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Abstract. Multiple people tracking consists in detecting the subjects at each
frame and matching these detections to obtain full trajectories. In semi-crowded
environments, pedestrians often occlude each other, making tracking a challeng-
ing task. Tracking methods mostly work with the assumption that each pedestrian
moves independently unaware of the objects or the other pedestrians around it.
In the real world though, it is clear that when walking in a crowd, pedestrians
try to avoid collisions, keep a close distance to a group of friends or avoid static
obstacles in the scene.
In this paper, we present an approach which includes the interaction between
pedestrians in two ways: first, including social and grouping behavior as a phys-
ical model within the tracking system, and second, using a global optimization
scheme which takes into account all trajectories and all frames to solve the data
association problem . Results are presented on three challenging publicly avail-
able datasets, showing our method outperforms state-of-the-art tracking systems.
We also make a thorough analysis of the effect of the parameters of the proposed
tracker as well as its robustness against noise, outliers and missing data.

1 Introduction

Multiple people tracking is a key problem for many computer vision tasks, such as
surveillance, animation or activity recognition. In crowded environments occlusions
and false detections are common, and although there have been substantial advances in
the last years, tracking is still a challenging task. Tracking is often divided in two steps:
detection, finding the objects of interest on every frame, and data association, matching
the detections to form complete trajectories in time. Researchers have presented im-
provements on the object detector [1–3] as well as on the optimization techniques [4,5]
and even specific algorithms have been developed for tracking in crowded scenes [6,7].
Though each object can be tracked separately, recent works have proven that tracking
objects jointly and taking into consideration their interaction can give much better re-
sults in complex scenes. Current research is mainly focused on two aspects to exploit
the interaction between pedestrians: the use of a global optimization strategy [8,9] and a
social motion model [10,11]. The focus of this paper is to marry the concepts of global
optimization and social and grouping behavior to obtain a robust tracker able to work
in crowded scenarios. We extend the work presented in [12] to include more theoretical
details, experimental results and details about the performance of the proposed method.
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Fig. 1: Including social and grouping behavior to the network flow graph. (a) Constant
velocity assumption. (b) Avoidance forces. (c) Group attraction forces.

1.1 Related work

The optimization strategy deals with the data association problem, which is usually
solved on a frame-by-frame basis or one track at a time. Several methods can be used
such as Markov Chain Monte Carlo (MCMC) [13], multi-level Hungarian [14], infer-
ence in Bayesian networks [15] or the Nash Equilibrium of game theory [16]. In [17]
an efficient approximative Dynamic Programming (DP) scheme is presented, in which
trajectories are estimated one after the other. This means that if a trajectory is formed
using a certain detection, the other trajectories which are computed later will not be able
to use that detection anymore. This obviously does not guarantee a global optimum for
all trajectories. Recent works show that global optimization can be more reliable in
crowded scenes as it solves the matching problem jointly for all tracks. The multiple
object tracking problem is defined as a linear constrained optimization flow problem
and Linear Programming (LP) is commonly used to find the global optimum. The idea
was first used for people tracking in [18], although this method needs to know a priori
the number of targets to track, which limits its application in real tracking situations.
In [9], the scene is divided into identical cells, each represented by a node in the con-
structed graph. Using the information of the Probability Occupancy Map, the problem
is formulated either as a max-flow and solved with Simplex, or as a min-cost and solved
using k-shortest paths, which is a more efficient solution. Both methods show a far su-
perior performance when compared to the same approach with DP [17]. The authors
of [19] also define the problem as a maximum flow on an hexagonal grid, but instead of
using matching individual detections, they make use of tracklets. This has the advantage
that they can precompute the social forces for each of these tracklets, nonetheless, the
fact that the tracklets are chosen locally, means the overall matching is not truly global,
and if errors occur during the creation of the tracklets, these cannot be overcome by the
global optimization. In [20], global and local methods are combined to match trajecto-
ries across cameras and across time. Finally, in [8] the tracking problem is formulated
as a Maximum A-Posteriori (MAP) problem, which is mapped to a minimum-cost net-
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work flow and then efficiently solved using LP. In this case, each node represents a
detection, which means the graph is much smaller compared to [9, 19].

Most tracking systems work with the assumption that the motion model for each tar-
get is independent. This simplifying assumption is especially problematic in crowded
scenes: imagine the chaos if every pedestrian followed his or her chosen path and com-
pletely ignored the other pedestrians in the scene. In order to avoid collisions and reach
the chosen destination at the same time, a pedestrian follows a series of social rules
or social forces. These have been defined in what is called the Social Force Model
(SFM) [21], which has been used for abnormal crowd behavior detection [22], crowd
simulation [23] and has only recently been applied to multiple people tracking: in [24],
an energy minimization approach is used to predict the future position of each pedes-
trian considering all the terms of the social force model. In [10] and [25], the social
forces are included in the motion model of the Kalman or Extended Kalman filter.
In [26] a method is presented to detect small groups of people in a crowd, but it is only
recently that grouping behavior has been included in a tracking framework [11,27,28].
In [28] groups are included in a graphical model which contains cycles and, therefore,
Dual Decomposition [29] is needed to find the solution, which obviously is computa-
tionally much more expensive than using Linear Programming. Moreover, the results
presented in [28] are only for short time windows. On the other hand, the formula-
tions of [11,27] are predictive by nature and therefore too local and unable to deal with
trajectory changes (e.g. when people meet and stop to talk).

