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Abstract. A Random Forest consists of several independent decision trees ar-
ranged in a forest. A majority vote over all trees leads to the final decision. In
this paper we propose a Random Forest framework which incorporates a cascade
structure consisting of several stages together with a bootstrap approach. By in-
troducing the cascade, 99% of the test images can be rejected by the first and sec-
ond stage with minimal computational effort leading to a massively speeded-up
detection framework. Three different cascade voting strategies are implemented
and evaluated. Additionally, the training and classification speed-up is analyzed.
Several experiments on public available datasets for pedestrian detection, lateral
car detection and unconstrained face detection demonstrate the benefit of our
contribution.

1 Introduction

Random Forest was introduced in 2001 by Leo Breiman [1] on the basis of bagging
[2] and is part of the ensemble learning methods competing with boosting [3]. A com-
mon problem of data mining or ensemble learning algorithms is the inability to handle
imbalanced training data. An inequality between positive and negative class usually
leads to inferior detection accuracy. Several researchers already started focusing on en-
hancing Random Forest’s performance on imbalanced training data [4–6]. For instance
Chen et al. [4] proposed a cost sensitive learning and sampling technique, more recently
Khoshgoftaar et al. [5] presented an empirical study of learning with imbalanced train-
ing data. Simulations of Strobel et al. [6] reveal that Random Forest also tends to prefer
the majority class. When using Random Forest for detection a vast amount of negative
examples is needed to achieve a robust classifier and a low false positive rate. That leads
to a strong inequality between positive and negative class resulting in a Random Forest
that focuses on the majority class.
Furthermore, we observed a second drawback: after learning several trees Random For-
est optimally adapts to the training set reaching perfect splits. Hence, the classifier can
neither improve the detection sensitivity nor reduce the false positive rate.
Another common problem of object detection algorithms is the lack of real-time pro-

cessing. Especially on mobile devices with limited computational power a fast, effi-
cient and robust algorithm is required. In 2001 Viola and Jones proposed a real-time
object detection algorithm [10] based on AdaBoost with a cascade structure. The cas-
cade structure is motivated by the assumption that it is easier to reject a non-object than
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Fig. 1. Overview of training images. Left: Daimler’s pedestrian dataset [7]. Middle: Faces [8].
Right: UIUC’s car dataset [9].

to find an object. Viola and Jones combined boosted strong classifiers in several inde-
pendent stages with the condition that any stage can reject a subwindow but in order to
accept a subwindow all stages need to be passed. Due to predominant rejection in early
stages, computation time is radically reduced. Additionally, in order to ensure better
training success Viola and Jones proposed a bootstrap strategy to delete correct classi-
fied negative images after learning a stage. Afterwards, the reduced negative training set
is refilled with misclassified images [10]. Earlier work was done by Sung and Poggio
[11]. The authors proposed a bootstrap mechanism that incrementally selects negative
training examples with high benefit.
In this paper, we propose to combine a Random Forest with a cascade structure that
arranges several decision trees in a stage with an aggregated bootstrap strategy. Three
different cascade voting schemes are implemented and evaluated to achieve a tradeoff
between computational speed and detection accuracy. The proposed approach is applied
to a dataset for pedestrian detection, car detection and unconstrained face detection. Fig-
ure 1 shows some training images.
The paper is structured as follows. Section 1.1 gives an overview of recent contribu-
tions. Section 2 briefly describes the Random Forest algorithm by Leo Breiman while
Section 3 contains the contribution of this paper. Experimental results and an analysis
about the speed-up are shown in Section 4. Finally Section 5 concludes the paper.

1.1 Related Work

Since Random Forest is computationally efficient and achieves excellent results it is
widely used in many domains such as pose recognition from depth images [12], skin
detection [13], pedestrian detection [14], traffic sign recognition [15] or biomedical
tasks [16]. Bosch and Zisserman applied Random Forest to several multi-class datasets
for image classification [17].
More recently Gall et al. introduced Hough Forest which base on a Random Forest
enhanced with a generalized Hough transform. Gall and Lempitsky applied a class-
specific Hough Forest to object detection [18] achieving state-of-the-art results for sev-
eral datasets. Furthermore, Gall et al. employed a Hough Forest in tracking, action
recognition [19] and action classification [20].
Another approach is formulated by Felzenszwalb et al.[21]. The authors describe a
general method for building a cascade from part-based models. Rematas and Leibe pro-
posed a cascaded voting scheme [22] that reduces the computation effort without losing
accuracy. The main idea is that a single tree is used as an indicator to find regions-of-
interest while the following trees only process the indicated regions.



