
International Scholarly Research Network
ISRN Signal Processing
Volume 2011, Article ID 956372, 10 pages
doi:10.5402/2011/956372

Research Article

Decoder-Side Motion Estimation Assuming Temporally or
Spatially Constant Motion

Sven Klomp, Marco Munderloh, and Jörn Ostermann

Institut für Informationsverarbeitung, Leibniz Universität Hannover, Appelstraβe 9A, 30167 Hannover, Germany

Correspondence should be addressed to Sven Klomp, klomp@tnt.uni-hannover.de

Received 7 March 2011; Accepted 17 April 2011

Academic Editors: G. Camps-Valls, F. Palmieri, and L. Zhang

Copyright © 2011 Sven Klomp et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In current video coding standards, the encoder exploits temporal redundancies within the video sequence by performing block-
based motion compensated prediction. However, the motion estimation is only performed at the encoder, and the motion vectors
have to be coded explicitly into the bit stream. Recent research has shown that the compression efficiency can be improved by also
estimating the motion at the decoder. This paper gives a detailed description of a decoder-side motion estimation architecture
which assumes temporal constant motion and compares the proposed motion compensation algorithm with an alternative
interpolation method. The overall rate reduction for this approach is almost 8% compared to H.264/MPEG-4 Part 10 (AVC).
Furthermore, an extensive comparison with the assumption of spatial constant motion, as used in decoder-side motion vector
derivation, is given. A new combined approach of both algorithms is proposed that leads to 13% bit rate reduction on average.

1. Introduction

All existing video coding standards, such as MPEG-2 Part 2
or H.264/MPEG-4 Part 10 (AVC), are essentially based on
similar structures: the encoder estimates motion between the
current frame to be coded and already encoded reference
frames to exploit temporal dependencies within the video
sequence. The resulting motion vectors are used to calculate
a prediction of the current frame by displacing the content
of the reference frames. Since only the resulting prediction
error is transmitted, compression is achieved. Due to block-
based motion estimation, accurate compensation at object
borders can only be provided by small block sizes. However,
the decoder is not able to estimate the motion vectors, and
the encoder has to transmit the motion vectors in addition to
the prediction error. The smaller the block size is, the more
motion vectors have to be transmitted, resulting in a trade-
off in bit rate reduction. It can be observed that the block
size has a significant impact on the compression performance
and is, therefore, limited to 4× 4 pixels in AVC.

A significant amount of the total bit rate of an encoded
sequence is needed to transmit the motion information,
as shown in Figure 1. The percentages needed to transmit
the different information, that is, mode signalling, motion

vectors, coded block patterns, transform coefficients for luma
and chroma, and other information, is plotted. Reasonable
quality (30 dB to 40 dB) is achieved for quantisation param-
eters between 24 (higher quality) and 44 (lower quality).
Within this range, the average amount of data used for mo-
tion vector representation is almost 20%.

Recent research shows that the data rate can be reduced
by partially estimating the motion at the decoder, since no
motion vectors have to be transmitted for those regions.
The Joint Collaborative Team on Video Coding (JCT-VC) of
ISO/IEC and ITU-T considered this new research field and
conducted tool experiments on this topic [1].

One approach is decoder-side motion vector derivation
(DMVD, [2]), in which the motion of a block is also
estimated at the decoder, instead of explicitly coding the
motion vector into the bit stream. An L-shaped template of
already reconstructed pixels neighbouring the current block
is matched in the reference frames using the sum of absolute
differences (SADs). Thus, it is assumed that the motion is
constant in the spatial neighbourhood of the current block.
However, the assumption is not always valid, in particular for
large block sizes and object borders. Therefore, the encoder
decides to either code the motion vector explicitly or use



2 ISRN Signal Processing

0 10 20 30 40

Quantisation parameter

0

20

40

60

80

100

Pe
rc

en
ta

ge
(%

)

Other data

Chrominance
Luminance

Coded block patterns

Motion information

Mode

Figure 1: Rate distribution for different quantisation parameters
of an AVC high profile coded bit stream with hierarchical B frames
(I-b-B-b-B-b-B-b-P) for the Kimono sequence (1080p, 24 Hz). The
highlighted area represents the quality range of interest (between
30 dB and 40 dB).

the derived vector by a rate-distortion optimised mode
decision. In case DMVD is selected, no motion vector has
to be coded, and only the mode has to be signalled.

