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Abstract—Advances in image sensors and evolution of digital
computation is a strong stimulus for development and implemen-
tation of sophisticated methods for capturing, processing and
analysis of 3-D data from dynamic scenes. Research on perspective
time-varying 3-D scene capture technologies is important for the
upcoming 3DTV displays. Methods such as shape-from-texture,
shape-from-shading, shape-from-focus, and shape-from-motion
extraction can restore 3-D shape information from a single camera
data. The existing techniques for 3-D extraction from single-camera
video sequences are especially useful for conversion of the already
available vast mono-view content to the 3DTV systems. Scene-
oriented single-camera methods such as human face reconstruc-
tion and facial motion analysis, body modeling and body motion
tracking, and motion recognition solve efficiently a variety of tasks.
3-D multicamera dynamic acquisition and reconstruction, their
hardware specifics including calibration and synchronization and
software demands form another area of intensive research. Dif-
ferent classes of multiview stereo algorithms such as those based
on cost function computing and optimization, fusing of multiple
views, and feature-point reconstruction are possible candidates for
dynamic 3-D reconstruction. High-resolution digital holography
and pattern projection techniques such as coded light or fringe
projection for real-time extraction of 3-D object positions and color
information could manifest themselves as an alternative to tradi-
tional camera-based methods. Apart from all of these approaches,
there also are some active imaging devices capable of 3-D extraction
such as the 3-D time-of-flight camera, which provides 3-D image
data of its environment by means of a modulated infrared light
source.

Index Terms—Coded light, digital holography, pattern projec-
tion, shape, three-dimensional (3-D) displays, 3-D/stereo scene
analysis, 3DTV, time-of-flight, video analysis.
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I. INTRODUCTION

THREE-DIMENSIONAL television (3DTV) is expected to
evoke a revolution in visual technology. Beyond any doubt,

precise acquisition of 3-D information of dynamic scenes is
crucial for 3DTV implementation. Extensive research has been
conducted for capturing, processing, and analysis of 3-D scene
data aimed at reliable 3-D reconstructions for more than two
decades. A variety of techniques have emerged as a result of the
recent advances in image sensor technologies and evolution of
digital computation.

The aim of the survey is to shed light on state-of-the-art in
the major time-varying 3-D scene capture technologies with an
emphasis on their incorporation in functioning 3DTV systems.
Having their own pedigree, underlying principles, limitations,
and trends for development, the examined 3-D scene-capturing
techniques co-exist within the scope of the survey, as separate
topics. They are united, however, not only by the same goal
they pursue, but also by the use of common mathematical tools
to tackle the 3-D reconstruction problem, confronting similar
difficulties in many cases. More specifically, the survey pro-
poses concise analysis of approaches for 3-D scene extraction
from single and multiple cameras data streams. It also focuses
on holographic and pattern projection techniques for real-time
collection of point locations and color information of 3-D ob-
jects, as an alternative to traditional camera-based methods, and
briefly describes potentials of time-of-flight-based systems ca-
pable of integrating depth extraction and imaging in real time.

Because it is an ill-posed problem, the challenges for 3-D
scene reconstruction from mono-view video sequences are
pointed out in Section II. The first part of the section introduces
all shape-from-X approaches for 3-D shape extraction but con-
centrates mainly on shape-from-motion approaches, relying on
the relative motion between the camera and the scene, as being
quite appropriate for many practical situations. The second part
is dedicated to the techniques for capturing of 3-D structures
of human face and body, that have many potential applications,
still from mono-view sequences. Brief description of methods
for face capture and facial motion analysis, as well as for body
modeling and body motion tracking and recognition, is also
presented. Section III is devoted to hardware issues in multi-
camera setups, such as calibration and synchronization, and it
addresses the implementation of different classes of multiview
reconstruction algorithms for dynamic 3-D reconstruction.
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Section IV briefly presents the principle of digital holography,
as a means for digital recording of a hologram of an object
with further numerical reconstruction of its 3-D image. Pattern
projection techniques, in which the information of the object
shape and color is encoded in a 2-D pattern that is projected
onto and reflected from the object, are discussed in Section V
for the cases of structured light and fringe projection. Finally,
the principle and some basic issues of time-of-flight range
imaging systems are outlined in Section VI.

II. 3-D SINGLE-CAMERA TECHNIQUES

A. 3-D Scene Extraction From a Single Camera

3-D scene extraction from a single-camera video sequence
is a well-known problem in computer vision for decades. How-
ever, due to its ill-posed nature, other approaches, such as multi-
view or stereoscopic vision, have been preferred against single-
camera techniques. However, it is obvious that conversion of the
vastly available mono-view video for the upcoming 3DTV sys-
tems is strictly necessary.

1) Shape-From-X for a Single Camera: There are mainly
four methods that imitate human 3-D perception to extract
the 3-D shape information. These are shape-from-shading [1],
shape-from-texture [2], shape-from-defocus/focus [3], and
shape-from-motion. In shape-from-shading methods, an energy
function is minimized by applying several constraints to over-
come the unclear characteristic of the problem for determining
the surface gradients from the single-image irradiance equation.
For shape-from-texture, the validity of information about the
depth in texture mainly depends on two properties, which are
homogeneity and isotropy. If a texture is homogenous, both
size and density can be used for extracting the shape informa-
tion, whereas if the texture is isotropic, spatial compression of
the texture still provides better shape information. However,
texture information is not guaranteed in general scenes. In
the shape-from-focus methods, the camera focus varies on an
object to determine its depth, which is not available for many
cases, as well. The shape-from-motion approach tries to solve
for 3-D geometry by using the relative motion between the
camera and object, which is an expected situation in practice. It
should be emphasized that there is no complete solution to the
single-camera 3-D scene extraction problem. All shape-from-X
methods have their own advantages and disadvantages. Consid-
ering the requirement of applicability of the solution to general
scenarios, it can be concluded that shape-from-motion (SfM)
methods are more preferable. Hence, the remainder of this
section focuses on different solutions to the SfM problem. In
all applications that deal with the extraction of the 3-D scene
structure, feature matching and tracking plays an important
role. Feature correspondences between two (or more) frames of
a video sequence are strictly required to geometrically relate the
images, for camera calibration or estimating scene structure. A
good overview can be found in [4] and [5].

