
MESH-BASED DECODER-SIDE MOTION ESTIMATION

Marco Munderloh, Sven Klomp, Jörn Ostermann, Fellow, IEEE

Institut für Informationsverarbeitung (TNT)
Leibniz Universität Hannover, Appelstr. 9a, 30167 Hannover, Germany

{munderloh, klomp, ostermann}@tnt.uni-hannover.de

ABSTRACT
Current video coding standards like H.264|AVC perform a

block-based motion estimation and compensation at the en-

coder to exploit temporal dependencies between consecutive

frames. Current research proved that motion compensation

can also be done profitably at the decoder. In this so-called

decoder-side motion estimation (DSME), frames are interpo-

lated at the decoder and inserted into the reference buffer as

additional information for prediction. To gather the motion

information for compensation, the current approach is based

on a block matching algorithm estimating one motion vector

for each block of the frame to be interpolated. Therefore,

only translational movement is compensated. We evaluate

the applicability of a mesh-based motion compensation to

DSME which models affine motion in each patch of the

mesh and is able to compensate camera zooming or panning,

object rotation, or object deformation.

I. INTRODUCTION

In current video coding standards, a block-based motion

estimation (also called block matching algorithm, BMA) is

used to exploit temporal correlation between frames and to

compensate the motion prior to prediction error coding. The

BMA are well known, of low complexity, and behave very

well in the case of non-affine motion which can be assumed

for small motion and/or small block sizes. Since all motion

vectors have to be transmitted to the decoder, there is a

practical lower limit for the block size and an upper limit for

the number of motion parameters for each block. Therefore

only translational motion is compensated, using block sizes

of 4×4 and larger. For DSME frames which are computed at

the decoder, no data needs to be transmitted so the limits do

not apply here. Thus, dense motion fields using more than

two parameters per block may be used to describe the motion

between frames. In [1], which is taken as a reference, one

2D motion vector with quarter-pel resolution is estimated

for each 16×16 block. The result is refined afterward using

smaller block sizes of 8 × 8 and 4 × 4 as described in [2].

In case of non-translational motion, the mesh-based mo-

tion compensation approach showed up very promising [3],

[4]. Instead of fixed blocks, a mesh of triangles, quadrangles,

or quadrilaterals which varies in shape over time is used to

compensate the motion. This allows the modeling of affine

or projective transformation such as camera zooming and

panning, or object rotation in x, y and z direction as well as

local deformation of object shapes. This paper applies the ad-

vantages of a mesh-based motion estimation to the decoder-

side temporal frame prediction and proposes a block-based

/ mesh-based hybrid coding system for H.264|AVC DSME.

Our mesh-based motion estimation algorithm is described

in Section II. A comparison between block-based and mesh-

based motion compensation is provided in Section III.

Results for adding a mesh-based motion compensation to

H.264|AVC DSME are plotted in Section IV.

II. ACTIVE-MESH-BASED MOTION ESTIMATION

Active-Mesh-based motion estimation algorithms auto-

matically select features in a reference frame sk and estimate

the corresponding feature position in a second frame sk+1

to get motion vectors. These feature points are then used as

nodes of a mesh. Each node n has a source position pn,k in

the reference frame sk and a target position pn,k+1 in the

second frame sk+1. The motion of every other pixel of the

image is interpolated using surrounding mesh nodes. In case

of a triangular mesh, three nodes are used for the motion

vector interpolation providing six parameters for an affine

transform. We use a triangular mesh because of the smaller

patch sizes allowing more accurate motion compensation

compared to quadrilateral meshes. Given the relatively small

frame-to-frame movements in a video sequence, an affine

motion model should be sufficient.

In our approach, features are selected and tracked accord-

ing to an extended Kanade-Lucas-Tomasi feature tracker [5].

A modified Harris corner detector is used for automatic

feature selection based on the minimum Eigenvalue of a

2D image gradient matrix considering a minimum feature

distance. Features are tracked by minimizing the difference

between the feature window in frame sk and the search

window in frame sk+1 using a Newton-Raphson method.

The outliers are removed from the motion vector field by

a clustering approach based on the motion field smoothness:

directly neighboring motion vectors are successively clus-

tered into one object if their spatial distance and their dis-

placement difference are smaller than an adaptive threshold.

2049978-1-4244-7993-1/10/$26.00 ©2010 IEEE ICIP 2010

Proceedings of 2010 IEEE 17th International Conference on Image Processing September 26-29, 2010, Hong Kong

Fig. 1. Foward motion vector field for the upper left corner

of frame 6 of the RaceHorses sequence. Inliers in white,

outliers in gray.

Fig. 2. Triangle mesh for the upper left corner of frame 6

of the RaceHorses sequence.

If no remaining motion vector is fulfilling this requirement, a

new object is created. Objects with less then 5 motion vectors

are considered outliers. Results of the feature tracking and

the outlier detection are shown for the RaceHorses sequence

in Fig. 1.

