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Abstract. In this paper we propose an algorithm for image segmen-
tation using graph cuts which can be used to efficiently solve labeling
problems on high resolution images or image sequences. The basic idea of
our method is to group large homogeneous regions to one single variable.
Therefore we combine the appearance and the task specific similarity
with Dempster’s theory of evidence to compute the basic belief that two
pixels/groups will have the same label in the minimum energy state. Ex-
periments on image and video segmentation show that our grouping leads
to a significant speedup and memory reduction of the labeling problem.
Thus large-scale labeling problems can be solved in an efficient manner
with a low approximation loss.

1 Introduction

In the field of computer vision, discrete optimization using maximum flow algo-
rithms has become very popular [1]. This has been driven by the fact that many
problems such as image segmentation, stereo matching or shape matching are
formulated using probabilistic models like Markov or conditional random fields
(MRF or CRF respectively). The computation of the maximum a posteriori
(MAP) solution for these models can be regarded as the discrete minimization
of an energy function [2–4]. Many algorithms in literature are able to efficiently
compute an approximate solution of the given optimization problem. Under some
assumptions, e.g. such that the energy function is submodular, these methods
are able to compute the exact minimum of the given energy function. We intro-
duce an enhanced algorithm for grouping variables of the optimization problem
which improves the general performance of maximum flow algorithms.

In parallel to the improvement of discrete energy minimization algorithms [3,
5, 6], the size of single images and image sequences increased significant. Com-
pared to standard benchmark images, which have an approximate size of 120.000
pixels, nowadays commercial cameras capture images with many more pixels,
e.g. up to 20 million. Since most energy functions for image segmentation or
stereo matching contain one discrete variable per pixel, the minimization using
maximum flow algorithms can be computationally extremely expensive. It has
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Fig. 1: Variable grouping for image segmentation. First row: original image; vari-
able grouping of [9] with a budget of 1%; proposed variable grouping (COM-
PACTEDGE) with a budget of 1%; Second row: corresponding segmentation
results. Using the same budget the proposed grouping is semantically more mean-
ingful and leads to a smaller segmentation error.

been shown that the given algorithms are not applicable if the data of the prob-
lem does not fit into the physical memory [7, 8]. This observation has inspired
researchers to develop more efficient energy minimization methods [5, 10, 11].

Related Work: Research on solving discrete optimization problems using
maximum flow / minimum cut algorithms for applications in computer vision
can be divided into the following approaches:

Augmenting paths: For computer vision problems, the most widely used
algorithm is the Boykov and Kolmogorov augmenting paths algorithm [1, 12]
(BK-algorithm). This algorithm efficiently solves moderately sized 2D and 3D
problems with low connectivity.

Push-relabel: Most parallelized maximum flow / minimum cut algorithms
are based on the push-relabel scheme [8]. For huge and highly connected grid
graphs these methods outperform the traditional BK-algorithm [1]. In contrast
to these methods, the proposed algorithm does not use special hardware to
approximate the optimal solution.

Grouping of variables / graph sparsification: Besides the approaches to
develop more efficient algorithms for the maximum flow / minimum cut problem,
researchers are also trying to reduce the size of the labeling problem or the graph
itself. One simple and widely used technique merges variables in the energy
function into a smaller number of groups e.g. superpixels. Besides a number of
well known image partitioning methods [13–16], Kim et al. presented a similar
method [9] where the terms of the energy function and the algorithm proposed by
Felzenszwalb and Huttenlocher [13] are used to decide if two variables should be
merged. In [17] Scheuermann and Rosenhahn presented an algorithm for graph
sparsification that does not change the optimal solution. The idea is to create
a so called Slim Graph by merging nodes in the graph that do not change the
maximum flow, meaning that these variables are guaranteed to have the same
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label in the minimum energy state. Lermé et al. proposed a similar approach for
graph sparsification by maintaining the maximum flow [18].

