

Branch-and-price global optimization for multi-view multi-object tracking

Universität

Laura Leal-Taixé

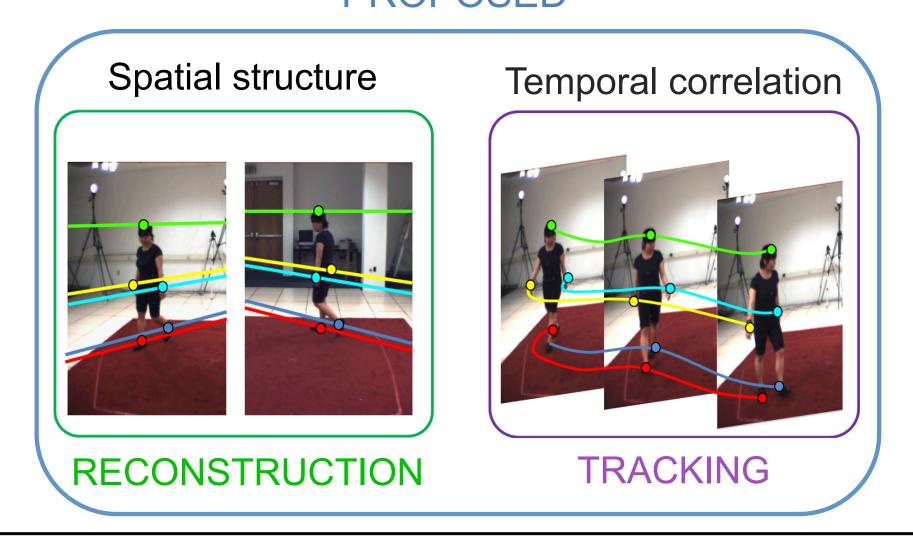
Gerard Pons-Moll

Bodo Rosenhahn

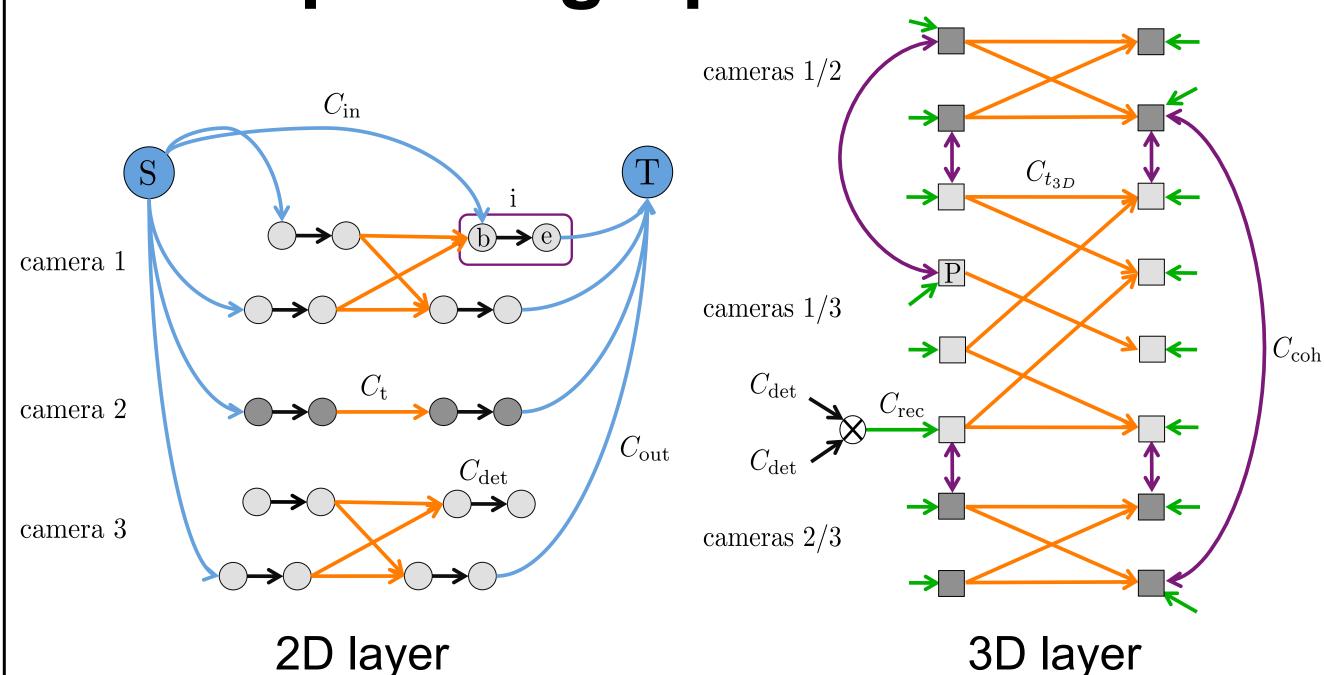
Institute for Information Processing (TNT), Leibniz University Hannover, Germany {leal,pons,rosenhahn}@tnt.uni-hannover.de

