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Abstract. Visual effect creation as used in movie production often re-
quire structure and motion recovery and video segmentation. Both tech-
niques are essential to integrate virtual objects between scene elements.
In this paper, a new method for video segmentation is presented. It in-
corporates 3D scene information from the structure and motion recovery.
By connecting and evaluating discontinued feature tracks, occlusion and
reappearance information is obtained during sequential camera and scene
estimation.

The foreground is characterized as image regions which temporar-
ily occlude the rigid scene structure. The scene structure is represented
by reconstructed object points. Their projections onto the camera im-
ages provide the cues for regions classified as foreground or background.
The knowledge of occluded parts of a connected feature track is used to
feed the object segmentation which crops the foreground image regions
automatically.

Two applications are presented: the occlusion of integrated virtual ob-
jects and the blurred background effect. Several demonstrations on official
and self-made data show very realistic results in augmented reality.

1 Introduction

Structure and motion recovery consists of feature detection, correspondence anal-
ysis, outlier elimination, and bundle adjustment [1]. Recent approaches extend
the correspondence analysis in consecutive frames by incorporating feature cor-
respondences between arbitrary frames. This technique stabilizes the bundle
adjustment and improves the reconstruction results [2,3]. In this paper, it is
shown that non-consecutive correspondences induce valuable information about
foreground and background. This information allows for a reasonable initial-
ization of the foreground object segmentation. For applications in movie post
production, the segmentation as well as the estimated camera parameters are
required [4]. In many cases, the observed scene consists of a moving foreground
object in front of a textured background. Examples are shown in Fig. 1. In Fig.
1(a), a child is throwing a stone in front of a static scene while the camera is
moving freely. In Fig. 1(b), a similar setup is shown. This sequence is taken from
an officially available dataset [5].
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(a) The Throw sequence (b) The Person sequence [5]

Fig. 1. Example sequences: moving object in front of textured background

Two application scenarios are presented in Fig. 2(a): the occlusion of virtual
objects which are integrated into the video and in Fig. 2(b): the reduction of
the depth of field in a video. This technique is used to focus the observers
attention on the foreground objects. In movie production industry, the main tools
to produce effects as shown in Fig. 2 are structure and motion recovery and object
segmentation, so-calledmatte painting. While the camera parameters are usually
obtained automatically, the matte painting is still done mainly manually [4].

In [6], the video segmentation of foreground objects is done by detecting occlu-
sion edges. In [7], differently moving objects in video are clustered by analyzing
point trajectories for a long time. Here, a dense representation of the images is
needed. A sparse representation is used in [8]. The background trajectories span
a subspace, in which foreground trajectories are classified as outliers. However,
many foreground trajectories are required for the following segmentation of the
image regions. The approach presented in [9] computes depth maps which are
combined with a structure from motion technique to obtain stable results.

Current image segmentation techniques solve the minimum cut / maximum
flow problem on a graph, which is initialized by the user marking foreground
and background regions with strokes [10]. The locations of the strokes define the
hard constraints while soft constraints are computed by a cost function combining
regional and boundary properties of the segmentation. The regional properties
are derived from the marked color values. The boundary properties guarantee the
smoothness of the resulting segmentation. The problem of video segmentation is

(a) Automatic Occlusion of Integrated Virtual Objects
left: ACCV advertisement in sequence from Fig. 1(b),
right: integrated 3D objects in the Column sequence

(b) Background Blur Ef-
fect: applied in post pro-
duction to sequence from
Fig. 1(a)

Fig. 2. Presented Visual Effect Applications
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addressed by treating the image sequence as a single 3D volume. The necessary
strokes are entered by the user with a 3D interface.

Our approach incorporates scene information from structure and motion re-
covery into the foreground segmentation approach. We automatically initialize
the segmentation algorithm with reasonable foreground and background samples
of the observed scene. Like in [10], the hard constraints are derived from the cur-
rent image. As the appearance of the objects does not change significantly, the
soft constraints are collected throughout the sequence during sequential camera
tracking. The cues for foreground regions are identified as regions which oc-
clude reconstructed background scene content. The background scene content is
represented by 3D object points.