Multi-scale: Our work is also related to multi-scale methods for image la-
beling. The idea is to first solve the problem at low resolution using standard
techniques [19–21]. This can be interpreted as a grouping of pixels into regular
non-overlapping groups. The result of the low-resolution labeling is refined at
the high-resolution in a following optimization step, where most variables of the
problem are fixed.

Contribution: We propose an algorithm that merges variables of the en-
ergy function to small sets of non overlapping groups, so that each group can be
represented by one single variable. The merging follows the idea of [13] and [9]
where the grouping is based on appearance or the terms of the energy function
respectively. In contrast to [9], we combine the task-specific similarity and the
appearance using Dempster’s theory of evidence to compute the basic belief that
two neighboring variables should be merged. Furthermore we do not directly pe-
nalize the size of a group by proposing new merging constraints (MAXEDGE
and COMPACTEDGE), that follow our idea to allow large groups of variables
in homogeneous regions. Instead of an accurate MAP our goal is to reduce to
segmentation error. Therefore we use Dempster’s theory of evidence that is com-
plementary to the terms of the energy function. We evaluate our method on
standard benchmark images to show that our grouping achieves a better perfor-
mance than the methods of [13] and [9]. Furthermore we quantify our algorithm
on video sequences and high-resolution images to show that the segmentation,
performed on top of our grouping, results in a similar segmentation with a dra-
matic reduction in computational costs and memory requirements.

Paper Organization: In Section 2 we continue with a review of discrete
energy minimization, which is the basis for our segmentation framework, and
recall the idea of Dempster’s theory of evidence. Section 3 introduces and ex-
plains the proposed grouping of variables. The details of our experiments and
the analysis of the results are provided in Section 4. The paper finishes with a
short conclusion.

2 Segmentation by Discrete Energy Minimization

The discrete energy E : Ln → R for the problem of binary image labeling
addressed in this work can be written as the sum of unary ϕi and pairwise
functions ϕi,j

E(x) =
∑
i∈V

ϕi(xi) +
∑

(i,j)∈E

ϕi,j(xi, xj) , (1)

where x is the labeling, V corresponds to the set of all image pixels and E is the
set of all edges between pixels in a defined neighborhood N . For the problem
of binary image segmentation, the label set L consists of a foreground (fg) and
a background (bg) labels. The unary function ϕi is given as the negative log
likelihood using a standard GMM model [6], defined as

ϕi(xi) = − logPr(Ii | xi = S) , (2)
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where S is either fg or bg. The pairwise function ϕi,j takes the form of a contrast
sensitive Ising model, defined as

ϕi,j(xi, xj) = γ · dist(i, j)−1 · [xi 6= xj ] · exp(−β‖Ii − Ij‖2) . (3)

Here Ii and Ij describe the feature vectors of pixels i and j, e.g. RGB-colors. The
parameter γ specifies the impact of the pairwise function. It has been shown that,
using the defined unary and pairwise functions, the energy (1) is submodular and
can hence be represented by a graph [12]. In this form, the global minimum of
the energy can be computed with standard maximum flow algorithms [1].

To solve the labeling problem using maximum flow algorithms, the energy
function needs to be represented by a graph. This can be done analogously
to [12] by defining the graph G = (VG, EG) as follows: the set of vertices is
simply the set of pixels unified with two special vertices: VG = V ∪{S, T}, where
S denotes the source and T the sink. The set of edges consists of the set of
all neighboring pixels plus edges between each pixel and the source and sink
respectively: EG = E ∪ {(p, S), (p, T ) | p ∈ V}. The capacities c(e) of each edge
are defined analogously to Boykov et al. [12].