Tracking is done in forward and backward direction. The

resulting motion vector fields are merged into one field by

inverting the motion direction for the backward track. During

the merging process, motion vectors spatially closer than a

given threshold are dropped and interpolated into one new

motion vector instead. To get displacement information at

the frame border, artificial features are added to the motion

vector field. They are placed regularly on the borderline in

frame sk. Their displacement in frame sk+1 is predicted

using the mesh nodes closest to each feature.

To create the dense motion field, the inlier feature point

cloud is first triangulated using a Delaunay triangulation.

The resulting triangle mesh is shown in Fig. 2. For each

patch, the six transform parameters represented by At and

bt are calculated using the three nodes nt spanning the

triangle t (Eq. 2 and 3). With Eq. 1, for each pel (xt,k, yt,k)

search window

N
M

b)a)

�pk+1,n
�pk+1,n

Fig. 3. Refinement of node n a) position pn,k+1 before

refinement b) position pn,k+1 with minimal matching error

after one refinement iteration.

inside the triangle t the associated displacement coordinate

(xt,k+1, yt,k+1) is determined.(
xt,k+1

yt,k+1

)
= At ∗

(
xt,k

yt,k

)
+ bt (1)

with At =
[
At Bt

Ct Dt

]
and bt =

(
Et

Ft

)
as transform parameters.

xnt,k+1 = Atxnt,k + Btynt,k + Et (2)

ynt,k+1 = Ctxnt,k + Dtynt,k + Ft (3)

where xnt,k, ynt,k specify the coordinates of the pixel inside

the triangle t in frame sk and xnt,k+1, ynt,k+1 in frame sk+1,

respectively.

Because the coordinate accuracy is not quantized but

dependent on the calculation accuracy only, an appropriate

interpolation filter must be used to calculate the pixel values.

We use a two-stage filter. The half-pel positions are gained

using the six tab Wiener filter presented in [6]. The more

accurate sub-pel positions are calculated with a bilinear filter.

After creating the mesh, a refinement of the motion vectors

is performed by minimizing the overall matching error of

the triangles surrounding each mesh node. This is done

consecutively for each node n by moving the motion vectors

displacement pn,k+1 in the second frame sk+1 inside a

search window of size M ×N in sub-pel resolution while

keeping the surrounding motion vectors fixed as shown in

Fig. 3. For each position, the sum of the matching errors for

all concatenated triangles is calculated using Eq. 1 and the

position with the smallest overall matching error is selected

as new motion vector displacement. The refinement process

for all nodes is iteratively repeated until the matching error

decrease drops below a threshold. This might also be done

in closed-form as presented in [7].

The computational complexity of the presented motion

estimation algorithm is comparable to that of a conventional

BMA, considering the same number of motion vectors and

omitting the refinement process which is not yet optimized.

III. FRAME PREDICTION RESULTS
The block matching motion estimation algorithm currently

used in the DSME proposal [1] is taken as a reference.

2050

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 0 50 100 150 200 250 300 350 400 450

Y
-P

S
N

R

frame

block-based
mesh-based

Fig. 4. Frame prediction performance for the Concrete

sequence.

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Y
-P

S
N

R

frame

block-based
mesh-based

Fig. 5. Frame prediction performance for the City sequence.

Herby, a frame sk between two reference frames sk−1 and

sk+1 is interpolated at the decoder to reduce the data rate for

motion vectors and/or the prediction error in H.264|AVC B-

slices. As within the current DSME implementation, linear

motion is assumed so that

pn,k = pn,k−1 +
pn,k+1 − pn,k−1

2
(4)

For minimizing quantization errors and camera noise, the

pixel values of frame sk are the average of the corresponding

pixel values in the two source frames sk−1 and sk+1 by

applying the inverse vector of Eq. 4 to sk+1.

For comparison of the motion estimation performance,

we compared the Y-PSNR between the original frame and

the predicted frames sk created using the previous and the

following frame of the original CIF-sequences as source

frames sk−1 and sk+1. As expected, in case of affine motion

the mesh-based motion estimation outperforms the block-

based approach as for the zooming part in the second half of

the Concrete sequence in Fig. 4. Even without affine motion

we get similar or even better results as for the City or the

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 0 20 40 60 80 100 120 140 160 180 200 220 240

Y
-P

S
N

R

frame

block-based
mesh-based

Fig. 6. Frame prediction performance for the Flowergarden

sequence.

Fig. 7. Interpolation at object borders. Flowergarden se-

quence, mesh-based on the left, block-based on the right.

Flowergarden sequence with its largely left or right scrolling

content in Fig. 5 and Fig. 6. However, in case of largely

moving foreground objects, the mesh-based approach with

its continues mesh has more problems at object borders as

the block-based one as shown in Fig. 7 for the tree in the

Flowergarden sequence. This results in a inferior prediction

performance from frame 185 towards the end in Fig. 6. Given

this, a hybrid coding system for the DSME frame prediction

in H.264|AVC is proposed able to select on a frame-to-

frame basis between a block-based and a mesh-based frame

prediction considering the rate-distortion.

