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Abstract

Global Motion Compensation is one of the key technolo-
gies for aerial image processing e.g. to detect moving ob-
jects on the ground or to generate a mosaick image of the
observed area. For this task, it is necessary to estimate and
compensate the motion of the pixels between the recorded
frames evoked by the movement of the camera. As the cam-
era is statically attached to a flying device such as a quadro-
copter (also called Micro Air Vehicle, MAV) or a helicopter,
the motion of the camera directly corresponds to the plane
movements. For simplification, only a planar landscape
model is used nowadays to describe the global motion of
the scene. However, if objects like buildings or mountains
are close to the camera, i.e. the MAV is at a low altitude,
this simplification is not valid. Therefore we propose a
more complex model by introducing a 2D mesh-based mo-
tion compensation technique, also known as image warp-
ing, to compensate the global motion. We show the bene-
fits if used for mosaick creation by smaller artifacts due to
perspective distortions and smaller drift problems. We also
improve a moving object detection system to identify mov-
ing objects more reliably. Moreover, the proposed method
is also more robust in case of lens distortions.

1. Introduction
Nowadays, aerial surveillance of e.g. disaster areas is

becoming more and more important. For example, lately
small autonomous drones to be used in a real-time wide area
surveillance network have been introduced [11]. These un-
manned aerial vehicles (UAV) are intelligent and partially
self-organizing, as the infrastructure in a disaster area might
be completely destroyed. One of their tasks is the detection
of moving objects as cars or persons, or the generation of
large mosaick images of the observed area.

To enable this, a global motion compensation has to be
performed to evaluate and compensate the motion of the
camera during the recording of the sequence. To be able to
automatically react on events in the sensor data or use it for

Figure 1. Mapping error due to perspective distortions. The lower
left content is added later to the already existing content.

navigation decisions, it is necessary to run the surveillance
algorithms on-board the UAV itself. As for this scenario the
available resources are quite limited, the algorithms have to
be easy to compute. For simplification, only a planar land-
scape model i.e. a projective transform is used nowadays to
describe the global motion of the observed ground between
frames [11].

However, if the optical sensor of the UAV is close to the
observed scene due to flying at a low altitude this simpli-
fication is not valid causing partially misregistration of im-
age content. Figure 1 displays the mapping error caused by
the projective transformations of non-planar frames into a
mosaick. These disturbing effects are even more problem-
atic if the camera is not pointing directly downwards. To
solve this and to keep the computational complexity low,
we propose a slightly more complex model by using a 2D
mesh motion compensation technique, also known as image
warping. In our approach, the planar assumption is applied
locally to each of the patches of the mesh resulting in an
accurate global motion compensation without the need of
computing a full 3D reconstruction [1].

In Chapter 2 we describe the robust motion estimation
and the generation of the time varying 2D mesh as well as
the motion compensation process. In Chapter 3 we create



a mosaick image using the presented motion compensation
algorithm, followed in Chapter 4 by a moving object detec-
tion based on the mosaick as a static background model.

2. Mesh-based Motion Compensation
2.1. Motion Estimation

To estimate the motion of the background between
frames, one can select a region in one frame and then max-
imize the correlation by mapping this region to another
frame using affine or projective transforms [12]. Another
way is to select an amount of representative image points,
so called features, in one frame and locate their positions in
the following frame. The resulting motion vectors are used
to solve an overdetermined linear equation system describ-
ing the global motion again as an affine or projective trans-
form. The tracking of the features might be done e.g. by a
block matching algorithm or by aligning image gradients.

Figure 2. Tracking vector and grid in frame k and k − 1

Instead of one global solution for the whole frame, the
mesh-based motion compensation directly uses the local
motion of the estimated feature positions by creating a grid
with the feature points as grid nodes (see Figure 2). As
the displacement of the grid nodes should reflect the true
motion of a small area surrounding each node, the motion
of the area between the grid nodes is assumed to be ho-
mogeneous, which is more or less true as long as the grid
patches are small. The grid structure itself can either be reg-
ular or automatically retrieved [9][3] as well as fixed or time
varying. Our goal is robustness against a non-planar envi-
ronment, hence we use automatically derived feature points
preferably placed at object corners.

