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ABSTRACT:

Spatially referenced data, stored as Geo Information System (GIS) data is needed for numerous applications like map services or
administration. Thus, quality assessment of GIS data is of highest importance. Manual quality checks and updates are very time
consuming, therefore support through automatic systems is required. Typically, semi-automatic systems are used to narrow down the
list of objects that are getting reviewed in a manual process. Current systems introduce an additional layer of complexity, though. To
select objects in a binary decision, the user is asked to define rules and to specify parameters. We present a system that provides a much
more flexible selection of objects, without the need of any rules or parameters: Relations between up-to-date remote sensing data and
GIS data are automatically identified and described by attributes. To determine a Coherence Model for each GIS feature the attribute
space is evaluated using a multivariate Gaussian. Abnormality of GIS objects is determined by calculating the Mahalanobis distance of
a GIS object’s attributes to the mean. Evaluation shows that results outperform existing systems improving precision by a factor four.

Figure 1: Choropleth map showing continuous evaluation result
for GIS objects: (from red (conspicuous) to green (inconspicu-
ous))

1 INTRODUCTION AND RELATED WORK

Spatially referenced data in GIS (Geo Information System) data-
bases are of great use for national and international organizations
and companies. They provide a basis for administration, mon-
itoring and various map services. Information about quality of
GIS data and the area of changes are of highest importance for
updates.

Increasing availability and quality of remote sensing data makes
it interesting for quality assessment of GIS data: up-to-date re-
mote sensing information provide a reference view for out-dated
GIS data. On the other hand, increasing numbers of sensors and
channels increase the complexity of the verification process. Thus,
automatic solutions are required to keep up with the development.

Numerous research has been done in the area of quality assess-
ment of GIS data. A first class of approaches focus on analysing
remote sensing data. Results are simply projected on GIS data to
show areas of change (Lacroix et al., 2006), (Leignel et al., 2010),
(Olsen, 2004). Results are very detailed but often suffer from
being cluttered and neglecting generalisation effects (Haunert,
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Figure 2: Structure of Quality Assessment Systems

2009). Furthermore, this approach requires algorithms that pro-
vide results for every GIS feature in the scene. However, currently
only for special GIS features a reliable image analysis algorithm
exists. In (Walter, 2004) the process of GIS quality assessment
is subdivided into analysis and GIS evaluation as depicted in Fig-
ure 2. This structure can be seen in systems of a second class. An
evaluation step is used to introduce a model for matching anal-
ysis results and GIS data. As GIS specifications are formulated
in terms of GIS objects, this second class of approaches analyse
GIS errors object-based: (Busch et al., 2004) present the system
WIPKA-QS. First ortho-images are analysed by an analysis com-
bining various approaches. GIS object based rules are introduced
to specify for each GIS feature which analysis results are expected
in a correct or incorrect GIS object. Optimisation of results and
changing availability and quality of remote sensing data require
regular development of rules by experts. In (Walter, 2004) the
scene in also analysed object-based but is not requiring any rules.
Relations between GIS objects and appearance in image data are
trained to perform a maximum likelihood (re-)classification of
GIS objects. Objects that end with another GIS feature than they
began with are considered errors in the GIS. This approach has
two obvious disadvantages: First, objects would have to be nearly
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Figure 3: Internal structure of Unsupervised GIS Evaluation.
Green dashed lines: GIS data, black solid lines: remote sensing
information, dotted black line: Coherence Model used for GIS

object rating.

completely wrong to be detected as errors. Partial errors cannot
be found. Secondly, in cases where GIS features are hard to dif-
ferentiate in the image, eg. greenland and cropland, erroneous
classifications can be expected. In this paper we present a new
system that is not requiring any rules while also not having the
disadvantages of the system presented in (Walter, 2004). Further-
more, objects are given a continuous rating instead of a binary
correct/false decision. In contrast to (Walter, 2004) we evaluate
each GIS feature independently to avoid confusion caused by hard
to distinguish GIS features. Hence, the multi-class classification
becomes several one-class problems. Thus, the problem changes
from finding a “correct” GIS feature for a GIS object to the prob-
lem to determine how “normal” a GIS object.

Details of our approach are presented in Section 2. Afterwards
we demonstrate and discuss the performance in Section 3 before
concluding in Section 4.

2 UNSUPERVISED GIS EVALUATION

As different features of GIS objects are evaluated independently
for rest of section 2 we are describing the approach for one GIS
feature only.

For our system we assume that up-to-date remote sensing data
has already been analysed by appropriate algorithms (see also
Figure 2) to provide Remote Sensing Information. All algorithms
that provide the result as a label image of the scene may be used.
Examples can be found in (Lacroix et al., 2006), (Leignel et al.,
2010), (Helmholz et al., 2010) and in Section 3.

