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Abstract. The segmentation of foreground objects in camera images is a fun-
damental step in many computer vision applications. For visual effect creation,
the foreground segmentation is required for the integration of virtual objects be-
tween scene elements. On the other hand, camera and scene estimation is needed
to integrate the objects perspectively correct into the video.
In this paper, discontinued feature tracks are used to detect occlusions. If these
features reappear after their occlusion, they are connected to the correct previ-
ously discontinued trajectory during sequential camera and scene estimation. The
combination of optical flow for features in consecutive frames and SIFT match-
ing for the wide baseline feature connection provides accurate and stable feature
tracking. The knowledge of occluded parts of a connected feature track is used
to feed an efficient segmentation algorithm which crops the foreground image
regions automatically. The presented graph cut based segmentation uses a graph
contraction technique to minimize the computational expense.
The presented application in the integration of virtual objects into video. For this
application, the accurate estimation of camera and scene is crucial. The segmenta-
tion is used for the automatic occlusion of the integrated objects with foreground
scene content. Demonstrations show very realistic results.

1 Introduction

Camera motion estimation and simultaneous reconstruction of rigid scene geom-
etry from video is a key technique in many computer vision applications [1,2,3]
A popular application in movie production is the integration of virtual objects.
For the perspectively correct view of these objects in each camera, a highly accu-
rate estimation of the camera path is crucial [4]. State of the art techniques use a
pinhole camera model and image features for the camera motion estimation. The
camera motion estimation workflow consists of feature detection, correspondence
analysis, outlier elimination, and bundle adjustment as demonstrated in [1], for
example. For the occlusion of the virtual objects with foreground scene content,
a segmentation is required which is usually done manually [4].
Most scene reconstruction techniques rely on feature correspondences in consec-
utive frames. Thus, temporarily occluded scene content causes broken trajecto-
ries. A reappearing feature induces a new 3D object point which adopts a differ-
ent and therefore erroneous position. Recent approaches solve this problem by
incorporating non-consecutive feature correspondences [5,6,7,8]. The additional
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Fig. 1: Playground sequence (1280 × 720 pixels), top row: example frames 11,33,44,76 with
temporarily occluded scene content resulting from static and moving foreground objects. Feature
trajectories discontinue and their features reappear after being occluded; center row: for integrat-
ing virtual objects, it is essential to handle foreground occlusions in the composition of virtual
and real scenes; bottom row: correct occlusion of the virtual objects.

correspondences and their trajectories are used to stabilize the bundle adjustment
and improve the reconstruction results. The reconstructed object points of these
feature trajectories are not seen in several camera views. In many cases, they are
not seen because of occlusion with foreground objects. This information has not
been used for further scene understanding so far.
We regard the occlusion and reappearance of scene parts as valuable scene in-
formation. It can be used to detect occlusions in video and result in a meaning-
ful foreground segmentation of the images. The foreground segmentation can be
used for the automatic occlusion of integrated virtual objects.
A typical input example is shown in Fig. 1, top row. In this sequence, the back-
ground scene is temporarily occluded by a part of the swing rack and the swinging
child. For the application of integrating virtual objects into the video, the fore-
ground objects have to occlude the correct augmented image parts throughout the
sequence. This is essential to provide realistic results. Otherwise the composed
sequence does not look satisfactory as shown in the center row of Fig. 1. The
desired result is shown in the bottom row.
In literature, some approaches have been proposed for occlusion handling in
video. A comparable objective is followed in [9]. Occlusion edges are detected
[10] and used for the video segmentation of foreground objects. However, no 3D
information of the scene is incorporated and only edges of one foreground object
are extracted which is not advantageous for the following image based segmenta-
tion. In [11], the complete hull of occluded objects is reconstructed. For this ap-
proach, video streams from multiple, calibrated cameras are required in a shape
from silhouette based 3D reconstruction. In [12], differently moving objects in
the video are clustered by analyzing point trajectories for a long time. In this
approach, a dense representation of the images is needed [13]. In [14], a sparse
image representation is used. The background trajectories span a subspace, in
which foreground trajectories are classified as outliers. The idea is to distinguish
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between camera induced motion and object induced motion. These two classes
are used to build background and foreground appearance models for the follow-
ing image segmentation. However, many foreground trajectories are required to
provide a reliable segmentation result. The approach presented in [15] computes
depth maps which are combined with a structure from motion technique to obtain
stable results.
Our approach is designed for the integration of virtual objects, and can make use
of the extracted 3D information of the reconstructed scene. It is not restricted to
certain foreground object classes and allows for arbitrary camera movements. A
very important step is the feature tracking. For the demanded accuracy, long and
accurate trajectories are desired. In contrast to [12,16], our approach relies on a
sparse representation of the images using reliable image feature correspondences
as required for the structure and motion estimation. We propose a combination of
wide-baseline feature matching for feature correspondences in non-consecutive
frames and optical flow based tracking for frame to frame correspondences. The
resulting trajectories are incorporated in an extended bundle adjustment optimiza-
tion for the camera estimation. The additional constraints lead to an improved
scene reconstruction [7,8].
We identify foreground objects in the camera images as regions which occlude
already reconstructed scene content. Resulting from the structure and motion re-
covery approach, reconstructed scene content is represented by 3D object points.
In contrast to [9], this approach provides occlusion points inside the foreground
objects, which is very desirable for the following segmentation procedure. The
image segmentation is obtained by efficiently minimizing an energy function con-
sisting of labeling and neighborhood costs using a contracted graph [17,18]. The
algorithm is initialized with the automatically extracted information about fore-
ground and background regions. The presented approach eases the integration of
virtual objects into video significantly.
In the following Sect. 2, the structure and motion recovery approach is explained.
Sect. 3 shows the automatic detection of foreground regions using correspon-
dences in non-consecutive frames and their object points. In Sect. 4, the appli-
cation of integrating virtual objects into video is demonstrated. Sect. 5 shows
experimental results on natural image data. In Sect. 6, the paper is concluded.

