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Abstract. Stereo-camera systems enjoy wide popularity since they pro-
vide more restrictive constraints for 3d-reconstruction. Given an image
sequence taken by parallel stereo cameras, a low-rank constraint is de-
rived on the measurement data. Correspondences between left and right
images are not necessary yet reduce the number of optimization param-
eters. Conversely, traditional algorithms for stereo factorization require
all feature points in both images to be matched, otherwise left and right
image streams need be factorized independently. The performance of the
proposed algorithm will be evaluated on synthetic data as well as two
real image applications.

1 Introduction

Image sequences taken by a stereo camera system are important input to many
problems in computer vision. This article proposes a low-rank constraint on the
feature trajectories which can be used in applications such as rigid or non-rigid
3d-reconstruction, motion segmentation or trajectory completion.

Given only two, three or four images taken by cameras in general configura-
tion, 3D-reconstructions can be computed using the epipolar constraint. If the
single-camera sequence consists of more than four images, a commonly employed
heuristic is to estimate reconstructions from each two, three or four consecutive
image segments, and use these to initialize a bundle adjustment [12].

The so-called factorization algorithm [11], conversely, is able to compute a
3d-reconstruction from arbitrary many images taken by affine cameras1. Its
popularity stems from its simplicity: a matrix consisting of the feature points is
factorized by means of a single singular value decomposition.

Generalizations exist to handle missing data [13, 10] and uncalibrated pro-
jective cameras [5]. Low-rank constraints were also derived for multi-body [4]
and non-rigid [2] 3D-reconstructions. Furthermore, algorithms resting on factor-
ization also exist for other problems such as motion segmentation [7], trajectory
completion as well as optical flow estimation [6].

1 This model requires that the distance between camera and object is large as com-
pared with the variation of depth within the scene. The requirement is necessary
for any affine camera model, be it orthographic, weak-perspective, paraperspective
or the more flexibel one proposed in [9]. For a comprehensive treatment on affine
camera models confer to [8].
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A factorization algorithm which estimates a 3d-reconstruction from non-
rigidly deforming objects taken by a convergent stereo camera was proposed
in [3]. However, during the factorization stage, this method need consider the
two cameras separately if not all correspondences are known across left and right
image streams. The stereo constraint is imposed only by means of a subsequent
optimization. Given arbitrarily many, static camera rigs, a rank-12 constraint
was derived in [1].

Both aforementioned works do not consider the case of missing data which
naturally occurs due to tracking failure or scene occlusion. In this work, we
consider a stereo setup of parallel cameras. In contrast to the algorithm pro-
posed in [3] a low-rank constraint is derived which can be imposed during the
factorization stage. As compared with the algorithm in [1], the low-rank con-
straint introduced here is significantly smaller leading to more robust estimates
particularly in the presence of missing data.

The contributions made in this article can be summarized as follows:

– A low-rank constraint is derived assuming a pair of parallely-aligned stereo
cameras.

– It can be imposed by means of matrix factorization.

– As significantly fewer variables are involved during factorization it is more
robust with respect to noise and missing data.

– The proposed solution does not require correspondences between left and
right images of the cameras. If available, these can be used to further reduce
the degrees of freedom within the model.

– Missing correspondences can be handled.

The proposed solution will be evaluated quantitatively with synthetic data.
We demonstrate the versatility of the algorithm by drawing on two real-image
sequences. One application draws on rigid 3D-reconstruction while the other
achieves trajectory completion given a scene in which several rigid bodies move
independently from each other.

In Sec. 2 we will briefly review the factorization algorithm before deriving a
low-rank constraint given stereo cameras in Sec. 3. The evaluation on synthetic
data is presented in Sec. 4. Results of real-image experiments are demonstrated
in Sec. 5. Lastly, we conclude this article with Sec. 6.