In contrast, we incorporate a cascade into Random Forest and integrate a bootstrap
framework to distribute huge quantities of images to stages. Hence, the learning suc-
cess is increased and the drawback of imbalanced training data avoided. Furthermore
we propose three different voting schemes to show a tradeoff between speed-up and low
false-positive rate.

2 Random Forest

In this section the Random Forest algorithm by Leo Breiman [1] is briefly described.
Random Forest is an ensemble learning method based on Breiman’s bagging idea [2]. A
Random Forest consists of CART-like decision trees that are independently constructed
on a bootstrap sample. Compared to other ensemble learning algorithms, i.e. boosting
[3] that build a flat tree structure of decision stumps, a Random Forest uses an ensemble
of decision trees, is multi-class capable and has some preferable characteristics [1]:

– Similar or better accuracy than AdaBoost.
– Robust to noise and outliers.
– Faster training than bagging or boosting.
– Useful internal estimates: error, strength, correlation and variable importance

A tree is grown using the following algorithm:

1. Choose ntree samples with M variables from N training samples at random.
2. The remaining samples are used to calculate the out-of-bag error (OOB-error).
3. At each node specify mtry << M variables at random based on best split.
4. Completely grow the tree without pruning.

A completed Random Forest consists of several classification trees 1 ≤ t ≤ T in which
the class probabilities, estimated by majority voting, are used to calculate the sample’s
label y(x) with respect to a feature vector x:

y(x) = argmax
c

(
1

T

T∑
t=1

Iht(x)=c

)
(1)

The decision function ht(x) provides the classification of one tree to a class c with the
indicator function I:

Iht(x)=c =

{
1, ht(x) = c,

0, otherwise.
(2)

Classification A sample is classified by passing it down each tree until a leaf node is
reached. A classification result is assigned to each leaf node and the final decision is
determined by taking the class having the most votes, see Equation (1).



3 Cascaded Random Forest

Our contribution consists of three main parts: (1) a cascade training and testing frame-
work with three different voting strategies, (2) a weighting scheme for stage classifiers
to penalize poorly performing stages and (3) a bootstrap strategy to incrementally con-
struct new training sets. Figure 2 shows the pseudocode of a cascaded Random Forest
training with weighted voting strategy.
A cascade consists of several stages with increasing complexity whereby each stage
contains at least one tree. Trees are added until a given true positive and true negative
rate is achieved. There are several advantages of a cascade structure: huge quantities
of images can be distributed among stages, reduction of false positives and increasing
computation speed at classification.
The sample’s label is determined by the class probabilities of different trees arranged in
S stages, therefore we extend Equation (1) to:

y(x) = argmax
c

(
1

T · S

S∑
s=1

T∑
t=1

Iht(x)=c

)
(3)

Furthermore we have observed that the detection accuracy of some stages is slightly
lower than others. To decrease the influence of these poorly performing stages we cal-
culate a weighting factor α for each stage. By incorporating the F1 (fmeasure)1 score
into the weighting factor we exploit the harmonic mean of precision and recall on a
validation set. Equation 3 is therefore extended to:

y(x) = argmax
c

(
1

T ·
∑S

s=1 αs

S∑
s=1

αs

T∑
t=1

Iht(x)=c

)
, (4)

where αs = exp (fmeasure)

Alternatively, the OOB-error can be used to calculate the weighting factor. Moreover,
αs is linearly normalized to a range between 0 and 1. The weight of poorly performing
stages is reduced so that their influence in the majority voting is decreased. Equations
(3) and (4) do not take the early rejection of detections into account.
Our contribution comprises three different voting strategies:

1. Weighted voting: Each stage is weighted with respect to its single performance.
2. Full stage reject: Any stage can reject an image. To classify a positive object all

stages need to be passed, similar to the Viola-detector [10]. Real-time processing
and a reduction of false positive rates is achieved.