Another approach, discussed in more detail in this paper,
is decoder-side motion estimation (DSME, [3]). Hereby, a
prediction of the current frame is generated by performing
bidirectional interpolation using previously coded frames.
Since no information of the current frame is available at the
decoder, temporally constant motion is assumed. The whole
frame is predicted at once, and, thus, no restrictions (e.g.,
to the block size) apply and any arbitrary motion estimation
algorithm, like block-based [4] or mesh-based [5], may be
used to create a dense motion field. Therefore, problematic
areas, like object borders, can be efficiently handled. The
resulting interpolated frame is then fed back into the refer-
ence picture buffer and can be used for prediction by the con-
ventional hybrid coder. Since the interpolation is crucial for
the performance of this approach, a detailed description with
additional information on the motion estimation algorithm
proposed in [6] is given in this paper. Furthermore, a perfor-
mance comparison with the spatio-temporal autoregressive
(STAR) frame rate upconversion proposed in [7] is made.

Although both approaches, DMVD and DSME, try to
reduce the rate used for transmitting the motion vectors, dif-
ferent assumptions on the motion are made as mentioned
before. DMVD assumes constant motion of spatial neigh-
bouring pixel, whereas DSME expects constant motion
over time. A combination of both approaches can lead to
additional rate gains. Therefore, the different hypotheses of
the motion characteristics are highlighted and evaluated in

experiments, and a new combined architecture is proposed
to benefit from spatially and temporally constant motion.

This paper is organised as follows. The DSME archi-
tecture is described in Section 2 with additional details on
the motion estimation algorithm. In Section 3, the modi-
fications and restrictions for the new combined approach
of DSME and DMVD are discussed. The comparison of
the used motion compensated interpolation with a state-of-
the-art frame interpolation algorithm is shown in Section 4.
Furthermore, an extensive comparison of the new combined
approach with the AVC reference as well as DSME and
DMVD is given in that section. The paper comes to a close
with conclusions in Section 5.

2. Decoder-Side Motion Estimation Using
Modified Reference List

This section explains the architecture used to allow motion
estimation at the decoder, which is based on [3]. Addition-
ally, it is shown how nonlinear motion can be compensated,
although linear motion is assumed in the decoder-side
motion estimation algorithm.

DSME is implemented on top of a conventional hybrid
video coder, as shown in Figure 2. The reference picture
buffer containing already coded pictures feeds the previous
frame F−1 and the future frame F1 that are temporally the
closest to the current frame F0 to the DSME module. In this
implementation, the module contains a block-based motion
estimation algorithm to interpolate the current frame F0

from the previous and next frames. The motion vectors be-
tween F0 and the two reference frames can be estimated by
assuming linear motion, that is, the motion vector between
F−1 and F0 is equal to the motion vector between F0 and F1

and can be expressed by the halved motion between F−1 and
F1. Thus, the approach performs best for temporally constant
motion.

The frame ̂F0 is inserted into the reference picture buffer,
after the whole frame is interpolated. The tools of the con-
ventional encoder are now able to use this frame as well as
the other reference frames for prediction and coding.

In addition to this approach with the modified reference
list, a pure DSME mode was proposed in [3]. For low bit
rates, the interpolated DSME frame ̂F0 may have sufficient
quality and, thus, no additional residual has to be transmit-
ted. However, the rates where pure DSME is selected are
below reasonable subjective quality for the new test sequen-
ces, due to the change from CIF to HD resolution. Thus, the
pure DSME mode is omitted in this implementation.

Since the proposed algorithm interpolates between two
frames, the approach is only applicable to B frames, in which
a future frame is available at the decoder. However, the design
is very flexible and extrapolation from previous frames can
be implemented to allow DSME also for P frames.

2.1. Incorporation of Nonlinear Motion. The DSME approach
cannot compensate the motion of accelerating or deceler-
ating objects as shown in Figure 3. The DSME algorithm
estimates the true motion between the two reference frames



ISRN Signal Processing 3

Motion
compensation

Motion
estimation

Reference
picture buffer

Inverse
transform

Entropy
coder

Decoder-side
ME

^F0

BitstreamF0

F−1;F1

+

+

−
Transform/

Quantisation

Figure 2: Hybrid video encoder with DSME modifications highlighted in grey.

F−1 F1

True motion

Estimated motion

Resulting displacement

^F0

Figure 3: Displaced interpolation due to nonlinear motion.

and inserts the interpolated block in the centre of ̂F0 because
of the assumption of constant motion. However, the true
motion drawn with dashed arrows is accelerated, and the
correct position of the block is in the upper left corner. Thus,
DSME is not able to create a valid prediction of the current
frame although the motion estimation is successful.

