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∗
and Jörn Ostermann1

1Institut für Informationsverarbeitung, Leibniz Universität Hannover, Germany

Correspondence should be addressed to Stephan Preihs (preihs@tnt.uni-hannover.de)

ABSTRACT

This paper is concerned with error concealment in digital audio signals. Two model based methods for signal
extrapolation are developed and compared. Among these is the usage of adaptive Kalman filtering which can
be processed with zero algorithmic delay in real-time. We also improved an approach which is based on linear
prediction by enhancing it with an adaptive parameter usage. The proposed methods, especially the linear
prediction approach, perform excellently on maximum gap lengths of about 10 ms. On some monophonic
signals the concealment can be extended up to 100 ms without a loss of perceived quality. Both approaches
have been compared and evaluated by an informal listening test.

1. INTRODUCTION
Wireless digital transmission systems are vulnerable to

burst errors which directly affect the underlying bit-

stream. If resources for channel coding are limited,

the use of error correcting codes is not always feasible.

This is especially true for systems which perform under

very low delay conditions since channel coding normally

would increase their overall latency. If the transmitted

signal is an audio signal, errors in the bitstream will be

perceived as artifacts. In practice the audio signal there-

fore is muted for the duration of the gap which only can

reduce the artifacts and a perceived degradation of the

signal remains.

Error concealment solves this problem by generating a

replacement signal that not only fits into the gap but

makes it unnoticeable. A real world scenario might re-

quire that gaps of up to 100 ms have to be concealed;

however, the gap length is of unknown duration at the

time of occurrence. In addition, live applications have

critical demands for the overall delay of the concealment

system that have to be met. Applications could be wire-

less audio transmission for live applications, real-time

jam sessions over the Internet or teleconferencing appli-

cations via RTP.

To our knowledge there are no published burst error con-

cealment techniques which were specifically designed to

perform under real-time conditions and at the same time

do not add any delay. In this paper we assume that the de-

lay constraint is crucial. We focus our research on model

∗Work was carried out at Leibniz Universität Hannover. Fabian-

Robert Stöter is now with International Audio Laboratories Erlangen.

based approaches which are able to perform in real-time

using only past samples.

2. PROBLEM STATEMENT AND NOTATION

A section of a time discrete digital audio signal can be

noted as

x(n) = [x1,x2, ...,xN ]. (1)

An error occurring between sampling instants n = τ1 and

n= τ2 can be described as an assignment of samples xn to

the set of incorrect or missing samples Λ. According to

this, the remaining (error free) samples can be assigned

to belong to the complementary set Λ and therefore a

signal containing a burst error can be denoted as

x(n) = [x1, ...,xτ1−1
︸ ︷︷ ︸

∈ Λ

, x̂τ1
, ..., x̂τ2

︸ ︷︷ ︸

∈ Λ

,xτ2+1, ...,xN
︸ ︷︷ ︸

∈ Λ

]. (2)

The period ∆τ = τ2 − τ1 +1 between beginning and end

of a drop out lies in the range of

∆τmin ≤ ∆τ ≤ ∆τmax. (3)

Following [1] error concealment methods can be divided

into two main classes

• Methods that predict and therefore extrapolate the

signal only based on past samples

• Methods that interpolate the signal by also using fu-

ture signal values.
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to our baseline studies waveform conserving methods of-

ten lead to artifacts that prevent the concealment quality

from being perfect.

Modeling of audio signals has proven to be successful

for several kinds of audio data compression like redun-

dancy or parametric coding. Therefore it is obvious to

also use them for error concealment purposes. One of

the most frequently used models for error concealment

is the autoregressive process (AR-process) applied in a

“synthesis by linear prediction” like in [8]. Further de-

velopments of this also use pitch information [9], are

able to operate in regions of instationarity [10] or to

do an extrapolation for longer gaps of stationary signals

[11]. Systems that do an AR-based interpolation from

both sides of course work better but lead to a delay in

the range of the concealment duration. A method called

Smart Copying [12] is a combination of model based and

waveform conserving approaches. It uses a synthetic sig-

nal computed on the basis of a prediction residual for the

excitation of a synthesis filter.

Several methods do an interpolation of audio signals in

other domains like parameter [13] or frequency space

[14]. Besides complexity, the problem with these kinds

of methods is that the usually used block processing

leads to rather high delays.

A quite new approach for signal interpolation is the so

called Audio Inpainting [15]. It makes use of a descrip-

tion of the signal by a sparse vector and a codebook ma-

trix which can be used for solving an equation system

for reconstruction of the original signal. The matrix can

have arbitrary entries, is usually overdetermined and of-

ten contains basis vectors of the discrete cosine transfor-

mation. Using [16] in our preliminary work we found

that inpainting is too complex for longer gaps.

