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Abstract. Including prior shape in the form of anatomical models is
a well-known approach for improving segmentation results in medical
images. Currently, most approaches are focused on the modeling and
segmentation of individual objects. In case of object constellations, a si-
multaneous segmentation of the ensemble that uses not only prior knowl-
edge of individual shapes but also additional information about spatial
relations between the objects is often beneficial. In this paper, we present
a two-scale framework for the modeling and segmentation of the spine
as an example for object constellations. The global spine shape is ex-
pressed as a consecution of local vertebra coordinate systems while indi-
vidual vertebrae are modeled as triangulated surface meshes. Adaptation
is performed by attracting the model to image features but restricting the
attraction to a former learned shape. With the developed approach, we
obtained a segmentation accuracy of 1.0 mm in average for ten thoracic
CT images improving former results.

1 Introduction

Segmentation is still one of the main challenging problems in medical image
analysis. In order to improve the segmentation results, prior knowledge is usually
included in the form of anatomical models. For that purpose, complex geometri-
cal models of various individual anatomical objects have been built supporting
several medical applications, e.g., [1, 2].

In case of object constellations, simultaneous multi-object segmentation is
often beneficial compared to the separate segmentation of individual objects.
Model-based segmentation of single objects typically leads to misadaptations in
cases of no clear object boundary, similar structures in close vicinity, or patholo-
gies. The result is thereby sensitive to model initialization. Moreover, the capture
range of the segmentation is often very limited. However, by modeling not only
the shape of individual objects but also the spatial relations to other objects,
significant improvements can be achieved.
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So far, little work focused on multi-object modeling and segmentation. Re-
cently, de Bruijne et al. [3] presented a method for modeling relations between
shape constellations using conditional probabilities between 2D-contours. A dif-
ferent way for multi-object modeling has been proposed by Boisvert et al. [4]
where object relations are modeled as statistics on rigid transformations between
the objects. However, both approaches have not been included to a model adap-
tation framework. One common way to account for multiple objects throughout
the segmentation is to introduce a coupling term in the respective formulations as
proposed, e.g., for coupled active contours [5] or level sets [6]. While overlapping
between neighboring objects is prevented, spatial relations are not modeled.

In this paper, we present a two-scale framework for modeling object con-
stellations with the individual parts interacting on each other throughout the
entire adaptation. Although, we work exemplarily on spine segmentation in CT
images, the method can be adapted to other object constellations due to its
general formulation. Despite showing high contrast in CT, a separate segmen-
tation of individual vertebrae often leads to unsatisfying results in images with
low resolution or in case of pathologies. Without including knowledge about the
constellation, vertebra shape models have to be positioned very close to their
corresponding image structures to prevent adaptation to neighboring vertebrae
having similar shape and intensity.

In Sect. 2, the principal idea of our approach is introduced. Basically, our
modeling scheme is divided into two parts. A global spine model captures the
constellations of objects while local vertebra models provide shape information
of individual vertebrae. Patient individualization is achieved by subsequently
adapting both parts with detailed formulations given in Sect. 2.1 and 2.2, re-
spectively. Finally, spine segmentation is performed for thoracic CT images using
the developed approach with results presented in Sect. 3.

2 Methods

In order to obtain a fast and robust framework, we follow a two-scale modeling
scheme. On the one hand, a global model captures the object constellation by
expressing the spine shape as a consecution of local vertebra coordinate systems
(VCS) which have been earlier defined in [7]. On the other hand, local vertebra
models provide shape information in the form of triangulated surface meshes of
each individual object. For model adaptation, both parts are to be applied sub-
sequently. By adapting the global model to the image, corresponding positions
of individual objects are roughly to be found. Afterwards, local vertebra models
are adapted providing the exact vertebra contour.

Adaptation for global and local model is based on the same idea. By using
a physical metaphor an external energy (Eext) drives the model towards image
features while an internal energy (Eint) restricts attraction to a learned shape

E = Eext + αEint . (1)

The parameter α controls the trade-off between both energy terms. The final
position is in each case found by applying Eq. 1 iteratively.