In contrast to [6], our approach provides points inside the foreground object
regions, which is very desirable for the image segmentation procedure. It does not
require trajectories on foreground objects like in [8]. In many cases, foreground
objects are difficult to track because of few texture, motion blur, or non-rigid
motions.

The image segmentation is obtained by efficiently minimizing an energy func-
tion consisting of regional and boundary costs. Temporal constraints of fore-
ground and background are incorporated using information from structure and
motion recovery. The automatically segmented images are used to ease several
applications in movie post production.

In the following Sect. 2, the structure and motion recovery approach is ex-
plained. Section 3 shows the automatic detection of foreground regions using the
extracted correspondences of discontinued trajectories. In Sect. 4, experimental
results are demonstrated using publicly available as well as our data applying
two proposed applications. In Sect. 5, the paper is concluded.

2 Structure and Motion Recovery

The objective of structure and motion recovery is the simultaneous estimation
of the camera parameters and 3D object points of the observed scene [1]. The
camera parameters of one camera are represented by the projection matrix Ak

for each image Ik, k ∈ [1 : K] for a sequence of K images. On the basis of
corresponding feature points, camera matrices and object points are estimated
using bundle adjustment [11]. Its idea is to minimize the distance between the
reprojection of a 3D object point Pj and the measured feature point pj,k for
each image Ik, in which Pj is visible. The 3D-2D correspondence of object and
feature point is related by:

pj,k ∼ AkPj (1)

where ∼ indicates that this is an equality up to scale. The bundle adjustment
equation to be minimized is:

ε =
J∑

j=1

K∑

k=1

d(pj,k, AkPj)
2 (2)
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The covariance of the positional error which is derived from the gradient images
is incorporated in the estimation [12] using the Mahalanobis distance for d(. . . )
in equation (2). The minimization results in the final camera parameters and
object points.

Feature tracking methods like KLT [13] are appropriate to measure corre-
spondences in consecutive frames. In case of wide baselines between the cam-
era positions, feature matching methods have proven superior performance [14].
Structure and motion recovery methods as presented in [2,3] make use of frame
to frame feature tracking as well as feature matching in non-consecutive frames
and therefore increase the reconstruction reliability and accuracy. Features in
non-consecutive frames are of special importance if scene content disappears
and reappears. This happens in case of foreground occlusion, if scene content
temporarily leaves the field of view, or simply repeated texture and noise. Con-
sequently, we use feature tracking (KLT) for frame to frame correspondences
and wide baseline feature matching for the retrieval of discontinued trajectories.
For the feature matching, SIFT [14] features are used.

Outlier detection based on RANSAC [15] and the epipolar geometry is crucial
in consecutive as well as in non-consecutive frames. Inliers are used for the bundle
adjustment while outliers remain in memory to obtain matches with the possibly
reappearing feature point. The resulting non-consecutive correspondences are
used to stabilize the bundle adjustment and to extract occlusion information
leading to the automatic foreground segmentation as explained in Sect. 3. The
feature tracking using the combination of KLT tracking and SIFT matching is
explained in detail in [16].

Non-consecutive correspondences are only established for discontinued feature
tracks, which already have a reconstructed object point Pj . The point Pj is re-
projected by the latest camera Ak−1 to limit the search range for the reappearing
feature in the current image Ik. This technique, called guided matching, avoids
comparing a newly appearing feature to the very large data base of discontinued
trajectories. Using guided matching is essential to guarantee enough correspon-
dences. Otherwise, it is unlikely for a match to fulfill the uniqueness constraint
using the second-closest neighbor [14] because the data base may consist of many
similar features.

3 Learning Object Appearance from Occlusions

Our objective is to automatically segment foreground regions. These regions
have two properties: (1) they temporarily occlude the background scene, (2)
their appearance does not change significantly throughout the sequence.