2) Manual and Self-Calibration: In the conversion process
of the available content to 3DTV input, such data are expected to
lack calibration information. Camera calibration is the process
of obtaining camera intrinsic parameters in order to solve for

3-D structural information [6], [7]. Structure and motion prob-
lems require a high level of accuracy of the camera matrix (in-
trinsic parameters) due to the nonlinearity of the problem of
the scene reconstruction. Although many algorithms have been
proposed for manual calibration, two of them, by Tsai [8] and
Zhang [9], received wide acceptance in the computer vision
community. These methods are based on utilizing calibrating
patterns in order to determine the unknown camera parameters.
However, in some cases, it is not possible to utilize such a pat-
tern; hence, the calibration should be performed by only using
the available frames, called self-calibration. For self-calibration,
it should be noted that the fundamental matrix, which summa-
rizes the geometric relation between views in an algebraic rela-
tion, contains both camera-intrinsic parameters and relative ori-
entation between two frames. Therefore, a formulation, which
does not vary with the relative motion between these two im-
ages, could be defined.

The first approach for self-calibration is proposed by May-
bank and Faugeras [10]. In their method, the nonlinear quadratic
equations, the so-called Kruppa equations, are constructed by
using the fundamental matrices and unknown camera matrices.
These equations are solved in different ways [10]–[15]. On the
other hand, some methods do not attempt to solve Kruppa equa-
tions. They generally determine the camera-intrinsic parameters
and the position of the plane of a virtual conic by using the rela-
tion between the virtual conic and the camera-intrinsic parame-
ters [16], [17]. These methods later update the projective recon-
struction to metric reconstruction. In the method by Pollefeys
[18], projective reconstruction is updated to affine reconstruc-
tion by using the position of the plane of the virtual conic deter-
mined by solving a number of constraints [19]. Then, the affine
calibration is updated to a metric one using the estimated camera
intrinsic parameters determined by solving the general camera
self-calibration equations. This method is called stratified cali-
bration, since one moves between different stratums (i.e., affine
to metric) during reconstruction.

3) 3-D Structure Estimation From Two Views:
a) Solving for epipolar geometry for two views: When two

views of a camera locate at an arbitrary position, the geometrical
relationship between these views is given by the epipolar ge-
ometry, where this geometrical relation can be expressed with
the fundamental matrix, which is the algebraic representation
of the epipolar geometry. Significant research effort has been
put into estimating the fundamental matrix from a set of point
correspondences so far [6], [20]–[24]. The approaches can be
classified into two categories: linear and nonlinear methods.
Linear methods formulate the algebraic relation between pixel
locations and camera orientation and position in a linear form,
with the well-known example of the normalized eight-point al-
gorithm [20], whereas the nonlinear methods strictly impose
the constraints of the fundamental matrix. As a criterion for
the goodness of the estimation, a cost function can be used to
minimize the geometric distance, e.g., minimization of the re-
projection error (Gold Standard method) or the Sampson cost
function, which minimizes the distance of the points to their
corresponding epipolar lines. Minimization of the error is car-
ried out using the Levenberg–Marquardt algorithm, which is a
slight variation of the Gauss–Newton iteration method. In the
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presence of outliers, i.e., badly localized matches or even false
matches, the computation of the fundamental matrix is more ex-
pensive. Outliers, caused by noise and pixel quantization, de-
crease the precision of this matrix. Many robust algorithms to
reduce the effects of outliers or even to remove the outliers were
applied [25], [21]–[24]. Typical examples are the M-estimator,
the random sample consensus (RANSAC) [22], MLESAC [23],
or NAPSAC [24] algorithms.

b) Solving for rotation and translation: The relationship
between the fundamental matrix and the essential matrix can
be given as , where is the camera calibration
matrix. It is shown that the decomposition of the essential ma-
trix into rotation and translation could be obtained as a
cross product . A linear algorithm is proposed by
using vector algebra properties that uses this relation without
imposing the orthonormality of the matrix to the solution of
the rotation [26]. Later, a robust version is also proposed, which
considers the orthonormality of the matrix and utilizes quater-
nion for its formulation.

c) Estimation of depth at sparse correspondences: One
of the most important steps in structure computation is trian-
gulation, in which the position of a point in 3-D is estimated
from point correspondences. For the ideal conditions, the back-
projected rays should intersect at a sole point in 3-D space in
general, and therefore a simple line intersection should suffice.
However, due to inevitable noise and errors, it is necessary to
employ noise-resistant techniques to estimate the position of
the point in 3-D space. In the literature, there are four major
methods for triangulation: midpoint method [27], [28], polyno-
mial triangulation method [6], linear methods [29], and itera-
tive linear methods [30]. While a commonly suggested method
for triangulation is the selection of the midpoint of the common
perpendicular to the back-projected rays of the matched points,
this method is used only for Euclidean reconstruction problems,
since it is not projective-invariant [27]. In the method of poly-
nomial triangulation, the problem is reduced to finding the roots
of a sixth-degree polynomial in one variable by parameterizing
the pencil of epipolar lines, and the method is optimal under the
assumption of a Gaussian noise model [6]. The linear triangu-
lation method is the most common method used due to the ease
of implementation, and it determines the location of a 3-D point
from projection matrices and image points by back-projection
[29]. In the iterative algorithms, these methods try to find the
solution by changing the weights adaptively so that the adapted
weight matrix will give a measure of a geometric error func-
tion. For a projective reconstruction in which camera matrices
are known to a great accuracy, it is recommended to use the
polynomial triangulation method which is invariant under pro-
jective and affine transformations, computationally cheap, and
optimal under Gaussian noise assumption.

