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ABSTRACT

This paper presents a new method for estimating a super-
resolved version of an observed image by exploiting cross-
scale self-similarity. We extend prior work on single-image
super-resolution by introducing an adaptive selection of the
best fitting upscaling and analysis filters for example learn-
ing. This selection is based on local error measurements ob-
tained by using each filter with every image patch, and con-
trasts with the common approach of a constant metric in both
dictionary-based and internal learning super-resolution. The
proposed method is suitable for interactive applications, of-
fering low computational load and a parallelizable design that
allows straight-forward GPU implementations. Experimental
results also show how our method generalizes better to differ-
ent datasets than dictionary-based super-resolution and com-
parably to internal learning with adaptive post-processing.

Index Terms— Super-resolution, Raised cosine, Cross-
scale self-similarity, Parallel algorithms

1. INTRODUCTION

First efforts in Super-Resolution (SR) focused on classical
multi-image reconstruction-based techniques [1, 2]. In this
approach, different observations of the same scene captured
with sub-pixel displacements are combined to generate a
super-resolved image. This constrains the applicability to
very simple types of motion between captured images, since
registration needs to be done, and it is typically unsuitable for
upscaling frames in most video sequences. It also degrades
fast whenever the magnification factor is large [3, 4] or the
number of available images is insufficient.

The SR research community has overcome some of these
limitations by exploring the so called Single-Image Super
Resolution (SISR). This alternative provides many possi-
ble solutions to the ill-posed problem of estimating a high-
resolution (HR) version of a single input low-resolution (LR)
image by introducing different kinds of prior information.
One common approach in SISR is based on machine learning
techniques, which aim to learn the relation between LR and
HR images, usually at a patch level, using a training set of HR
images from which the LR versions are computed [5, 6, 7].
Thus, performance will be closely related to the content of

the training information. To increase the generalization ca-
pability we need to enlarge the training set, resulting in a
growing computational cost. If we consider all possible im-
age scenarios (e.g. ranging from animals to circuitry), finding
a generalizable training set can then be unfeasible. Current
research on sparse representation [8] tackles this problem by
representing image patches as a sparse linear combination of
base patches from an optimal over-complete dictionary. Even
though with sparse representation the dictionary size is dras-
tically reduced and so the querying times, the execution time
of the whole method is still lengthy, as observed in Section
3. In addition, the cost of finding the sparse representation
(which is not taken into account in our tests) is still condi-
tioned by the size of the training dataset, thus there might still
be generalization issues.

There also exist methods with internal learning (i.e. the
patch correspondences/examples are obtained from the input
image itself), which exploit the cross-scale self-similarity
property [9, 10]. The method we present in this paper follows
this strategy, aiming at a better execution time vs. quality
trade-off. In Section 2 we present the fundamental mecha-
nism for internal learning we use in our method, followed by
our adaptive filter selection, which leads to better generaliza-
tion to the non-stationary statistics of real-world images.

In Section 3 we show quantitative results (PSNR, SSIM
and execution time) obtained with different datasets, as well
as qualitative evidence that support the validity of the pro-
posed approach in comparison to two state-of-the-art SISR
methods. These results show that our method 1) is orders of
magnitude faster than the compared SISR methods; and 2)
the visual quality of the super-resolved images is comparable
to that of the internal learning SISR method [11] and slightly
superior than that of the dictionary-based one [8], being the
latter affected by the problem of limited generalization capa-
bility.

2. PROPOSED METHOD

When using interpolation-based upscaling (e.g. bicubic or bi-
linear) methods, the resulting HR image presents a frequency
spectrum with shrunk support. Interpolation cannot fill-in the
missing high-frequency band up to the wider Nyquist limit
for the upscaled image. In our method, the high-frequency



band is estimated by combining high-frequency examples ex-
tracted from the input image and added to the interpolated
low-frequency band, based on a similar mechanism to the
ones used by [12] (targetting demosaicking) or [13] (SISR).

As originally presented in [9], most images present the
cross-scale self-similarity property. This basically results in
a high probability of finding very similar patches across dif-
ferent scales of the same image. Let xl = hs ∗ (y ↑ s) be an
upscaled version of the input image y, with hs a linear in-
terpolation kernel and s the upscaling factor. The subscript l
refers to the fact this upscaled image only contains the low-
frequency band of the spectrum (with normalized bandwidth
1/s). We just assume hs has a low-pass behavior, but more
details about the filter are given in Section 2.1.

The input image y can be analyzed in two separate bands
by using the same interpolation kernel used for upscaling.
We can compute its low-frequency yl = hs ∗ y and high-
frequency yh = y − yl bands. By doing so, we are gen-
erating pairs of low-frequency references (in yl) and their
corresponding high-frequency examples (in yh). We should
note that yl has the same normalized bandwidth as xl and,
most importantly, the cross-scale self-similarity property is
also present between these two images.

