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ABSTRACT:

In this paper, we present a method for automatic refinement of training data. Many classifiers from machine learning used in applications
in the remote sensing domain, rely on previously labelled training data. This labelling is often done by human operators and is bound to
time constraints. Hence, selection of training data must be kept practical which implies a certain inaccuracy. This results in erroneously
tagged regions enclosed within competing classes. For that purpose, we propose a method that removes outliers from training data by
using an iterative training–classification scheme. Outliers are detected by their newly determined class membership as well as through
analysis of uncertainty of classified samples. The sample selection method which incorporates quality of neighbouring samples is
presented and compared to alternative strategies. Additionally, iterative approaches tend to propagate errors which might lead to
degenerating classes. Therefore, a robust stopping criterion based on training data characteristics is described. Our experiments using a
support vector machine (SVM) show, that outliers are reliably removed, allowing a more convenient sample selection. The classification
result for unknown scenes of the accordant validation set improves from 70.36% to 79.12% on average. Additionally, the average
complexity of the SVM model is decreased by 82.75% resulting in similar reduction of processing time.

1 INTRODUCTION

Today, the increasing amount of image data originating from sen-
sors like satellites provides a broad basis for several applications
in Geographic Information Systems (GIS). Evaluation, however,
often demands more manpower than available. Hence, (semi-)au-
tomatic systems based on computer vision and machine learn-
ing algorithms are of great interest with respect to these appli-
cations (Förstner, 2009). With regard to this, methods involving
pixel-wise and object-wise classification as well as segmentation
are proposed for land cover classification (Helmholz et al., 2010).
A comprehensive review in (Mountrakis et al., 2011) shows that
a lot of research has been done in the area of support vector ma-
chine classification, recently. Supervised methods like SVMs still
demand for user interaction in the training process. The selec-
tion of samples (i. e. training data) is crucial and directly influ-
ences the classification. With real world data, optimal sample
selection is neither possible nor practical for the human opera-
tor. This particularly applies for small enclosures of dissimilar
regions within competing classes (e. g. bushes and tree groups
within settlement). These outliers are incorrect samples that con-
sequently reduce classification quality. To address this problem,
we propose a method to automatically optimise training data for
SVM classification with respect to correctness while concurrently
reducing the complexity of the derived model.

1.1 Related Work

Only little research has been done in this area, recently. (Tolba,
2010) describes a method to locate outliers on a low-dimensional
manifold that was mapped from a higher dimensional space of
training samples. (Xu et al., 2006) directly modify the standard
soft margin principle to suppress outliers during training. Sur-
veys on outlier detection methodologies are given by (Chandola
et al., 2009) and (Escalante, 2005). A survey of (Hodge and
Austin, 2004) points out decision tree methods for supervised
machine learning approaches. (John, 1995) uses iterative train-
ing and pruning of misclassified labels to keep inliers. (Brodley
and Friedl, 1996) extend this idea for land cover classification. A

consensus voting scheme is employed to filter results from an en-
semble of classifiers to eliminate mislabelled samples. For SVM
classification, further methodologies can be roughly categorised
into online learning and batch learning based techniques.

In online learning, samples are added one at a time. This can
be utilised for active learning where new samples are consec-
utively queried for annotation by the algorithm, while updating
the trained model. While primarily being focused on large data
sets, the algorithm queries for critical or important samples and
thus avoids outliers. In (Laskov et al., 2006), incremental sup-
port vector learning is utilised for active learning. (Li and Sethi,
2006) propose confidence-based active learning to optimise the
training, by only processing uncertain samples (which hold most
information).

In batch learning, all samples are available at once. The main
focus of several proposed approaches lies on training set reduc-
tion while keeping cluster boundaries. (Bakır et al., 2005) first
train independent SVM on subsets of the training data. These are
used to classify the training data and then to identify uncertain
samples and discard all others. In a second step, a final SVM is
trained on the remaining samples. (Wagstaff et al., 2010) propose
to use probability estimates of a low complexity SVM to deter-
mine uncertain regions for high-accuracy classification. (Wang
et al., 2005) describe two approaches based on confidence and
Hausdorff distance to remove unneeded samples.