d) Determining the dense depth field: Dense-depth-field
estimation is one of the most active research areas in computer
vision, and there are various depth-estimation methods by dif-
ferent approaches [31]–[36]. It should be noted that disparity
estimation is closely related to depth estimation, since dense
depth field could be reconstructed by using triangulation once a
disparity field is determined. The major dense depth-estimation
methods are PDE-based [32], [33], Markov random field-based

(MRF) [37], [38], and neighborhood-based [34], [35] methods as
well as the maximum flow formulation [36] approach. The aim
of PDE-based energy-minimization methods is to estimate the
dense disparity map by using a minimization and regularization
approach. There are various operators that are used for regu-
larization [39]–[41]. The operator should allow the anisotropic
diffusion of the disparity field in order to allow discontinuities
across boundaries. In this way, while obtaining smooth depth
fields along object boundaries, discontinuous depth fields across
object boundaries could also be achieved. The MRF-based
methods [37], [38], [42] are probabilistic approaches for dense
depth estimation, and they model the unknown depth values, as
a random field, whose probability density function (pdf) is as-
sumed to be Gibbsian. After defining the pdf of the depth field by
an MRF formulation, a maximum a posteriori (MAP) estimator
is used for the dense depth-field estimation. According to this
formulation, a cost function is derived, and the minimum of this
cost function is equal to the MAP estimate of the random depth
field [26]. The minimization can be achieved, either in stochastic
and deterministic ways, such as simulated annealing and ICM.
Neighborhood-based methods [34], [35] try to find the dense
disparity map of a stereo image pair by searching extra match
points around a starting set of correspondences. Consideration
of neighborhood constraints together with a dissimilarity func-
tion increases the robustness of the disparity estimation [44].
Finally, a maximum flow formulation of the -camera stereo
correspondence problem can be obtained [36]. Once solved,
the minimum cut associated with the maximum flow gives a
disparity surface for the whole image.

4) 3-D Structure Estimation From Video: Multiple-frame
structure from motion (MFSfM) problem usually involves more
than three frames and often a monocular single-camera system
which is swept around the scene. The problem has unique prop-
erties, which are a mixed bag of blessings and curses. First, the
notable characteristic of the problem is the existence of causality
and temporal continuity constraints. Hence, the relative posi-
tion between the camera and scenery changes incrementally,
yielding some redundancy. This advantage of the temporal re-
dundancy brings the problem of a narrow baseline, which im-
plies a small disparity between frames, hence little SfM infor-
mation between the consecutive frames. Temporal redundancy
is of limited use, if successful feature tracking and inter-frame
correspondence are not achieved. The solution methods that
dominate the literature can be categorized on many axes, such
as type of features, camera and imaging models, feature geom-
etry and camera motion constraints, and whether the algorithm
is batch or online. However, linear versus nonlinear categoriza-
tion [45] provides the most appropriate division boundary, as
it has a scope that is sufficiently broad to capture the overall
picture.

Linear algorithms provide direct solution methods. However,
this significant advantage is tainted by the fact that the SfM
problem is actually nonlinear, so these techniques depend on the
linearization of the original problem. In a multiframe context,
the dominant algorithms are variants of the popular factoriza-
tion method [46]. While they come in many different tastes and
colors, the basic idea is the same: image measurements can be
expressed as a product of two matrices, representing the motion
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and the structure [47]. On the other hand, nonlinear algorithms
rely on the iterative optimization techniques. The minimization
of a cost function is performed on both structure and motion
parameters. As expected, these algorithms usually have conver-
gence issues and are vulnerable to local minima. However, they
provide good numerical accuracy and flexibility. Some of these
methods involve the use of recursive techniques, either as an es-
timate fusing mechanism [48]–[50] or as a state estimator [51],
[52]. Others, such as [53], rely on classical optimization tech-
niques, known as bundle adjustment algorithms. The original
formulation of factorization is based on the orthographic pro-
jection, since it is only possible to linearly decompose structure
and motion via this projection [46], [47]. Later, this formula-
tion is also extended to weak perspective [54], paraperspective
[55], generalized affine [56] and, finally, a perspective camera
[57]–[59]. A sequential version is also proposed for this batch
algorithm [60]. Instead of point correspondences, factorization
is also formulated for line features as well [61]. In order to cope
with occlusions and unreliable features, alternative cost func-
tions are proposed in a technique, known as hallucination, which
completes the missing entries [46]. It is also possible to estimate
the structure and motion of multiple objects [47].

Nonlinear methods can be divided into two categories:
bundle adjustment and recursive methods. While these ap-
proaches employ different techniques to obtain a solution, they
share common features, such as iterative minimization of a cost
function, models, and concerns for trapping into local minima.
Bundle adjustment is a catchall name for many techniques to
achieve jointly optimal estimates of the 3-D structure, motion,
and camera calibration parameters [6], [62]. Optimality implies
the minimization of a cost function, which quantifies 2-D
reprojection error. As in most iterative optimization techniques,
a good initialization is essential.

Fusion methods are indeed a hybrid form between batch and
online approaches. The basic idea is constructing a structure es-
timate by fusing intermediate reconstructions (or subestimates)
obtained by processing smaller subsets of the sequence [63].
Moreover, the occlusion problem is handled more easily as a
feature should be viewed in only a few frames and not in the
entire sequence [49].

Another approach for solving the SfM problem is to con-
sider it in the context of state estimation for dynamical sys-
tems [64]. The Kalman filter, or rather the extended Kalman
filter (EKF), is a well-known tool for recursive state estima-
tion. In order to design an EKF, the states, a dynamic system
model, and an observation model should be determined. In the
basic EKF model [65], the states are selected as 3-D coordinates,
the system model includes rotational and translational motion
between time instants, and the observation model is based on
pixel locations of the 3-D points (states), observed with some
Gaussian noise. For this approach, since the state vector quickly
grows quite large, as every new feature extends this vector by
three entries, the state vector should be reduced by one of these
two strategies, as explicit and implicit reduction [64].