Summarizing we can say that none of the mentioned and

known methods has proven to be able to cope with our

requirements regarding concealment quality, delay and

complexity. As a conclusion we decided that for our re-

quirements a model based extrapolation “from the left”

is the preferred method.

4. SIGNAL EXTRAPOLATION
According to the results of our baseline studies we de-

veloped a model based approach that allows for signal

extrapolation only on the basis of past samples and with-

out any delay caused by block processing.

The structure of the rest of this chapter is as follows. In

section 4.1 the Kalman filter approach for signal extrapo-

lation is introduced. In 4.2 the underlying signal models

are presented, in 4.2.1 two methods for system identifi-

cation are analyzed. Sections 4.2.2, 4.2.3 and 4.2.4 intro-

duce the conversion, implementation and procedure used

for signal extrapolation with the Kalman filter. The influ-

ence of stationarity on system identification is discussed

in Section 4.2.4. In 4.3 an alternative linear prediction

based approach is described which is compared to the

Kalman approach in 4.4.

4.1. Kalman Filter Approach
Kalman filtering, which was originally developed for

control theory, has been widely used across a variety

of engineering applications. In recent years Kalman fil-

tering has also been employed in audio applications. It

has been successfully adopted to noise cancellation and

speech enhancement problems [17, 18, 19]. In this paper

we focus on the use of Kalman filtering for adaptive sig-

nal reconstruction and synthesis across signal gaps.

The Kalman filter [20] is an optimal estimator for an un-

known system state vector xn at the time instant n. The

state vector can contain signal values from time domain

such as the instationary audio signal but is not limited

to consist of amplitude values. The optimality is based

on the fact that under certain conditions the state estima-

tion quality of a Kalman filter cannot be surpassed by any

other estimator. The output of the Kalman filter is known

to be of minimum variance and unbiased. This not only

gives great results for noise cancellation but can also be

used for a reliable synthesis.

The concept of Kalman filtering is closely related to er-

ror concealment due to its nature as a stochastic state

observer. In fact the error concealment problem can be

viewed as revealing a hidden state for the duration of a

gap. At its core it can be separated as two consecutive

steps: Based on an underlying system model A the pre-

diction step estimates the current state xn. The following

update or correction step takes the measurement signal

into account. Additionally the Kalman filter setup allows

to adjust the reliability of the measured signal. This can

be used for morphing from the replacement signal into

the original signal instead of a simple linear crossfade at

the end of a gap.

4.2. Parametric Signal Model
The system model matrix A of dimension (r× s) should

model the system state as closely as possible. One of the

most often used approaches for modeling audio signals
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utilizes an AR-process:

x(n) =
p

∑
k=1

akx(n− k) (6)

with {a1,a2...,ap} being the AR-coefficients. The AR-

coefficients can be identified by system identification al-

gorithms like the ones described in the next paragraph.

The AR-model has several benefits e.g. it is simple to

manage as the physical dimension corresponds to the

measured samples in time domain.

A different approach is based on using sinusoid partials

so that

x(n) =
p

∑
k=1

Ak · sin(ωk) (7)

where ωk is the frequency of the kth component and Ak

its amplitude. This has also been successfully used in

low bitrate coding [21, 22].

Both models might become insufficient when the noise

level of the input signal is too high. To keep the model

order p low both models should be enhanced by a noise

model synthesized from the remaining residuum. Details

for this will be described in Chapter 5.3.

We did extensive research on adapting the sinusoid

model to Kalman extrapolation. Therefore we devel-

oped an extension to [23] who presented a multi-tone

Kalman frequency tracker. Although we managed to

build a working concealment system it performed poorly

on real world audio signals because of an instability of

this non-linear approach. This led us to dismiss further

research on the sinusoid based Kalman extrapolation.

4.2.1. AR System Identification

A model based signal representation requires to adapt its

parameters according to the input signal. This determi-

nation process is called system identification. It is known

that audio signals are only partly weak sense stationary.

This makes it even more challenging to adapt the param-

eters in real time and at the same time maintain stabil-

ity which is required for usage in a Kalman filter system

model.

A common approach for AR-system identification is

the Burg algorithm which is using the maximum en-

tropy approach and therefore calculates a forward- and

backward-prediction error directly from x(n). The poles

of the identified process can be characterized with high

spectral resolution. Even with challenging highly insta-

tionary signals and at low filter orders the poles of the

identified system describe a stable synthesis filter. Unfor-

tunately the Burg algorithm is based on block processing

which requires to adapt the initialization of the Kalman

filter to match the low delay requirement.