2 Structure and Motion Recovery

The objective of structure and motion recovery is the simultaneous estimation
of the camera parameters and 3D object points of the observed scene [1]. The
camera parameters of one camera are represented by the projection matrix Ak for
each image Ik, k ∈ [1 : K] for a sequence of K images. For the estimation, corre-
sponding feature points are required. In case of video with small displacements
between two frames, feature tracking methods like KLT [19] tend to produce less
outliers and provide increased localization accuracy compared to feature match-
ing methods [20].
Methods as presented in [6,7,8] additionally make use of feature correspondences
in non-consecutive frames as shown in Fig. 2 and therefore increase the recon-
struction reliability. Establishing non-consecutive feature correspondences is es-
pecially important if scene content disappears and reappears, e.g. if foreground
objects temporarily occlude the observed scene. It follows, that non-consecutive
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Fig. 2: Common structure and motion estimation techniques use corresponding feature points in
consecutive images only, for example p j′,k ↔ p j′,k−1. Due to foreground occlusion, trajectories
discontinue and the corresponding scene content reappears in a later image. These trajectories
are connected using a wide-baseline correspondence analysis, for example p j,k↔ p j,k−2. A real
world example is shown in Fig. 1.

correspondences induce occlusion information which is explicitly used in our ap-
proach for automatic foreground segmentation as explained in Sect. 3. The devel-
oped feature tracking scheme is presented in Sect. 2.1, and the bundle adjustment
scheme is shown in Sect. 2.2.

2.1 Feature Detection and Tracking

The presented feature tracking scheme is designed for even large foreground oc-
clusions while the camera is moving freely. Hence, a wide baseline analysis is
required for establishing correspondences in non-consecutive frames. For a re-
liable feature matching, the SIFT descriptor [21] is used for this task. Conse-
quently, the feature selection uses the scale space for the detection of interest
points. For a complete scene representation, the features in an image should be
spatially well-distributed. For the results shown in this paper, the SIFT detector
is used for newly appearing features and provides sufficiently distributed points.
For sequences with very low texture content, a combination of different scale in-
variant feature detectors should be considered [21,22,23]. For the tracking from
frame to frame, the KLT tracker provides higher accuracy and less outliers than
feature matching techniques.
The tracking workflow is shown in Fig. 3. Newly detected SIFT features are
tracked using KLT. The KLT tracked features are validated with RANSAC and
the epipolar constraint. Inliers are used for the bundle adjustment leading to the
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Fig. 3: Workflow overview: features are tracked in consecutive frames by KLT while non-
consecutive correspondences are established using the SIFT descriptor. Features of the current
frame Ik are matched to features of previously discontinued trajectories in the images Ik−l ,
l = 2, . . . ,L, L ≤ k. For validation, RANSAC and the epipolar constraint between Ik and Ik−l
is used. The bundle adjustment is based on consecutive and non-consecutive correspondences.
The occlusion information is extracted from the non-consecutive correspondences and their tra-
jectories. It is used to initialize the foreground segmentation algorithm which is described in
detail in Fig. 5.