In the explicit reduction, the measurement equation is solved
for some of the states and substituted into the model equations
[52]. On the other hand, implicit reduction strategy is employed
by fixing some states, or a function of them. Such an approach

effectively introduces new constraints and reduces the solution
space. While there are many models proposed for system and
observations, some seem to have received wider acceptance. In
[51], the observation model is a perspective camera with known
calibration, the translation model is an th-order Taylor approx-
imation of the function corresponding to the object centroid
motion (equivalently, camera center motion), and the rotation
model is th-order Taylor approximation with quaternion rep-
resentation. This algorithm is later used as an initialization step
in a similar but recursive estimator in [65] and extended with
inertial sensor measurements in [66]. Photometric models have
also found a niche in [67].

B. Discussion on Single-Camera Techniques

There are many methods for capturing 3-D scenes from a
single-camera video sequence. Alhough, each of these methods
has its own advantages and disadvantages; currently, the SfM
is one step ahead of other techniques. The main reason is that
SfM can be used to solve real life problems. On the contrary, the
other techniques currently are just used to extract 3-D shapes
in controlled 3-D environs. It should also be mentioned that
SfM cannot solve all single-camera 3-D scene capture prob-
lems, whereas it might solve a fairly good amount of them, com-
pared with other approaches. Even for those unsolved cases,
there exist plenty of approximations to yield acceptable 3-D per-
ception in 3DTV systems. Hence, SfM can be assumed to be
the most complete solution among all of the single-camera 3-D
scene extraction methods, and a good candidate to be utilized
in the conversion of the available mono-view content to the up-
coming 3DTV systems.

C. Human Face and Body-Specific Techniques

Many 3-D applications are limited to studio environments
where the human face or the full body is the prime object. There-
fore, capturing the 3-D structure of a human face and body is a
very important research area. With a priori knowledge about
3-D structure and motion of human faces and bodies, natural
limits of human motions can be used in order to make the pro-
cessing more efficient.

The human-specific techniques can be divided into two areas.
One of them is concentrated on the human face and contains the
following subtasks:

• face and facial feature detection;
• capturing of 3-D structure of the face;
• analysis of global face motion and mimic.

The other area is associated with the human body:
• 3-D human body modeling;
• human body kinematics and motion analysis;
• human body motion recognition.

Human face and body-specific techniques are not only impor-
tant because of human presence in the scene, but become more
popular in recent days because of progress in 3-D visualization
technology. In the area of 3-D visualization and 3-D display sys-
tems, robust detection and tracking of the observer’s eyes and
the observer’s view point is necessary to render the correct view
according to the observer position.

1) Face and Facial Feature Detection: Face and facial
feature detection is the first step in computer vision problems.
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Fig. 1. Capturing of the 3-D face structure from a single camera view.

The face has to be detected from an image or video frame
first before performing any further processing. The images
on which face analysis has to be performed have a myriad of
variations in pose, visible objects (e.g., glasses, moustache,
or beard), complex background, different numbers of faces,
different facial expressions, occlusions, lighting condition, and
camera characteristics.

All of these factors cause some changes in the appearance,
and an ideal analysis/capturing system should be invariant to all
of them. The following strategies are known and often jointly
used [43].

• Knowledge-based methods which rely on rules derived
from elements of human face structure [68], [69].

• Feature-invariant methods which track down invariant fea-
tures for face detection [70]–[84]

• Template matching methods which utilize correlation be-
tween the detected face image and face patterns from a set
of standard faces and facial features [85]–[90].

• Appearance or image-based methods which rely on
learned models acquired from collection of training im-
ages [91]–[103].

2) Capturing of 3-D Structure of the Face: When modeling
a person’s face, it is generally represented by a 3-D face model
(3-D triangular mesh is commonly used) and an associated
composite image (texture image). A common approach to cap-
ture the 3-D structure of the face uses 2-D images, which are
taken from different directions and contain different views of
the face. The standard 3-D face model is used to fit a person’s
facial structure. Here, the positions of facial features like eyes,
mouth, and eyebrows are used to form a 3-D face model (see
Fig. 1).

The methods proposed in the literature for generating a 3-D
face model can be generally classified as fully manual process, a
semi-automatic process, or a fully automatic process. In a fully
manual process, the topology of the 3-D mesh has to be man-
ually mapped onto the image of the face. This process is very
time consuming. In a semi-automatic process [104]–[110], the
certain facial features and feature points are detected or manu-
ally selected on the image, and then a standard 3-D face is auto-
matically adapted by a transformation using the location of the
detected feature points [111]–[116]. Sometimes a manual fine
tuning is also used. In the fully automatic process, a user in-
teraction is not needed, and the time required to model a face
is drastically reduced. However, the software-based systems are
very sensitive to the image data.

3) Face Motion Analysis: Motion estimation of a human face
is important for many applications in computer vision like fa-
cial expression analysis, face identification, model-based video
coding, and 3-D facial animation systems. Motion estimation
or tracking systems can be divided into feature-points-based
[117]–[120] or model-based methods [121]–[132]. A feature-
points-based approach estimates the displacements of feature
points from one video frame to another. The displacements
might be estimated using optical flow methods or block-based
motion estimation methods. The estimated motion field is used
to compute the motion of the object. A model-based tracker,
on the other hand, uses a 3-D object model with stored or
generated texture and tries to fit the model to the new video
frame by minimizing costs. The accuracy of motion estimation
is thus dependent on the used object model, on the quality of
the initialization process, and on the accuracy of the camera
calibration.