To handle nonlinear motion, no distinction is made
between the inserted DSME frame and the other reference
frames. Therefore, the encoder also transmits the motion
vector difference [8] for a block using the DSME frame ̂F0. In
the case of linear motion, the motion vector estimated by the
encoder is zero, as ̂F0 is already motion compensated. Thus,
the motion vector difference is very efficient to code. This
approach has the advantage that the DSME frame can also be
used in cases where the assumption of temporally constant
motion is wrong. The encoder can still use the wrong
com-pensated block by applying motion compensation on

the DSME frame and transmitting the resulting displace-
ment, as depicted in Figure 3.

2.2. Hierarchical Motion Estimation with Vector Latching.
The most crucial part of the DSME module shown in
Figure 2 is the motion estimation algorithm, since the
performance of the proposed system is mainly affected by
the accuracy of the motion vectors. Accurate motion vectors
result in a good interpolation of the current frame, which
will then be more often selected as a reference by the encoder
tools.

Conventional block matching algorithms as used in, for
example, AVC minimise the residual between the original
frame and the motion compensated reference. From a coding
point of view, it makes no difference if the estimated mo-
tion vector represents the true motion or only points to
similar texture of another object. As long as the residual is
small, compression is achieved. In contrast, the motion com-
pensation in DSME is prone to wrong motion due to the
assumption of linear motion. A false local minimum found
during matching of a small block (Figure 4(a)) would result
in a distorted frame ̂F0, as shown in Figure 4(b). Thus, con-
ventional motion estimation algorithms, as used in current
video coding standards, are not applicable to decoder-side
motion estimation.

To prevent those wrong motion vectors, a hierarchical
motion estimation scheme, as depicted in Figure 5, is used.
The algorithm starts with a block size of 64 × 64 pixel and
a search range of 128 pixel. For the following iterations,
the search range is decreased for each hierarchy level, since
the coarse motion was already estimated in previous levels.
To accelerate the motion estimation for the large 64 × 64
blocks, only every second pixel values are used to calculate
the matching cost. Therefore, the two reference frames F−1

and F1, which are used to estimate the motion, have to be
low-pass filtered in the first iteration. For all other iterations,
the unfiltered reference frames are used.

At each hierarchy level, the motion vectors between the
previous and the next frames (F−1, F1) are estimated using



4 ISRN Signal Processing

^F0F−1 F1

(a) (b)

Figure 4: Bidirectional motion compensation (a) can fail as shown for a detail of the interpolated frame ̂F0 of the PeopleOnStreet sequence
(b).

Determine
search area

Store
motion vector

Block size =
Block size/2

Upscale motion
vector field

Change
parameters

Block size>1

Block size = 4

Bidirectional
initialisation

Weighted vector
median filter

Dense motion vector field

For each block in frame

Yes

Yes

No

No

Block size = 64

Search minimum
distortion

Figure 5: Diagram of hierarchical motion estimation.

a conventional block matching algorithm, which minimises
the mean of the absolute differences (MADs) between
the two reference frames F−1 and F1. The evaluation in
Section 4.1 shows that the small gain achieved with mean of
the squared differences (MSDs) as optimisation criterion is
not worth the additional complexity. For blocks smaller than
16 × 16, the matching window of the motion estimation is
50% larger than the block size during motion compensation,
for example, 12 × 12 matching window for a 8 × 8 block, to
be more robust against image noise.

In [6], the search area used for the motion estimation
was adapted in each hierarchy level, as depicted in Figure 6.
The search area in the current hierarchy level depends on the
current search range and the motion vectors of the previous

hierarchy level. The nine neighbouring motion vectors of
the previous level are applied to the current block and define
a set of starting points. The search area used for motion
estimation is calculated by applying the search range to each
starting point. Thus, the current block is able to follow the
motion of every neighbouring block, while still using small
search ranges. This significantly reduces the amount of MAD
computations compared to the search algorithm used in [3].

The last iteration of the forward motion search is done
with half-pel accuracy using the AVC 6-tap Wiener filter [9]
to interpolate subpixel values. Thereafter, bidirectional ini-
tialisation is performed to align the motion vectors to the
block grid of the current frame according to [4]. This is done
by selecting the motion vector that intersects the current
block nearest to centre. For simplification, Figure 7 shows the
selection for the one-dimensional case.