For the grouping of the variables, we follow the definitions given in [9] with
our notation. A variable grouping of graph G is a graph G′ = (V ′G, E ′G) with
energy function E′ produced by a surjective map mG : VG → V ′G and the edge
set E ′G = {(s, t) ∈ V ′G×V ′G | ∃(i, j) ∈ EG : mG(i) = s and mG(j) = t}. Thus, the
energy function for a variable grouping G′ reads:

E′(x) =
∑
i∈V

ϕi(x̂mG(i)) +
∑

(i,j)∈E

ϕi,j(x̂mG(i), x̂mG(j)) , (4)

where x̂ is the labeling of the variable grouping. Solving this energy function
on top of the grouping can be seen to correspond to the existing practice of
using superpixels as a preprocessing step and defining the energy minimization
problem on superpixels instead of pixels. Since most superpixels are directly
derived from image properties, they perform poorly because the properties of the
energy function, e.g. the unary term, are ignored. Figure 2 shows an example
of a variable grouping and the corresponding graph based on the new energy
function.

2.1 Dempster-Shafer Theory of Evidence

In this section we briefly review Dempster’s theory of evidence, which is later
used to define a similarity weight for two neighboring variables. The Dempster-
Shafer theory of evidence, also called evidence theory, was introduced in the
late 60s by A.P. Dempster [22], and more formally in 1976 by G. Shafer [23].
Later works [24, 25] applied it to image segmentation, and showed that it can be
superior to Bayesian theory.

Evidence theory is a generalization of Bayesian theory which jointly repre-
sents inaccuracy and uncertainty information. The basic idea of the evidence
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Fig. 2: Example variable grouping. The nodes from the original graph (a) are
merged into three different groups of variables (b) and (c). The weights of the
new graph are changed according to the new energy function. A good grouping
(b) does not change the MAP solution of the original graph.

theory is to define a so-called mass function on a hypotheses set Ω. Let us note
the hypotheses set Ω composed of n single mutually exclusive subsets Ωi, sym-
bolized by Ω = {Ω1, Ω2, . . . , Ωn}. In order to express a degree of confidence for
each element A of the power set ℘(Ω), an elementary mass function m(A) is
associated with it to indicate all confidences assigned to this proposition. The
mass function m is defined by: m : ℘(Ω) → [0, 1] and must fulfill the following
conditions:

(i) m(∅) = 0 (ii)
∑
An⊆Ω

m(An) = 1 . (5)

The quantity m(A) is interpreted as the belief strictly placed on hypothesis
A. Compared to a Bayesian probability function, the mass function in evidence
theory is the totality of belief. This belief is distributed on both simple and
composed classes and models the impossibility to separate several hypotheses.
Thereby the principal advantage of the evidence theory is characterized.

From the basic belief assignment m, a belief function Bel : ℘(Ω)→ [0, 1] can
be defined as

Bel(A) =
∑
An⊆A

m(An) , (6)

with An ∈ ℘(Ω). The belief function is the mass of hypothesis A plus the mass
attached to all subsets of A. This can be interpreted as the total belief committed
to a hypothesis. Bel(A) is then the total positive effect the body of evidence has
on a value being in A. It quantifies the minimal degree of belief of the hypothesis
A.

A particular characteristic of Dempster-Shafer evidence theory differs from
Bayesian theory: If Bel(A) < 1, then the remaining evidence 1 − Bel(A) does
not need necessarily refute A (i.e. support its negation A). That is, we do not
have the so-called additivity rule Bel(A) +Bel(A) = 1.

Dempster’s rule of combination To unify evidence from a variety of features
we use Dempster’s rule of combination. This rule combines two independent
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bodies of evidence, defined within the same frame of discernment, into one body
of evidence. Letm1 andm2 be two mass functions associated to such independent
bodies. Then the new body of evidence is defined by the mass function

m(A) = m1(A)⊗m2(A) =

∑
B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅

m1(B)m2(C)
. (7)

Dempster’s rule of combination computes a measure of agreement between two
bodies of evidence and ignores the conflicting evidence through the normaliza-
tion factor. Since Dempster’s rule of combination is associative, we can combine
information arising from more than two feature channels.