4) Body Modeling: There are various methods for acquisi-
tion of 3-D human body models. Some commercial systems re-
quire special hardware, but they are expensive and cannot be
used in certain cases. Recently, using video frames rather than
using special hardware is preferred. A number of techniques
using video frames has been proposed [133]–[141]. First of all,
different views of the subject are obtained from different cali-
brated cameras or one moving camera. From each view, the 2-D
silhouette of the subject is extracted. Then, using volume in-
tersection, different views of the subject are intersected, and a
volumetric description of the subject is defined. Finally, a model
of the human body is fitted to the volumetric description of the
subject. Sticks, ellipses, cylinders, or super-quadrics can be used
for the predefined model. In some methods [137], [134], [138],
the subject needs to perform some initial movements in order to
obtain the model more accurately.

5) Body Motion Tracking: By tracking and recognition of
human motion, the simplifying assumptions about the scene and
the motion are usually made. The initial position and posture of
the person are assumed to be known. Prior to human body mo-
tion estimation, the segmentation of the human silhouette from
the background should be made. Then, the feature extraction
and tracking follows. The prediction of movement is also used
in order to solve the occlusion problem. Some tracking tech-
niques try to determine the precise movements of each body part
[142], while other methods focus on tracking the human body as
a whole [143], [144]. Tracking techniques may also be classified
as 2-D and 3D. Using a 2-D approach, the motion in the image
plane is analyzed either by exploration of low-level image fea-
tures or by using a 2-D human body model. 3-D tracking tries
to obtain the parameters which describe body motion in three
dimensions. 3-D tracking allows 3-D pose recovery, estimation
the position of the body parts in 3-D space, and orientation of
the body relative to the camera. The 3-D pose parameters are
commonly estimated by iteratively matching a set of image fea-
tures extracted from the current frame with the projection of the
model on the image plane. The overview of existing human-mo-
tion analysis techniques can be found in [145]–[148].

6) Body Motion Recognition: Human motion recognition
may be achieved by analyzing the extracted 3-D pose pa-
rameters. Instead of obtaining the exact position of a human
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body, human motion recognition tries to identify the action
performed by a moving person [149]. Most of the known
techniques focus on identifying actions belonging to the same
category (e.g., specific sport movements, sitting down, standing
up, walking, or running) [149]–[151]. Some of the techniques
recognize and identify several persons and their interactions
[152]–[154]. Some of them are developed to work in special
environments and try to use prior knowledge about the layout
of the room [155].

III. MULTICAMERA TECHNIQUES

A. Acquisition Systems

Some of the most significant multicamera systems that re-
late to the goals of 3DTV and 3-D reconstruction are related to
telepresence and teleconferencing, since these applications in-
trinsically require live video feeds. Such examples are CMU’s
3-D room [156], the view-dependent visual hull system at MIT
[157], the multicamera systems at the Keck Kaboratory at the
University of Maryland [158], and the Argus System at Duke
University [159]. Last but not least, the Stanford University mul-
ticamera array [160] is an architecture specialized for facili-
tating the lightfield rendering approach (see Section III-B).

The teleconferencing system in [161] captures a scene with
four cameras mounted around a display. The system in [162]
has been pioneering as the first to utilize a large number of
video streams to provide a real-time multiview reconstruction.
In [163], synthetic views are produced using five streams based
on the visual hull method [157]. The system in [164], [165] was
initially based on multibaseline dense-depth map computation.
Its more recent version [156] is based on visual hull computation
using silhouette carving and has been commercialized [166].

Issues that relate to multicamera systems are the calibration
and synchronization of the cameras. Typically, multicamera cal-
ibration is based on solving the correspondence problem for
multiple cameras to estimate their parameters. The calibration
toolbox in [167] is designed for single-camera calibration, but
can facilitate the calibration of camera clusters if their fields of
view overlap. In contrast, the toolboxes in [168] and [169] are
dedicated to camera cluster, and utilize an LED as a calibration
target to perform their calibration with minimal user interaction.

Multicamera synchronization approaches fall under two
major categories: hardware- and software-based synchroniza-
tion. Hardware-based approaches consist of a control unit
dedicated to propagating external signals for triggering the
cameras. Point Grey manufactured the Sync Unit [170], which
synchronizes multiple cameras on different IEEE-1394 buses.
The Objective Imaging OASIS-DC1 [171] is a controller,
providing synchronization for a camera that supports trigger
signals. In [172], a microcomputer control for the synchronized
operation of several high-speed cameras is utilized. Other
similar approaches for synchronization at the hardware level
are proposed in [173]. Networking the computers that host the
cameras facilitates their software-based synchronization [174]
by means of computer-clock synchronization protocols [175].
In [176], the proposed system consists of the camera-computers
and the triggering-computer. Since there is no proposal to
handle the situation in case of failure of the synchronization,

the method is mainly dependent on the quality of the Eth-
ernet connection. In [177], the server–client architecture with
a simple error-checking technique is utilized. The network
latency is estimated and accounted for when sending a trigger
signal to the cameras.

B. Multiview Scene Reconstruction

Multicamera systems capture the appearance of a dynamic
scene from multiple viewpoints at the same time. A variety of
techniques have been proposed in the literature to extract from
this footage the so-called free-viewpoint videos, or otherwise,
dynamic scene representations that facilitate the rendering of the
captured events from arbitrary novel viewpoints. In this survey,
the presented taxonomy of multiview stereo reconstruction al-
gorithms is partially based on the review in [178], which classi-
fies them in the following classes: 1) computing a cost function
on the 3-D volume; 2) iterative evolvement of a surface based on
cost-function optimization; 3) combination of individual views;
and 4) feature point reconstruction, usually followed by surface
fitting. In addition, the cases of sillhouette-based multiview re-
construction as well as lightfield rendering are considered, al-
though that the last is not actually a reconstruction technique
per se. The reason that is mentioned is that it can produce re-
sults that are useful for the goals of 3DTV.