To reduce noise in the motion vector field caused by small
block sizes, the motion search is switched to a candidate-
based approach for the bidirectional motion search. The
motion vector for the current block is hereby set to one of
the surrounding motion vector candidates from the previous
level without further refinement. This forces small blocks to
decide which motion object they belong to and is achieved by
setting the search range for those hierarchical levels to zero:
the blocks “latch” to one of the motion vector candidates of
the previous level. Using this technique, the resulting motion
vector field can adapt to object borders more accurately.

The vector field is smoothed in the last step of the motion
estimation, using a vector median filter weighted by the
mean of absolute differences (MADs) of the displaced blocks
[10] to eliminate outliers. After the motion vector field is
estimated, the intermediate frame is predicted by averaging
the displaced pixels from both reference frames.

3. Combination with Decoder-Side
Motion Derivation

As described before, decoder-side motion estimation works
on a frame level and has no interaction with the coding tools



ISRN Signal Processing 5

(a) Previous level Hn−1

Search
range

(b) Current level Hn

Figure 6: Search area (red) derived from previous hierarchy level.

of a conventional coder. Due to this encapsulated design, it is
possible to use DSME concurrent with decoder-side motion
vector derivation [2].

The main idea of DMVD is to reduce the rate for the
motion information by deriving the motion vectors at the
decoder by assuming spatially constant motion. In case the
derivation is successful, no motion information has to be
coded into the bit stream, and compression is achieved.
However, the derived motion vector is not always correct
and might impair the compression efficiency due to a large
prediction error. Therefore, DMVD is selected adaptively for
each macroblock by performing a rate-distortion optimised
decision at the encoder, similar to the Lagrangian optimisa-
tion described in [11]. To transmit this decision to the decod-
er, additional flags within the AVC macroblock layer syntax
were added in [12] to signal either the use of the motion
vector derived with DMVD or the use of an explicitly coded
motion vector.

In Figure 8, the decoder with both tools, DSME and
DMVD, is shown. The encoder architecture presented in
Figure 2 has to be modified accordingly. The first step during

^F0F−1 F1

Current block

Selected MV

Figure 7: Alignment of the motion vectors to the block grid of
the current frame to avoid uncovered and overlapped areas during
motion compensation.

decoding one frame is to interpolate the DSME frame ̂F0

as described in Section 2.2 and store it in the reference
picture buffer. Thereafter, the decoding of the bit stream
starts. If DMVD is signalled for the current macroblock, the
motion vector is derived at the decoder and used for motion
compensation. Otherwise, an explicitly transmitted motion
vector is decoded and used for compensation. In [13] it was
shown that the performance can be further improved by
using multihypothesis prediction. Instead of deriving one
motion vector and using the corresponding block as pre-
diction, the two best motion vectors are derived to improve
the prediction accuracy. The corresponding blocks of these
motion vectors are averaged to form the prediction.

One limitation occurs due to the combination of DMVD
and DSME. Kamp et al. [14] proposed to use the motion
vectors of neighbouring blocks as candidates for motion
vector derivation. However, the neighbouring blocks may
use different reference frames, and, thus, the motion vectors
should be scaled according to the temporal distance of the
reference frame. In Figure 9, it is assumed that three reference
frames are available and that the neighbouring blocks use
frame F−2 and F−1 as reference. The two vectors are scaled,
resulting in six candidates for the template matching.

This candidate-based predictive search is used to reduce
the computational complexity of DMVD. However, the
additional reference frame is already a motion compensated
prediction of the current frame. Thus, the temporal distance
is zero, and every candidate vector would be scaled down
to zero. Therefore, the candidate-based predictive search is
not used. Instead, the motion is derived by performing a full
search within a search range centred to the predicted motion
vector, as used in [12].

It is not to be expected that the gains of both approaches
add up, since both try to reduce the rate for motion vectors.
However, the different techniques used can give additional
gains. On one hand, DMVD uses already decoded data
from the current frame to estimate the motion. This is not
possible in DSME, where the motion for the whole frame
is estimated at once. On the other hand, DSME has no
restrictions on the block size and can estimate motion at



6 ISRN Signal Processing

Entropy
coder

Inverse
transform

Motion
compensation

DMVD

Reference
picture buffer

Decoder-side
ME

MV

DMVD flags

^F0

Bitstream

F−1;F1

F0

Figure 8: Simplified block diagram of a video decoder with DSME and DMVD modifications.