Social behavior models have only been introduced within a predictive framework,
which are suboptimal due to the recursive nature of filtering. Therefore, in contrast to
previous works, we propose to include social and grouping models into a global opti-
mization framework which allows us to better estimate the true maximum a-posteriori
probability of the trajectories.

1.2 Contributions

We present a novel approach for multiple people tracking which takes into account the
interaction between pedestrians in two ways: first, using global optimization for data
association and second, including social as well as grouping behavior. The key insight
is that people plan their trajectories in advance in order to avoid collisions, therefore,
a graph model which takes into account future and past frames is the perfect frame-
work to include social and grouping behavior. We formulate multiple object tracking as
a minimum-cost network flow problem, and present a new graph model which yields
to better results than existing global optimization approaches. The social force model
(SFM) and grouping behavior (GR) are included in an efficient way without altering
the linearity of the problem. Results on several challenging public datasets show the
improvement of the tracking results in crowded environments. Experiments with miss-
ing data, noise and outliers are also shown to test the robustness of the proposed ap-
proach. In this paper, we extend the work presented in [12] in three aspects : (i) more
detailed theoretical explanations and background on Linear Programming for multiple
object tracking; (ii) experimental results with different parameter values to see the ef-
fect of each of them on tracking results and (iii) detailed implementation details and
computational aspects of the proposed method.
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2 Multiple people tracking

Tracking is commonly divided in two steps: object detection and data association. First,
the objects are detected in each frame of the sequence and second, the detections are
matched to form complete trajectories. In this section we define the data association
problem and describe how to convert it to a minimum-cost network flow problem, which
can be efficiently solved using Linear Programming.

The idea is to build a graph in which the nodes represent the pedestrian detections.
These nodes are fully connected to past and future observations by edges, which deter-
mine the relation between two observations with a cost. Thereby, the matching problem
is equivalent to a minimum-cost network flow problem: finding the optimal set of tra-
jectories is equivalent to sending flow through the graph so as to minimize the cost. This
can be efficiently computed using the Simplex algorithm or k-shortest paths [30].

2.1 Problem statement

Let O = {okt} be a set of object detections with otk = (pk, t), where pk = (x, y, z) is
the 3D position and t is the time stamp. A trajectory is defined as a list of ordered object
detections Tk = {o1

k,o
2
k, · · · ,oNk }, and the goal of multiple object tracking is to find

the set of trajectories T ∗ = {Tk} that best explains the detections. This is equivalent to
maximizing the a-posteriori probability of T given the set of detections O. Assuming
detections are conditionally independent, the objective function is expressed as:

T ∗ = argmax
T

P (T |O) = argmax
T

∏
k

P (ok|T )P (T ) (1)

P (ok|T ) is the likelihood of the detection. In order to reduce the space of T , we
make the assumption that the trajectories cannot overlap (i.e., a detection cannot belong
to two trajectories), but unlike [8], we do not define the motion of each subject to be
independent, therefore, we deal with a much larger search space. We extend this space
by including the following dependencies for each trajectory Tk:

– Constant velocity assumption: the observation otk ∈ Tk depends on past observa-
tions [ot−1k ,ot−2k ]

– Grouping behavior: If Tk belongs to a group, the set of members of the group Tk,GR
has an influence on Tk

– Avoidance term: Tk is affected by the set of trajectories Tk,SFM which are close to
Tk at some point in time and do not belong to the same group as Tk

The first and third dependencies are grouped into the SFM term. The sets Tk,SFM and
Tk,GR are disjoint, i.e., a pedestrian can have an attractive effect or a repulsive effect on
another pedestrian, but not both. Therefore, we can assume that these two terms are
independent and decompose P (T ) as:

P (T ) =
∏
Tk∈T

P (Tk ∩ Tk,SFM ∩ Tk,GR) (2)

=
∏
Tk∈T

P (Tk,SFM|Tk)P (Tk,GR|Tk)P (Tk)
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Fig. 2: Diagram of the dependencies for each observation otk.

where the trajectories are represented by a Markov chain:

P (T ) =
∏
Tk∈T

Pin(o
1
k) . . . P (o

t
k|ot−1k )

Pk,SFM(otk|otk,SFM,o
t−1
k )Pk,GR(o

t
k|otk,GR,o

t−1
k )

. . . Pout(o
N
k ) (3)

where Pin(o
t
k) is the probability that a trajectory is initiated with detection otk,

Pout(o
t
k) the probability that the trajectory is terminated at otk and P (otk|ot−1k ) is the

probability that ot−1k is followed by otk in the trajectory. Pk,SFM evaluates how well
the social rules are kept if otk is matched to ot−1k , and Pk,GR describes how well the
structure of the group is kept.