2 Rigid Factorization Algorithm

Given N 3D-points Xj , j = 1, . . . , N observed by M affine cameras Pi, i =
1, . . . ,M , the projection xij of the jth point into the ith image can be modelled
by

xij = PiXj . (1)

The difference to perspective projection is that equality holds in Eq. (1) whereas
the latter implies equality up to scale, only.
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Each affine projection matrix Pi can be decomposed into an 2 × 3 affine
calibration matrix Ki, a 3 × 3 rotation matrix Ri indicating the orientation of
the camera at image i, and a 3-vector ti which implies the position of the camera

Pi = Ki

[
R−1i −R−1i ti

]
. (2)

The homogeneous vectors Xj indicate the x, y, and z-coordinates of the jth
3D-point. As model of the affine camera we assume weak-perspective projection.
The matrices Ki then are defined by

Ki = si

[
1 0 0
0 1 0

]
(3)

where si denotes a scalar.
The projection of all 3D-points into all images can then be formulated as x11 · · · x1N...

. . .
...

xM1 · · · xMN


︸ ︷︷ ︸

W 2M×N

=

 P1

...
PM


︸ ︷︷ ︸
P 2M×4

[
X1 · · · XN

]︸ ︷︷ ︸
X4×N

(4)

(5)

Assuming that the cameras are generally oriented and that the 3D-shape is
not degenerate, the matrices P and X both have rank 4. This implies that the
rank of matrix W cannot be larger than 4.

By means of singular value decomposition, we may therefore factorize W into

W = UΣV > (6)

where all but the largest four singular values on the diagonal of matrix Σ are
identically zero. This idea was first proposed in [11] and is known as the factor-
ization algorithm.

Consequently, matrices U and V can be truncated to those four vectors cor-
responding to the four non-zero singular values. Similarly, we truncate Σ to be
of size 4 × 4. With a slight abuse of notation, denote these truncated matrices
by U , Σ, and V in the following.

Affinely distorted estimates of P and X can be taken by U and ΣV >, re-
spectively. To obtain undistorted estimates, a correcting matrix A need be de-
termined by affine self calibration similarly to the self calibration step necessary
for projective reconstruction.

3 Affine Stereo Factorization

3.1 A Low Rank Constraint on Parallel Stereo Cameras

Assume that we are given two affine cameras P 1 and P 2 parallely oriented and
with equal distance c to the center in between them. Further assume that this
center is located in the origin of the world coordinate system.
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If we align the camera orientations with the coordinate axes and take the
basis line parallel to the x-axis we obtain

P 1 = K
[
I v

]
and P 2 = K

[
I −v

]
(7)

where I denotes the identity matrix and v =
[
c 0 0

]>
.

A rigid transformation of the stereo camera system by an rotation Ri and
translation ti amounts to multiplication with

Hi =

[
R>i −R>i ti
0> 1

]
(8)

where 0 denotes a 3-vector consisting of zeros. For P 1
i and P 2

i we obtain

P 1
i = Ki

[
R>i −R>i ti + v

]
and P 2

i = Ki

[
R>i −R>i ti − v

]
. (9)

By defining t1i = −R>i ti + v and t2i = −R>i ti − v we can simplify Eq. (9) to

P 1
i = Ki

[
R>i t1i

]
and P 2

i = Ki

[
R>i t2i

]
. (10)

Let the joint projection matrix be

Pi = Ki

[
R>i t1i t2i

]
. (11)

The projection of the jth 3D-point into the ith images can be expressed by

x1ij = Pi

[
X>j 1 0

]>
and x2ij = Pi

[
X>j 0 1

]>
. (12)

Denote by W 1 and W 2 the matrices consisting of all feature points of the first
and second images, respectively. We now arrive at the affine stereo constraint

[
W 1 W 2

]
=

 P1

...
PM


X1 · · · XN X1 · · · XN

1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

 . (13)

We immediately see that the joint measurement matrix W =
[
W 1 W 2

]
can

have rank 5 at most as both matrices on the right side of Eq. (13) have rank 5
assuming general motion and non-degenerate structure.

As for the factorization algorithm for a single moving camera, we can obtain
affinely distorted estimates of motion and structure by singular value decompo-
sition of W into U and ΣV >, respectively.