^F0F−1 F1F−2

Figure 9: L-shaped template used for motion search of the current
block. Already decoded frame regions are shown in grey. The
candidates (black circles) for template matching are derived from
motion vectors of two neighbouring blocks using linear scaling.

object borders very well. Furthermore, the two approaches
are based on different hypotheses and can complement one
another: DMVD assumes spatially constant motion whereas
DSME assumes temporally constant motion.

4. Experimental Results

This section evaluates the performance of the proposed
methods. The interpolation accuracy of the hierarchical
motion estimation approach is compared with frame inter-
polation methods from the literature in Section 4.1. There-
after, the overall coding gain of the proposed architecture is
evaluated and compared with DMVD in Section 4.2.

4.1. Interpolation Accuracy. As mentioned before, the motion
estimation and interpolation methods are vital parts of the
DSME approach. The performance directly depends on the
quality of the interpolated frame. Therefore, the performance
of the proposed algorithm is evaluated and compared with a
state-of-the-art interpolation method.

The spatio-temporal autoregressive model (STAR) for
frame rate upconversion proposed in [7] is selected for
comparison since the approach has proved good PSNR gains
compared to other methods, like adaptive overlapped block
motion compensation (AOBMC, [15]) and 3D recursive
search (3DRS, [16]). The idea of STAR interpolation is that

^F0F−1 F1

Figure 10: STAR frame interpolation: A pixel in the interpolated
frame is calculated as the weighted average of spatial and temporal
neighbouring pixels.

Figure 11: Motion estimation failed due to the repetitive window
pattern.

each pixel in the interpolated frame is a linear combination
of a set of pixels from the previous and next frames and also
already interpolated pixels of the current frame as shown
in Figure 10. The weights are derived with an iterative self-
feedback training algorithm.

To compare the performance of STAR and the proposed
hierarchical motion compensated interpolation, 13 test se-
quences with different characteristics, frame rates, and res-
olutions are used. Every second frame is interpolated using



ISRN Signal Processing 7

Figure 12: First frames of the test sequences BasketballDrive, BQTerrace, Cactus, Kimono, ParkScene, PeopleOnStreet, and Traffic (from left
to right).

Table 1: PSNR quality for the STAR interpolation method [7] and the proposed hierarchical method for several test sequences. Significant
changes larger than 0.25 dB are highlighted. Furthermore, results for hierarchical motion compensation using mean of the squared
differences (MSDs) are shown for comparison.

Resolution Sequence STAR Hier. MC Hier. MC (MSD)

Mobile 36.19 dB 36.07 dB 36.06 dB

QCIF Foreman 39.67 dB 37.61 dB 37.63 dB

City 34.83 dB 35.15 dB 35.27 dB

Flower 33.45 dB 30.51 dB 32.08 dB

CIF Mobile 29.49 dB 31.07 dB 30.90 dB

Tempete 30.86 dB 30.81 dB 30.81 dB

Bus 27.27 dB 29.05 dB 29.08 dB

City 30.13 dB 27.71 dB 27.62 dB

4CIF Flower 28.70 dB 33.56 dB 33.61 dB

Mobile 26.75 dB 31.89 dB 31.92 dB

Spincalendar 29.51 dB 31.99 dB 32.11 dB

720p Sheriff 38.08 dB 38.14 dB 38.14 dB

City 31.66 dB 30.16 dB 30.20 dB

the algorithms, and the interpolation is compared with the
skipped frame of the original sequence. The results are shown
in Table 1.

For the low resolution test sequences, no algorithm clear-
ly outperforms the other, but hierarchical motion compensa-
tion is preferable for sequences with higher resolutions. For
the 4CIF and 720p sequences, only the interpolation of the
City sequence results in worse quality compared to the star
interpolation. The skyscrapers with the repetitive windows
makes it very difficult to find the correct correspondences.
Thus, the motion compensation fails, as shown in Figure 11,
and induces high errors. However, these errors are confined
to a small area. The flexible DSME architecture allows to use
other frames as reference for those impaired blocks. Thus,
such regions will not degrade the coding performance too
much.

The third column in Table 1 shows the interpolation
quality if MSD is used for motion estimation instead of
MAD. Since the calculation of the objective quality measure

PSNR = 10 log10
2552

MSD
(1)

also uses the squared differences, MSD is the more appro-
priate cost function for motion estimation. However, an
average gain of 0.05 dB compared to MAD does not justify
the additional complexity caused by squaring the differences.
Thus, MAD is used in the following experiments despite the
slight performance degradation.