Let us assume that we are analyzing observation otk. In Figure 2 we summarize
which observations influence the matching of otk. Typical approaches [8] only take
into account distance (DIST) information, that is, the observation in the previous frame
ot−1k . We introduce the social dependencies (SFM) given by the constant velocity as-
sumption (green nodes) and the avoidance term (yellow nodes). In this case, two ob-
servations, otq and otr that do not belong to the same group as otk, will be considered
to create a repulsion effect on otk. On the other hand, the orange nodes which depict
the grouping term (GR), are two other observations otm and otn which do belong to the
same group as otk and therefore have an attraction effect on otk. Note that all these de-
pendencies can only be modeled by high order terms, which means that either we use
complex solvers [28] to find a solution in graphs with cycles, or we keep the linearity
of the problem by using an iterative approach as we explain later on.



6 Laura Leal-Taixé et al.

2.2 Tracking with Linear Programming

We linearize the objective function by defining a set of flow flags fi,j = {0, 1} which
indicate if an edge (i, j) is in the path of a trajectory or not. In a minimum cost network
flow problem, the objective is to find the values of the variables that minimize the total
cost of the flows over the network. Defining the costs as negative log-likelihoods, and
combining Equations (1), (2) and (3), the following objective function is obtained:

T ∗ = argmin
T

∑
Tk∈T

− logP (Tk)− logP (TSFM|Tk) (4)

− logP (TGR|Tk) +
∑
k

− logP (ok|T )

= argmin
T

∑
i

Cin,ifin,i +
∑
i

Ci,outfi,out

+
∑
i,j

(Ci,j + CSFM,i,j + CGR,i,j)fi,j +
∑
i

Cifi

subject to the following constraints:

– Edge capacities: we assume that each detection can only correspond to one trajec-
tory, therefore, the edge capacities have an upper bound of uij ≤ 1 and:

fin,i + fi ≤ 1 fi,out + fi ≤ 1 (5)

– Flow conservation at the nodes:

fin,i + fi =
∑
j fi,j

∑
j fj,i = fi,out + fi (6)

– Exclusion property:

fi,j = {0, 1} (7)

The condition in Eq. 7 requires us to solve an integer program, which is known to
be NP-complete. Nonetheless, we can relax the condition to have the following linear
equation:

0 ≤ fi,j ≤ 1. (8)

Now the problem is defined and can be solved as a linear program. If certain con-
ditions are fulfilled, the solution T ∗ will still be integer, and therefore will also be the
optimal solution to the initial integer program. We discuss the integrality of the solution
in more detail in Section 4.

To map this formulation into a cost-flow network, we define G = (N,E) to be a
directed network with a cost Ci,j and a capacity uij associated with every edge (i, j) ∈
E. An example of such a network is shown in Figure 3; it contains two special nodes,
the source s and the sink t; all flow that goes through the graph starts at the s node
and ends at the t node. Thereby, each flow represents a trajectory Tk and the path that
each flow follows indicates which observations belong to each of the trajectories. Each
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Fig. 3: Example of a graph with the special source s and sink t nodes, 6 detections
which are represented by two nodes each: the beginning bi and the end ei.

observation oi is represented with two nodes, the beginning node bi ∈ N and the end
node ei ∈ N (see Figure 3). A detection edge connects bi and ei.

Below we detail the three types of edges present in the graphical model and the cost
for each type:

Link edges. The edges (ei, bj) connect the end nodes ei with the beginning nodes bj in
following frames, with cost Ci,j and flow fi,j , defined as:

fi,j =

{
1, oi and oj belong to Tk and ∆f ≤ Fmax

0, otherwise
(9)

where ∆f is the frame number difference between nodes j and i and Fmax is the
maximum allowed frame gap.

The costs of the link edges represent the spatial relation between different sub-
jects. Assuming that a subject cannot move a lot from one frame to the next, we define
the costs to be a decreasing function of the distance between detections in successive
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frames. The time gap between observations is also taken into account in order to be able
to work at any frame rate, therefore velocity measures are used instead of distances. The
velocities are mapped to probabilities with a Gauss error function as shown in Equation
(10), assuming the pedestrians cannot exceed a maximum velocity Vmax. The effect of
parameter Vmax is detailed in Section 5.1.

E(Vt, Vmax) =
1

2
+

1

2
erf

(
−Vt + Vmax

2
Vmax
4

)
(10)

As we can see in Figure 4, the advantage of using Equation (10) over a linear func-
tion is that the probability of lower velocities decreases more slowly, while the probabil-
ity for higher velocities decreases more rapidly. This is consistent with the probability
distribution of speed learned from training data.
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Fig. 4: Blue = normalized histogram of speeds learned from training data. Red = proba-
bility distribution if cost depends linearly on the velocity. Green = probability distribu-
tion if the relation of cost and velocities is expressed by Equation (10). An Vmax = 7m/s
is used in the experiments.