Fig. 3 visualizes the workflow of the GIS evaluation. In a first step
relations between GIS data (blue dashed lines) and remote sens-
ing information (black solid lines) are monitored for each GIS
object. Monitoring results are stored in the objects in term of nu-
merical relation attributes. GIS objects now can be considered
to be points in an attribute space that is spaned by the relation
attributes of all objects. Given that relations between GIS objects
and their appearance in remote sensing data exist and have been
captured successfully in the image analysis and monitoring steps,
GIS objects will form clusters. Position, size and shape of the
clusters reflect the coherence of appearance of GIS objects in re-
mote sensing information. The coherence is modeled by fitting a
probability distribution in attribute space (step Coherence Anal-
ysis). Finally, a GIS object’s relative position in attribute space
towards the cluster of all objects is used to determine an abnor-
mality rating to it.

Figure 4: GIS object of feature settlement (left, highlighted in
red) composed of multiple patches (right, red: settlement, blue:
industry, green: wood, yellow: cropland)

2.1 Relation Monitoring

Relations between remote sensing information and GIS data are
getting described by attributes for each GIS object.

In the image analysis results, a label image, each pixel is assigned
to one of several classes. Groups of interconnected pixels with
the same class are called patches. Now we define Analysis His-
togram attributes: For each GIS object g and all analysis classes
i = 1, 2, . . . , n attributes a1, a2, . . . , an are calculated:

ai(g) :=

∑
p∈P δi(p)|p ∩ g|

|g| (1)

with P all patches in the scene and interpreting patches and GIS
objects as sets of pixels and

δi(p) :=

{
1 if p has analysis class i
0 else

(2)

Analysis histogram attributes are used in the research field of
landscape analysis (Mcgarigal and Marks, 1995). For quality as-
sessment of GIS objects they have been used in (Walter, 2004). In
contrast to approaches in (Lacroix et al., 2006), (Leignel et al.,
2010), (Olsen, 2004) analysis classes are not uniquely mapped to
each GIS feature. Instead, a GIS object is described by the per-
centage of all GIS classes in its area.

2.2 Coherence Analysis and Object Rating

Each GIS object can be placed in an attribute space using its anal-
ysis histogram attributes. Hence, objects with similar percentage
of GIS classes are placed next to each other. Objects with other
analysis classes are placed further away. To deduce a model of
the distribution of objects the attribute space has to be evaluated
in the Coherence Analysis step.

We opted to use a d-dimensional multivariate normal distribution.
Its density is defined as

f(x = x1, x2, . . . , xd) =
1

((2π|S|)d/2
e(x−µ)

T S−1(x−µ) (3)

The dimension d is the number of analysis histogram attributes,
mean µ, covariance matrix S and |S| the determinant. The distri-
bution only depends on mean and covariance. Thus, it easily can
be estimated. Fortunately, to measure distances we don’t have to
solve this equation. Instead we can determine the Mahalanobis
distance (Mahalanobis, 1936):



XXXXXXXXXSystem
Reference Incorrect GIS

Objects
Correct GIS

Object

High Abnormality
tp

true positives
fp

false positives

Low Abnormality
fn

false negatives
tn

true negatives

Table 1: Evaluation matrix. The entries focus on the task to find
incorrect GIS objects. Values are only meaningful for a specific
abnormality rating as threshold between high and low abnormal-
ity.

For a GIS object g = (a1, a2, . . . , an) in attribute space, the
Mahalanobis distance is defined as:

d(g, µ) :=
√

(g − µ)TS−1(g − µ) (4)

The Mahalanobis distance is a standard method for this applica-
tion (Tan et al., 2005). The covariance matrix S in the formula
is used to compensate pair-wise correlations between attributes.
To interpret the Mahalanobis distance as normality measure, the
distance of an object towards the Gaussian’s mean µ must be de-
termined. Objects near the centre are more normal than more
distant objects. Thus, the abnormality value of an GIS object g is
calculated by

abnormality(g) := dmah(g, µ) (5)

0 ≤ abnormality < ∞, using the mean and covariance matrix
determined for g’s GIS feature. When we use in this paper the
term high normality this corresponds to a low abnormality value
and vice versa. The absolute values of abnormality have no spa-
cial meaning.

3 RESULTS AND DISCUSSIONS

In this section we present experimental results for our system.
The test area is located in central Germany. GIS data is taken
from the German GIS data set ATKIS (Arb, 2011). We chose ob-
jects from GIS features 2111 (settlement) and 4107 (forest) for
evaluation because they provide results for two very different GIS
features: On the one hand, settlement objects tend to be very
inhomogeneous in images, on the other hand, forest objects are
much more regular. IKONOS imagery with 1 m resolution on four
channels (red, green, blue and near infrared) is available to gain
remote sensing information. The analysis step to process remote
sensing data is not part of this contribution. It is only considered
a necessity to create remote sensing information used as input
data for our GIS evaluation. Thus, we are using a Support Vec-
tor Machine (SVM (Vapnik, 2000)) with RBF kernel. Features are
mean, covariance and Haralick features (Haralick et al., 1973).
A 25 × 25 pixel window is used. For performance reasons, ev-
ery eighth pixel is classified, only. Original resolution is gained
though nearest-neighbor up-scaling. We have trained the SVM
with samples with houses, halls, fields, trees.