2.1 Global Model Adaptation

Model-based adaptation is known to be dependent on careful initialization. Once
adaptation is misled, it can hardly recover. Thus, a global adaptation framework
moves the individual objects closer to the respective image structure. By express-
ing the spine as a consecution of K rigid transformations between K + 1 VCSs,
a flexible representation of the object constellation is found that provides a large
to small scale approach. Note that the representation as a consecution of rigid
transformations has to be expressed relative to a reference VCS.

For the definition of the respective energies, an appropriate distance mea-
sure between two rigid transformations has to be found. For that purpose, the
representation of the rotation as a rotation vector is introduced. The rotation
vector is defined as the product of the axis of rotation expressed as a unit vector
n and an angle of rotation θ. With the rotation vector representation, we use
the left-invariant distance definition between two rigid transformations in [4]:

d(T1, T2) = Nω(T−1
2 ◦ T1) with Nω(T )2 = Nω({r, t})2 = ‖r‖2 + ‖ωt‖2 (2)

where ω is used to weight the relative effect of rotation and translation, r is
the rotation vector, and t the translation vector. As proposed in [4], the weight
factor ω is set to 0.05. With this distance function, the respective energies as
explained in detail below are defined as quadratic differences between a current
and an ’optimal’ position.

External Energy The key idea of the global external energy is to drive each
object towards its corresponding image structure. Thus, we define the feature
function

Fi(xi) = −ni
T∇I(xi)

gmax(gmax + ‖∇I(xi)‖)
g2
max + ‖∇I(xi)‖2 (3)

that is carried out for each mesh surface independently judging the position
in the image. The feature function is indeed evaluated for each triangle of the
surface mesh at the position of the triangle barycentre xi. The image gradient
∇ I(xi) is projected onto the face normal ni of each triangle and damped by
gmax. The feature values of all triangles are summed up providing one value per
vertebra for the current position.

The search for new positions is performed by testing for each object vari-
ous discrete locations inside a local neighborhood around a given position. For
that purpose, a cartesian grid inside a bounding box around the given position
is defined. In order to not only cope with translations but also rotations, the
original object is rotated in discrete steps around all axes obtaining L rotation
matrices Rl. At each of the N grid positions, the feature function is evaluated
for the corresponding surface mesh translated by tn as well as its L rotated
versions. Due to the frequent presence of local minima, this exhaustive search
is preferred to other optimization strategies but will be replaced in future by
stochastic optimization methods.



The transformation resulting in the highest feature strength determines the
new position of the object:

argmaxRl,tn

∑
i∈M

Fi(Rlxi + tn) , (4)

where M is the number of triangles per mesh.
After finding the most promising positions for a pair of neighboring objects

m and n, we can define the global external energy for the corresponding k-th
transformation:

Eextk
= d(T̃−1

VCSm
· T̃VCSn , Tk)2 (5)

where T̃V CSm and T̃V CSn are the transformations of the corresponding VCSs at
the new positions to the world coordinate system. Thus, T̃−1

VCSm
· T̃VCSn

gives
the transformation between the corresponding VCSs. The final transformation
Tk between the neighboring objects will be determined by minimizing Eq. 1.

Internal Energy Driving the model towards high image features as performed
by the external energy is restricted by the internal energy to prevent false attrac-
tion. The internal energy preserves similarity of the ensemble towards an earlier
learned constellation model. In this case, our spine model covers the mean spine
shape as well as its variability. Since the spine is expressed as a consecution of
rigid transformations that do not belong to a vector space but to a Lie Group,
conventional statistics can not be applied. Instead, statistical methods applied
to Riemannian manifolds are used. The following formulation is based on [4] that
recently presented a statistical model of the spine expressed as a consecution of
rigid transformations. However, an inclusion to an adaptation framework has so
far not been presented.