Therefore, the cost of a link edge is defined as:

Ci,j = − log (P (oj |oi)) + C(∆f) (11)

= − logE
(
‖pj−pi)‖

∆t , Vmax

)
+ C(∆f)

where C(∆f) = − log
(
B∆f−1j

)
is the cost depending on the frame difference

between detections.
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Detection edges. The edges (bi, ei) connect the beginning node bi and end node ei,
with cost Ci and flow fi, defined as:

fi =

{
1, oi belongs to Tk

0, otherwise
(12)

If all the costs of the edges are positive, the solution to the minimum-cost problem
is the trivial null flow. Consequently, we represent each observation with two nodes and
a detection edge with negative cost:

Ci = log (1− Pdet(oi)) + log

(
BBmin

‖pBB − pi)‖

)
. (13)

The higher the likelihood of a detection Pdet(oi) the more negative the cost of the
detection edge, hence, confident detections are likely to be in the path of the flow in or-
der to minimize the total cost. If a map of the scene is available, we can also include this
information in the detection cost. If a detection is far away from a possible entry/exit
point, we add an extra negative cost to the detection edge, in order to favor that obser-
vation to be matched. The added cost depends on the distance to the closest entry/exit
point pBB, and is only computed for distances higher than BBmin = 1.5m. This is a
probabilistic simple way of including other information present in the scene, such as
obstacles or attraction points (shops, doors, etc).

Entrance and exit edges. The edges (s, ei) connect the source s with all the end nodes
ei, with cost Cin,i and flow fin,i. Similarly, (bi, t) connects the end node bi with sink t,
with cost Ci,out and flow fi,out. The flows are defined as:

fin,i (or fi,out) =

{
1, Tk starts (or ends) at oi

0, otherwise
(14)

In [8], the authors propose to create the opposite edges (s, bi) and (ei, t), which
means tracks entering and leaving the scene go through the detection node and therefore
benefiting from its negative cost (see Figure 5(a)). If the costsCin andCout are then set to
zero, a track will be started at each detection of each frame, because it will be cheaper
to use the entrance and exit edges than the link edges. On the other hand, if Cin and
Cout are very high, it will be hard for the graph to create any trajectory. Therefore, the
choice of these two costs is extremely important. In [8], the costs are set according to
the entrance and exit probabilities Pin and Pout, which are data dependent terms that
need to be calculated during optimization.

In contrast, we propose to connect the s node with the end nodes and the t node to
the begin nodes (as shown in Figure 5(b)). This way, we make sure that when a track
starts (or ends) it does not benefit from the negative cost of the detection edge. Setting
Cin = Cout = 0 and taking into account the flow constraints of Eqs. (5) and (6), we
make sure the trajectories are only created with the information of the link edges.



10 Laura Leal-Taixé et al.
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Fig. 5: (a) Graph structure as used in [8], which requires the computation of Pin and
Pout in an Expectation-Maximization step during optimization. In contrast, the proposed
graph structure in (b) allows us to get rid of these two extra parameters. The trajectories
are found only with the information of the link and detection edges.

3 Modeling social behavior

If a pedestrian does not encounter any obstacles, the natural path to follow is a straight
line. But what happens when the space gets more and more crowded and the pedestrian
can no longer follow the straight path? Social interaction between pedestrians is espe-
cially important when the environment is crowded. In this section we consider how to
include the social behavior [21], which we divide into the Social Force Model (SFM)
and the Group behavior (GR), into our minimum-cost network flow problem.

3.1 Social Force Model

The social force model states that the motion of a pedestrian can be described as if they
were subject to ”social forces”. There are three main terms that need to be considered:
the desire of a pedestrian to maintain a certain speed, the desire to keep a comfortable
distance from other pedestrians and the desire to reach a destination. Since we cannot
know a priori the destination of the pedestrian in a real tracking system, we focus on
the first two terms.

Constant velocity assumption. The pedestrian tries to keep a certain speed and direc-
tion, therefore we assume that in t+∆t we have the same speed as in t and predict the
pedestrian’s position in t+∆t accordingly.

p̃t+∆ti = pti + vti∆t

Avoidance term. The pedestrian also tries to avoid collisions and keep a comfortable
distance from other pedestrians. We model this term as a repulsion field with an expo-
nential distance-decay function with value α learned from training data.
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Fig. 6: Three green pedestrians walk in a group, the predicted positions in the next
frame are marked by yellow heads. The purple pedestrian’s linearly predicted position
(yellow head) clearly interferes with the trajectory of the group. Representation of the
probability (blue is 0 red is 1) distribution for the purple’s next position using: 6(a) only
distances, 6(b) only SFM (constant velocity assumption and avoidance term), 6(c) only
GR (considering the purple pedestrian belongs to the group), 6(d) distances+SFM and
6(e) distances+SFM+GR.

at+∆ti =
∑
gm 6=gi

exp

(
−‖p̃

t+∆t
i − p̃t+∆tm ‖

α∆t

)
(15)

If we are computing the cost of edge (i, j), we use the constant velocity assumption
to predict the position of oi and oj as well as the rest of pedestrians p̃t+∆tm , and compute
the repulsion acceleration each pedestrian has on i. The only pedestrians that have this
repulsion effect on subject i are the ones which do not belong to the same group as i
and ‖p̃t+∆ti − p̃t+∆tm ‖ ≤ 1m. The different avoidance terms are combined linearly.