The usual similarity measure of multiview correspondences
is photoconsistency [179], but it requires radiometric/color cal-
ibration, which is difficult to achieve and retain. Some multi-
view methods, which compute individual views and then merge
them, utilize correlation-based metrics, which are more robust
due to their invariance to global scalings of intensity. More re-
cently, stereo approaches that estimate the surface normal of
the imaged surfaces have appeared [180]–[183]. This estimation
proves to be enhancing to the accuracy and quantity of estab-
lished stereo-correspondences, because the pertinent methods
compensate for the projective distortion in the images and are
thus able to provide better matches.

The first category includes the space-carving [179] and voxel
coloring [184] approaches, which provide reconstructions based
on the computation of visibility, in terms of determining if a
voxel is occupied or not. In these approaches, the optimized cost
is local and determined by computation of visibility; otherwise,
the notion that the space between a camera and a point of the
imaged surface is void.

Voxels are traversed in a fixed visibility ordering, taking full
account of occlusions and allowing the input cameras to be far
apart and widely distributed. Thus, a special set of invariant
voxels are identified, forming a spatial and photometric recon-
struction of the scene, which is fully consistent with the input
images.

The orientation-consistency cue, i.e., the fact that two sur-
face points with the same surface normal and material exhibit
the same radiance under orthographic projection and distant
lighting, has also been adapted within the voxel coloring frame-
work [185]. The ability of this approach to solve for normals
within the voxel framework yields a dramatic improvement in
the representation of fine-scale surface detail. In [186], a prob-
ability is assigned to each voxel, indicating the likelihood for
the voxel to exist. Maximum flow algorithms [187]–[190] and
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multiway graph cuts [191] have also been applied to extract the
optimal surface from a volumetric MRF.

A category of algorithms computes the reconstruction as the
result of deforming a surface by the optimization of a cost func-
tion. In [192], a depth map is computed individually for each
stereo-view and, then, a surface is iteratively deformed. For each
instance of this surface, a cost function is computed which is ul-
timately optimized by the method. The surface is initialized at
the visual hull of the object by extracting its silhouette in the
acquired images. The method is significant in that it combines
the silhouette cue with stereo; however, it is limited in single ob-
ject rather than scene reconstruction. As in the above method,
in [188], the deformed surface is optimized based on the silhou-
ette extraction and, thus, exhibits the same disadvantages. The
method differs in that the evaluated cost is correlation-based and
that the surface is computed by a volumetric cut. In [191], in-
dividual depth maps are merged based on graph cuts so that a
global cost is optimized. In [193], the deformation of a surface is
based on level-sets. In the approach, a set of partial differential
equations are volumetrically defined and evaluated, thereby de-
forming the optimized surface. The approach differs from other
cost-optimization approaches in that the cost is locally, rather
than globally, computed. Similar, in terms of locality, are also
the methods in [194] and [195], where the optimized surface is
deformed by simulated forces until it reaches an equilibrium.

Another category of methods computes individual recon-
structions from each view and then fuses them in a single result.
Typically, the main problem that is encountered is due to cal-
ibration errors that cause the “misregistration” of views [162]
or the event that a surface point that is visible in more than one
views is reconstructed at different coordinates for each view.
To cope with the problem, consistency between depth maps is
enforced in [196], [191], and [197]. In [198] and [199], the in-
dividual results are merged after the individual reconstructions
are computed. Finally, in [183], duplicate reconstructions of the
same surface point are suppressed along the surface normal.

Algorithms that are based on feature-point reconstruction first
extract and match a set of feature points in the available images.
In [200], a constrained Delaunay triangulation is used to inter-
polate 3-D data obtained from stereo, and then tetrahedra that
are empty are marked. The boundary of the free space consists
of the polyhedral representation of the object. A recursive al-
gorithm for the reconstruction of surface models from sparse
3-D measurements captured from multiple camera views which
are consistent with the data visibility is presented in [201]. The
algorithm is shown to converge to the real scene structure as
the number of views increases and to have a computational cost
which is linear in the number of views. In [202], a triangula-
tion of available 3-D points is selected based on its consistency
with this set of images of the object. The algorithm starts with
an initial rough triangulation and then refines the triangulation
until it obtains a surface that best accounts for the images of the
object. Surface models of complex scenes are recovered from
sparse data in [203] using a principled mechanism for reasoning
about the structure of the scene based on quasi-sparse corre-
spondences in multiple images. This approach is able to handle
scenes that involve multiple disconnected surfaces which may
occlude each other.

In a different category of approaches, dynamic scene ge-
ometry is reconstructed by intersecting cones of rays that are
formed by reprojecting image silhouettes into 3-D space. This
way, a conservative volume estimate of an object in the scene’s
foreground, the so-called visual hull [204], is obtained which
is typically represented as a 3-D triangle mesh [205], a voxel
model [206], or which is view-dependently rendered based on
epipolarity constraints [207].

The authors of [208] propose a point-based approach to
3-D video that also capitalizes on the visual hull principle.
Although simple silhouette intersection can be performed in
real time, the resulting geometry is very coarse, and concave
surface areas cannot be faithfully reconstructed. By combining
silhouette constraints with additional clues, such as photo-con-
sistency [209] or stereo [210] criteria, better results can be
achieved. The main advantage of silhouette-based methods
is their computational efficiency. However, to obtain visually
pleasing models, additional processing is required that prevents
real-time reconstruction.