While an object point in the background represents image content with nearly
the same texture for each frame, its projections on occluding objects provide
new foreground color information for every new frame. As the object appear-
ance does not change throughout the sequence, the foreground color values from
each available image can be collected to initialize the Gaussian Mixture Model
(GMM) [17]. The GMM determines the soft constraints [10] while the hard
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Fig. 3. The number of connected trajectories in each frame and the number of repro-
jections used for the segmentation for each frame. If a connected trajectory results
from occlusion, several reprojections of the corresponding 3D object point are usable
for the segmentation.

constraints are derived from the current image only. Thus, a reliable segmen-
tation can be obtained even if there is only few foreground information in the
current image.

3.1 Occlusion Information

A successfully established non-consecutive correspondence pj,k ↔ pj,k−l−1 in
the current frame Ik is a part of a feature trajectory t∗j as follows:

t∗j = (pvisible
j,k ,pinvisible

j,k−1 , . . . ,pinvisible
j,k−l ,pvisible

j,k−l−1, . . . )

The object point P∗
j of t∗j is invisible in l frames Ik−1, . . . , Ik−l. It is visible

in the current image Ik and in some previous images Ij,k−l−1, . . . . It may has
been invisible several times before. The coordinates of each of the invisible image
locations of t∗j can be estimated with relation (1) after selecting a scale factor for
the reconstruction. These coordinates are used to extract occlusion information
which provides the initialization of the automatic foreground segmentation.

If the object point P∗
j is invisible in the current image Ik because of occlu-

sion, its reprojection AkP
∗
j belongs to the foreground in Ik. However, experiments

have shown, that many non-consecutive feature tracks are established without
occluded scene content. To verify the occlusion property, a similarity constraint
between each invisible point of t∗j and the current feature point pvisible

j,k = AkP
∗
j
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is evaluated. If the similarity constraint is fulfilled, the object point is not oc-
cluded in the camera view. Otherwise, the reprojection is an occluded image
position. As similarity measure, the color histogram in a d × d window around
each reprojection of Ak−1P

∗
j , Ak−2P

∗
j , . . . is computed. For the measurement, the

Bhattacharyya histogram distance metric is chosen. This metric provides best
results for comparing histograms [18]. Based on the size of the region used for
a SIFT descriptor [14], the size d is chosen to d = 16 pel. This step is im-
portant because the correspondence may be established a few frames after the
feature reappears. Furthermore, non-consecutive feature correspondences may
arise from ambiguities in the image signal (repeated texture patterns, noise) or
if scene content leaves and re-enters the field of view.

In Fig. 3, the importance of this step is demonstrated for two publicly avail-
able example sequences from [5]. The Person sequence shows simple camera
movements: the camera pans from the right to the left. Thus, many connected
non-consecutive correspondences belong to scene content that is temporarily oc-
cluded by the person. Several reprojections of one object point are occluded and
can be used for the segmentation as shown in Fig. 3(a). By contrast, the Hand
sequence contains many discontinued trajectories that are connected because
their object points leave and re-enter the field of view several times. Although
many non-consecutive correspondences are established, only a few occlusions can
be exploited and used for the segmentation as shown in Fig. 3(b).

The occlusion information is visualized as white discs, the visible locations of
the non-consecutive correspondences are black (e.g. Fig. 4, second row). The di-
ameter of a disc is set to d, d = 16 pel as described before. These images provide
the initialization of the segmentation procedure as explained in Sect. 3.2.

3.2 Foreground Segmentation

Current methods for image segmentation minimize an energy term E(f) con-
sisting of regional and boundary costs [10]. The idea is to determine the optimal
segmentation as the minimum of the discrete energy function E : Ln → R:

E(x) =
∑

i∈V
ϕi(xi) +

∑

(i,j)∈E
ϕi,j(xi, xj) , (3)

where V corresponds to the set of all image pixels and E is the set of all edges
between neighboring pixels. For the problem of foreground segmentation the
label set L consists of a foreground and a background label. The unary term ϕi

is given as the negative log likelihood using a Gaussian mixture model (GMM)
model [17], defined by

ϕi(xi) = − logPr(Ii | xi = S) , (4)

where S is either foreground or background and Ii describes the feature vector
of pixel i. The pairwise term ϕi,j of (3) takes the form of a contrast sensitive
Ising model and is defined as
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ϕi,j(xi, xj) = γ · [xi �= xj ] · exp(−β‖Ii − Ij‖2) . (5)

where [.] denotes the indicator function. The parameter γ weights the impact
of the pairwise term and β corresponds to the distribution of noise among all
neighboring pixels. It has been shown that the energy function (3) is submodular
and can be represented as a graph [10]. Represented as a graph, the minimum
cut minimizes the given energy function.