GIS objects have been labeled as correct and incorrect by an in-
dependent person to be used as reference. To evaluate our results,
we compare the reference to the abnormality rating for the ob-
jects. This done by testing for all values of abnormality which
objects have higher or lower abnormality and calculating values
in Table 1. When this is done for all possible thresholds, the val-
ues can be depicted as graphs.

Examples for GIS objects, image and analysis results are shown
in Figure 5. In Figures 5a and 5c two forest objects are shown, in

Figures 5b and 5d two settlement objects. It can be seen that the
image analysis is not very detailed. Up-scaling and large neigh-
borhoods caused blocks of common texture. Texture borders tend
to be confused with house textures or industry halls. We want to
stress that the image analysis is only used as input. Systematic
errors like this can easily be dealt with in our system. When all
objects are infected, it seems to be normal, thus has no impact on
the abnormality of objects.

Results can be seen in Figures 6 and 7 where True and False Pos-
itives/Negatives are shown. 4 of 427 forest and 30 of 751 settle-
ment objects have been found from the reference to be incorrect
GIS objects. All four incorrect forest objects can be found within
the top five objects when ordered by abnormality. The fifth object
is the upper object in Figure 5a (correct according to reference).
Settlement objects are not composed of some dominant texture.
Depending on population density and other social aspects, houses
are mixed with green areas and trees. Nevertheless, results show
that our algorithm can reliable identify incorrect GIS objects.

From the true/false positives/negatives we determine the follow-
ing values:

Precision =
tp

tp + fp
, 0 ≤ Precision ≤ 1 (6)

Recall =
tp

tp + fn
, 0 ≤ Recall ≤ 1 (7)

Precision and recall describe the quality of all objects that have
been considered having a high/low abnormality at threshold p.
On the one hand, a precision of 1 means that all objects with
high abnormality are incorrect GIS objects. On the other hand,
a recall of 1 indicates that all incorrect objects have high abnor-
mality. Precision and recall have to be considered as tuple to get
an impression of the quality. Results are shown in Figure 8. We
want to evaluate our approach through comparison with alterna-
tive systems. Unfortunately, many systems provide no results that
allow any comparison (eg. results in (Walter, 2004) include only
three of four values from Table 1). For the Wipka system results
for analysis of IKONOS images are presented (Helmholz et al.,
2010), though. Wipka results do not provide a continuous rating
but a binary decision. Therefore only single precision and recall
values exist: precision=0.2, recall=0.73 (see also Fig. 8). Our
result provides an increase of precision by factor four!

4 CONCLUSIONS

Existing quality assessment systems follow rather uniform ap-
proaches to tackle the task of decreasing the number of objects
that is given to a human operator for GIS update. Based on au-
tomatic interpretation of remote sensing data, they allow to im-
plement a rule set to select GIS objects for post processing (sec-
tion 1). A disadvantage is that defining rules is not an option but
an requirement. This task is assigned to end users that have to
first appraise the analysis results before being able to formulate
the rules.

We changed the GIS evaluation (Fig. 2) into an automatic evalu-
ation, based on coherence of apperance (Fig. 3). No additional
training data is required. We developed Analysis Histogram at-
tributes to express relations between GIS data and analysis re-
sults. We fitted a multivariate Gaussian into the attribute space
to describe coherence. Finally, we assigned each GIS object a
abnormality rating.



(a) Forest Objects, Image (b) Settlement Objects, Image

(c) Forest Objects, Image Analysis (d) Settlement Objects, Image Analysis

Figure 5: Examples for objects with high unnormality rating. The lower forest object and both settlement objects are GIS errors
according to reference.



Results have been presented checking ATKIS GIS data and using
IKONOS imagery, interpreted by a SVM. We show that we can
enhance precision by a factor 4 compared to existing systems.

We will proceed with tackling other problems using coherence
analysis. An algorithm for finding change errors due to changed
object borders at sub-object level has already been submitted for
publication at ISPRS 2012.
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Figure 6: True Positives over False Positives for forest and settlement. Coherence rating used as threshold is visualized by color.
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(b) Settlement

Figure 7: True Negatives over False Negatives for forest and settlement. Coherence rating used as threshold is visualized by color.
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Figure 8: Precision over Recall for forest and settlement. Coherence rating used as threshold is visualized by color.