Now the prediction of the pedestrian’s next position is also influenced by the avoid-
ance term (acceleration) from all pedestrians:

p̃t+∆ti = pti + (vti + at+∆ti ∆t)∆t (16)

The distance between prediction and real measurements is used to compute the cost:

CSFM,i,j = − logE

(
‖p̃t+∆ti − pt+∆tj ‖

∆t
, Vmax

)
(17)

where the function E is detailed in Eq. (10).
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In Figure 6 we plot the probability distribution computed using different terms.
Note, this is just for visualization purposes, since we do not compute the probability for
each point on the scene, but only for the positions where the detector has fired. There
are 4 pedestrians in the scene, the purple one and 3 green ones walking in a group. As
shown in 6(b), if we only use the predicted positions (yellow heads) given the previous
speeds, there is a collision between the purple pedestrian and the green marked with a
1 collide. The avoidance term shifts the probability mode to a more plausible position.

3.2 Group Model

The social behavior [21] also includes an attraction force which occurs when a pedes-
trian is attracted to a friend, shop, etc. We model the attraction between members of
a group. Before modeling group behavior we determine which tracks form each group
and at which frame the group begins and ends (to deal with splitting and formation of
groups). The idea is that if two pedestrians are close to each other over a reasonable
period of time, they are likely to belong to the same group. From the training sequence
in [10], we learn the distance and speed probability distributions of the members of a
group Pg vs. individual pedestrians Pi. If m and n are two trajectories which appear on
the scene at t = [0, N ], we compute the flag Gm,n that indicates if m and n belong to
the same group.

Gm,n =

1,
N∑
t=0

Pg(m,n) >
N∑
t=0

Pi(m,n)

0, otherwise
(18)

For every observation oi, we define a group label gi which indicates to which group
the observation belongs to, if any. If several pedestrians form a group, they tend to keep
a similar speed, therefore, if i belongs to a group, we can use the mean speed of all the
other members of the group to predict the next position for i:

p̃t+∆ti = pti +
∑
gm=gi

vtm∆t (19)

The distance between this predicted position and the real measurements is used in
(10) to obtain the cost for the grouping term.

An example is shown in Figure 6(c), where we can see that the maximum probability
provided by the group term keeps the group configuration. In Figure 6(d) we show the
combined probability of the distance and SFM information, which narrows the space of
probable positions. Finally, Figure 6(e) represents the combined probability of DIST,
SFM and GR. As we can see, the space of possible locations for the purple pedestrian
is considerably reduced as we add the social and grouping behaviors, which means we
have less ambiguities for data association. This is specially useful to decrease identity
switches as we present in Section 5.
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4 Implementation details

To compute the SFM and grouping costs, we need to have information about the veloc-
ities of the pedestrians, which can only be obtained if we already have the trajectories.
We solve this chicken-and-egg problem iteratively as shown in Algorithm 1; on the first
iteration, the trajectories are estimated only with the information defined in Section 2.2,
for the rest of iterations, the SFM and GR is also used. The algorithm stops when the
trajectories do not change or when a maximum number of iterations Mi is reached.

Algorithm 1 Iterative optimization
while Ti 6= Ti−1 and i ≤Mi do

if i == 1 then

1.1. Create the graph using only DIST information

else

1.2. Create the graph using DIST, SFM and GR information

end if

2. Solve the graph to find Ti
3. Compute velocities and groups given Ti

end while

Linear Programming solvers The minimum cost solution is found using the Sim-
plex algorithm [30], with the implementation given in [31]. Though Simplex has an
exponential worst-case complexity, we are able to track most sequences in just a few
seconds; this is because each node represents one detection, and therefore the dimen-
sion of the graph is quite small. For larger graphs [9] or more crowded environments,
we can use the k-shortest paths solver [9, 32] which has a worst case complexity of
O(k(m + n · log(n))). For more details on network flows and Simplex we refer the
reader to [33], and to [34] for more information on the k-shortest path algorithm.

Integrality of the solution When defining the program to be solved, we saw that Eq.
(7) defined an integer program, which is known to be NP-complete. We relaxed the
condition into Eq. (8) in order to use efficient Linear Programming solvers to find the
optimum solution to our problem. If the solution to the relaxed version of the program
is integer, then we know it is an optimal solution of the original problem [33]. The
question is, can we guarantee that the solution will be always integer?

Let us assume the conditions of the Linear Program are expressed as: Ax = b. If all
entries of A and b are integer, as it is our case, we can determine that Ax = b has an
integer solution by Cramer’s rule:

Ax = b ⇔ x = A−1b ⇔ ∀i : xi =
det(Ai)
det(A)

(20)
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where Ai is equal to A except on the i-th column where it is equal to b. From here,
we can determine that x will be integer when det(A) is equal to +1 o -1. A matrix
A ∈ Zm×n is totally unimodular if the determinant of all the subsquare matrices of A
is either 0, +1 or -1.

Theorem 1: If A is totally unimodular, every vertex solution of Ax ≤ b is integer.

A well-known case of totally unimodular matrices are the node arc incidence matrices
N of a directed network. Therefore, our defined constraint matrix is totally unimodular,
and the solutions we will obtain will always be integer.

Computationally reduction To reduce the computational cost, we prune the graph
using the physical constraints represented by the edge costs. If any of the costs Cij ,
CSFM,i,j or CGR,i,j is infinite, the two detections i and j are either two far away to
belong to the same trajectory or they do not match according to social and grouping
rules, therefore the edge (i, j) is erased from the graphical model. For long sequences,
we divide the video into several batches and optimize for each batch. For temporal
consistency, the batches have an overlap of Fmax = 10 frames. With our non-optimized
code, the runtime for a sequence of 800 frames (114 seconds), 4837 detections, batches
of 100 frames and 6 iterations is 30 seconds on a 3GHz machine.