Following the statistics for Riemannian manifolds, the generalization of the
usual mean called the Fréchet mean is defined for a given distance as the element
µ that minimizes the sum of the distances with a set of elements x0, . . . , xN of
the same manifold M:

µ = arg minx∈M

N∑
i=0

d(x, xi)2 . (6)

Since the mean is given as a minimization, we use the gradient descent method
performed on the summation obtaining

µn+1 = Expµn

(
1
N

N∑
i=0

Logµn
(xi)

)
. (7)

The functions Exp and Log are respectively the exponential map and the log map
associated with the distance d(x, y). The exponential map projects an element of
the tangent plane on the manifold M and the log map is the inverse function. For
the calculation of exponential and log map associated with the defined distance
of Eq. 2, we refer to [4].



Finally, the generalized cross covariance Σxy is the expectation in the tangent
plane of the mean using the log map

Σxy =
1
N

N∑
i=0

Logµx
(xi)Logµy

(yi)T . (8)

In our case, the constellation of the spine is expressed as a multivariate vector
C of K individual transformations C = [T1, T2, T3, . . . , TK ]T obtaining for the
mean and the covariance

µ =


µ1

µ2

...
µK

 and Σ =


ΣT1T1 ΣT1T2 . . . ΣT1TK

ΣT2T1 ΣT2T2 . . . ΣT2TK

...
...

...
ΣTKT1 ΣTKT2 . . . ΣTKTK

 . (9)

With Eq. 9, the formulation for the statistical spine model is given. In order
to reduce the dimensionality of our model, principal component analysis is per-
formed on the covariance matrix.

Now, we define the global internal energy for each transformation Tk as

Eintk
= d
(
Expµk

(
t∑

i=1

biai,k

)
, Tk

)2

with b = AT (LogµC) (10)

where the matrix of the individual eigenvectors ai is denoted as A and bi is the
coordinate of the weight vector b associated with the i-th principal component.
The internal energy penalizes differences between the model and the current
constellation. The closest constellation to the model is determined by projecting
the given constellation C in the sub-space defined by the principal components.

Optimization After calculating the respective energy terms, the final transfor-
mations Tk between the individual objects are determined by minimizing

E(Tk) = d(Textk
, Tk)2 + α · d(Tintk

, Tk)2 (11)

for each object separately. The transformations Textk
and Tintk

are obtained from
the external and internal energy, respectively. The final transformation Tkopt is
found using a Downhill-Simplex optimizer. As the representation of the ensemble
as a consecution of rigid transformations requires a reference VCS, the vertebra
with the highest feature strength is taken as the reference in each iteration.

2.2 Local Model Adaptation

After positioning the vertebra models using the global model adaptation, a local
non-rigid free-form deformation similar to [8] of the individual surface meshes is
carried out. Segmentation of all vertebrae is performed simultaneously with the
individual shapes interacting on each other to prevent misadaptations.



External Energy The local external energy

Eext =
∑
i∈T

wi(e∇I(xi + c̃i))2 with wi = max
{
0, F ∗i (xi + c̃i)− δ‖c̃i‖2

}
(12)

drives each triangle barycentre xi towards a detected potential anatomical sur-
face point xi + c̃i. The unit vector e∇I points in direction of the image gradient
at the surface point xi + c̃i.

For each triangle barycentre xi, surface detection is carried out within a
locally defined sampling grid along the triangle surface normal. At each candidate
position ck, the feature function is evaluated and finally the point c̃i is chosen
that maximizes the objective function

c̃i = argmaxck

{
F ∗i (xi + ck)− δ‖ck‖2

}
. (13)

The parameter δ controls the trade-off between feature strength and distance.
As a feature function, we apply the one already defined in Eq. 3 but with an

additional factor c penalizing overlapping resulting in F ∗i = c · Fi .
If no collision with a neighbored mesh is present, the factor c will be equal to

one. In case of a collision, c becomes the smaller the deeper the detected point is
inside the neighbored mesh. Note that this formulation does not prohibit collision
but makes points that lie inside other meshes less attractive.

An effective implementation of the collision detection is achieved by labeling
all meshes and assigning adjacent surface patches of neighboring vertebrae. Since
collision detection has to be only carried out for corresponding adjacent surfaces
that potentially overlap, the computational complexity is significantly reduced.