estimation of the current camera Ak as well as to an update of the point cloud. Out-
liers and lost tracks with an already reconstructed valid 3D object point are stored
for a later match with the possibly reappearing feature. To represent newly ap-
pearing and reappearing scene structures, SIFT features are detected. They are at
first compared to the stored discontinued trajectories. Validation with RANSAC
and the epipolar constraint between Ak and Ak−l , l > 1 result in non-consecutive
correspondences of the current frame Ik. They are used to stabilize the bundle ad-
justment as well as to extract occlusion information. The occlusion information
leads to the automatic foreground segmentation as explained in Sect. 3.

The combination of SIFT detection for newly appearing features, SIFT match-
ing for non-consecutive frames, and KLT tracking for frame to frame tracking
provides optimal performance for the presented occlusion handling and accurate
scene reconstruction.
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2.2 Bundle Adjustment

The main idea of bundle adjustment [24] in structure and motion recovery ap-
proaches is that a reprojected 3D object point P j should be located at the mea-
sured feature point p j,k for each image Ik, in which P j is visible. The 3D-2D
correspondence of object and feature point is related by

p j,k ∼ AkP j (1)

where ∼ indicates that this is an equality up to scale. The bundle adjustment
equation to be minimized is

ε =
J

∑
j=1

K

∑
k=1

d(p j,k,AkP j)2 (2)

The covariance of the positional error which is derived from the gradient images
is incorporated in the estimation [25] using the Mahalanobis distance for d(. . .).
The minimization of (2) results in the final camera parameters and object points.

3 Automatic Foreground Segmentation

The non-consecutive feature tracking connects discontinued trajectories to newly
appearing features as shown in Fig. 2. If the trajectory is discontinued because of
an occlusion with foreground objects, the image coordinates of occluded scene
content can be derived by reprojecting the corresponding reconstructed 3D object
point onto the image planes. These image locations are used to feed an interactive
algorithm [17,18], which is designed to segment an image into foreground and
background regions with the help of initially known representative foreground
and background image parts, called user strokes.
In [17,18], the segmentation is initialized with manually drawn user strokes. In
our work, the strokes are restricted to small discs and created automatically using
the extracted occlusion information as explained in Sect. 3.1.

3.1 Occlusion Information

Let us assume, that foreground objects temporarily occlude the background scene.
Thus, non-consecutive correspondences are established between the last occur-
rence of the tracked and the reappearing feature after being occluded. By repro-
jecting their 3D object points onto the image planes, occluded locations of these
points can be measured. A successfully established non-consecutive correspon-
dence p j,k ↔ p j,k−l−1 in the current frame Ik is a part of a feature trajectory t∗j
as follows:

t∗j = (pvisible
j,k ,poccluded

j,k−1 , . . . ,poccluded
j,k−l ,pvisible

j,k−l−1, . . .)

The object point P∗j of t∗j is occluded in l frames. It is visible in the current im-
age Ik and in some previous images I j,k−l−1, . . . . It is occluded in the images
Ik−1, . . . ,Ik−l . It may has been occluded several times before. The coordinates
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Fig. 4: Playground sequence (see Fig. 1): The number of connected trajectories in each frame
(dotted blue line) and the number of occlusions used for the segmentation for each frame (black
line). The intervals s1,s2 depict the parts with foreground occlusions in the sequence. If a con-
nected trajectory results from occlusion, several reprojections of the corresponding 3D object
point are usable for the segmentation.

of each of the occluded image locations poccluded
j,k−1 , . . . ,poccluded

j,k−l can be estimated
with relation (1) after selecting a scale factor for the reconstruction. These coor-
dinates are used to extract occlusion information which provides the initialization
for the automatic foreground segmentation.