The model defined by Eq. (13) assumes that no correspondences between
the two images taken at the same time are known. Otherwise, the number of
parameters can be reduced even further.
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3.2 Affine Stereo Self Calibration

Given affinely distorted estimates of structure and motion, the affine stereo self
calibration problem is to determine a 5× 3 matrix A such that each two rows Ui

of U are transformed to
KiRi = UiA. (14)

Letting Q = AA> we can eliminate the unknown rotations by squaring both
sides

KiK
>
i = UiQU

>
i (15)

Assuming a weak-perspective camera model, we arrive at

0 =
(
u1i
)>
Qu1i −

(
u2i
)>
Qu2i and (16a)

0 =
(
u1i
)>
Qu2i (16b)

where
(
u1i
)>

and
(
u2i
)>

denote the vectors corresponding to the first and second
rows of Ui.

As the rank of matrix Q equals 3, the problem defined by the Eqs. (16)
and the rank-3 constraint is nonlinear. However, according to our experience,
straight-forward nonlinear minimization converges fast and reliably to a good
optimum. The rotation matrices can then be reconstructed by Ri = UiA. The
correcting transformation A can be obtained from the eigendecomposition of
Q = V DV > by taking A = V D

1
2 as Q is positive semi-definite. To strictly

enforce that each Ri is a rotation matrix we can use polar decomposition.
For a 3D-reconstruction we further need estimates of t1i and t2i . We can obtain

these by [
t1i t2i

]
= UiQ⊥ (17)

with Q⊥ = I −QQ+ where the symbol (·)+ denotes the generalized inverse.
Having estimated the motion parameters Ki, Ri, t

1
i and t2i , the structure can

be inferred by triangulation. A linear solution to this problem is given by

[
X1 X2

]
=

P1

...
Pm


+ [
W 1 W 2

]
(18)

If not all entries of W 1 or W 2 are known, we can use a nonlinear optimization
algorithm for matrix completion, see Sec. 4. An excellent guide on affine 3D-
reconstruction can be found in [8].

4 Experiments on Synthetic Data

We created N = 146 3D-points which were projected M = 80 times in two
images according to the affine stereo camera model. For each camera six of these
images are shown in Fig. 1.
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Fig. 1. Five images of 146 simulated 3D-points projected into forty images. The upper
row corresponds to the left camera of the stereo system, the bottom row to the right.

We simulated occlusion by making all but the measurements along the main
diagonal of both W 1 and W 2 invisible. The amount of unknown data was varied
in between 0% and 30% in steps of ten percent. We added normally distributed
noise with standard deviations σ = {0, 1, 2, 3}. For each combination of miss-
ing data and noise, we performed ten trials, i.e. perturbed the data ten times
differently.

For estimating the motion U under missing entries of W , we used alternating-
least-squares (ALS). The proposed algorithm was compared with the one intro-
duced in [3].

We computed the root-mean-square-error (RMSE) between the visible, un-
perturbed matrix entries and the estimates. To assess the accuracy of subspace
fitting we measured the sum of the canonical angles between the estimated sub-
space and the noise-free ground truth (SSP error). Lastly, a 3D-error was com-
puted as the average sum of the Euclidean distances between the estimated 3D-
points and the ground truth. This error was further normalized by the Frobenius
norm of the matrix consisting of the ground truth 3D-points.

Average results of the ten trials are shown in Fig. 2. The plots from left to
right correspond to the RMSE, the subspace error and the 3D-error. The solid
line indicates the algorithm proposed here, the dashed line the one in [3]. The
blue, green, and red colored lines correspond to 10%, 20% and 30% unknown
data. As can be seen, the proposed algorithm performs superior.

As the algorithm is based upon ALS iterations, its computational complexity
is slightly lower than that of the reference algorithm as the latter requires the
larger rank-8 factorization.

5 Experiments on Real Images

5.1 Application 1: Rigid 3D-Reconstruction

Figure 3 shows five out of 74 images of a sequence of a rigid scene. The images in
the upper row are taken by the left camera, those in the bottom row by the right
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Fig. 2. From left to right: root-mean-square-error (RMSE); subspace error (SSP, sum of
canonical angles); normalized 3D-error. The solid line indicates the proposed algorithm,
the dashed line the one in [3]. The blue, green and red lines correlate to 10%, 20% and
30% missing data.

(a)

(b)

Fig. 3. Five out of 74 images of a sequence of a rigid scene. A total of 2112 3D-points
were tracked through the images. Starting from the first image, each 15th image is
shown. The joint measurement matrix has 32% unknown entries. The upper row shows
the images taken by the left camera, the bottom right the images to the right camera.

camera. A total of 2112 feature trajectories was followed through the images.
The joint measurement matrix has 32% unknown entries.