IV. CODING RESULTS

To evaluate the coding performance, the mesh-based and

the block-based decoder-side frame prediction have been

implemented in the H.264|AVC reference software JM 16.1

according to [1]. Additionally, the curves of the unmod-

ified reference coder are given as well as the curves for

the combined block-based/mesh-based coder. The used test

sequences are in CIF-resolution with a frame rate of 30 Hz.

2051

 23

 24

 25

 26

 27

 28

 29

 30

 0 10 20 30 40 50 60 70

Y-
PS

N
R

 (b
-s

lic
es

 o
nl

y)

kbit/s (b-slices only)

JM 16.1
mesh-based
block-based

combined

Fig. 8. RD performance for the Concrete sequence.

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 0 5 10 15 20 25 30 35 40 45

Y-
PS

N
R

 (B
 s

lic
es

 o
nl

y)

kbit/s (B slices only)

JM 16.1
mesh-based
block-based

combined

Fig. 9. RD performance for the City sequence.

Each coder used a GOP structure of I-B-P-B-P and the same

coding settings. As without using hierarchical B-pictures, the

influence of the frame prediction is limited to B-slices only,

just these values are plotted.

Best coding results for the proposed method are reached

in case of affine motion as in the Concrete sequence with

its long zooming part given in Fig. 8. The mesh-based

interpolation outperforms the block-based method by up to 1

dB and the reference coder by up to 2.2 dB for low bit rates.

However, for higher bit rates, the coding gain is decreasing.

For the City sequence in Fig. 9 the combined coder gains up

to 2 dB for low bit rates compared to the block-based coder

and up to 4.5 dB compared to JM. A gain of 1 dB is reached

even for higher bit rates. Including the I- and P-slices, the

gains for the combined coder are 0.7 dB over JM and 0.25 dB

over the block-based approach. For the Foreman sequence

in Fig. 10, a gain of up to 1.3 dB is reached and stays at

a level of 0.6 dB for higher bit rates. For the flowergarden

sequence in Fig. 6, one should note that, without transmitting

any data, a Y-PSNR of around 36 dB is reached assuming

fine quantization in the reference frames.

V. CONCLUSIONS

In this paper we present a mesh-based temporal frame

prediction for decoder-side B-slice motion estimation and

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 0 10 20 30 40 50 60

Y-
PS

N
R

 (b
-s

lic
es

 o
nl

y)

kbit/s (b-slices only)

JM 16.1
mesh-based
block-based

combined

Fig. 10. RD performance for the Foreman sequence.

compare it to the current block-based approach as well as to

the JM reference coder. In case of affine motion, the mesh-

based interpolation outperforms the block-based approach by

up to 5 dB for single frames. After coding, gains of up to

4.5 dB Y-PSNR in comparison to JM and 2 dB compared to

the block-based motion estimation are achieved for b-slices

using the proposed combined block-based/mesh-based coder.

VI. REFERENCES
[1] S. Klomp, M. Munderloh, Y. Vatis, and J. Ostermann,

“Decoder-side block motion estimation for h.264 /

mpeg-4 avc based video coding,” in Proc. of the Int.
Symp. on Circuits and Systems, Taipei, Taiwan, May

2009, pp. 1641–1644.

[2] J. Ascenso, C. Brites, and F. Pereira, “Improving frame

interpolation with spatial motion smoothing for pixel

domain distributed video coding,” in 5th EURASIP,

Slovak Republic, July 2005.

[3] Y. Wang and O. Lee, “Active mesh - a feature seeking

and tracking image sequence representation scheme,”

IEEE Trans. on Image Processing, vol. 3, no. 5, pp.

610–624, Sept. 1994.

[4] S. Tran Minh, J. Benois-Pineau, K. Fazekas, and

A. Gschwindt, “Mesh-based error-scalable video object

codec for variable bandwidth multimedia communica-

tions,” in Proc. of Int. Conf. on Image Processing, vol. 1,

Sept. 2002, pp. 745–748.

[5] J. Shi and C. Tomasi, “Good features to track,” in Proc.
of Comp. Society Conf. on Computer Vision and Pattern
Recognition, Seattle, WA, June 1994, pp. 593–600.

[6] I. E. G. Richardson, H.264 and MPEG-4 Video Com-
pression. West Sussex, England: John Wiley & Sons

Ltd., 2003, ch. 6.5.1.4.

[7] Y. Altunbasak, A. Murat Tekalp, and G. Bozdagi, “Two-

dimensional object-based coding using a content-based

mesh and affine motion parameterization,” in Proc. of
Int. Conf. on Image Processing, vol. 2, Washington, DC,

Oct. 1995, pp. 394–397.

2052

