, developers and decision makers in a vast range of applications.

Since the foundation in 1973, the institute holds a strong tradition of cultivating connections to industry partners and jointly developing solutions to automatically process and harness information. Some of the developed methodology were successfully spun-off commercially as for instance with driver assistance modules, cochlear implants or component testing. The institute is also well known for being actively involved in the standardization of MP3, MPEG-2, AVC (H.264), HEVC (H.265) as well as MPEG-G.

Do you want to join us? We have open positions.

Current Spotlight
AutoPIN
Automatic detection and assessment of damages in pipeline systems using machine learning (more...)

Transform and subband coding
Transform and subband coding (more...)

Physics-based modeling
Skeletal models are used to simulate human motion and estimate joint torques. (more...)