In our approach, the features are selected and tracked
using a Kanade-Lucas-Tomasi (KLT) feature tracker [8]
which has been extended to provide better tracking results at
the image borders. A Harris corner detector is used for auto-
matic feature selection. Figure 3 displays the automatically
retrieved feature positions and their trajectories describing
their movement over time.

2.2. Outlier Removal

The motion vector field computed by the KLT tracker
by following the feature positions has to be cleared of out-

Figure 3. Feature selection (green crosses) and trajectories (yellow
lines). Test sequence chicago by Discovery HD.

liers caused by false tracking. To do so, the motion vec-
tors have to be tested against a motion model. The vectors
not supported by this model are considered outliers and re-
moved from the motion vector field. Typically the model
is an affine or projective transform. By using RANSAC, a
linear equation system describing a projective transform is
first solved using four random samples of the motion vec-
tor field. The resulting motion model is afterwards tested
against all remaining vectors. The transform resulting in
the most valid motion vectors is used to remove the outliers.
Their parameters are refined afterwards using all remaining
vectors.

However, such a model cannot be applied to the mesh-
based motion estimation as there is no global solution with-
out a full 3D model available. In our method we solved
this problem by using a region growing approach based on
motion vector field smoothness [6].

Unclassified motion vectors ~nk(x, y) neighboring an al-
ready classified region are merged into that region if their
spatial distance (Equation 1) and their displacement differ-
ence to the border of the region (Equation 2) are smaller
than a threshold. If one of the thresholds is exceeded, the
motion vector remains in the set of unclassified vectors.

||~rk(x, y)− ~nk(x, y)|| < td1 (1)

||~d~rk(x, y)− ~d~nk
(x, y)|| < td2 (2)

~rk(x, y) is the position of the closest motion vector of
the classified region to the yet unclassified motion vector
~nk(x, y) at position (x, y) in frame k. ~drk and ~dnk

are the
displacement vectors of the motion vectors ~(r) and ~(n) in
frame k pointing to their positions in frame k-1.

Giving this criterion, a region is represented by the mo-
tion vectors on its boundary only. We use hard thresholds in
order to reliably detect discontinuities in the motion vector
field. Probabilistic methods as e.g. markov random fields
tend to undersegment [2] in case of larger grid patches and
low differential motion or are too computationally intense to



Figure 4. Background region (green) and four other objects.

Figure 5. Mesh derived by triangulation of the feature cloud.

be used on-board [10]. Undersegmentation is more harmful
to the moving object detection system as an oversegmenta-
tion causes moving objects to merge with the background
region resulting in being motion compensated and therefore
not detected by evaluating image differences.

If no remaining unclassified motion vector is fulfilling
these requirements, a new region is created. Regions con-
taining less motion vectors than a threshold tf are consid-
ered outliers and are removed; we used tf = 3. Large re-
gions are treated as background, small regions are consid-
ered potentially moving objects and might be used as a pri-
ori knowledge in the moving object detection system. Re-
sults of the region growing and the outlier removal process
are given in Figure 4. All green dots represent motion vec-
tors validated as background. The small colored regions of
dots belong to moving cars while the region in the upper
right corner is a logo of the broadcasting company. All fea-
tures on the logo and the moving cars are correctly detected
as being inconsistent with the motion model. Moreover, er-
roneous tracks are completely removed by the region grow-
ing approach.

2.3. Motion Compensation

For now, the motion inside the image is known only for
those pixels previously selected as a feature. To get a dis-

placement for each pixel of the image, the missing move-
ment information has to be interpolated. In our approach
we assume a planar surface in each of the small patches
which can therefore be modeled by an affine transform. To
get the transform parameters, we first triangulate the fea-
ture point cloud of the background region using a Delaunay
triangulation (Figure 5).