3. Majority stage reject: Each stage incorporates the votes of already processed stages.
An image can only be accepted if the majority of stages pass it. A tradeoff between
real-time processing, reduction of false positive rates and a higher true positive rates
is achieved.

1F1 = 2 · precision·recall
precision+recall

. Best value at 1, worst at 0



Each voting scheme implies a bootstrap strategy to incrementally build a new benefi-
cial training set, similar to [10, 11]. A commonly used bootstrap strategy proceeds as
follows: after learning each stage all previously trained stages are reapplied to the neg-
ative training set in order to delete true negatives. In most cases all negative examples
are deleted so that the training set only consists of positive images. In the next step
all existing stages are reapplied to random images, at random position and scale, taken
from a negative high-resolution dataset. If a generated subwindow is misclassified it

Train Random Forest cascade with weighted voting

– Select maximum number of stages S and number of
trees per stage T .

– Select true-positive tp and true-negative tn target rates
per stage.

– for (0 < s ≤ S)
• for (0 < t ≤ T )

∗ Train single tree.
∗ if (tps,t > tp & tns,t > tn)

Stage completed.
• Calculate αs = exp(fmeasure).
• Delete true-negatives
• Refill with false-positives

– Normalize weights α to a range of 0 and 1

Fig. 2. The Random Forest cascade training with weighted voting. S stages are constructed each
containing a maximum number of T trees.

will be added to a new negative training set to be learned by the following stage. By
introducing a stage-wise training with a bootstrap strategy it is possible to uniformly
distribute huge quantities of images to stages so that large differences between classes
are avoided. This prevents the problem of imbalanced training sets [4, 5] and provides
the maximal learning success for the Random Forest.

4 Experimental Results

We decided to evaluate three public available datasets for: (1) pedestrian detection, (2)
(multi-class) lateral car detection and (3) (multi-class) face detection. Three Random
Forest classifiers with weighted voting, full stage and majority rejection are trained.
The results are compared to state-of-the-art methods. The influence of different pa-
rameter settings is also analyzed and an overview of training- and classification time
consumption is given.

4.1 Pedestrian Detection

For our first experiment we used the Daimler mono pedestrian dataset by Munder and
Gavrila [7]. The dataset provides three training sets and two test sets (T1 and T2),
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Fig. 3. ROC curves for the Daimler pedestrian datasets T1 and T2. We compare the cascaded
classifier to a non-cascaded with equal training images and to a non-cascaded without additional
images.

each consisting of 4800 pedestrians and 5000 non-pedestrians. Moreover, the dataset
provides 3600 non-target images intended to extract additional negative patches. In or-
der to be illumination and contrast invariant, all images have been normalized to zero
mean and unit variance. A feature is then constructed from each normalized grayscale
pixel value. Since the dataset does not need a sliding-window approach we decided to
use the weighted voting strategy (see Section 3) without a rejection of subwindows.
We trained a cascaded Random Forest classifier with 300 stages, each containing one
tree. After training each stage true negatives were deleted and 4000 false positives were
refilled leading to an overall negative training set of 1201000 distributed images. To ob-
tain comparability and to show the drawback of imbalanced training data, the negative
dataset was saved to train a non-cascaded classifier with 300 trees. Since this variant
does not benefit from a stage-wise distribution of images the performance is presum-
ably worse. Additionally, we trained another non-cascaded classifier without bootstrap
sample.
Figures 3(a) and 3(b) show ROC curves for all three experiments on the T1 and T2
dataset in comparison. As expected, the cascaded classifier clearly outperforms both
non-cascaded variants. Presumably the non-cascaded classifier with huge initial train-
ing set shows the impact of imbalanced training data and produces more false positives.
The non-cascaded variant without additional images produces even more false positives,
due to its smaller negative training set. In comparison to [23] we achieve better results
than Viola-Jones OpenCV classifier and competitive results to control-point features.