Let xl,i be a patch with dimensions Np ×Np pixels with
the central pixel in a location λ(xl,i) = (ri, ci) within xl.
We look for the best matching patch in the low-resolution
low-frequency band yl,j = argminyl,j

‖yl,j − xl,i‖1, whose
location is λ(yl,j) 1. This is also the location of the high-
frequency example yh,j corresponding to the low-frequency
patch of minimal cost. This search is constrained to a win-
dow of size Nw × Nw pixels around λ(xl,i)/s, assuming it
is more likely to find a suitable example in a location close to
the original one than further away [13].

The local estimate of the high-frequency band corre-
sponding to a patch xl,i is just xh,i = yh,j . However, in
order to ensure continuity and also to reduce the contribution
of inconsistent high-frequency examples, the patch selection
is done with a sliding window, which means up to Np × Np
high-frequency estimates are available for each pixel location
λi. Let ei be a vector with these n ≤ Np×Np high-frequency
examples and 1 an all-ones vector. We can find the estimated
high-frequency pixel as xi = argminxi

‖ei − xi1‖22, which
results in xi =

∑n
j=1 ei,j/n, although different norms might

also be considered.
Once the procedure above is applied for each pixel in the

upscaled image, the resulting high-frequency band xh might
contain low-frequency spectral components since 1) filters are
not ideal and 2) the operations leading to xh are non-linear.
Thus, in order to improve the spectral compatibility between
xl and xh, we subtract the low-frequency spectral component
from xh before we add it to the low-frequency band to gener-
ate the reconstructed image x := xl + xh − hs ∗ xh .

1‖x‖P =
(∑n

i=1 |xi|P
)1/P is the P -norm of a patch with n pixels

(a) (b) (c)

Fig. 1. Effects of filter (hs) selection (2× magnification).
In (a), a very selective filter provides detailed texture in the
super-resolved image but also produces ringing. In (b), a filter
with small selectivity reduces ringing but fails to reconstruct
texture. In (c), texture is reconstructed with reduced ringing
by locally selecting a suitable filter.

2.1. Filter selection

In Fig. 1 (a) and (b) we show how the proposed method be-
haves when considering different designs for the interpola-
tion kernel (or low-pass filters) hs. Overall, the choice of a
selective filter provides a good texture reconstruction in the
super-resolved image, whereas filters with small selectivity
tend to miss texture details with the advantage of avoiding
ringing. This results from the non-stationary nature of image
statistics, and encourages us to locally select the most suit-
able filter type for each region in the image. In Fig. 1 (c) we
show how this strategy allows to reconstruct texture in areas
with small contrast and avoids ringing in regions with high
contrast (e.g. around edges).

We choose the well-known raised cosine filter [14] to pro-
vide a range of parametric kernels with different levels of se-
lectivity. The analytic expression of a one-dimensional raised
cosine filter is

hs,β(t) =
sin(πst)

πst

cos(πsβt)

1− 4s2β2t2
, (1)

where s is the upscaling factor (the bandwidth of the filter is
1/s) and β is the roll-off factor (which measures the excess
bandwidth of the filter). Since all the upscaling and low-pass
filtering operations are separable, this expression is applied
for both vertical and horizontal axis consecutively. We en-
force the value of β to lie in the range [0, s − 1], so that the
excess bandwidth never exceeds the Nyquist frequency. With
β = 0 we obtain the most selective filter (with a large amount
of ringing) and with β = s− 1 the least selective one.

In order to adaptively select the most suitable filter from
a bank of 5 filters with β = {0, s−1

4 , s−1
2 , 3 s−1

4 , s − 1}, we
look for the one providing minimal matching cost for each
overlapping patch, as introduced below. In Fig. 2 we show
the color encoded chosen filter (ranging from blue, for β = 0,
to dark red, for β = s − 1) for each patch. We denote by
xβ,l,i, xβ,h,i, yβ,l,j and yβ,h,j a low-frequency patch, the
corresponding reconstructed high-frequency patch, the best
matching low-resolution reference patch and the correspond-



(a) (b)

Fig. 2. Adaptive filter selection. Left, part of a super-resolved
image (2× magnification). Right, selected filters from a set
of 5 raised cosine filters with β = {0, 1/4, 1/2, 3/4, 1}. Note
how the statistical distribution of the filter selection is related
to the non-stationary statistics of the image.

ing high-frequency example patch, respectively, which have
been obtained by using the interpolation kernel and analysis
filter hs,β . Then, we measure the local kernel cost as

kβ,i = α‖xβ,l,i−yβ,l,j‖1+(1−α)‖xβ,h,i−yβ,h,j‖1. (2)

We leave a parameter α to tune the filter selection. As shown
in Fig. 3, small values of α (ignoring low-frequency differ-
ences) tend to a more uniform selection of filters, whereas
large values of α (ignoring high-frequency differences) typi-
cally result in the selection of ringing-free filters, with worse
separation of low and high-frequency bands. In our tests,
large values of α tend to better qualitative and objective re-
sults. The final super-resolved image is obtained by averag-
ing the overlapping patches of the images computed with the
selected filters.