5 Experimental results

In this section we show the tracking results of our method on three publicly avail-
able datasets and compare with existing state-of-the-art tracking approaches using the
CLEAR metrics [35], which split the measuring scores into accuracy and precision:

• Detection Accuracy (DA): measures how many detections where correctly found
and therefore is based on the count of missed detections mt and false alarms ft for
each frame t.

DA = 1−
∑Nf

t=1mt + ft∑Nf

t=1N
t
G

whereNf is the number of frames of the sequence andN t
G is the number of ground

truth detections in frame t. A detection is considered to be correct when it is found
within 50 pixels from the ground truth and the bounding boxes of both ground truth
and detection have some overlap.

• Tracking Accuracy (TA): similar to DA but also including the identity switches it.
In this case, the measure does not penalize identity switches as much as a missing
detection or a false alarm as we use a log10 weight.

DA = 1−
∑Nf

t=1mt + ft + log10(1 + it)∑Nf

t=1N
t
G
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• Detection Precision (DP): precision measurements represent how well the bound-
ing box detections match the ground truth. For this, an overlap measure between
bounding boxes is used:

Ovt =

Nt
mapped∑
i=1

|Gti ∩Dt
i |

|Gti ∪Dt
i |

where N t
mapped is the number of mapped objects in frame t, i.e., the number of

detections that are matched to some ground truth object. Gti is the ith ground truth
object of frame t and Dt

i the detected object matched to Gti. The DP measure is
then expressed as:

DP =

Nf∑
t=1

Ovt

Nt
mapped

Nf

• Tracking Precision (TP): measures the spatiotemporal overlap between ground truth
trajectories and detected ones, taking into account also split and merged trajecto-
ries.

TP =

Nt
mapped∑
i=1

Nf∑
t=1

|Gt
i∩Dt

i |
|Gt

i∪Dt
i |

Nf∑
t=1

N t
mapped

All experiments except the ones in Section 5.1 are performed with 6 iterations, a
batch of 100 frames, Vmax = 7m/s, Fmax = 10, α = 0.5 and Bj = 0.3.

5.1 Analysis of the effect of the parameters

All parameters defined in previous sections are learned from training data; in our case
we use one sequence of the publicly available dataset [10]. In this section we study
the effect of the few parameters needed in our implementation, and show the proposed
graph works well for a wide range of these parameters and therefore no parameter
tuning is needed to obtain a good performance. The analysis is done on two publicly
available datasets: a crowded town center [36] and the well-known PETS2009 dataset
[37], to see the different effects of each parameters on each dataset.

Number of iterations. The first parameter we analyze is the number of iterations Mi

that we allow. This determines how many times the loop between computing social
forces and computing trajectories is performed as explained in Algorithm 1. Looking
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Fig. 7: Tracking accuracy (black) and precision (magenta) obtained for the Town Center
dataset (left column) and the PETS 2009 dataset (right column) given varying parameter
values.
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at the results on the PETS 2009 dataset in Figure 7(b), we can see that after just 2 iter-
ations the results remain very stable. Actually, the algorithm reports no changes in the
trajectories after 3 iterations, and therefore stops even though the maximum number of
iterations allowed is higher. The result with 1 and 2 iterations is also not very different,
which means the social and grouping behavior do not significantly improve the results
for this particular dataset. This is due to the fact that this dataset is very challenging
from a social behavior point of view, with subjects often changing direction and groups
forming and splitting frequently. More details and comments on these results can be
found in Section 5.3. On the other hand, we observe a different effect on the Town-
Center dataset, shown in Figure 7(a). In this case, there is a clear improvement when
using social and grouping behavior (i.e. the result improves when we use more than
one iteration. We also observe a pattern on how the Tracking Accuracy of the dataset
evolves: there is a cycle of 3 iterations for which the accuracy increases and decreases
in a similar pattern. This means that the algorithm is jumping between two solutions
and will not converge to neither one of them. This happens when pedestrians are close
together for a long period of time but are not forming a group, which means that even
with social forces, it is hard to say which paths they will follow.

Maximum speed. This is the parameter that determines the maximum speed of the
pedestrians that we are observing. In this case, we can see in Figures 7(c) and 7(d) a
clear trend in which the results are very bad when we force the pedestrians to walk
more slowly that they actually do, since we are artificially splitting trajectories. The
results converge when the maximum speed allowed is around 3m/s - 5m/s, which is
the reported mean speed of pedestrians in a normal situation. More interestingly, we
observe that the results are kept constant when using higher maximum speed values.
This is a positive effect of the global optimization framework, since we can use a much
higher speed limit and this will still give us good results and will allow us to track a
person running through the scene, a case of panic when people start running, etc.