To avoid block processing adaptive filtering algorithms

can be used. Basically most methods belong to the

LEAST MEAN SQUARE (LMS) or RECURSIVE LEAST

SQUARE (RLS) class of algorithms. Although LMS

identification approaches are computationally efficient

and do have excellent tracking capabilities, they turned

out to be unstable for some signals especially if used with

high filter orders.

Since they turned out to have great stability behavior for

the identified poles we chose the RLS type approaches

for system identification. The forgetting factor λ = 1
1−τ

allows to adjust the memory of the algorithm to match

a finite number of samples τ . Although the standard

RLS algorithm is computationally expensive there do ex-

ist faster implementations like FAST-RLS which could

be implemented with complexity of O(n) [24].

We compared block based identification (BURG) with an

adaptive filter based one (RLS) and found out that de-

spite their fundamental differences they both can be used

in Kalman filter system models. The Chapter Extrapola-

tion will illustrate both cases and their customized con-

cealment scheme.

4.2.2. State-Space Representation
One of the key characteristics for Kalman filtering is

the dependency on state-space representation for all in-

put and output signals. The state vector x does have a

dimension of size (r×1) and represents the internal state

of a dynamic system. In addition to the state vector the

output vector y which holds the measurement or obser-

vation has dimension (s× 1). The state-space represen-

tation now allows for separating the system state from

the observation, hence equations 8 represent the common

state-space observer which is described by

xn = Axn−1

yn = Hxn

(8)

with matrix A of dimension (r × r). H is of dimension

(s× r) and connects the measurements with the one-step

ahead prediction xn of the system state. The output yn

can then be set to the amplitude values of the audio sig-

nal.

The AR-coefficients ak found by the presented system

identification can easily be inserted into the system ma-

trix A. Although there are multiple ways for representa-

tion we have chosen the common frobenius form. With
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r = s = p the resulting system matrix A is:

A =










a2 · · · ap−2 ap−1 ap

1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0

0 · · · 0 1 0










4.2.3. Kalman filtering
The actual Kalman filtering has been implemented using

separate prediction and update steps. The equations and

procedure will not be detailed here as we used standard

implementations in Matlab [25]. The system model or-

der p is fixed. The system modeling error Q and the mea-

surement error R of the Kalman filter need to be adapted

to the signal modeling. Matrix Q can be interpreted as

the difference between the actual dynamic system and its

system model representation. Matrix R can be used to

control how far the measurements can be trusted.

For the AR-model, Q can be taken from the system iden-

tification. E.g. in case of the Burg method we get it di-

rectly by calculating the variance of the prediction error

e(n) for the reflection coefficients of the past p samples

so that Q(n) = I ·Var(e(n)).
In case when no error occurs we can measure the am-

plitude directly from x(n) in every step. To reflect this

relation, the measurement matrix is set to

H =
[
1 0 · · · 0

]

so that only the most recent samples are used for up-

dating. When using amplitude values within the system

state it seems that the measurement noise is non-existent.

In a real implementation R should be set to a very small

value, so that the Kalman filter does not make the predic-

tion depend directly on the measurement and the system

dynamics are kept high.

For the AR-model the order p of the Kalman filter should

be matched to the order of the AR-process. Both, BURG

and RLS algorithm share the fact that the prediction er-

ror will be smaller for larger p on complex audio signals.

We will determine a matched order in Chapter 5.1.

4.2.4. Concealment Scheme and Quasi-
Stationarity

Using Kalman filtering to provide a replacement sig-

nal for every sampling instant requires a custom con-

cealment scheme. Fortunately this can easily be accom-

plished by adjusting the measurement error covariance

R: If at sampling instant n = τ1 an error occurs R should

be raised to a finite maximum value. The result is, that

the measured input value will hardly be used within the

update step of the Kalman filter. To avoid numerical in-

stabilities it can be helpful to even completely skip the

update step during the gap. The Kalman filter then is

set into prediction-only mode. When the signal at time

instant n = τ2 is back R could be set back to its original

close-to-zero value. This approach therefore also enables

to morph between original signal and prediction by fad-

ing R. The Kalman filtering concealment procedure with

skipping of the update step during the gap is outlined in

Figure 2.

It can be shown that a system modeled by an AR-process

is only observable when the process to be observed is at

least weak sense stationary [26]. The optimality condi-

tion of the Kalman filter only persist if both error covari-

ances are known and if the error is normal distributed

and zero mean. This might not be the case for typical

audio signals. We therefore considered two options for

adjusting the concealment scheme as follows.