1.2 Contribution

As stated in the previous paragraph, most batch learning based
methods focus on training set reduction. Samples are removed,
such that only those at boundaries remain, since these will most
likely lead to support vectors. However, uncertain samples at
boundaries might also originate from outliers that unnecessarily
increase the complexity of the model. In our approach, we pick
up the idea of using uncertainty information, but use it to remove
outliers.

In an iterative training–classification scheme, we identify and re-
move misclassified samples. In contrast to outlier detection meth-



ods like those in (John, 1995) or (Brodley and Friedl, 1996),
our approach takes uncertainty of the executing classifier into
account. Uncertainty of classified samples is evaluated by em-
ploying probability estimates (Wu et al., 2003). Highly uncertain
samples, which primarily represent transitions between distinct
textures in the image, are removed to further improve the refine-
ment. An underrated problem of sample removal is degeneration
of classes. In order to avoid underrepresented classes to vanish
from training data, we describe a robust stopping criterion for the
iterative refinement. Our experiments show that manual sample
selection can be kept practical, since small enclosures of com-
peting classes are sorted out automatically. We show that both,
quality and processing time of classification improve even with
low quality training data. It is important to note that, in the first
instance, outliers are removed which would otherwise lead to a
wrong model and thereby unnecessarily increased model com-
plexity. It is not the primary aim to search for the most trivial
samples in order to simplify the model.

In the following section, we will first show the methodology of
the proposed approach in detail. Subsequently, the experimental
setup is outlined, Finally, results are shown which illustrate the
benefit of our approach.

2 ITERATIVE TRAINING DATA REFINEMENT

Without loss of generality, examples and explanations will refer
to a four class problem. Training samples were chosen from the
following classes

• Cropland/Grassland (c1)
• Forest (c2)
• Industry (c3)
• Settlement (c4)

which nearly cover the entire area of the classified scenes. Fig-
ure 1 shows a typical, manually selected training set (T01) rep-
resenting the aforementioned classes with patches of c4, c3, c1,
c2, c4 from left to right. Additionally, class membership is repre-
sented by a label image.

(a) Image

(b) Labels

Figure 1: Training set T01 (a) with the accordant labels (b). Black
are invalid regions not used as samples, grey values represent la-
bels. Classes from left to right: c4, c3, c2, c1, c4

2.1 Base System

The iterative refinement proposed in this paper is built around
a common base system which consists of feature extraction and
training/classification as explained in the following subsections.

2.1.1 Feature Extraction Radiometric and statistical features
are extracted within a local N×N neighbourhood for each pixel.
This is done for all available spectral image bands (e. g. R, G, B,
NIR) and in different levels of detail and finally composes the fea-
ture vector. Here, the feature vector dimension df , considering
two scales, two features and four bands, adds up to df = 16.

2.1.2 SVM Training and Classification For training and clas-
sification, all feature vectors are handed to an SVM (Vapnik, 1998).
(Burges, 1998) gives a comprehensive introduction to support
vector machines. Our implementation is based on LIBSVM (Chang
and Lin, 2001). For our tests, the common Radial Basis Function
(RBF) kernel was used. No explicit parameter tuning was done,
general parameters with respect to robust classification in all our
scenes were chosen. This implies a good generalisation biased
against overfitting.

2.2 Iterative Refinement

The general method of our approach is shown in Figure 2. The
exemplary training data set T01 consists of five manually selected
sample patches of the four classes c1 – c4 and their labels (Fig-
ure 1). Larger images of the pictograms for intermediate results
are depicted in Figure 3.

Figure 2: Training data refinement scheme. Larger images of the
pictograms showing intermediate results are depicted in Figure 3

The iterative approach consists of four main parts and is repeated
until convergence:

1. Feature Extraction
2. Training
3. (Re-)Classification
4. Outlier Removal

At first, features are extracted from given samples as stated in sec-
tion 2.1.1. Feature vectors are then passed to the SVM for training,
leading to the SVM model. In typical applications, this model is
directly used for classification of unknown scenes.