Cost for the frame difference. The last parameter, Bj , appears in Eq. (12) and rep-
resents the penalization term that we apply when the frame difference between two
detections that we want to match is larger than 1. This term is used in order to give
preference to matches that are close in time. Here we can again see different effects on
the two datasets. In Figure 7(e), we see that the results are stable until a value of 0.4.
The lower the value, the higher is the penalization cost for the frame difference, which
means it is more difficult to match those detections which are more than 1 frame apart.
When the value of Bj is higher than 0.4, there are more ambiguities in the data associ-
ation process because it is easier to match detections which are many frames apart. In
the TownCenter dataset, there is no occluding object in the scene, which means missing
detections are sporadic within a given trajectory. In this scenario, a lower value for Bj
is better, since small gaps can be filled and there are less ambiguities. Nonetheless, we
see different results in the PETS 2009 dataset in Figure 7(f), since here there is a clear
occluding object in the middle of the scene (see Figure 8) which occludes the pedes-
trians for longer periods of time. In this case, a higher value of Bj allows to overcome
these large gaps of missing data, and that is why the best value for this dataset is around
0.6.
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Fig. 8: Four frames of the PETS2009 sequence (separation of 9 frames), showing several
occlusions, both created by the obstacle on the scene and between pedestrians. All the
occlusions can be recovered with the proposed method.

5.2 Evaluation with missing data, noise and outliers

We evaluate the impact of every component of the proposed approach with one of the
sequences of the dataset [10], which contains images from a crowded public place, with
several groups as well as walking and standing pedestrians. The sequence is 11601
frames long and contains more than 300 trajectories. First of all, we evaluate our group
detection method on the whole sequence with ground truth detections: 61% are cor-
rectly detected, 26% are only partially detected, 13% are not found and an extra 7%
groups are detected wrongly.

Using the ground truth (GT) pedestrian positions as the baseline for our experi-
ments, we perform three types of tests, missing data, outliers and noise, and compare
the results obtained with:

• DIST: proposed network model with distances
• SFM: adding the Social Force Model (Section 3.1)
• SFM+GR: adding SFM and grouping behavior (Section 3.2)

Missing data. This experiment shows the robustness of our approach given missed
detections. This is evaluated by randomly erasing a certain percentage of detections
from the GT set. The percentages evaluated are [0, 4, 8, 12, 16, 20] from the total num-
ber of detections over the whole sequence. As we can see in Figure 10, both SFM and
SFM+GR increase the tracking accuracy when compared to DIST.
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(a) (b)

(c)

Fig. 9: Top row: Tracking results with only DIST. Bottom row: Tracking results with
SFM+GR. Green = correct trajectories, Blue = observation missing from the set, Red =
wrong match. 9(a) Wrong match with DIST, corrected with SFM. 9(b) Missing detec-
tions cause the matches to shift due the global optimization; correct result with SFM.
9(c) Missed detection for subject 3 on two consecutive frames. With SFM, subject 2 in
the first frame (yellow arrow) is matched to subject 3 in the last frame (yellow arrow),
creating an identity switch; correct result with grouping information.
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Fig. 10: Experiments are repeated 50 times and average result, maximum and minimum
are plotted. Blue star = results with DIST, Green diamond = results with SFM, Red
square = results with SFM+GR. From left to right: Experiment with simulated missing
data, with outliers, and with random noise.

Outliers. With an initial set of detections of GT with 2% missing data, tests are per-
formed with [0, 10, 20, 30, 40, 50] percentage of outliers added in random positions over
the ground plane. In Figure 10, the results show that the SFM is especially important
when the tracker is dealing with outliers. With 50% of outliers, the identity switches
with SFM+GR are reduced 70% w.r.t the DIST results.

Noise. This test is used to determine the performance of our approach given noisy de-
tections, which are very common mainly due to small errors in the 2D-3D mapping.
From the GT set with 2% missing data, random noise is added to every detection. The
variances of the noise tested are [0, 0.002, 0.004, 0.006, 0.008, 0.01] of the size of the
scene observed. As expected, group information is the most robust to noise; if the po-
sition of pedestrian A is not correctly estimated, other pedestrians in the group will
contribute to the estimation of the true trajectory of A.

These results corroborate that having good behavioral models becomes more im-
portant as the observations deteriorate. In Figure 9 we plot the tracking results of a
sequence with 12% simulated missing data. Only using distance information can see
identity switches as shown in Figure 9(a). In Figure 9(b) we can see how missing data
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affects the matching results. The matches are shifted, this chain reaction is due to the
global optimization. In both cases, the use of SFM allows the tracker to interpolate the
necessary detections and find the correct trajectories. Finally, in Figure 9(c) we plot
the wrong result which occurs because track 3 has two consecutive missing detections.
Even with SFM, track 2 is switched for 3, since the switch does not create extreme
changes in velocity. In this case, the grouping information is key to obtaining good
tracking results. More results are shown in Figure 13, first row.
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Fig. 11: Predictive approaches [10, 11] (first row) vs. Proposed method (second row)

5.3 Tracking results

We evaluate the proposed algorithm on two publicly available datasets: a crowded town
center [36] and the well-known PETS2009 dataset [37]. We compare results with:

• [36]: using the results provided by the authors for full pedestrian detections. The
HOG detections are also given by the authors and used as input for all experiments.

• [8]: globally optimum tracking based on network flow linear programming, for
which we use our own implementation.