An alternative solution strategy aims at generating synthetic
views of scenes by pure image-based recombination of input
video frames, for instance, by means of lightfield rendering
[211], [212]. Although this allows for intermediate novel view-
point synthesis of arbitrary scenes, the scene must be sampled
with dense camera arrays, and the memory consumption is
significant. The required sampling density can be reduced if at
least a basic model of the scene’s geometry is reconstructed
from the footage. Unstructured lumigraph rendering uses a
simple geometry proxy in combination with clever camera
position-dependent image-blending to create novel views from
a sparse and irregular set of input video streams [213]. The
system presented in [214] applies a similar lightfield approach
to create real-time 3DTV. To this end, the video streams from
several closely spaced cameras are transferred to an array of
projectors which renders the view-dependent dynamic scene
appearance on a specially coated screen. Although the achieved
visual quality is very high, the range of allowed virtual view
points is very limited.

Recently, a system [215] was proposed that is comprised
of a dome of quickly triggered light sources, three high-speed
video cameras, and a rotating platform to capture the view- and
lighting-dependent appearance of periodic human locomotion.

By having the person perform periodic motion on a tread-
mill that slowly rotates relative to the cameras, the scene can be
captured from a large set of viewpoints. New virtual views of
the moving person are rendered by combining nearby captured
viewpoints using lightfield interpolation. Although lightfield ap-
proaches enable 3-D video renderings of appealing quality, their
immense storage requirements and the high number of required
input cameras do not make them an ideal choice if large vir-
tual viewpoint changes should be allowed. One way to over-
come these limitations is to reconstruct a more detailed geom-
etry model, e.g., time-varying dynamic depth maps, from the
input streams. The first approach capitalizing on this idea was
the Virtualized Reality system [216], which uses a dome of cam-
eras and a multiview wide-baseline stereo method to reconstruct
time-varying scene geometry and texture. The pixel colors at
the intermediate rendered views are determined by warping the
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Fig. 2. Model-based free-viewpoint videos rendered in real time.

closest input video frames into the target view based on the re-
constructed per-pixel depth information [217]. The main dif-
ficulty that stereo-based 3-D video methods are facing is the
notoriously hard multiview image correspondence problem that
needs to be properly solved in order to get decent scene geom-
etry. The method proposed in [218] therefore suggests a clever
boundary matting and depth-map regularization to reduce the
artifacts in reconstructed maps. Another possibility to improve
3-D video quality is to combine the multicamera system with a
multiprojector system. In [219], the authors enhance space-time
stereo reconstruction by additionally projecting multiview dy-
namic noise patterns into the scene. The authors of [220] pro-
pose to use a template human body model, a marker-free optical
motion capture approach, and multiview dynamic texture gen-
eration to create free-viewpoint videos of human actors that can
be rendered in real time (see Fig. 2). Their original approach has
been extended such that even time-varying surface reflectance
can be reconstructed, thereby enabling the display of virtual hu-
mans under arbitrary synthetic lighting conditions [221].

In [178], a quantitative evaluation of six multiview stereo re-
construction algorithms can be found. The algorithms are com-
pared in terms of accuracy and completeness of the representa-
tion and information about the computational efficiency is also
provided. This review suggests that the choice of an appropriate
technique mainly depends on the application, the type of scene,
as well as the range of virtual viewpoints that one has in mind.
It is also very likely that, for scenes with general foreground
and general background, a clever combination of different ap-
proaches would probably be most promising.

IV. HOLOGRAPHIC TECHNIQUES

Holography is a unique technique for recording and re-
constructing 3-D information of an object. A hologram is
essentially a record of the interference pattern obtained from
the superposition of a reference beam and the beam scattered
by the object. In classical holography, photographic films are
used to record holographic patterns, and the reconstruction is
performed optically. However, recent advances in computer and
video capture technology have permitted replacing holographic
films with charged-coupled devices (CCD) and complementary
metal–oxide–semiconductor (CMOS) image sensors to record
and numerically reconstruct holograms; this technique is now
known as digital holography [222]. In comparison with clas-
sical holography, digital holography has the major advantage

Fig. 3. Apparatus for recording digital holograms.

that it eliminates the need for wet chemical processing and
other time-consuming procedures and, thus, recording and
numerical reconstruction can be done in almost real time. In
addition, numerical data allow for manipulation, replication,
and ease of transmission. Therefore, digital holography is seen
as the way forward in realizing practical 3-D time-varying
scene capture for engineering applications and mass-media 3-D
displays. However, it needs to address some technological is-
sues such as image resolution, data storage and retrieval speed,
display of real and virtual images, and true color recording and
reconstruction before it can gain mainstream acceptance.

The basic process of recording a digital hologram is shown
in Fig. 3. The light coming from the object interferes with the
reference beam, and this interference pattern is recorded by the
CCD camera. To successfully capture a hologram, the angle
between the reference and the objects waves must not exceed a
maximum value given by

(1)

where is the distance between pixel centers and is the wave-
length of the laser [223]. Equation (1) must be met to satisfy
the sampling theorem. The implication of this has limited dig-
ital holography to record small objects placed far away from the
CCD camera. In order to record large objects, an additional op-
tical lens system is required to reduce the object size [224].

Currently, the pixel size in high-end digital cameras is of the
order of a few micrometers, which is still lower than photo-
graphic material resolution by at least an order of magnitude.
Until high-resolution electronic imaging devices comparable to
photo-emulsion becomes available, digital holography will find
limited use in 3-D scene capture. However, in the meantime,
several numerical methods and algorithms have been investi-
gated to compensate this shortcoming and increase the resolu-
tion of image reconstruction [224]–[227]. In one other method,
subimages of the holographic interference pattern were cap-
tured by using a resolution interface [228]. This interface con-
sists of an array of apertures. The interference of the reference
and object beams are projected onto the interface, which in turn
projects a distribution of light spots onto the CCD. However,
this process has to be repeated by changing the position of the
interface until complete information of the interference pattern
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is acquired. At the end, a high-resolution image is attained.
In another method, several shifted under-sampled digital holo-
grams were combined to substantially enhance the resolution
of the reconstructed image [229]. This allows the possibility of
recording large objects using short object-to-camera distance.