Goal

A global optimum solution to track multiple objects in multiple views PROPOSED



Proposed graphical model



Entrance/exit edges: determine when trajectory starts/ends

Detection edges: confident detections are likely to be in the path of the flow, and therefore, part of the trajectory.

$$C_{\text{det}}(i_v) = \log \left(1 - P_{\text{det}}(\mathbf{p}_{i_v})\right)$$

Temporal 2D edges: encode temporal dynamics of targets.

$$C_{\mathrm{t}}(i_v, j_v) = -\log\left(\mathcal{F}\left(\frac{\|\mathbf{p}_{j_v} - \mathbf{p}_{i_v}\|}{\Delta t}, V_{\mathrm{max}}^{\mathrm{2D}}\right) + B_f^{\Delta f - 1}\right)$$

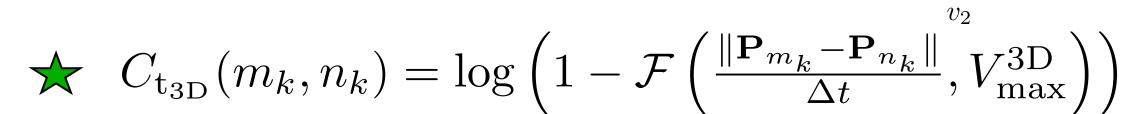
Reconstruction edges:

$$C_{\text{rec}}(m_k) = \log \left(1 - \mathcal{F}\left(\text{dist}\left(\mathbf{L}(i_{v_1}), \mathbf{L}(j_{v_2})\right), \mathbf{E}_{3D}\right)\right)$$

Camera coherency edges:

Temporal 3D edges:

encode 3D temporal dynamics.

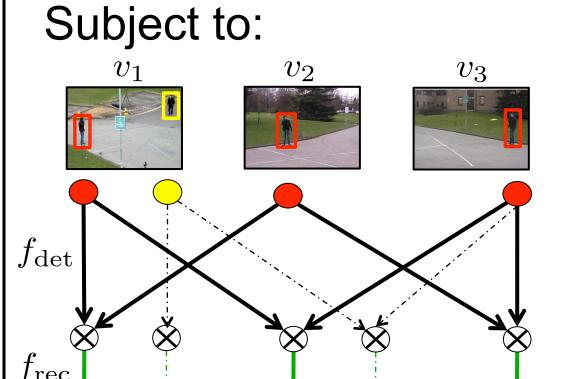


Cascade of prizes: having the same identity in 2D is beneficial if the 3D information matches.

Multi-commodity flow LP formulation

Formulate MAP problem as a Linear Program using flow flags $f(i) = \{0, 1\}$.