Internal Energy As a regularization, the local internal energy

Eint =
∑
j∈V

∑
k∈N(j)

((v̂j − v̂k)− sR(vj − vk))2 (14)

preserves shape similarity of all adapted vertices vj to the model vertices v̂j

with N(j) being the set of neighbors of vertex j. neighboring vertices are those
connected by a single triangle edge. The scaling factor s and the rotational matrix
R are determined by a closed-form point-based registration method based on a
singular value decomposition prior to calculation of Eq. 14.

Optimization In the final optimization scheme for the local model adaptation,
the vertex positions of the triangular surface mesh are indeed the parameters to
be varied. As only interdependencies between neighboring vertices exist and the
energy terms are of a quadratic form, the conjugate gradient method is used for
minimization of the final equation system with a sparsely filled matrix.

3 Results

For our model building, vertebra models were adapted to 18 thoracic CT data
sets using [7]. In case of misadaptations, manual corrections were performed.



From the adapted surface meshes, mean shape models of all vertebrae as well as
a statistal model of rigid transformations between the VCSs was created.

The new framework was applied to ten test data sets including pathologies
like strong calcifications between vertebrae or scoliosis. In each case, model ini-
tialization was given by [7]. Reference segmentation was provided by manually
positioning and automatically adapating the individual surface models. Misadap-
tations were again manually corrected. As the main contributions of our frame-
work are the global adaptation and the collision detection during local adap-
tation, we compared our results to the adaptation using the shape-constrained
deformable model method (SCDM) [8]. Automatic segmentation was compared
to the reference by calculating for each vertex of the adapted mesh the closest
point on the reference surface. One problem that could be circumvented by our
framework is the misadaptation of several models to wrong neighboring verte-
brae as examplarily shown in Fig. 1. In the ten test cases, this secenario occured
for four patients. In the remaining six data sets, SCDM already adapted to the
correct image structure. To investigate the effect of collision detection, we com-
pared the segmentation result for these six data sets using SCDM and SCDM
with collision detection but no global model. As shown in Tab. 1, the mean error
could be slightly reduced from 1.1 to 0.9 mm in average. Comparing the results
for all ten cases using SCDM with our two-scale framework, the segmentation
results were significanty improved from 2.7 to 1.0 mm in average. However, it has
to be noted that the results are slightly biased due to the fact that the creation
of the reference segmentation was based on the same algorithm with additional
user interaction.

(a) (b) (c) (d)

Fig. 1: Automatically positioned models (a) are adapted using SCDM (b) and two-scale
method (c). Due to the consideration of overall constellation, misadaptation of T11 and
T12 could be overcome and overlapping between neigbored models could be decreased.
Surface rendering of adapted meshes (d).



Table 1: Adaptation result for ten test data sets showing average ± standard deviation
(maximum) of segmentation error (values in mm). For each algorithm, the result for
one chosen test case is examplarily given in detail.

Collision Detection Two-Scale
Patient 6 6 Data Sets Patient 1 10 Data Sets

SCDM 1.3±0.3 (6.9) 1.1±0.2 (5.5) 2.8±1.7 (8.9) 2.7±2.8 (9.0)
new 0.9±0.3 (6.0) 0.9±0.2 (5.4) 0.8±0.2 (5.8) 1.0±0.3 (6.5)

4 Conclusion

In this paper, we presented a two-scale framework for the automatic segmenta-
tion of object constellations. The constellation is modeled as a consecution of
local coordinate systems while the individual objects’ shape is presented as a
triangulated surface model. In contrast to former approaches performing only
non-rigid deformation for each object separately, we extended the adaptation
allowing a simultaneous segmentation of the constellation with individual ob-
jects interacting on each other. Compared to former approaches, a significant
improvement of the segmentation result has been achieved while at the same
time the capture range for the adaption has been increased. Furthermore, we
are more robust against pathologies in spine shape with the developed approach
due to the inclusion of a statistical spine shape model.
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