The GMM’s for foreground and background are estimated by image regions
that are assigned to either fore- or background. Usually this information is given
by the user marking foreground and background with strokes or bounding boxes.
In this paper, the GMM’s are estimated using the occlusion information that is
derived automatically as described in Sect. 3.1. Hence, no user interaction is
needed. The information about the foreground regions is given by reprojected
3D object points P∗

i , i = 1 . . . j. The occluded image region around the reprojec-
tion of P∗

i provides new texture information of the foreground object for each
camera view. Thus, it is beneficial to collect the foreground information of the
whole sequence to learn the object appearance. This benefit is shown in Fig. 4
and Fig. 5, respectively. For the segmentation results, a two-dimensional grid
segmentation is used, which is explained in the next section.

3.3 Two-Dimensional Grid Segmentation

The two-dimensional grid segmentation uses the image grid for building the
graph [10]. The segmentation is computed as the minimum cut of the graph.

The Figures 4 (third and fourth row) and 5 (third and fourth row) show exam-
ples of the two-dimensional grid segmentation using the second row as initializa-
tion. While the third row of Fig. 4, computes the GMM of the foreground from
the corresponding single image only, the fourth row of Fig. 4 uses the learned
object appearance from the whole sequence. It follows that the result improves
in reliability and accuracy. For the Hand sequence in Fig. 5, only a few usable
foreground occlusions are extracted (see Fig. 3(b)). Thus, the segmentation us-
ing only the current image fails (third row). Due to the proposed object learning
scheme, the resulting segmentation is reliable and accurate (fourth row).

The computational expense for the two-dimensional grid segmentation is low.
Since the graph is contracted to a SlimGraph [19], the result is obtained in less
than a second for an image

3.4 Three-Dimensional Grid Segmentation

In more challenging scenes, a temporal consistent video segmentation is required
to obtain high-quality results. The time domain is incorporated by using the
three-dimensional grid to build the graph [10]. By using the additional con-
straints, a more consistent result with less flickering background objects is ex-
pected. On the other hand, the computational expense is large and the need
for memory space increases drastically, because the complexity of the graph in-
creases with the number of images. The cut for a sequence of 200 images (The
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Fig. 4. The Throw sequence (1280 × 720), from top to bottom: input sequence; auto-
matically generated strokes; segmentation result using only the current image and its
corresponding strokes; result learning object appearance; blurred background effect.

Column sequence) is computed in 11.5 minutes using 30.8 GBytes of memory.
The benefit of using the three-dimensional grid segmentation is demonstrated in
Fig. 6 and Fig. 7, respectively.

4 Experimental Results

For the evaluation of the presented method of video segmentation and its ap-
plications, natural image sequences are used. Two sequences are taken from a
publicly available data set 1, which is used in [8] for the evaluation of video
segmentation. Their resolution is 720× 480 Pixel. Two more sequences are gen-
erated using a standard consumer video camera with a resolution is 1280× 720
Pixel. In each of the sequences, a foreground object is temporarily occluding the
background scene. The objective is to generate a reliable segmentation of this
object. Then, the video segmentation is used for two different visual effects: (1)
the automatic occlusion of integrated virtual objects and (2) the blurred back-
ground effect. For the integration of virtual objects, the accurate estimation of
the camera parameters is crucial to guarantee the perspectively correct relative
position of the objects in each view.

1 http://rvsn.csail.mit.edu/pv/data/input-video/

http://rvsn.csail.mit.edu/pv/data/input-video/
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Fig. 5. The Hand sequence (720× 480) from [5], from top to bottom: input sequence,
automatically generates strokes, segmentation results using only the current image and
its corresponding strokes, segmentation result using the proposed object appearance
learning, and the blurred background effect.