For each patch of the mesh, the six transform parame-
ters Atk , Btk , Ctk , Dtk , Etk , and Ftk represented by Atk

and btk are calculated using the three nodes ntk spanning
the triangle tk in frame k and their positions ntk−1

in frame
k−1. With Equation 3, for each pel (xtk , ytk) inside the tri-
angle tk the associated displaced coordinate (xtk−1

, ytk−1
)

is determined.

(
xtk−1

ytk−1

)
= Atk ∗

(
xtk

ytk

)
+ btk (3)

with Atk =

[
Atk Btk

Ctk Dtk

]
(4)

and btk =

(
Etk

Ftk

)
(5)

xntk
, yntk

specify the coordinates of the pixels inside the
triangle t in frame k and xntk−1

, yntk−1
in frame k − 1,

respectively.
Because the coordinate accuracy is not quantized but de-

pendent on the calculation accuracy only, an appropriate in-
terpolation filter must be used to calculate the pixel values.
We use a two-stage filter [7]. The half-pel positions are
gained using a six tab Wiener filter. The final sub-pel posi-
tions are calculated by a bilinear filter.

3. Mosaick Generation
The goal of generating a mosaick image is to provide an

overview of the observed area by stitching the single tem-
poral shots together into one big panorama frame. To safe
storage space and data link capacity, this panorama frame
might also be stored instead of the video sequence. If the
camera sequence is recorded by an airplane, this normally
results in long stripe-shaped images (Figure 6) containing,
in case of non-planar content, distortions as previously dis-
played in Figure 1.

To create such a mosaick, a global coordinate system has
to be defined and a transform for each of the single frames
into this global coordinate system must be calculated. Us-
ing a mesh-based motion compensation, this is extended to
calculating a transform for each of the patches in each of
the frames.

To get global coordinates, a fixed amount of features is
selected and their movement is tracked over time (see yel-
low lines in Figure 3). This directly yields to global coordi-
nates, having the first frame defining the coordinate system.



Figure 6. Mosaick panorama image from the Harz mountains.

Figure 7. Global coordinates for a newly detected feature (red) are
calculated by an affine transform derived by the existing closest
features (blue) and their tracked positions (green lines) in the ref-
erence frame.

However, each time a track breaks off due to the feature
running out of the screen or the feature being occluded, or
each time a new feature is newly created in case of too many
tracks being broken off, the grid structure slightly changes.
Therefore the feature cloud has to be re-triangulated and the
structure has to be memorized. If a new feature is created,
the first point of the track has to be registered to global coor-
dinates. This is done by again assuming local planarity and
applying the affine transform from Equation 3 to the new
local feature coordinate. To get the transform parameters
Atk and btk , the local and global coordinates of the three
mesh nodes closest to the newly generated feature are used
(Figure 7).

All patches are then transformed and mapped into the
mosaick coordinate system. If a pixel of more than one
patch maps to a pixel of the mosaick, a median filter is ap-
plied to reduce noise while maintaining the sharpness. In-
stead of just using the first frame to define the mosaick coor-
dinate system, any frame of the sequence might be used as
base just by applying an offset to the tracked coordinates.
This enables to interactively view different angles of non-
planar objects inside the 2D mosaick image. In the next
chapter we use always the latest recorded frame to define
the global coordinate system to create a static background
reference frame.

4. Detection of Moving Objects
To detect moving objects, one commonly used method is

to investigate the difference between two adjacent frames,
whereas one of the frames has to be registered to the
other by estimating and compensating the motion between
them [5]. The changes between the images are determined
by calculating the sum of squared or absolute differences
(SSD/SAD) in which moving objects appear as continues
regions of high energy. However, if the motion compensa-
tion is not perfect, also regions with alignment errors ap-
pear in the difference image (stadium and skyscrapers in
Figure 8), disturbing any object detection and tracking al-
gorithm following afterwards. Another problem arises if
the motion of the moving objects is slow between the two
frames: the difference is calculated between two regions of
the image containing the same moving object, resulting in a
reduced energy level in the difference image and therefore
less detection accuracy [4].