3 Dempster-Shafer based Variable Grouping

In this section we describe the details of our approach and show the similarities
and differences to existing approaches. Let us assume a score function w mea-
suring how similar two connected nodes are, such that small values indicate a
strong similarity and large values dissimilarity. The idea of grouping nodes is as
follows: (i) the first step is to sort all edges of the graph in ascending order so
that edges with a small weight come first, (ii) for each edge in the list we merge
nodes that fulfill a given constraint until we have sufficiently reduced the prob-
lem. The efficient graph-based segmentation method, proposed by Felzenszwalb
and Huttenlocher [13], works exactly like this. To balance the size of a group and
its internal coherence, a global criterion is used to decide if two groups can be
merged. Algorithm 1 is identical to [13] and [9] using our notation. The merging
constraint used in [13] and [9] is based on the so called internal difference

Int(C) = max
(i,j)∈MST(C,E)

wij ,

where MST(C, E) is the minimum-weight spanning tree within the group C with
a set of edges E . Int(C) is small if the nodes in group C are similar according
to the defined edge weights. To decide whether two groups are merged, the
algorithm compares the weight of the connecting edge between the two groups
C1 and C2 and compares it with the internal difference Int(Ci) of both groups.
For our goal of grouping variables for energy minimization, this criterion makes
sense since we want to build groups of variables that are similar and agree about
their labeling. For the decision, [13, 9] use the function MInt(C1, C2) defined as

MInt(C1, C2) = min{Int(C1) + τ(C1), Int(C2) + τ(C2)} ,

where τ(C) = k
|C| penalizes the size of a group based on a free parameter k.

According to Algorithm 1, when edge wij ∈ EG fulfills the equation

wij ≤ MInt(Ci, Cj) (8)

Ci and Cj are merged. As mentioned in [13], this graph based method is very
efficient and easy to implement in O(|EG | log |EG |) time and memory.
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Algorithm 1: Dempster-Shafer based Variable Grouping

1: (V ′
G ,m) = DempsterShaferGrouping(G,ϕ, w)

2: Input:
3: G = (VG , EG) // an instance of the graph
4: ϕi, ϕi,j // node and edge energies
5: w : EG → R // dissimilarity weights
6: Output:
7: VG′ // set of grouped variables
8: m // surjective map
9: Algorithm:
10: VG′ ← VG , EG′ ← EG
11: m← {(i, i) | i ∈ VG}
12: π ← sort(EG , w) {sort weights in ascending order}
13: for e = 1, . . . , |π| do
14: (i, j)← πe

15: if m(i) = m(j) then
16: continue {already merged}
17: end if
18: if wij fulfills given constraint then
19: merge Cj and Cj in m,VG′

20: end if
21: end for

3.1 Merging Function

The grouping resulting from the algorithms in [13] and [9] can be described as
compact since the free parameter k in τ(C) penalizes the size of a group. In
[9] the goal was to produce compact groups of variables that will have the same
label according to the minimum energy state. Therefore the weight functions are
based on the unary or pairwise potentials of the energy function. In contrast, our
goal is to group as many variables as possible that are likely to have the same
label according to the minimum energy state and to the ground truth labeling.

To allow big groups of variables, e.g. in homogeneous regions, we propose
new merging constraints based on the maximum weight among outgoing edges.
Instead of using a global criterion, balancing the size and the internal coherence
of a group we merge all nodes that are connected by a sufficiently small edge.
E.g. one could use the function wij ≤ W to merge all nodes connected by an
edge smaller than the parameter W . As we will show in the experiments this
simple constraint does not produce groups that agree with either the minimum
energy state or the ground truth. To produce groups of homogeneous variables,
we propose two new merging constraints based on the local edge weights of two
nodes. The first constraint takes into account the maximum value of any edge
connected to one of the two nodes. Therefore two components connected by the
edge wij are grouped if

wmax(i, j) := max {wik, wlj | (i, k), (l, j) ∈ EG} ≤W1 (MAXEDGE). (9)