The first two sequences demonstrate the benefit of the presented object ap-
pearance learning scheme (Sect. 3.1 and 3.2).

– Throw sequence (Fig. 4): This sequence shows a fast moving child throwing a
stone. The extracted occlusion information is shown in the second row. The
white regions depict foreground locations, the black regions are classified
as background locations. The third row demonstrates the results obtained,
if only information of the current image and the corresponding strokes is
used for the segmentation of the foreground. By collecting the foreground
information from each available frame of the sequence, a much better result
is obtained (fourth row).
Application: By using the automatically generated segmentation, the back-
ground is blurred to focus the observer on the child (fifth row).

– In the Hand sequence (Fig. 5), scene content leaves and re-enters the field
of view. Due to the small movement of the foreground object, only few fore-
ground information is available as shown in Fig. 3(b). The visualization of
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Fig. 6. The Column sequence (1280× 720), from top to bottom: input sequence, auto-
matically generates strokes, segmentation result with 2D grid (third row) and 3D grid
(fourth row), and the integration of virtual objects which are occluded by foreground
objects.

the occlusion information is shown in the second row of Fig. 5. This initial-
ization is not sufficient for a segmentation using the current frame only (third
row). Nevertheless, a reliable segmentation is obtained using the presented
object appearance learning scheme. Although, no foreground information is
available in the last image, the resulting segmentation is correct.

Application: In the last row, the application of the Background blur effect is
demonstrated for this sequence.

The following two sequences compare the two-dimensional grid segmentation
(Sec. 3.3) with the three-dimensional grid segmentation (Sec. 3.4). In both com-
parisons, the object appearance is learned from the whole sequence.

– Column sequence (Fig. 6): In this sequence, a column is passing the field
of view twice (first row). The second row shows the extracted occlusion in-
formation. Initialized with these images, the two-dimensional grid (2D grid)
segmentation results in the third row while the three-dimensional grid (3D
grid) segmentation results in the fourth row. Several foreground artefacts
that are present in the 2D grid approach are correctly assigned to the back-
ground with the 3D grid.
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Fig. 7. The Person sequence (720×480) from [5], from top to bottom: input sequence,
automatically generates strokes, segmentation result with 2D grid (third row) and 3D
grid (fourth row), and the integration of the ACCV logo on the board. It is occluded
by the foreground object.

Application: Two synthetic objects are integrated into the scene. Due to the
accurate estimation of the camera parameters, the objects are perspectively
correct in each camera view. They show no drift. The occlusion of the objects
using the segmentation results is convincing.

– Person sequence (Fig. 7): A person is walking from right to left while the
camera is moving (top row). As demonstrated in Fig. 3(a), many points are
usable for the segmentation of the foreground object, which is shown visually
in the second row of Fig. 7. Again, these images are used to initialize the 2D
grid segmentation (third row) and the 3D grid segmentation (fourth row),
respectively. The usage of the 3D grid segmentation leads to significantly
better results.
Application: The segmentation is used to occlude the integrated virtual ob-
ject, the ACCV logo in a compositing step. Again, the integrated virtual
object is occluded accurately as shown in the bottom row.
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5 Conclusion

This paper presents a new approach for automatic video segmentation. It incor-
porates 3D scene information of sequential structure and motion recovery. Due to
the occlusion of scene content with foreground objects, feature trajectories dis-
continue. They are connected using guided matching and the SIFT descriptor.
The location of occluded and visible scene content is estimated from the repro-
jection of object points into the reconstructed camera planes. The appearance of
the foreground objects is learned from occluded regions of the whole sequence.
This information is used for the initialization of a segmentation method which
minimizes an energy function consisting of regional and boundary costs. It is
shown that the results improve by using the temporal constraints in a three-
dimensional grid graph.

The resulting segmentation is used for two application in movie post produc-
tion: the occlusion of perspectively correct integrated virtual objects, and the
background blur effect which focuses the observers attention on the foreground
objects.

The effectiveness of the approach is demonstrated in several natural image
sequences. Virtual objects are accurately integrated between scene structures
and the blurred background effect is convincing.
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