In this paper’s contribution, additional steps are introduced to op-
timise the model. After training, a reclassification of the training
data is done (Figure 3(a)). As can be seen, there are misclassifica-
tions compared to the original labels. Due to robust, generalising
parameters, the training is not prone to overfitting. Hence, mis-
classified samples can safely be treated as outliers and exempted
from further consideration. Additionally, uncertain samples are
excluded as well. Therefore, probabilities for class memberships
are estimated by pairwise coupling (Wu et al., 2003) for each



(a) Reclassification result. Black are invalid
regions not used as samples, grey values rep-
resent labels.

(b) Uncertainty. Values range from uncertain,
(0, black) to certain (1, white)

(c) Optimised labels. Black are invalid regions
not used as samples, grey values represent la-
bels.

Figure 3: Intermediate results of the refinement process shown in Figure 2. Reclassification result (a) and uncertainty (b) are used to
refine the label image resulting in (c).

sample. The first best to second best ratio defines the uncer-
tainty U of each sample (Figure 3(b)). Given a threshold Tu,
uncertain pixels with U > Tu are excluded. This modified label
image (Figure 3(c)) serves as basis for the next iteration.

2.2.1 Sample Selection Figure 4 shows how samples are se-
lected from label image. Grey represents a label of a certain class
while black marks invalid samples. These might originate from
the initial label image or were removed during the refinement pro-
cess. The boxes indicate the N × N neighbourhood used for
feature extraction, a dot marks the center position. As shown,
samples are only used in case S3 where the entire local neigh-
bourhood does not cover any invalid regions.

Figure 4: Training sample selection. Boxes S1 − S3 indicate
N ×N neighbourhood from feature extraction with center (dot).
Class labels are depicted in grey, invalid area is black. S1 and S2

are not valid due to invalid center position and neighbourhood,
respectively. Only S3 is a valid sample.

2.2.2 Convergence Characteristics Gradually removing out-
liers entails the risk of degenerating classes. A class might be un-
derrepresented due to a low number of samples or many outliers.
Additionally, low separability in feature space can lead to a heavy
bias towards other classes. Hence, it is essential to keep track of
characteristic details of the refinement process. In our case, one
such detail appears at the beginning of the iteration.

In Figure 5, the number of samples for four different classes is
plotted over 75 iterations. The local minimum at iteration start is
significant as it already indicates a converging class. Usually, the
initial selection of samples contains a large number of outliers.
A lot of them are removed during the first iteration. Therefore,
the number of samples drops. Afterwards, a new SVM model is
trained based on the improved sample set. This leads to a better
representation of the data and consequently to less uncertainty
and outliers. This implies, that the number of removed samples
is lower, i. e. the number of samples increases.

Accordingly, two factors can cause a missing minimum at iter-
ation start. First, the initial set doesn’t contain any or only few
outliers. In this case, the number of samples will hardly drop at
all. Second, the number of samples monotonously drops. This in-
dicates, that the SVM model did not improve for this class, causing
degeneration.
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Figure 5: Convergence characteristics showing the number of
samples per class (class is colour coded) for 25 steps of iteration.
Each of the four graphs belongs to one of the classes c1 – c4. A
significant detail is the minimum at the beginning of the iteration.

3 EXPERIMENTS

In the following, the setup for experiments is outlined, which con-
sists of image data, training subsets, and validation subsets with
reference. At last, the evaluation procedure is described.

3.1 Image Data

Input data for our tests originate from the IKONOS satellite. The
images are ortho-rectified and consist of the four spectral bands
red (R), green (G), blue (B), and near infra red (NIR) with 8 bit
colour depth per band. The spatial resolution is 1 m. The scenes
cover areas from Hildesheim/Germany and Weiterstadt/Germany.

3.2 Validation Set and Reference

Representative scenes from city and environs of Hildesheim and
Weiterstadt were manually referenced with pixel accuracy, both
originating from the same IKONOS image data. Classification re-
sult and reference are compared pixel-wise to obtain the rate of
correct detection. The reference features more classes than our
classification system. Thus, classes are mapped if necessary, e. g.
inner city and suburban areas are combined to settlement. In
many applications, line objects like streets are treated separately
from area objects since training with the same classifier is not ef-
ficient. Hence, line objects are ignored in our evaluation to not
falsify the results.