 $\mathcal{T}* = \underset{\mathcal{T}}{\operatorname{argmin}} \mathbf{C}^{\mathrm{T}} \mathbf{f} = \sum_{i} C(i) f(i)$ Objective function:

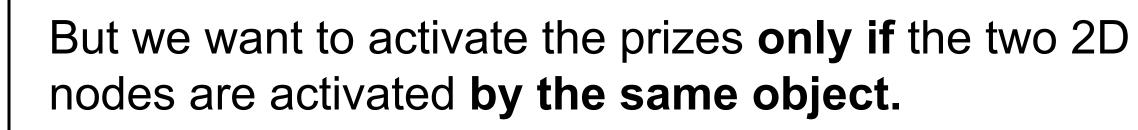


Cascade of prizes

 $f_{\text{det}}(i_v) = f_{\text{in}}(i_v) + \sum_{v} f_{\text{t}}(j_v, i_v)$ $f_{\text{det}}(i_v) = \sum f_{\text{t}}(i_v, j_v) + f_{\text{out}}(i_v)$ the nodes

 $f_{\text{rec}}(m_k) = f_{\text{det}}(i_{v_1}) f_{\text{det}}(j_{v_2})$ $f_{\text{coh}}(m_k, n_l) = f_{\text{rec}}(m_k) f_{\text{rec}}(n_l)$ $f_{\text{t}_{3D}}(m_k, n_k) = f_{\text{rec}}(m_k) f_{\text{rec}}(n_k)$

 $f_{ab} - f_a \le 0$ $f_{ab} - f_b \le 0$ $f_a + f_b - f_{ab} \le 1$



$$0 \le \sum_{i_v} f_{in}(i_v) \le 1$$
$$0 \le \sum_{i_v} f_{out}(i_v) \le 1 \quad \forall v$$

Flow

conservation at

Activation

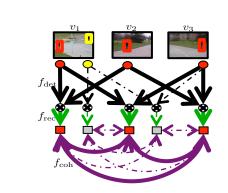
constraints of

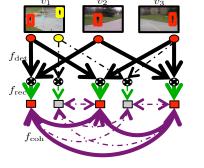
. the form $f_{ab}=f_af_b$ –

cannot be used in

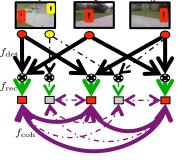
a Linear Program!

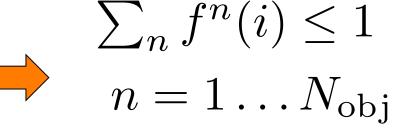
How to deal with multiple objects? Use a multi-commodity flow formulation.





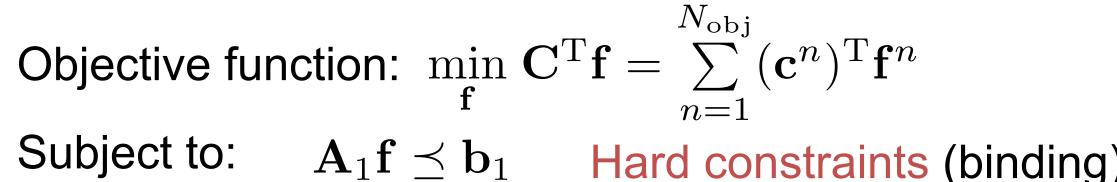
Multiple copies of the graph



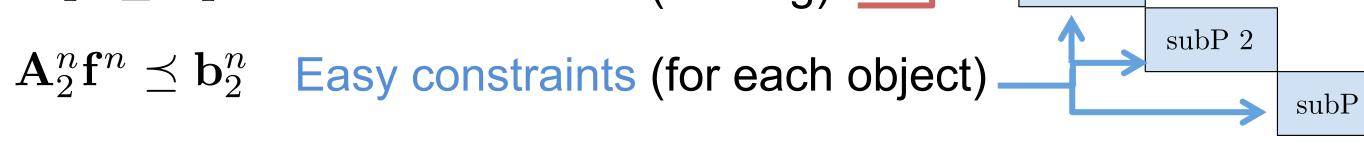


Much more complex LP, cannot be solved with standard techniques!! Binding constraints

Dantzig-Wolfe decomposition



 $A_1f \leq b_1$ Hard constraints (binding)