Fig. 2: Kalman Filtering Concealment Procedure with

Covariance Alteration.

Filtering Instationary Signal (RLS Identification)

We found out that the Kalman filter can be set up to

process real (instationary) audio signals without diverg-

ing. This requires to change the system model for every

sample instant, so that the matrices become A(x,n) and

H(x,n). The RLS adaptive identification approach pro-

vides an updated model every sample instant. The RLS

forgetting factor λ allows for the AR-coefficients to vary

slowly which helps the Kalman filter to retain stable and

responsive. This turns the system into a non-linear ap-

proach as it is now a combined state and parameter esti-

mator.

Using this dual filter approach we are able to achieve sta-

ble extrapolation for real audio signals.1 In fact a similar

approach has been taken by [28] to denoise audio signals.

This combination avoids the use of the Extended Kalman

Filter. We adjusted the error covariances experimentally

for avoiding instabilities within the output signal which

1For the relationship between RLS and Kalman filtering see [27].
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could be caused by instationarities. The treatment of re-

maining audible artifacts (e.g. for speech signals during

longer gaps) will be addressed in Chapter 5.3

Filtering Stationary Signal (Burg Identification) To

minimize the problems of fast changing signals, the in-

put has to be at least partly stationary. If an error occurs

at time instance τ1 our proposed concealment scheme

therefore is as follows:

• System identification for order p out of previous sta-

tionary ns samples (stationarity determination com-

parable to 5.1)

• Start Kalman filtering with the identified model be-

ginning with time instant n = τ1 −ns +1

• Filtering across the gap.

This requires additional computational cost but allows

for stable system identification using the common Burg

algorithm.

4.3. Linear Prediction Approach

The Kalman filter approach which utilizes parts of sta-

tionary signals is quite similar to linear prediction based

error concealment using IIR filter synthesis. [29] pro-

posed a similar concealment scheme based on a simple

IIR Filter excited with zeros. In fact our Kalman filter

approach using Burg algorithm gives nearly the same re-

sults as the linear prediction based approach. The slight

differences come from the fact that the Kalman filter ap-

proach is stochastic and the linear prediction determin-

istic. We benchmarked and compared both results using

a modified Monte Carlo run and explored that the differ-

ences were inaudible by human ear.

4.4. Discussion
Our proposed Kalman filter concealment approach is

very flexible as it is based on signal models. We think

that it has some advantages over standard linear predic-

tion based approaches e.g. [29].

• Kalman filtering allows for a fully adaptive conceal-

ment system.

• It can take advantage of every correctly transmitted

sample so that the system can perform even on very

short burst errors or high bit error rates.

• Adaptive recursive systems are well suited for real-

time and very low delay applications. In fact our

approach works without any additional delay.

• Our approach can extrapolate gaps of several hun-

dred milliseconds without any external excitation

signal.

• Using the proposed RLS method it can be shown

that non-stationary signals do not raise the complex-

ity of the concealment method.

• This approach can even be used for extrapolation

of very noisy signals since the Kalman filter can be

used for de-noising without adding any additional

computational cost.

We also want to note that the extrapolation quality of the

RLS based approach is worse than using the Burg ap-

proach due to many safety measures. Evaluation of the

perceived quality will be presented in Chapter 6.

5. INTEGRATION IN THE OVERALL CONCEAL-
MENT SYSTEM

Figure 3 shows a flow graph of the over-all concealment

system. The system can be divided into four main build-

ing blocks named Synthesis Filter (either Kalman filter or

Linear Prediction Approach), System Order Determina-

tion (only Linear Prediction Approach), Break-off Con-

dition and Noise Modeling with the latter three being de-

scribed in the following.

5.1. Stationarity Determination and Variable
System Order (Linear Prediction Approach)
As described in 4.3 one possible approach for signal

synthesis is the Linear Prediction Approach. Using a

block based pre-processing allows for an optimal adap-

tion of the concealment to the signal. This can be further

improved by the usage of a variable system order and

adaptable input blocksize for the system identification.

We choose the blocksize of past samples used for system

identification according to the stationarity of the signal.

The number of signal samples that can be accounted as

quasi stationary are calculated by the spectral distance

which leads to a stationarity index vector ST I(n) (see eq.

9). We determine the kolmogorov distance [30] by win-

dowed Fourier transforms calculated and shifted section

wise. The resulting time series is low pass filtered and a

search for peaks is done. The number of samples stored

for the last maximum is used for system identification.