2.2. Implementation details

The proposed method has been implemented in MATLAB,
with the costlier sections (example search, composition
stages, filtering) implemented in OpenCL without special
emphasis on optimization. The patch side is set to Np = 3
and the search window side toNw = 15. Our algorithm is ap-
plied iteratively with smaller upscaling steps (s = s1s2 . . . ),
e.g. an upscaling with s = 2 is implemented as an initial
upscaling with s1 = 4/3 and a second one with s2 = 3/2.
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Fig. 3. Histogram of selected filters (for 2× mag-
nification) from a set of 5 raised cosine filters with
β = {0, 1/4, 1/2, 3/4, 1} for different values of the tuning
parameter α. The color mapping is the same of Fig. 2 (b).
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Fig. 4. Top, Y-PSNR vs. time for the Kodak (left) and Berke-
ley (right) datasets. Bottom, SSIM vs. time. Our proposed
method is the fastest among the SR methods.

Even though the proposed method can also compute the mag-
nification with a single step, the wider available bandwidth
for matching with smaller magnification factors results in
better selection of high-frequency examples, at the cost of a
somewhat increased computational cost.

As a post-processing stage, we apply Iterative Back-
Projection [1] to ensure the information of the input image is
completely contained in the super-resolved one:

x(n+1) := x(n) + hu ∗ ((y − (x(n) ∗ hd) ↓ s) ↑ s). (3)

The algorithm converges typically after 4 or 5 iterations. The
upscaling (hu) and down-scaling (hd) kernels are the ones
used for bicubic resizing.

3. EXPERIMENTAL RESULTS

We test our method using two different datasets. The first
one, Kodak2, contains 24 images of 768× 512 pixels and the
second one, Berkeley, contains 20 images of 481×321 pixels
from the project website of [15] that are commonly found in
SISR publications.

We compare to a baseline method (bicubic resizing) and
two state-of-the-art methods falling in the subcategories of
dictionary-based [8], which we refer to by sparse, and kernel
ridge regression [11], which we refer to by ridge, including
a powerful post-processing stage based on the natural image
prior [16]. For sparse, we use an offline-generated dictionary
obtained with the default training dataset and parameters sup-
plied by the authors.

2http://r0k.us/graphics/kodak



Fig. 5. Sample results from both the Kodak (left) and Berkeley (right) datasets obtained with our proposed method. The detail
pictures show a visual comparison of the groundtruth image (top left), the reconstructed one with our method (top right), ridge
[11] (bottom left) and sparse [8] (bottom right). Better viewed when zoomed in.

Our comparison consists in taking each image from the
two datasets, downscaling it by a factor of 1/2 using bicu-
bic resizing and upscaling it by a factor of s = 2 with each
method. We measure the SSIM, Y-PSNR and execution
time. The detailed results are shown in Fig. 4 and the av-
erage results for the Kodak and Berkeley datasets are shown
in Tables 1 and 2, respectively. We observe all SR meth-
ods perform better than the baseline bicubic interpolation,
as expected, with ridge and our proposed method also sur-
passing the dictionary-based one. This reflects the fact that
dictionary-based methods do not generalize well in compar-
ison to internal learning. In terms of execution time, our
method is clearly faster than the other tested SR methods,
whereas the baseline bicubic upscaling is the fastest.

In Fig. 5, we show sample results obtained from both
datasets. For space reasons, we are only including 4 of the re-
constructed images, but the complete test results can be found
online3. It is worth mentioning we have not attempted to
get the best possible performance by tuning any parameter,
e.g. the filter selection tuning parameter (α) and the subset of
roll-off factors for the available filters (β). This decision re-

3The complete resultscan be accessed from the first author’s website
http://jordisalvador-technicolor.blogspot.de/2013/05/icip-2013-2.html

Method Time (s) Y-PSNR (dB) SSIM
bicubic 0.007 29.10 0.86
sparse 514.7 30.53 0.89
ridge 29.13 30.81 0.90

proposed 1.193 30.68 0.89

Table 1. Average results for the Kodak dataset

sponds to our goal of making a fair, realistic comparison with
the other methods, for which no parameters were adjusted.

4. CONCLUSIONS

We have presented a novel single-image super-resolution
method suitable for interactive applications. The execution
time is orders of magnitude smaller than that of the compared
state-of-the-art methods, with similar Y-PSNR and SSIM
scores to those of the best performing alternative [11]. Inter-
estingly, our method’s execution time is stable with respect to
the reconstruction accuracy, whereas [11]’s time increases for
the more demanding images. The key aspects of our proposed
method are 1) an efficient cross-scale strategy for obtaining
high-frequency examples based on local searches (internal
learning) and 2) an adaptive selection of the most suitable
upscaling and analysis filters based on matching scores. For
the future work, we plan to improve the overall efficiency
of the method by focusing on the filter selection stage. It
would be desirable to select filters ahead of their application,
which might be achieved using sparse vector machines with a
properly dimensioned training set. We also plan to study the
benefits of a natural image prior [16] post-processing stage.

Method Time (s) Y-PSNR (dB) SSIM
bicubic 0.003 28.62 0.86
sparse 208.9 30.28 0.90
ridge 13.41 30.47 0.90

proposed 0.918 30.50 0.90

Table 2. Average results for the Berkeley dataset
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