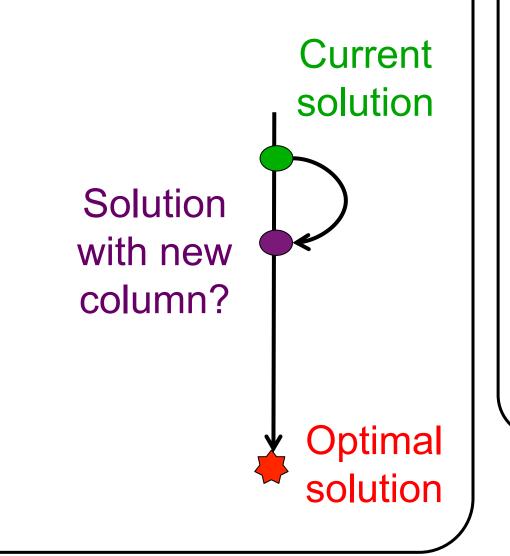
Convert the problem to a Master Problem and $N_{\rm obj}$ subproblems, using the representation theorem $\mathbf{f}^n = \sum_{j=1}^J \lambda_j^n \mathbf{x}_j^n$

Extreme points of the polyhedron

Column generation

- Select a subset of columns to form the *restricted master* problem, solve it with chosen method (e.g. Simplex, KSP).
- 2. Calculate the optimal dual solution μ
- 3. Price the rest of the columns $\mu(\mathbf{A}_1^n\mathbf{f}^n-\mathbf{b}_1^n)$
- 4. Find the columns with negative cost and add them to the restricted master problem. This is done by solving column generation subproblems.

 $\min (\mathbf{c}^n)^{\mathrm{T}} \mathbf{f}^n + \mu (\mathbf{A}_1^n \mathbf{f}^n - \mathbf{b}_1^n)$ s.t. $\mathbf{A}_2^n \mathbf{f}^n \leq \mathbf{b}_2^n$



Block-angular structure

Master problem

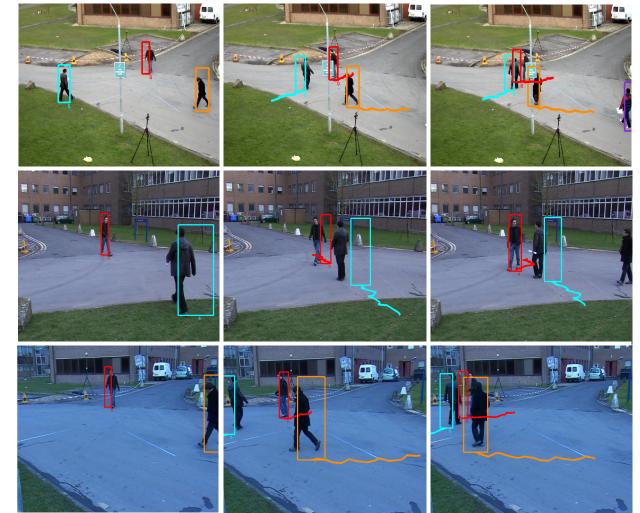
Constraints

Solution

space

Results

Multiple people tracking: PETS 2009 dataset



Even with calibration noise, our algorithm is able to track the red pedestrian which is occluded in 2 of the 3 views.

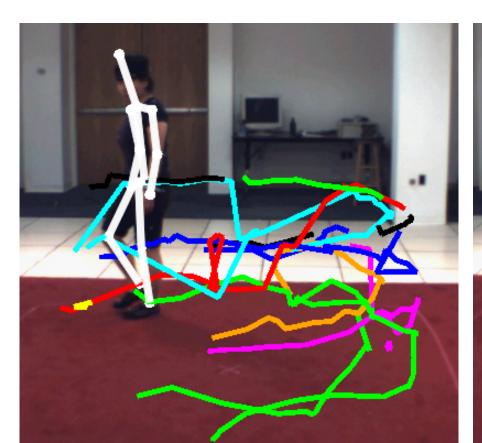
CLEAR metrics, proposed method outperforms state-ofthe-art with only 2 views.