8 B. Scheuermann et al.

This means that two nodes are merged if the weights of all edges adjacent to
(i, j), including the edge wij , are smaller than the parameter W1, which indicates
that these nodes are somewhat similar. In our experiments the threshold W1 is
computed according to the distribution of the edge weights (66% of the edge
weights are smaller than W1). The idea of the proposed constraint is to have
large groups of variables in all images regions except the borders of the objects.
If a node (pixel) is near the border of an object there should be one edge with a
high weight. With (9) this edge guarantees that the node is not merged with any
neighbor. As a second constraint we also include the global criterion based on
the minimum-weight spanning tree and the size dependent function τ , to balance
the size of a group and its internal coherence, to allow somehow small compact
groups of variables in regions that do not fulfill the MAXEDGE constrained,
e.g. at the borders of an object. Thus, the decision is made according to

MAXEDGE or wij ≤ MInt(Ci, Cj) (COMPACTEDGE), (10)

The differences of the proposed merging functions are discussed in the experi-
ment section.

3.2 Weight Functions

We consider three classes of weight functions wij . The first two are well known
weight functions that shall serve as comparison with the proposed one.

Felzenszwalb and Huttenlocher: In [13] Felzenszwalb and Huttenlocher
take the pixel difference as the grouping weight. If Ii and Ij are the feature
vectors of pixels i and j in the image, the weight is set to the norm of the
difference:

wFHij = ||Ii − Ij || .

In our experiments on image segmentation, we will show that this method is
not performing comparably, since the properties from the energy minimization
problem are ignored.

Kim et al.: An approach very similar to [13] and ours, was proposed by
Kim et al. in [9]. For comparison with the proposed method we use the defined
UNARYDIFF weight function. In our experiments on standard benchmark im-
ages this weight function outperformed the others for the problem of binary
image segmentation. The weight is defined as

wudij = ||ϕi − ϕj || ,

using the unary terms of the defined energy function. The weight describes the
disagreement of the states between two variables and measure the task-specific
similarity of two neighboring nodes.

Dempster-Shafer weighting function: Our proposed weight function in-
cludes the unary functions ϕi and ϕj and the pairwise terms ϕij . Thereby we
take into account the image information that are included in the pairwise func-
tion and the information included in the unary term, typically derived from a
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discriminative classifier. Hence the proposed weight function can be seen as a
combination of the two earlier presented ones which combines the image fea-
tures with the task specific unary functions. To combine both informations we
use Dempster’s theory of evidence. Therefore we define the weights based on the
unary and pairwise functions

wpairwiseij = ϕij(xi, xj) and wunaryij = ||ϕi − ϕj || . (11)

Since the co-domain of the weights are different, we normalize them individually
to [0, 1]. That means for two variables with a similar feature vector wpairwiseij ≈ 1.
For wunaryij it means wunaryij ≈ 0 if the negative log likelihood for two variables
is similar for both states. Based on these weight functions, we define two mass
functions over the hypothesis set Ω = {Ω1, Ω2}, where Ω1 means that the two
variables are similar and Ω2 that they are dissimilar:

m1(Ω1) = b1 · wpairwiseij ,m1(Ω2) = b1 · (1− wpairwiseij ) ,

m1(∅) = 0 ,m1(Ω) = b1 ,

m2(Ω1) = b2 · (1− wunaryij ) ,m2(Ω2) = b2 · wunaryij ,

m2(∅) = 0 ,m2(Ω) = b2 ,

(12)

where bi describes the belief we put on the different information sources. In all
our experiments we equally weight the believe with b1 = b2 = 0.5. Now we fuse
the two mass functions with Dempster’s rule of combination (7) and define the
weights:

wDSij = 1−Bel(Ω1) = 1−m(Ω1) = 1−m1(Ω1)⊗m2(Ω1)

= 1−
(
m1(Ω1) ·m2(Ω1) +m1(Ω1) ·m2(Ω) +m1(Ω) ·m2(Ω1)

1− (m1(Ω1) ·m2(Ω2) +m1(Ω2) ·m2(Ω1))

)
(13)

In contrast to [9], the proposed weight function allows for the combination with
other information sources, such as the user initialization, the optical flow in video
sequences, depth images or appearance information of an object.