If the object point P∗j is invisible in the current image Ik because of occlusion, its
reprojection AkP∗j belongs to the foreground. However, experiments have shown,
that many non-consecutive feature tracks are established without occluded scene
content. To verify the occlusion property, a similarity constraint between each
invisible point of t∗j and the current feature point pvisible

j,k = AkP∗j is evaluated. If
the similarity constraint is fulfilled, the object point is not occluded in the cam-
era view. Otherwise, the reprojection is an occluded image position. As simi-
larity measure, the color histogram in a d× d window around each reprojection
Ak−1P∗j ,Ak−2P∗j , . . . is computed. For the measurement, the Bhattacharyya his-
togram distance metric is chosen. This metric provides best results for comparing
histograms [20]. Based on the size of the region used for a SIFT descriptor [21],
the size d is chosen to d = 15 pel. This step is important because the correspon-
dence may be established a few frames after the feature reappears. Furthermore,
non-consecutive feature correspondences may arise if a track is temporarily lost
due to ambiguities in the image signal (repeated texture patterns, noise) or if scene
content leaves and re-enters the field of view.

In Fig. 4, the number of occlusions used for the segmentation for each frame is
shown (black line) for the Playground sequence from Fig. 1. The frame interval in
which the child and the swing rack occlude the scene for the first time is denoted
with s1. The second occlusion interval is denoted with s2. Within these intervals,
many trajectories are connected (dotted blue line). The numbers of occlusions
used for the segmentation in each frame are plotted with the black line. One con-
nected trajectory may provide several useful occlusions in the previous frames.
On the other hand, no useful occlusion is induced if the trajectories discontinue
without occluding scene content, e. g. frames 48-57 and 83-98, respectively.
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Fig. 5: Foreground Segmentation in detail (refer to Fig. 3): The occlusion information of the
current frame k automatically generates strokes associated to foreground or background. Their
Gaussian Mixture Model (GMM) is obtained by extracting the corresponding color information
of image Ik. Before computing the Minimum Cut, the graph is contracted to minimize the com-
putation time. The resulting foreground regions may be guided by the user by adding additional
strokes manually.

The visualization of the occlusion information is shown in Fig. 6, center row
and Fig. 7, second row, respectively. The occluded image locations are visualized
as white discs, the visible locations of the non-consecutive correspondences are
black. The diameter of a disc is set to d, d = 15 pel as described before. These
images provide the initialization for the segmentation procedure as explained in
Sect. 3.2.

3.2 Foreground Segmentation

The occlusion information (Fig. 6, center row) is used to initialize an efficient
image segmentation algorithm [17,18]. This algorithm provides the segmentation
as the minimum of the discrete energy function E : Ln→ R:

E(x) = ∑
i∈V

ϕi(xi)+ ∑
(i, j)∈E

ϕi, j(xi,x j) , (3)

where V corresponds to the set of all image pixels and E is the set of all edges
between neighboring pixels. For the problem of foreground segmentation the la-
bel set L consists of a foreground (fg) and a background (bg) label. The unary
term ϕi is given as the negative log likelihood using a Gaussian mixture model
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Fig. 6: Foreground segmentation results of the Bus sequence (1280 × 720 pixels), top row: in-
put sequence; center row: occluded (white) and not occluded (black) object points; bottom row:
automatic segmentation of foreground objects using the occlusion information as initialization.

(GMM) model [26], defined by

ϕi(xi) =− logPr(Ii | xi = S) , (4)

where S is either fg or bg and Ii describes the feature vector of pixel i. The GMM’s
for foreground and background are estimated by image regions that are assigned
to either fore- or background. Usually this information is given by the user mark-
ing foreground and background with strokes or bounding boxes. In this paper the
GMM’s are estimated using the occlusion information that is derived automati-
cally as described in Sect. 3.1. Hence, no user interaction is needed. The pairwise
term ϕi, j of (3) takes the form of a contrast sensitive Ising model and is defined
as