4.2 Lateral Car Detection

As the second experiment we used the lateral car dataset collected by the Cognitive
Computation Group of the University of Illinois [9]. It contains 1050 grayscale training
images (550 cars and 500 non-car images). The images were mirrored and normalized
to an overall set of 1600 images. The dataset also provides test images, ground truth data
and an evaluation tool for an automatic precision and recall calculation. The multi-scale
test set consists of 108 test images with 139 cars at different scales. In this experiment,
each pixel value was used to construct a feature. The dataset needs a multi-scale sliding-
window approach which requires a more complex classifier. We continue to use the
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Fig. 4. ROC curve for the lateral car detection dataset. We compare the cascaded Random Forest
to an AdaBoost classifier with connected-control-point features [23] and Haar-like features. For
the important range of high precision the cascaded Random Forest shows superior performance.
ROC line points are taken from [23].

weighted voting strategy but with 400 stages, each containing one tree. The bootstrap
strategy remains the same. After each stage true negatives were deleted and 2000 false
positives were refilled. The amount of false positive was reduced to coincide with the
number of positive training images.
Figure 4 shows the ROC curve of the cascaded Random Forest classifier in comparison
to control-point and Haar-like features trained by the AdaBoost algorithm of [23]. For
a better comparison to other frameworks we use the 1-precision/recall metrics. Without
any false detections the cascaded Random Forest already achieves a true-positive rate
of 0.72 and with 25 false detections the classifier achieves a true-positive rate of 0.93.
In comparison to [23] the cascaded Random Forest outperforms the control-point and
Haar-like features for the important range of high precision (left part of ROC).

4.3 Unconstrained Face Detection

For training the face detector we used the ”MPLab GENKI-4K” dataset [8] from the
Machine Perception Laboratory in California. It consists of 4000 faces under a wide
range of illumination conditions. To achieve better results the training images were
aligned, mirrored and normalized. A feature was constructed from each pixel value. We
evaluated our face detector on the Face Detection Data Set and Benchmark [24] which
consists of 2845 images with 5171 faces. The dataset contains several lateral or oc-
cluded faces and is partially difficult to classify, see Figure 6. The FDDB also includes
a benchmark tool to compare the detector’s quality to different methods.
To achieve better detection accuracy for more complex datasets and real-time perfor-
mance we evaluated both rejection voting schemes (see Section 3). As already men-
tioned, both strategies imply unweighted stages but differ in their rejection scheme. In
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Fig. 5. ROC curve for Face Detection Data Set and Benchmark [24] with continuous score. The
cascaded Random Forest with majority vote rejection clearly outperforms the other methods.

the full stage rejection strategy, any stage can reject a subwindow (similar to Viola-
detector) and in the majority rejection strategy, the votes of already processed stages
are incorporated and subwindows are only classified negative if the majority of stages
reject them. This leads to a tradeoff between performance and detection accuracy.
We trained a cascaded Random Forest with majority stage rejection and 1500 trees

arranged in 1500 stages. After each stage true negatives were deleted and 15000 false
positives were refilled. The Random Forest with full stage rejection was trained with
30 stages, each containing 50 trees and with similar bootstrap strategy. More than 30
stages led to an exceedingly strict classifier without any positive detections. The opti-
mal parameters (amount of stages, trees and false positives) were empirically chosen.
In both cases we noticed that nearly all negative examples were deleted after training
one stage.
Figure 5 shows a ROC curve comparing two types of cascaded classifiers and a non-
cascaded classifier to an OpenCV Viola-detector. The cascaded variant with majority re-

Fig. 6. Example detections on the FDDB [24]. Lateral or partially occluded faces are detected.



jection clearly outperforms the other methods. The full stage rejection strategy achieves
a true positive rate of 0.30 at 2000 false positives, due to its smaller negative training set
derived from only 30 stages. The non-cascaded classifier produces more false positives
and only achieves similar true positive rates at the range of about 30000 false positives,
its negative training set is too small. In comparison to state-of-the-art results [25] we
achieve competing detection accuracy and compared to similar frameworks like the Vi-
ola and Jones OpenCV detector, the cascaded Random Forest clearly outperforms these
frameworks.
Figure 6 shows some convincing face detections on FDDB. Typical boosting detectors
can only detect faces if they exactly conform to the training images. The cascaded Ran-
dom Forest classifier is more flexible, detecting also partially occluded or lateral faces.