4 Experiments

Our proposed grouping allows us to compute an approximate segmentation.
Since the resulting graph for the energy minimization is much smaller the seg-
mentation result differs from the original MAP solution. Since the goal of our
grouping is a low segmentation error, and not an accurate MAP, we quantify our
algorithm using three performance measures: (i) the segmentation quality with
respect to the ground truth solution, (ii) the minimum segmentation error of a
grouping, and (iii) the ratio of runtimes solving the MAP-problems (including
the time for the grouping). Following, we describe the three measures in detail:

Segmentation error: The segmentation error is defined analogously to [2]
as the ratio between the number of misclassified pixels and the number of pixels
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Method Avg. budget Avg. Rmse(x) Avg. Rse(x)

full MAP (reference) 100 (100) 0 (0) 0.075 (0.058)

FH-alg [13] 10.22 (10.22) 209.74 (209.74) 0.074 (0.063)

UNARYDIFF [9] 10.72 (10.84) 255.1 (219.08) 0.073 (0.065)

MAXEDGE 47.72 (15.21) 58.42 (4.21) 0.069 (0.058)

COMPACTEDGE 6.25 (5.00) 321.5 (63.52) 0.061 (0.058) 0.1 %1 %10 %100 %

1 %

2 %
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COMPACTEDGE
UNARYDIFF [9]

Table 1: Comparison of the proposed algorithm and two similar methods pro-
posed in [13] and [9]. All values are averaged over 50 benchmark images using
stroke (lasso) initializations. As can be seen our proposed method COMPACT-
EDGE performed best in terms of quality with a smaller budget. The proposed
MAXEDGE has the lowest minimum segmentation error with the drawback of a
bigger budget.The graph visualizes Rse(x) for one image and different budgets.

in unclassified regions:

Rse(x) =

∑
i∈VG [xi 6= xgti ]

no. pixels in unclassified regions
,

where xgt is the ground truth labeling.
Minimum segmentation error: Another measure to quantify the quality

of a grouping is given by the minimum segmentation error, that counts the
minimum number of misclassified pixels by an optimal segmentation.

Rmse(x) =
∑
i∈V′G

min

 ∑
j∈m−1

VG
(i)

[xgtj = fg],
∑

j∈m−1
VG

(i)

[xgtj = bg]

 .

Ratio of runtimes: To compute the ratio of runtimes we compare the time
to compute the grouping and solve the reduced problem with the time solving
the original problem.

We present an evaluation of the proposed method on small scale images of
the Microsoft segmentation benchmark, used by Blake et al. [2]3,4 as well as on
large scale images with up to 26 million pixels found on the web. For the problem
of binary video segmentation we used video sequences from the KTH action
dataset [26]5 and videos provided by Sand and Teller[27]6. In all experiments we
use the same energy function proposed by Blake et al. [2] and the same set of
parameters. The experiments were run on a MacBook Pro with 2.4 GHz Intel
Core i5 processor and 4GB Ram. For all experiments we compare the proposed
algorithm with the approaches of Felzenszwalb and Huttenlocher [13] and Kim
et al. [9].

3
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/
segmentation/grabcut.htm

4
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

5
http://www.nada.kth.se/cvap/actions/

6
http://rvsn.csail.mit.edu/pv/
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Fig. 3: Example for the different approaches for variable grouping. Columns:
(i) original image; (ii) variable grouping using [9]; (ii) proposed method using
MAXEDGE; (iv) proposed method using COMPACTEDGE; In contrast to [9]
where the grouping produces superpixels that are comparable in size our pro-
posed methods group large homogeneous regions to single variables.