The images weren taken by a HDC-Z10000 stereo camera with focal length
set to 28mm2 The object was about 4m apart from the camera and measured
approximately 30cm in diameter. The optical axes were set such that a 3D-view
appeared on the camera screen.

Some feature points are located at lines and do not move rigidly. We thus
perform a simple outlier rejection. First, the standard deviation of the image-to-
image motion vectors is computed. We then execute the alternating-least-squares
method and remove trajectories whose estimated motion vectors differs from the
known motion vectors by more than two standard deviations. These two steps
are iterated until no more outlying trajectories are detected.

Six views of the 3D-reconstructions of 1658 trajectories are shown in Fig. 4.
The different planes are perpendicular, and the repetitive patterns of the 2D-
points is well reflected by the 3D-points.
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Fig. 4. Six views of the 3D-reconstruction from the data shown in Fig. 3.

(a)

(b)

Fig. 5. Five out of 251 images of a sequence with two rigid bodies moving indepen-
dently. Starting from the first image, each 50th image is shown. A total of 5605 3D-
points were tracked. The joint measurement matrix has 34% unknown entries. The
upper row shows the images taken by the left camera, the bottom images to the right
camera.

5.2 Application 2: Trajectory Completion

Figure 5 shows five out of 251 images of a sequence in which two rigid bodies
move independently. The images in the upper row are taken by the left camera,
those in the bottom row by the right camera. A total of 3967 trajectories was
found in the sequence. The joint measurement matrix has 38% unknown entries.

The images were also taken by a HDC-Z1000 stereo camera. The two boxes
were approximately 2m in front of it. The depth variation within the scene is
larger than 0.5m hence the assumption required by the affine camera is strongly
violated.

As both bodies move independently, each of the two sets of trajectories spans
a 5-dimensional subspace. Therefore, we can perform a rank-10 factorization of
the joint measurement matrix. Although some outliers were present in the data,
we did not perform any filtering.

2 This amounts to a focal length of 320mm in terms of a 35mm sensor).
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Using these estimates, we impute missing data and compare the results with
a regular factorization. The latter needs to process both image streams indepen-
dently, as not all 2D-points are matched across the left and right image streams.

As not all correspondences are known between the two image streams, a reg-
ular matrix factorization needs to process each camera stream independently.
Results of the estimated 2D-points using a rank-8 alternating-least-squares on
the data to the left camera stream are shown in Fig. 6. The two images cor-
respond to the first and last frames shown in Fig. 5(a). As can be seen, many
points are placed randomly. The shown results are representative for the other
images since many points move randomly in all images of the sequence.

Figure 7 shows the completed trajectories using the proposed algorithm. The
images in the upper row correspond to the left camera stream shown in Fig. 5(a),
those in the bottom row to the right stream of Fig. 5(b). The three images in
each row of Fig. 7 show the estimates corresponding to the first, third and fifth
frame shown in Fig. 5. As can be seen, the proposed algorithm estimates missing
feature points correctly throughout the complete sequence.

Fig. 6. Results of a rank-8 matrix factorization (cf. [3]) on the data to the left camera
stream. The two images correspond to the first and last image of the sequence shown
in Fig. 5(a). As can be seen, many points are erroneously estimated.

(a)

(b)

Fig. 7. Estimated 2D-points for the left (a) and right (b) camera streams shown in
Fig. 5. The three images correspond to the first, third and fifth images shown in Fig. 5.
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6 Summary and Discussion

Given image streams taken by a parallely-aligned affine stereo camera system,
this article introduced a low-rank constraint which trajectories across both im-
ages of both streams need to satisfy.

Conversely, existing algorithms for stereo cameras need to factorize both
streams independently if not all correspondences are known between the two
image streams. In other words, the stereo constraint cannot be considered.

The viability of the derived low-rank constraint was evaluated using synthetic
data. Furthermore, two different applications using real images demonstrated
that the algorithm is indeed able to estimate high-quality results. The introduced
constraint does not only apply to rigid data but can be readily generalized to
multi-body or non-rigidly deforming scenes.
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