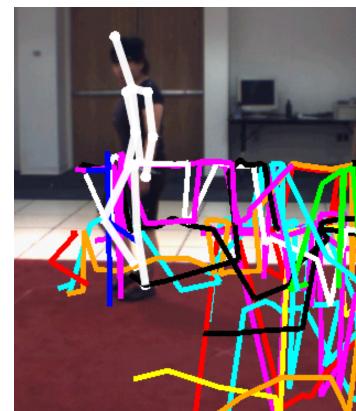
	_				
	DA	TA	DP	TP	miss
Zhang et al. [24] (1)	68.9	65.8	60.6	60.0	28.1
GTR(2)	51.9	49.4	56.1	54.4	31.6
GRT (2)	64.6	57.9	57.8	56.8	26.8
TR (2)	66.7	62.7	59.5	57.9	24.0
RT (2)	69.7	65.7	61.2	60.2	25.1
Berclaz et al. [4] (5)	76	75	62	62	_
Proposed (2)	78.0	76	62.6	60	16.5
TR (3)	48.5	46.5	51.1	50.3	20
RT (3)	56.6	51.3	54.5	52.8	23.5
Proposed (3)	73.1	71.4	55.0	53.4	12.9

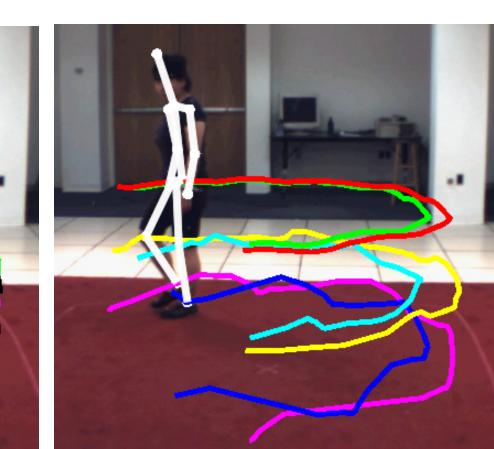
Much better performance than Reconstruction-Tracking or Tracking-Reconstruction.

3D human pose tracking: HumanEva dataset

Ground truth 2D joint positions with 40% simulated outliers, much more robust performance than comparing algorithms.



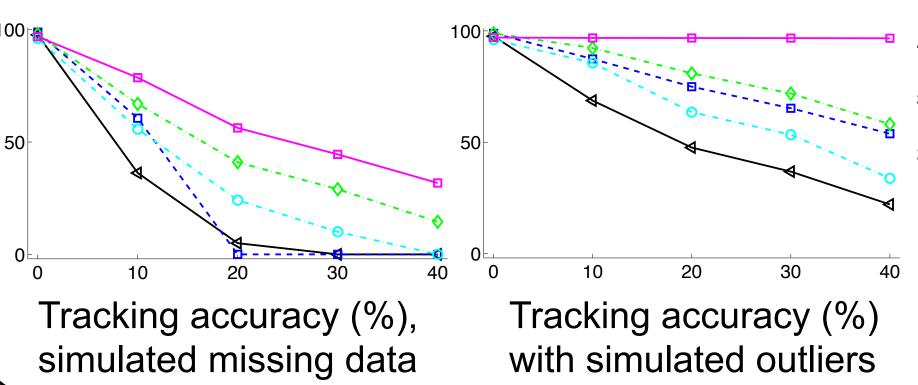


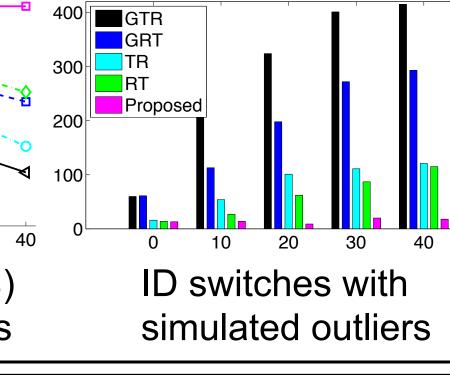


Tracking-Reconstruction

Reconstruction-Tracking

Proposed method





Conclusions

- Jointly track multiple targets in multiple views.
- Proposed graph structure solves the problem as a global optimization including both temporal correlation and spatial information enforced by the configuration of the cameras.
- Branch-and-price: powerful tool to find the solution exploiting the special block-angular structure of the problem.
- Code available! http://www.tnt.uni-hannover.de/~leal/

This work was partially funded by the German Research Foundation, DFG project RO 2497/7-2.