ϕi, j(xi,x j) = γ · [xi 6= x j] · exp(−β‖Ii− I j‖2) . (5)

where [.] denotes the indicator function. The parameter γ weights the impact of
the pairwise term and β corresponds to the distribution of noise among all neigh-
boring pixels. It has been shown that the energy function (3) is submodular and
can be represented as a graph [17]. Represented as a graph, the minimum cut
minimizes the given energy function. We use the efficient algorithm proposed
in [18] to compute the minimum cut. Based on the graph representation the graph
is contracted to a so called SlimGraph by merging nodes that are guaranteed to
have the same label in the minimum energy state. Hence, the optimal solution of
(3) is not changed by the graph contraction. Since the graph becomes smaller,
the segmentation can be computed much more efficiently. Figure 5 reviews the
workflow of the foreground segmentation process. The result is the desired fore-
ground segmentation which is shown in Fig. 6, bottom row and Fig. 7, third row,
respectively. If the automatically initialized segmentation fails partially or lacks
in accuracy, the user is able to guide the segmentation by providing additional
information about foreground or background, i.e. by placing additional strokes.
This additional information is then used to refine the GMM’s describing the re-
gions and the segmentation is updated.
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Fig. 7: Result examples of Playground sequence from Fig. 1: Top row: occluded (white) and not
occluded (black) object points. center row: segmentation of foreground objects as described in
Sect. 3.1 which is needed for the composition of real and virtual scenes; bottom row: final result
of the integration of the virtual objects into the video sequence using the composition of the input
sequence from Fig. 1, top row and the augmented sequence from Fig. 1, bottom row.

4 Application: Occlusion of Integrated Virtual Objects

An often used technique in movie production is the integration of virtual objects
into a video. This technique allows the editor for including scene content that
has not been there during image acquisition. The required data for this step are
accurate camera parameters and a coarse reconstruction of the scene. This is the
objective of structure and motion recovery approaches. If the integrated virtual
object has to be occluded by real scene content, a segmentation is required, which
is usually done manually [4].
Our approach provides automatically segmented foreground regions. These re-
gions have two properties: (1) their scene content temporarily occludes the back-
ground scene (see Sect. 3.1). (2) they are visually homogeneous (see Sect. 3.2).
The resulting segmentation as shown in Fig. 7, third row, is used in a composit-
ing step for the occlusion of the augmented objects. The white regions are copied
from the input, the black regions are copied from the augmented sequence (Fig.
1, center row).

5 Experimental Results

The presented approach of foreground segmentation is tested using footage of a
freely moving camera. Here, two example sequences are demonstrated.
The first sequence (270 frames) is recorded from a driving bus. Several fore-
ground objects such as trees, bushes, signs, and a bus station occlude the back-
ground scene temporarily as shown in Fig. 6, top row. The center row of Fig.
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(a) (b)

Fig. 8: Errors resulting from a misleading segmentation. (a): although there is no occlusion in-
formation in the fence, the segmentation classifies it to the foreground because of its appearance
being similar to the swing rack; (b): although the point is correctly classified as foreground, it
is isolated by the segmentation algorithm because of the strong motion blur of the foreground
object.

6 shows the extracted occlusion information. The white discs depict foreground
locations, the black ones are classified as background locations as described in
Sect. 3.1. These images provide the initialization for the segmentation algorithm
(Sect. 3.2). As shown in the bottom row, arbitrary and complex foreground object
are segmented successfully, for example the structure of leaves of the trees.
The second sequence (98 frames) shows a playground scene with a child on a
swing. The foreground objects are the swinging child and some parts of the swing
rack as shown in Fig. 7, top row. The occlusion information in the second row
results from evaluating the non-consecutive correspondences. Again, the white
discs belong to the foreground and the black discs belong to the background.
These images initialize the segmentation algorithm, which leads to the foreground
segmentation result shown in the third row. In the bottom row, the application of
integrating virtual objects into the video sequence is demonstrated. This sequence
is the composition of the rendered sequence from Fig. 1, center row, and the input
sequence. The composition is done using the foreground segmentation result. The
pixels segmented as foreground regions (white pixels) are copied from the input
sequence (Fig. 1, top row) while the black labeled background regions are copied
from the augmented sequence (Fig. 1, bottom row).
The swinging child as well as the parts of the swing rack in the foreground are
segmented reliably. The integration and the occlusion of the virtual objects is
convincing and looks realistic. 1

The computational expense for the evaluation of the occlusion information is
marginal. It consists of reprojections of the object points P∗j , histogram calcula-
tions of their surrounding windows, and the image segmentation which is done in
less than a second per image.