4.2. Coding Efficiency. The proposed DSME approach was
implemented on top of the AVC reference software JM [17].
The group of pictures (GOP) structure was set according



8 ISRN Signal Processing

2 3 4 5 6 7 8 9
33

33.5

34

34.5

35

35.5

36

36.5

37

37.5

P
SN

R
(d

B
)

H.264/AVC
DMVD

DSME
DMVD + DSME

34

34.2

34.4

34.6

34.8

35

BasketballDrive, 1080p, 50 Hz

Rate (Mbit/s)

2.6 2.8 3 3.2 3.4 3.6

(a)

32

32.5

33

33.5

34

34.5

35

H.264/AVC
DMVD

DSME
DMVD + DSME

33.3
33.4
33.5
33.6
33.7
33.8
33.9

34

P
SN

R
(d

B
)

3 4 5 6 7 8 9

BQTerrace, 1080p, 60 Hz

Rate (Mbit/s)

4 4.2 4.4 4.6 4.8 5 5.2

(b)

3 4 5 6 7 8 9 10 11
32.5

33

33.5

34

34.5

35

35.5

36

36.5

37

P
SN

R
(d

B
)

H.264/AVC
DMVD

DSME
DMVD + DSME

Cactus, 1080p, 50 Hz

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8
34.4
34.5
34.6
34.7
34.8
34.9

35
35.1
35.2

Rate (Mbit/s)

(c)

2 4 6 8 10 12
27

28

29

30

31

32

33

34

35

P
SN

R
(d

B
)

PeopleOnStreet, 2560× 1600, 30Hz

H.264/AVC
DMVD

DSME
DMVD + DSME

29

29.5

30

30.5

Rate (Mbit/s)

3 3.5 4 4.5 5

(d)

Figure 13: Rate-distortion performance of the reference AVC implementation, DMVD, DSME, and the combined approach (DMVD +
DSME) for several high-definition sequences.

Table 2: BD rate gains for DMVD, DSME, and the combination of DMVD and DSME compared to AVC reference for several high-definition
sequences.

Resolution Sequence DMVD DSME DMVD + DSME

BasketballDrive −5.7% −5.8% −10.2%

BQTerrace −8.8% −4.8% −11.5%

1080p Cactus −5.6% −8.2% −10.8%

Kimono −9.8% −5.0% −12.5%

ParkScene −8.9% −8.5% −13.7%

2560 × 1600
PeopleOnStreet −9.0% −13.0% −17.3%

Traffic −7.6% −10.1% −13.5%



ISRN Signal Processing 9

1 2 3 4 5
20

25

30

35

40

45

50

55

60

BasketballDrive
BQTerrace
Cactus
Kimono

ParkScene
PeopleOnStreet
Traffic

Rate point

D
SM

E
u

sa
ge

(%
)

Figure 14: Usage of the interpolated DSME frame as reference for
prediction in AVC. The percentage decreases for higher rate points
(higher quality).

to the call for proposals [18] issued jointly by ITU-T SG16
Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG), that
is, the sequences were coded with AVC high profile using
an I frame every second for random access and hierarchical
B frames (I-b-B-b-B-b-B-b-P). The quantisation parameters
were adapted to each sequence to get similar rates.

The performance is evaluated for all test sequences with
HD resolution and above that are also used by the JCT-
VC group [18]. Since those sequences are quite new and
not well known outside JCT-VC yet, the first frames of
those sequences are shown in Figure 12. Furthermore, a short
description of the major features is given in the following:
All sequences were captured progressively, since interlaced
video is not considered anymore for the new standard.
The BasketballDrive sequence contains fast moving players
causing motion blur. Interesting features of BQTerrace are
the river with changing texture and the shimmering air due
to the heat of some flames. Cactus contains an artificial
scene of rotating and swinging objects. The sequence is
very sharp with good illumination due to the experimental
setup. A close-up view of a walking woman from a moving
camera is shown in the Kimono sequence. The second half
of the sequence shows a broader view of the scene. ParkScene
contains a slow pan with fast moving cyclists. PeopleOnStreet
and Traffic are both cropped to 2560 × 1600 from the
original sizes 3840 × 2160 and 4096 × 2048, respectively.
PeopleOnStreet shows a large pedestrian crossing with a lot
of people walking in different directions. The shadows caused
by the low sun is a challenge for coding algorithms. Traffic is
a rather simple sequence of a busy highway. PeopleOnStreet
and Traffic were both captured with a static camera.