3.3 Training Sets

Training data for each class was manually selected with a graph-
ical tool. The data originates from the same geographical re-
gion, yet not overlapping with the according validation set. We



Set Scene Nr. of Classes Sample Selection
T01 – T03 Weiterstadt 4 manual
T04 – T05 Weiterstadt 4 GIS
T06 – T07 Hildesheim 6 manual
T08 – T11 Hildesheim 4 manual

Table 1: Training data sets from Weiterstadt/Germany and
Hildesheim/Germany. Sample selection for two scenes was au-
tomatically done using a GIS.

extracted several training sets with different characteristics like
sample size and quality. Additionally, map data from a German
GIS, the ATKIS1 was rasterised with the same spatial resolution as
the image data and mapped to accordant labels. Hence, it was
used to automatically generate training data. Since ATKIS con-
tains errors and is generalised at a higher level of detail com-
pared to our manually referenced scenes, it is a demanding stress
test for our system. Table 1 lists all training data sets. For scene
Hildesheim, two sets with six classes were created.

3.4 Evaluation

Each training data set of Table 1 was optimised with the proposed
approach. For evaluation, four characteristic values are extracted
for each iteration step:

1. Number of samples per class
2. Number of support vectors per class (representing model

complexity)
3. Contour length of labels (representing training selection con-

venience)
4. Classification result in validation set with respect to refer-

ence

While items 1 – 3 are gathered within the training process, the
overall classification result is not available for training refine-
ment. It is calculated by using the SVM model from the current
iteration step to classify the validation set. Thus, quality improve-
ment is shown throughout refinement and coherence to training
characteristics can be identified. Even though a stop criterion is
used, it was disabled for graphs displayed in this section. A suffi-
cient number of 75 iterations was used for evaluation to show the
characteristics of the refinement process.

The contour lengths of original and optimised labels are com-
pared as a measure for convenience of training data selection.
The longer the contours are, the more effort has to be put into
sample selection by a human operator. Hence, a higher contour
length after refinement equals more convenience for initial sam-
ple selection. All contours are one pixel wide. Contour pixels
were simply counted using an 8 neighbourhood. Since contours
of manually selected labels are oriented horizontally and verti-
cally, this method is perfectly reasonable as a lower boundary
which does not abet our approach.

4 RESULTS

Figure 6 shows a characteristic result of the refinement process
(set T02) with respect to evaluation items defined in section 3.4.
The four graphs illustrate the convergence of the process. In
Figure 6(a), the number of samples of all but one class directly
drop to the characteristic minimum as discussed in section 2.2.2.
The other class of type Cropland/Grassland (c1) does not contain

1Amtlich topographisch-kartographisches Informationssystem (Au-
thoritative Topographic Cartographic Information System)

Set Result / % Refined Absolute
Result / % Improvement / %

T01 66.75 73.18 6.43
T02 71.33 79.49 8.16
T03 71.19 78.33 7.15
T04 61.63 74.36 12.73
T05 61.90 72.50 10.60
T06 77.23 85.14 7.91
T07 67.28 79.37 12.09
T08 75.80 81.53 5.74
T09 81.54 84.58 3.04
T10 65.06 83.40 18.34
T11 74.24 78.39 4.15
Avg 70.36 79.12 8.76

Table 2: Classification results of validation set for training data
sets T01 – T11, see Table 1 for reference.

a significant number of outliers, resulting in immediate conver-
gence. This is also due the homogeneity of this class (see c1 in
Figure 3(a) for instance). As can be seen, the number of support
vectors rapidly decreases which argues for a lower complexity of
the model (Figure 6(b)). The overall contour length (Figure 6(c))
increases as expected due to outlier removal. Furthermore, a local
maximum stands out significantly. It relates to the characteristic
local minima of the number of samples but does not turn out to
be as consistent. The last plot depicts the overall classification
of the validation set for each iteration. Here, the initial training
set leads to 71.33% correct classifications. It increases nearly
monotonously until convergence, with a correct rate of 79.49%.
This trend is observable in all test sets. The classification results
are listed in Table 2.