4.4 Multi-class Capability

One of the advantages of Random Forest is the ability for multi-class detection in con-
trast to common boosting detectors. Thus, as a small experiment we trained a cascaded
Random Forest with a third object class. In case of the face detector we manually la-
beled the training images as male or female and in case of the car detector as left-
faced or right-faced car. The training procedure remains the same. Figure 7 shows some
promising results. Neither the FDDB nor the car dataset provide groundtruth for such a
case, hence finding adequate datasets to evaluate the capability of our proposed method
for multi-class detection is planned for future work.

Fig. 7. Training of a cascaded Random Forest with a third object class. (Yellow): male face /
left-faced car, (purple): female face / right-faced car.

4.5 Speed-Up

The classifiers were trained on an Intel Core i7-2700K. The framework is written in
C/C++, partially parallelized (bootstrapping, testing) and not optimized. Table 1 shows



Type Images Time [min]

Cascaded with 300 stages and 300 trees 1201000 1.53
Non-cascaded with 300 trees 1201000 821.16
Non-cascaded with 300 trees 4000 0.20

Table 1. Speed-up at training time applied to the car detection dataset. The cascaded Random
Forest requires significantly less time training due to the distribution of negative images among
the stages.

Type Trees , Stages FPS

Cascaded with majority vote 1 , 1500 15.63
Cascaded with full stage rejection 50 , 30 6.24
Cascaded with majority vote 50 , 30 3.94
Non-cascaded 1500 , 1 0.08

Table 2. Frames per second on the face detection dataset. The cascaded classifier with majority
vote rejection achieves the highest frame rate.

training time comparing a cascaded and two different types of non-cascaded Random
Forest applied to the lateral car dataset. The non-cascaded Random Forest differ in the
amount of training images. In case of the cascaded variant the training time includes
the deletion of true negatives and reapplying the classifier for collecting false positives.
The huge difference between cascaded and the first non-cascaded Random Forest is

caused by the large initial training dataset.
Table 2 shows the classification time on the face detection dataset. We compared a cas-
caded Random Forest with majority rejection to a classifier with full stage rejection and
to a non-cascaded one. The cascaded classifier with 1500 stages and majority rejec-
tion achieves the highest frame rate. The full stage rejection variant should achieve the
highest frame rate but due to 50 trees per stage and the resulting higher complexity the
strategy achieves a lower frame rate. The non-cascaded classifier achieves the lowest
frame rate since every generated subwindow needs to be classified by 1500 trees.
Table 3 shows the amount of rejected subwindows with respect to the processed stage.
Nearly 90% of all generated subwindows are rejected by the first stage with minimal

Stage Index Rejected subwindows

1 87.762557%
2 11.336876%
3 0.0347972%
4 0.0072001%
5 0.0092063%

Table 3. Stage rejections of face detection dataset (5 of 1500 stages). 99% of all generated sub-
windows are rejected by the first and second stage with minimal computational effort.



effort. About 99% are rejected by the first and second stage leading to an increasing
computation time.

4.6 Discussion

The results demonstrate that an increasing number of stages comprising the bootstrap
strategy lead to a more robust classifier achieving a better detection accuracy. Further-
more, we suggest to train each stage with a minor number of trees, in most cases only
one tree is necessary to correctly classify all training examples. If it is required to re-
duce the number of false positives it is more applicable to increase the number of stages
than the number of trees. Additionally, the speed-up analysis shows that the cascaded
variants achieve highest frame rates. Finally, the cascaded Random Forest with majority
vote rejection leads to best detection accuracy and highest frame rate.

5 Conclusion

In this paper we proposed a Random Forest framework which incorporates the cas-
cade structure of the well-known Viola-detector. A bootstrapping mechanism allows to
distribute huge negative training sets among the cascade stages. By this, the learning
success can be increased and the problem of imbalanced training classes is reduced.
We composed three different voting strategies: weighted voting, full stage and majority
stage rejection and show a tradeoff between real-time processing and low false positive
rate. Experiments were conducted on public available datasets for pedestrian detection
(Daimler), lateral car detection (UIUC) and unconstrained face detection (FDDB). The
results demonstrate that we achieve real-time processing, state-of-the-art detection ac-
curacy, multi-class capability as well as an accelerated training procedure.
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