In Figure 13, the operational rate-distortion curves for
the reference AVC, DMVD, DSME, and the combination

of the latter two approaches (DMVD + DSME) are plotted
for four selected test sequences. To obtain an objective
measurement of the average rate gains, the Bjøntegaard Delta
(BD, [19]) is provided in Table 2 for all test sequences.

As shown in Figure 13(a), DSME performs well for the
BasketballDrive sequence although fast motion with signif-
icant occlusions and motion blur occur in this sequence. A
rate gain of 5.8% is achieved for DSME. The gain for DMVD
is with 5.7% almost similar. The gains of DMVD and DSME
almost add up to 10.2% bit rate reduction for the combined
approach as shown in Table 2.

The water and flames in BQTerrace make the motion
estimation very hard due to the non-rigid motion and
missing texture. However, DSME can still save 4.8% data rate,
as shown in Figure 13(b). The rate reduction for the DMVD
approach almost doubles, since the approach benefits from
the sequentially decoded data used for motion prediction.
The combination of DMVD and DSME achieves additional
performance gain even for this sequence, resulting in rate
reduction of 11.5% on average.

Cactus, with the constant motion and high details in the
textures of the objects, is well suited for the DSME approach.
Figure 13(c) shows that DSME outperforms DMVD for
almost all rate points. DMVD performs slightly better only
for high rates. Thus, 8.5% bit rate reduction is achieved,
whereas DMVD reduces the rate by only 5.6%. The com-
bined approach results in bit rate reduction of 10.8%.

The proposed DSME method also works well for sequen-
ces with very high resolution, as shown for the Peo-
pleOnStreet sequence in Figure 13(d). It clearly outperforms
DMVD and achieves an average reduction of the bit rate by
13% since the vector latching proposed in [6] also estimates a
very accurate motion vector field at object boundaries. How-
ever, DMVD achieves 9% rate reduction, which is also very
good compared to the other sequences. The rate reduction of
the combined approach is with 17.3% the largest gain for all
sequences in the test set.

A common trend of all rate-distortion curves is the de-
creasing gain of DSME towards higher rates. The improved
quality of the key frames F−1 and F1 has only marginal
influence on the frame estimation accuracy, and thus, the
other reference frames are selected instead. Figure 14 shows
how often the interpolated DSME frame is used by the
conventional encoder at different rate points. The higher the
rate is, the fewer the DSME frame is used as a reference.

5. Conclusions

This paper explains in detail the framework for decoder-side
motion estimation while using a modified reference list. The
advantage of this architecture is that any motion estimation
algorithm like block- or mesh-based or even optical-flow
can be used. Furthermore, a hierarchical motion estimation
algorithm is described that fits the needs of a decoder-side
motion estimation system.

Experimental results show that DSME reduces the bit rate
by almost 8% on average, with respect to the AVC reference.
A comparison with decoder-side motion vector derivation



10 ISRN Signal Processing

reveals that the average rate reduction for the seven test
sequences is almost equal for both approaches. Interestingly,
DSME and DMVD achieve the highest and smallest rate
reduction for different sequences although both algorithms
try to reduce the bit rate by performing some kind of motion
estimation at the decoder. This behaviour is caused by the
different hypotheses of the two algorithms. DSME assumes
temporally constant motion whereas DMVD assumes con-
stant motion in spatial neighbourhood.

Therefore, a combined approach, where DSME and
DMVD are implemented in one coder, is proposed. Although
both algorithms achieve similar compression, they can ben-
efit from each other due to the different assumptions made
in each algorithm. The combination leads to an even higher
compression efficiency of average 13% bit rate reduction.

The improved compression efficiency comes along with
increased computational complexity. Especially DSME intro-
duces high complexity at the decoder due to the hierarchical
motion estimation approach. However, hold-type displays,
like liquid crystal displays (LCDs) and plasma displays,
perform motion estimation and temporal interpolation in
real time for frame rate upconversion [20]. Using such dis-
plays can significantly reduce the additional computational
complexity introduced by DSME.

References

[1] M. Wien and Y.-J. Chiu, “Tool experiment 1: decoder-side
motion vector derivation,” in Proceedings of the JCT-VC Out-
put Document JCTVC-A301, Dresden, Germany, April 2010.