Small-scale images: Table 1 shows the evaluation of the proposed algo-
rithm on the Microsoft segmentation benchmark in comparison to the works of
Felzenszwalb and Huttenlocher and Kim et al.. Since independently the benefit
of the proposed weight wDSij and the merging constraints is rather small, we only
evaluate the combination that outperformed existing approaches.

We can observe that the combination of Dempster’s theory of evidence and
the proposed constraint has a smaller average segmentation error with an even
smaller budget. The small minimum segmentation error using the MAXEDGE
constraint highlights that our idea to group large homogeneous regions to one
single variable makes sense and the proposed weights based on Dempster’s theory
of evidence reliably find those regions. In combination with small groups at the
objects boundaries the proposed COMPACTEDGE constraint outperforms the
existing approaches. See also Figure 3 for a visual comparison of the different
approaches.

High-resolution images: To evaluate the segmentation quality and the
possible speedup of the proposed method we used large-scale images with up to
20 MP and down sampled these images to several image-sizes. Similar to the
experiments on small-scale images and video sequences the difference in segmen-
tation quality is small and the reduction of runtime is dramatic for large images.
As already shown by Delong and Boykov [8] the BK-algorithm is inefficient and
unusable if the graph does not fit into the physical memory. For those large MAP
inference problems the ratio of runtime was approximately 0.08 using a budget
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Fig. 4: Variable grouping for video segmentation. The columns correspond to the
frames 5, 15, 25 and 38 of the hand sequence [27]. Rows: (i) original frame; (ii)
variable grouping with the proposed algorithm; (iii) segmentation result solving
the full MAP; (iv) segmentation result solving the approximated MAP. The
segmentation results are almost identical even if the approximated solution used
a Budget of 5%. The ratio of runtime for this example is ≈ 0.1.

of 5%. Due to the limitations of the BK-algorithm the proposed method greatly
extends its applications.

Video-sequences: Our proposed algorithm can also be applied to group
variables for the problem of video segmentation. To evaluate the performance of
the proposed method we segmented different video-sequences. It can be seen from
Figures 4 and 5 that the proposed algorithm achieves a similar segmentation like
the full MAP solution with a much smaller budget and a dramatic reduction of
runtime. E.g. for the hand video in Figure 4 (200 frames) we reduced the number
of variables from 69.1 million to 3.5 million. For comparison of the results the
full MAP solution was only computed for 40 frames since solving the full MAP
problem for 200 frames was not possible due to memory reasons. The full MAP
problem for the KTH-sequence shown in Figure 5 has 7 million variables and
the results shown use an budget of approximately 10% resulting in 0.7 million
variables with a comparable segmentation result. In all examples we initialized
the segmentation with a few strokes in the first frame.
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Fig. 5: Variable grouping for video segmentation. The columns correspond to the
frames 20, 220 and 350 of the Boxing sequence from [26]. The last column visual-
izes the isosurface of our segmentation result and the ratio of runtime for a given
budget. Rows: (i) original frame; (ii) variable grouping with the proposed algo-
rithm; (iii) segmentation result solving the full MAP; (iv) segmentation result
solving the approximated MAP. The segmentation results are almost identical
even if the approximated solution used a Budget of 10%. The ratio of runtime
for this example is ≈ 0.21.

5 Conclusion

We presented an efficient algorithm for graph simplification of maximum a poste-
riori problems that is widely applicable to MAP inference problems in computer
vision. It uses Dempster’s theory of evidence and new constraints for the graph
based grouping to group large homogeneous regions to one single variable of the
problem. In our experiments on segmentation we demonstrated that the seg-
mentation error using the proposed method is smaller or comparable to the full
MAP solution. In several experiments on large-scale problems with millions of
variables we demonstrate that the reduction in runtime is dramatic while the
segmentation quality stays comparable.
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