From scene Weiterstadt, test sets T04 and T05 show the biggest
improvement. These were trained with the GIS data which is very
prone to outliers. The highest improvement was achieved for a
test set of scene Hildesheim (T10). It is a very small test set
which does not represent the scene quite well. These observations
validate our approach of refining poor training data resulting in an
average improvement from 70.36 % to 79.12 %

The impact on a human operator is estimated by evaluation of
contour length as described in section 3.4. On average, an initial
sample selection with 35.6 % shorter contours is compensated if
training data is refined.

Additionally, processing time for classification is extensively re-
duced on account of a less complex SVM model. The number
of support vectors which directly correlates to processing time is
reduced by 82.75 % on average.

4.1 Comparison of Sample Selection Strategies

A comparison of sample selection strategies is given in Figure 7.
Results clearly support our approach which outperforms alterna-
tive strategies. Allowing only clean samples (S3, see Figure 4)
and removing uncertain samples leads to a considerable improve-
ment of the classification result. Here, test set T01 was opti-
mised with different strategies for sample selection, tested with
and without removal of uncertain samples.

4.2 Comparison to Slack Variables

To handle outliers in training data, slack variables were intro-
duced to SVMs (Cortes and Vapnik, 1995), which allow for a
certain amount of feature vectors to be located on the wrong side
of the hyperplane. Costs C are used to these penalise outliers. In
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(a) Number of samples per class (class is colour coded) of
training set T02 for each iteration.
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(b) Number of support vectors per class (class is colour coded)
of training set T02 for each iteration with magnification of im-
portant section.
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(c) Contour length of trained label image of training set T02
for each iteration.
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(d) Overall classification result of validation set for each iter-
ation.

Figure 6: Results of the refinement process for each of 75 iterations. Four characteristics as discussed in section 3.4 are plotted.
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Figure 7: Comparison of sample selection strategies and impact
of uncertainty information. S2 and S3 refer to sample selection
from Figure 4. +UR indicates removal of uncertain samples from
training set.

Figure 8, the classification result and the total amount of support
vectors is plotted for varying values of C for set T10. This set
clearly shows the important characteristics: Allowing more out-
liers (C = 1.0) helps in improving the initial classification result.
Nevertheless, the model can still be refined by our approach. Ad-
ditionally, the model complexity is reduced. This applies even
more for higher values of C.
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Figure 8: Comparison for different values for cost variable C
when classifying with an SVM using slack variables.

4.3 Class Degeneration

Within our setup, three test sets show degeneration of classes
(T05, T06, T10). T06 articulately exhibits important character-
istics. (Figure 9). Samples for three of the five classes do not
change significantly. The number of samples for the other two
rapidly drops. Their monotonous decline indicates that newly
derived SVM models do not improve. This is where the stop-
ping criterion steps in. As soon as the relative number of samples
compared to the initial value reaches a threshold Ts without the
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(a) Number of samples per class (class is colour coded)
for each of the first 23 iterations. The graph of the sixth
class of this set is omitted for better visualisation, it con-
verges immediately.
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(b) Overall classification result for each iteration.

Figure 9: Degeneration of classes. (a) shows the important section for the number of samples per class. (b) depicts the classification
result.

typical local minimum in the number of samples, the iteration is
stopped (iteration 9 in the example of Figure 9). Here, this holds
true for both classes, even though only one degenerates. Thresh-
old Ts is set to 30 %. However, results are not too sensitive to the
choice of Ts as iteration reliably stops before degeneration and
rapid loss in correct classification rate occurs.

5 CONCLUSIONS

In this paper, we presented a general method for automatic re-
finement of training data for SVM classification. Refinement was
done with respect to sample selection convenience. We have
shown, that by incorporating uncertainty into an iterative outlier
detection, correct rate of classification as well as complexity of
the derived model can be significantly reduced. The correct clas-
sification rate was improved from 70.36 % to 79.12% on average.
The relevance for manual sample selection for a human operator
is given by compensating 35.6 % shorter contours. Additionally,
since poor training data is compensated, automatic training with
samples from sources like GIS becomes practical. The process-
ing time for classification is narrowed down considerably as the
complexity of the SVM model is reduced by 82.75 % on average.
Since internals of the classifier are not modified, the refinement
is conceivable for other margin based classifiers if probability es-
timates are available.
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