[2] S. Kamp and M. Wien, “Decoder-side motion vector deriva-
tion for hybrid video inter coding,” in Proceedings of the IEEE
International Conference on Multimedia and Expo, pp. 1277–
1280, Singapore, July 2010.

[3] S. Klomp, M. Munderloh, Y. Vatis, and J. Ostermann,
“Decoder-side block motion estimation for H.264 / MPEG-
4 AVC based video coding,” in Proceedings of the IEEE
International Symposium on Circuits and Systems, pp. 1641–
1644, Taipei, Taiwan, May 2009.

[4] J. Ascenso, C. Brites, and F. Pereira, “Improving frame
interpolation with spatial motion smoothing for pixel domain
distributed video coding,” in Proceedings of the 5th EURASIP
Conference on Speech and Image Processing, Multimedia Com-
munications and Services,, Smolenice, Slovak Republic, July
2005.

[5] M. Munderloh, S. Klomp, and J. Ostermann, “Mesh-based
decoder-side motion estimation,” in Proceedings of the IEEE
International Conference on Image Processing, pp. 2049–2052,
Hong Kong, China, September 2010.

[6] S. Klomp, M. Munderloh, and J. Ostermann, “Decoder-side
hierarchical motion estimation for dense vector fields,” in
Proceedings of the Picture Coding Symposium, pp. 362–366,
Nagoya, Japan, December 2010.

[7] Y. Zhang, D. Zhao, X. Ji, R. Wang, and W. Gao, “A spatio-
temporal auto regressive model for frame rate upconversion,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 19, no. 9, pp. 1289–1301, 2009.

[8] I. E. G. Richardson, H.264 and MPEG-4 Video Compression,
chapter 6.4.5.3, John Wiley & Sons, West Sussex, UK, 2003.

[9] O. Werner, “Drift analysis and drift reduction for mul-
tiresolution hybrid video coding,” Signal Processing: Image

Communication, vol. 8, no. 5, pp. 387–409, 1996.
[10] L. Alparone, M. Barni, F. Bartolini, and V. Cappellini, “Adapt-

ively weighted vector-median filters for motion-fields smooth-
ing,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP ’96), vol. 4, pp.
2267–2270, Georgia, Ga, USA, May 1996.

[11] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization
for: Video compression,” IEEE Signal Processing Magazine, vol.
15, no. 6, pp. 74–90, 1998.

[12] S. Kamp, M. Evertz, and M. Wien, “Decoder side motion
vector derivation for inter frame video coding,” in Proceedings
of the International Conference on Image Processing (ICIP ’08),
pp. 1120–1123, San Diego, Calif, USA, October 2008.

[13] S. Kamp, J. Ballé, and M. Wien, “Multihypothesis prediction
using decoder side motion vector derivation in inter frame
video coding,” in Visual Communications and Image Processing
2009, vol. 7257 of Proceedings of SPIE, San Jose, Calif, USA,
January 2009.

[14] S. Kamp, B. Bross, and M. Wien, “Fast decoder side motion
vector derivation for inter frame video coding,” in Proceedings
of the Picture Coding Symposium (PCS ’09), Chicago, Ill, USA,
May 2009.

[15] B. -D. Choi, J. -W. Han, C. -S. Kim, and S. -J. Ko, “Mo-
tion-compensated frame interpolation using bilateral motion
estimation and adaptive overlapped block motion compen-
sation,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 17, no. 4, pp. 407–415, 2007.

[16] G. de Haan, P. W. A. C. Biezen, H. Huijgen, and O. A.
Ojo, “True-motion estimation with 3-D recursive search block
matching,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 3, no. 5, pp. 368–379, 1993.

[17] ISO/ITU-T Joint Video Team Joint Model (JM) H.264/MPEG-
4 AVC software, http://iphome.hhi.de/suehring/tml.

[18] ISO/IEC JTC1/SC29/WG11 MPEG, “Joint call for propos-
als on video compression technology,” in ISO/IEC JTC1/SC29/
WG11 MPEG Output Document W11113, Kyoto, Japan, Jan-
uary 2010.

[19] G. Bjøntegaard, “Calculation of average PSNR differences
between RD curves,” in ITU-T SG16/Q6 Output Document
VCEG-M33, Austin, Tex, USA, April 2001.

[20] B. T. Choi, S. H. Lee, and S. J. Ko, “New frame rate up-
conversion using bi-directional motion estimation,” IEEE
Transactions on Consumer Electronics, vol. 46, no. 3, pp. 603–
609, 2000.