To demonstrate both of the problems can be efficiently
handled by our proposed method, we selected a test se-
quence with a practical scenario taken by a helicopter. It
contains a large 3D building in the front (stadium) and
skyscrapers in the back. The 3D buildings violate the pla-
nar assumption of the conventional method but should be
handled efficiently by the mesh-based approach.

The sequence also contains moving cars, which should
be detected by a simple motion detection algorithm based
on inter-frame differences. The motion-compensated frame
differences are calculated using SSD. A low-pass noise fil-
ter is applied afterwards by averaging a 3x3 block around
each pixel of this image. Evaluating a threshold tn gives an
image of motion candidate pixels. The result is displayed
as yellow dots in Figure 8 for the projective global motion
compensation and in Figure 9 for the proposed mesh-based
motion compensation. Additionally, regions of blocks con-
taining more yellow dots than a threshold tb are marked as
containing movement by a white outline.

The mesh-based motion compensation approach pro-
duces far less motion candidate pixel in the area of the
stadium than the conventional method. Our Mesh-based
motion compensation system adapts to the 3D structure
of the building while maintaining the moving cars on the
streets around the stadium. Also the skyscrapers in the
back are correctly motion compensated using the mesh-
based approach, producing no false alarms. As a result, the
mesh-based approach produces over 90% less false positive
motion blocks than the conventional system for the tested
chicago sequence. The number of true positives and false
negatives stays constant.

One remaining problem is that if the displacement of an
objects is high between frames, it is detected as two: once
where it had been and once where it is now. Moreover,
if the displacement is low, only the front and the back of



Figure 8. Moving object detection using a projective transform.
Motion candidate pixel in yellow, moving areas outlined white.

Figure 9. Moving object detection by proposed system. Motion
candidate pixel in yellow, moving areas outlined white.

an object is detected as moving as e.g. for cars the roof in
the middle is mostly identical in shape and color (see the
bus on the road in front of the stadium in Figure 9). To
face this problem, we propose to use a motion compensated
mosaick image as reference [4] which in our case is cre-
ated by the mesh-based motion compensation system de-
scribed in Chapter 2. The previous N frames are regis-
tered and mapped into the coordinate system of the current
frame, hence a reference image is created having the camera
view of the current frame but the image content built from
the previous N frames. The pixel values of the preceding
frames are weighted dependent on the temporal distance.
Regions with detected moving object are skipped during the
mapping process, so that the current view represents a still
image with all moving objects removed (see Figure 10).

By using the reference still image instead of just the
motion compensated previous frame to calculate the differ-
ences to the current frame, the amount of motion candidate
pixels is increased e.g. in the middle of cars, enabling the
use of higher noise filtering thresholds, and resulting in less
erroneous regions being detected as moving in Figure 11.
In case of slow moving objects not being detected as mov-
ing, the usage of a median filter to create the reference still
image is able to remove those objects if they are visible for
less than 1

2N frames at a given pel.

Figure 10. Motion compensated background mosaick still image,
moving objects removed

Figure 11. Moving object detection using a still image reference
created by the mesh-based motion compensation.

5. Conclusions

In this paper we presented a 2D mesh-based motion com-
pensation system to be used for e.g. mosaick creation or
moving object detection. It uses automatically selected fea-
tures on image corners and tracks their positions over time.
To compensate the motion, each patch of the triangulated
vector field is mapped using an individual affine transform
build up by the corner points of each patch. This gets over
the limitations of a single transform for the hole frame while
still being less computationally intense and more robust
than a full 3D reconstruction. For mosaick image genera-
tion, the proposed algorithm can handle the problem of dis-
continuities caused by inaccurate compensation due to vio-
lations of the model of a planar scene efficiently. Moreover,
it is able to cope with the erroneous regions in the differ-
ence image used for moving object detection and achieves
over 90% less false positives. By computing a mosaick still
image built up by the N latest frames and using it as the
background reference, the detection accuracy is further im-
proved.
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