• [10]: tracker based on Kalman Filter which includes social behavior, using the code
provided by the authors.

• [11]: tracker based on Kalman Filter which includes social and grouping behavior,
using our own implementation.

For a fair comparison, we do not use appearance information for any method. The
methods [10, 11, 36] are online, while [8] processes the video in batches.
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Town Center dataset We perform tracking experiments on a video of a crowded town
center [36]. To show the importance of social behavior and the robustness of our algo-
rithm at low frame rates, we track at 2.5fps (taking one every tenth frame). We show
detection accuracy (DA), tracking accuracy (TA), detection precision (DP) and tracking
precision (TP) measures as well as the number of identity switches (IDsw).

DA TA DP TP IDsw
HOG Detections 63.1 − 71.9 − −
Benfold et al. [36] 64.9 64.8 80.5 80.4 259
Zhang et al. [8] 66.1 65.7 71.5 71.5 114
Pellegrini et al. [10] 64.1 63.4 70.8 70.7 183
Yamaguchi et al. [11] 64.0 63.3 71.1 70.9 196
Proposed 67.6 67.3 71.6 71.5 86

Table 1: Town Center sequence.

Note, the precision reported in [36] is about 9% higher than the input detections
precision; this is because the authors use the motion estimation obtained with a KLT
feature tracker to improve the exact position of the detections, while we use the raw
detections. Still, our algorithm reports 64% less ID switches. As shown in Table 1, our
algorithm outperforms [10], which includes social behavior, and [11], which includes
also grouping information, by almost 4% in accuracy and with 50% less ID switches.
In Figure 11 we can see an example where [10, 11] fail. The errors are created in the
greedy phase of predictive approaches, where people fight for detections. The red false
detection in the first frame takes the detection in the second frame that should belong to
the green trajectory (which ends in the first frame). In the third frame, the red trajectory
overtakes the yellow trajectory and a new blue trajectory starts where the green should
have been. None of the resulting trajectories violate the SFM and GR conditions. On
the other hand, our global optimization framework takes full advantage of the SFM and
GR information and correctly recovers all the trajectories. More results of the proposed
algorithm can be seen in Figure 13, last row.

Results on the PETS2009 dataset In addition, we perform monocular tracking on the
PETS2009 sequence L1, Views 1,5,6,7,8 and obtain the detections using the Mixture
of Gaussians (MOG) background subtraction method. We compare the results with the
previously described methods plus the monocular result of View 1 presented in [9],
where the detections are obtained using the Probabilistic Occupancy Map (POM) and
the tracking is done using k-shortest paths.

The first observation that we make is that the linear programming methods (LP and
Proposed) clearly outperform predictive approaches in accuracy. This is because this
dataset is very challenging from a social behavior point of view, because the subjects
often change direction and groups form and split frequently. Since our approach is based
on a probabilistic framework, it is better suited for unexpected behavior changes (like
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Fig. 12: Results of the proposed method on the PETS2009 dataset views 1,5,6,7,8. (a)
Detection accuracy, DA. (b) Detection precision, DP. (c) Tracking accuracy, TA. (d)
Tracking precision.

destination changes), where other predictive approaches fail [10, 11]. We can also see
that the Proposed method has a higher accuracy in most views that the LP method,
which does not take into account social and grouping behavior. The grouping term is
specially useful to avoid identity switches between member of a group (see an example
in Figure 13, third row, the cyan and green pedestrian who walk together). Precision is
similar for all methods since the same detections have been used for all the experiments
and we do not apply smoothing or correction of the bounding boxes. In general, views
7 and 8 are hard for tracking, due to 2D-3D calibration errors and a low field of view
which means it is impossible to keep the identities and many small separate trajectories
are created.

6 Conclusions

In this paper, we argued for integrating pedestrian behavioral models in a linear pro-
gramming framework. Our algorithm finds the MAP estimate of the trajectories total
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Fig. 13: First row: Results on the BIWI dataset (Section 5.2). The scene is heavily
crowded, social and grouping behavior are key to obtaining good tracking results. Sec-
ond and third rows: Results on the PETS2009 dataset (Section 5.3). Last two rows:
Results on the Town Center dataset (Section 5.3).

posterior including social and grouping models using a minimum-cost network flow
with an improved novel graph structure that outperforms existing approaches. People
interaction is persistent rather than transient, hence the proposed probabilistic formu-
lation fully exploits the power of behavioral models as opposed to standard predictive
and recursive approaches such as Kalman filtering. Experiments on three public datasets
reveal the importance of using social interaction models for tracking in difficult condi-
tions such as in crowded scenes with the presence of missed detections, false alarms
and noise. We present an extensive analysis of the effect of the parameters to show the
robustness of our method. Results show that our approach is superior to state-of-the-art
multiple people trackers. As future work, we plan on working on the optimization itself
in order to find an efficient optimization method that keeps the linearity of the problem
and at the same time does not require to iterate between computing the social forces and
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computing the data association. On the other hand, we also plan to extend our approach
to even more crowded scenarios where individuals cannot be detected and therefore
features might be used as in [38]. This will be a first step to bridge macroscopic and
microscopic approaches for crowd analysis.
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