5.1 Limitations

Although the foreground is segmented reliably, some background regions are
classified as foreground as well because of their visual similarity. Fig. 8 shows
two examples in detail. On the left, a small part of the fence which belongs to
the background occlude the augmented objects because of a misleading segmen-
tation. Here, the fence is visually very similar to the part of the swing rack which

1 The video can be downloaded at:
http://www.tnt.uni-hannover.de/staff/cordes/

http://www.tnt.uni-hannover.de/staff/cordes/
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Fig. 9: The Throw sequence (1280 × 720 pixels): Top row: Input sequence. second row: segmen-
tation of foreground objects and two additional strokes. third row: result without the manually
added strokes, bottom row: result with the additional strokes.

is a foreground region. On the right, the segmentation algorithm assigns a small
part of the child to the background, although it has attached a correctly classified
foreground disc. This is due to the strong motion blur. In these cases, the seg-
mentation algorithm leads to suboptimal solutions. Even in the erroneous frames,
the presented approach provides a meaningful initial solution within a few sec-
onds which can easily be refined by adding a few user strokes and restarting the
segmentation procedure. Note, that the results presented in this Sec. 5 are fully
automatic.

5.2 User Interaction

The presented approach can easily be guided by the user if the segmentation re-
sults are not satisfactory. The additional link in the workflow is the dashed line in
Fig. 5. The images with the resulting occlusion information are used as a starting
point and some strokes are manually added to the images. These strokes may be
foreground or background and should cover the critical regions in the images.
An example is shown in Fig. 9. In this sequence, some regions that belong to the
foreground are classified as background for two reasons: (1) no occlusion infor-
mation available for the colors values in the critical regions, e.g. face and hair, (2)
the boundary between foreground and background is smooth due to motion blur.
The final result achieved by adding one more stroke in two images is shown in
Fig. 9, third row.
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6 Conclusion

The paper presents an approach for video segmentation. It incorporates 3D scene
information of sequential structure and motion recovery. Occlusions are extracted
from discontinued feature trajectories and their 3D object points. The presented
feature tracking combines the highly accurate and reliable KLT tracker for corre-
spondences in consecutive frames with wide-baseline SIFT correspondences for
non-consecutive frames.
The localization of occluded and not occluded scene content is gained from the
reprojection of 3D object points onto the camera planes. This data is successfully
used as initialization of an efficient segmentation algorithm which results in vi-
sually homogeneous foreground regions. The results are demonstrated using the
application of the integration of virtual objects into the scene. The foreground
segmentation enables the automatic occlusion of the integrated objects with fore-
ground scene content.
The effectiveness of the approach is demonstrated using challenging image se-
quences. Virtual object are accurately integrated and their occlusion with fore-
ground objects is convincing. It is shown that the user can easily guide the al-
gorithm by placing strokes. This additional information is used to refine the seg-
mentation result.

References

1. Pollefeys, M., Gool, L.V.V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops,
J., Koch, R.: Visual modeling with a hand-held camera. International Journal
of Computer Vision (IJCV) 59(3) (2004) 207–232

2. van den Hengel, A., Dick, A., Thormählen, T., Ward, B., Torr, P.H.S.: Video-
trace: rapid interactive scene modelling from video. In: SIGGRAPH. Num-
ber 86, New York, NY, USA, ACM (2007)

3. Hasler, N., Rosenhahn, B., Thormählen, T., Wand, M., Seidel, H.P.: Marker-
less motion capture with unsynchronized moving cameras. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2009)

4. Hillman, P., Lewis, J., Sylwan, S., Winquist, E.: Issues in adapting research
algorithms to stereoscopic visual effects. In: IEEE International Conference
on Image Processing (ICIP). (2010) 17 –20

5. Cornelis, K., Verbiest, F., Van Gool, L.: Drift detection and removal for
sequential structure from motion algorithms. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI) 26(10) (2004) 1249–1259

6. Engels, C., Fraundorfer, F., Nistér, D.: Integration of tracked and recognized
features for locally and globally robust structure from motion. In: VISAPP
(Workshop on Robot Perception). (2008) 13–22