ST I(n) = ‖X(m,ω)‖kolmogorov (9)

A matched variable system order is used to take into ac-

count the number of spectral components of the signal.
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ternating direction for avoiding similar noise patterns in

consecutive concealment cases.

6. EVALUATION
For evaluation of subjective concealment quality an in-

formal listening test with 11 non-expert listeners was

conducted in a quiet demonstration room. Although be-

ing designed for audio codec evaluation we chose the

MUSHRA methodology [32] as basis for the test de-

sign. The graphical user interface was implemented on

a personal computer and worked like the reference im-

plementation in the standard. A high quality digital to

analog converter and STAX headphones/amplifier were

used. The test items were based on the MPEG and

SQAM database as well as self provided recordings of

critical sounds. They were chosen to be from the three

signal classes instruments, vocals and speech and are of

CD quality sampling rate/bit resolution.

Item Source

Trumpet EBU Test set

Glockenspiel MPEG Test set

Acoustic guitar Self provided

Sopran, female EBU Test set

Vocals, pop, male Self provided

Speech, male, German MPEG Test set

Table 1: Items for the listening test

The tested conditions are the Kalman Filter Approach

(KF) using RLS for system identification as described

in 4.2.4, the Linear Prediction approach (LPC) with vari-

able system order according to 4.3 as well as the hidden

reference and an anchor which is the signal just contain-

ing gaps without fading at the beginning or end of a gap.

For testing and optimization of the error concealment

approaches different (partly randomized) error models

were used since this is the only way for realistic per-

formance evaluation. However, for the listening test we

decided to use a constant spacing of 1 s between error po-

sitions. This was done for making the comparison easier

for the subjects and also for avoiding that some of the

errors are not perceived by them. We used two different

error length of 10 ms and 100 ms which leads to 12 sig-

nals.

Figure 4 shows the results of the listening test for each

item and the different tested conditions as mean values

and 95% confidence intervals in the order of presenta-

tion2 to the subjects.

The results show that both concealment strategies are al-

most always better than muting the signal during a burst

error. The Linear Prediction Approach gets very good

scores for some signals even for 100 ms. For 10 ms gap

length some of the subjects also mixed-up the reference

and concealed signals. The Kalman Approach allows for

about 50 % of improvement for most signals but over-

all has a worse performance than the Linear Prediction

Approach. The reason for this are artifacts in the con-

cealment that arise during extrapolation of instationary

signal parts. The rather big confidence intervals show

that these artifacts are judged differently by the subjects.

Nevertheless for some signals like the Glockenspiel the

Kalman Approach still achieves good results. As can be

seen from the results of both gap lengths, speech is al-

ways critical regarding concealment quality. In addition

the subjective impression differs between subjects which

again is a reason for the rather large confidence intervals.

7. CONCLUSION AND OUTLOOK
In this paper two model based approaches for no-delay

error concealment in digital audio signals by signal ex-

trapolation are presented and compared. The first ap-

proach is based on adaptive Kalman filtering which can

be processed in real-time and sample based without any

block processing. The second approach uses the well

known Linear Prediction Approach and is extended to

include a variable system order. Both approaches are in-

tegrated into a concealment system that incorporates a

break-off criterion for partial muting and a noise model-

ing for concealment of noisy signals.

The different versions of the system have been evaluated

by an informal listening test. The results show that both

proposed methods perform very good on gap lengths of

about 10 ms. For some monophonic signals, especially

for the Linear Prediction Approach, the concealment can

be extended up to 100 ms without a loss of perceived

quality. In addition the Linear Prediction Approach al-

lows for a near transparent concealment for tonal sig-

nals. The Kalman Filter approach is not always able to

compete against the performance of the Linear Predic-

tion Approach because of artifacts occurring for insta-

tionary signals. Nevertheless it still helps to improve the

2Contrary to the recommendation in the standard we decided not

to randomize the order of presentation of the different items for being

able to see learning effects (e.g. one can see that some of the subjects

did mix up the reference with the Linear Prediction Approach for the

first item).
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Fig. 4: Results of the MUSHRA listening test with 11 listeners (mean values and 95 % confidence intervals).

subjective quality of a corrupted signal significantly.

With the Kalman Filter Approach we were therefore able

to show that real-time sample based error concealment

without delay is possible, though there are remaining

quality improvements to be made. One possible ap-

proach could be to combine multiple signal models by an

Interacting Multiple Models Kalman filter [33] so that it

can be adapted to different signal classes. As we showed

in our work an optimized break-off criterion can result in

better quality performance. Especially for concealment

of speech and instrumental signals the parameters could

be adapted to better fit this dual use-case.
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