7. Zhang, G., Dong, Z., Jia, J., Wong, T.T., Bao, H.: Efficient non-consecutive
feature tracking for structure-from-motion. In Daniilidis, K., Maragos, P.,
Paragios, N., eds.: European Conference on Computer Vision (ECCV). Vol-
ume 6315 of Lecture Notes in Computer Science (LNCS)., Springer (2010)
422–435

8. Cordes, K., Müller, O., Rosenhahn, B., Ostermann, J.: Feature trajectory
retrieval with application to accurate structure and motion recovery. In



14 Cordes et al.

Bebis, G., ed.: Advances in Visual Computing, 7th International Sympo-
sium (ISVC), Lecture Notes in Computer Science (LNCS). Volume 6938.,
Springer (2011) 156–167

9. Apostoloff, N.E., Fitzgibbon, A.W.: Automatic video segmentation using
spatiotemporal t-junctions. In: British Machine Vision Conference (BMVC).
(2006)

10. Apostoloff, N.E., Fitzgibbon, A.W.: Learning spatiotemporal t-junctions for
occlusion detection. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Volume 2. (2005) 553–559

11. Guan, L., Franco, J.S., Pollefeys, M.: 3d occlusion inference from silhouette
cues. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2007) 1 –8

12. Brox, T., Malik, J.: Object segmentation by long term analysis of point tra-
jectories. In Daniilidis, K., Maragos, P., Paragios, N., eds.: European Confer-
ence on Computer Vision (ECCV). Volume 6315 of Lecture Notes in Com-
puter Science (LNCS)., Springer (2010) 282–295

13. Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in
variational motion estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI) 33(3) (march 2011) 500 –513

14. Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving
cameras. In: IEEE International Conference on Computer Vision and Pattern
Recognition (ICCV). (2009) 1219–1225

15. Zhang, G., Jia, J., Hua, W., Bao, H.: Robust bilayer segmentation and mo-
tion/depth estimation with a handheld camera. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI) 33(3) (march 2011) 603 –617

16. Liu, C., Yuen, J., Torralba, A.: Sift flow: Dense correspondence across scenes
and its applications. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 33(5) (may 2011) 978 –994

17. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region
segmentation of objects in n-d images. In: IEEE International Conference on
Computer Vision (ICCV). Volume 1. (2001) 105 –112

18. Scheuermann, B., Rosenhahn, B.: Slimcuts: Graphcuts for high resolution
images using graph reduction. In Boykov, Y., Kahl, F., Lempitsky, V.S.,
Schmidt, F.R., eds.: Energy Minimization Methods in Computer Vision and
Pattern Recognition (EMMCVPR). Volume 6819 of Lecture Notes in Com-
puter Science (LNCS)., Springer (jul 2011)

19. Lucas, B., Kanade, T.: An iterative image registration technique with an
application to stereo vision. In: International Joint Conference on Artificial
Intelligence (IJCAI). (1981) 674–679

20. Thormählen, T., Hasler, N., Wand, M., Seidel, H.P.: Registration of sub-
sequence and multi-camera reconstructions for camera motion estimation.
Journal of Virtual Reality and Broadcasting 7(2) (2010)

21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision (IJCV) 60(2) (2004) 91–110

22. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from
maximally stable extremal regions. In: British Machine Vision Conference
(BMVC). Volume 1. (2002) 384–393

23. Dickscheid, T., Schindler, F., Förstner, W.: Coding images with local fea-
tures. International Journal of Computer Vision (IJCV) 94(2) (2010) 1–21



Foreground Segmentation from Occlusions 15

24. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjust-
ment - a modern synthesis. In: Proceedings of the International Workshop on
Vision Algorithms: Theory and Practice. IEEE International Conference on
Computer Vision and Pattern Recognition (ICCV), Springer (2000) 298–372

25. Hartley, R.I., Zisserman, A.: Multiple View Geometry. second edn. Cam-
bridge University Press (2003)

26. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground ex-
traction using iterated graph cuts. ACM SIGGRAPH Papers 23(3) (2004)
309–314


	Lecture Notes in Computer Science
	Introduction
	Structure and Motion Recovery
	Feature Detection and Tracking
	Bundle Adjustment

	Automatic Foreground Segmentation
	Occlusion Information
	Foreground Segmentation

	Application: Occlusion of Integrated Virtual Objects
	Experimental Results
	Limitations
	User Interaction

	Conclusion