Digital color holography has also been performed, using
three lasers in the red, green, and blue (RGB) wavelengths.
Amplitude of the interference patterns for each of the wave-
lengths is captured by a color CCD camera, and reconstruction
methods have been adapted to create full-color holograms on
the computer [230]. White-light lasers have also been used to
create full-color holograms [231]. Color holography requires
the object to remain constant as fringe patterns are recorded
for each wavelength. Another method of producing color
holography is by capturing the object at different distances and
wavelengths [232].

It is foreseeable that digital holography of large time-varying
objects becomes a reality with advancements in imaging tech-
nology. However, parallel efforts in the development of com-
pact, efficient, and cost-effective RGB lasers would be neces-
sary. These high-energy pulsed lasers should have good tem-
poral and spatial coherence and operate at repetition rates in ex-
cess of 50 Hz.

V. PATTERN PROJECTION TECHNIQUES

A. Coded Light Approach

In many applications of 3-D shape capture such as computer
graphics, virtual and augmented reality, robot navigation, and
manufacturing, it is desirable to obtain the 3-D geometry of
moving objects in real time and using low-cost devices.

The requirement for low-cost hardware was addressed with
the introduction of the coded light approach [233] employing
off-the-shelve components such as LCD projectors and CCD
cameras. However, only a few approaches have been proposed
aimed at real-time operation, and even fewer additionally permit
unlimited movement of the scene. These systems are based on
spatial coding with a single static projection pattern (thus com-
monly called one-shot systems), where the projected light rays
or planes are encoded by spatial markings, called subpatterns,
within this pattern. The first category of one-shot systems uses a
black-and-white projection pattern [234], [235], which has the
advantage of relatively accurate acquisition even with strongly
colored scenes. However, this comes at the expense of the lateral
resolution, which is typically of the area of 64 64 depth values
[234] or less [235]. This is due to the low bandwidth of the typ-
ically binary projection patterns. To address this limitation, the
use of color patterns was also proposed [236], [237], offering
an improved lateral resolution of the depth data and the ability
to employ error-detecting codes. The main difficulty with this
approach is the recognition of the colors of the original pattern
from the actual colors reflected by the scene and captured by the
camera which may differ substantially from the originally pro-
jected ones [235]–[237].

A technique that copes with this problem is the rainbow ap-
proach [238], [239], which is based on the projection of a pattern
of monochromatic colors and its encoding using the wavelength.

Fig. 4. Schematic of pattern projection profilometry.

The key assumption is that such a pattern yields a reflection
which is modified in its intensity, but not in its spectral compo-
sition. The main limitation of this approach is the requirement
of special cameras which are able to distinguish subtle changes
in the wavelength; otherwise, the technique becomes very sen-
sitive to projection and imaging noise.

A new techniques that avoids the above-mentioned dif-
ficulties was recently presented in [240] and [241]. This
technique exploits the assumption that depth and reflectivity
vary smoothly over the surface. Thus, instead of relying on in-
ferring pattern colors from reflected colors, this technique relies
on the detection of color transitions in local subpatterns which,
given the continuity and smoothness assumptions, are relatively
insensitive to the reflectivity of the scene. Furthermore, the
proposed system was implemented using an off-the-shelve mul-
timedia projector and color camera. Application of real-time
3-D scene acquisition in the context of 3-D face and gesture
recognition was demonstrated in [242].

B. Fringe Projection Approach

The methods for shape capture that rely on a functional rela-
tionship between the sought object data and the phase of a pe-
riodic fringe pattern (FP), which is projected onto and reflected
from the object, occupy a special place as a full-field metro-
logical means. They are characterized with noncomplex setups
and processing algorithms that are easy to implement in outdoor
and industrial environments. The principle of the measurement
is elucidated with the scheme depicted in Fig. 4. The optical
axes of both the projector system and the observation system
are crossed at a certain plane called the reference plane. In gen-
eral, the 2-D intensity distribution recorded by an image sensor
at moment is given by

(2)

where is a slowly varying background intensity at a point
is the fringe visibility that is also a low-frequency signal,

and is the phase term related to the object profile. The
phase term is optional, as it is introduced during the for-
mation of the periodic waveform or during the
phase evaluation. Both additive noise terms and de-
scribe phase and intensity noise contamination. The continuous
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FP is imaged over a CCD camera and digitized for further anal-
ysis as a 2-D matrix of quantized intensities. The camera spa-
tial resolution is a crucial parameter for techniques based on
the principle of optical triangulation. The purpose of computer-
aided fringe analysis is to determine the phase across the pat-
tern. Once the phase of the deformed waveform is restored, non-
ambiguous depth or height values can be computed. Analysis
of the deformed image captured with a CCD camera yields the
3-D coordinates of the object provided known positions of the
camera, the projector, and the object, i.e., camera calibration is
required [243]. The phase retrieval task comprises several oblig-
atory or optional steps such as phase demodulation, including
phase unwrapping [244] when necessary, removal of noninfor-
mative phase terms, extraction of information about the object
[245], and denoising [246], which may be applied during each
of these steps.

There have been developed various approaches for phase de-
modulation which give rise to the corresponding measurement
schemes with different complexity, sensitivity, and accuracy.
Most of the developed algorithms presume a sinusoidal profile
of fringes, being inherently free of errors only at perfect sinu-
soidal fringe projection. Projection of purely sinusoidal fringes
is not an easy task. Using light interference of two enlarged and
collimated coherent beams makes large-depth and large-angle
measurements possible, however, at the expense of limited lat-
eral field of measurement, inevitable speckle noise, vulnera-
bility to the environmental influences, and overall complexity
of the used setup. Use of a conventional imaging system with
different types of single-, dual-, and multiple-frequency diffrac-
tion gratings, as an amplitude or phase sinusoidal grating or
Ronchi grating, enlarges the field of measurement and avoids
the speckle noise, however, at the expense of higher harmonics
in the projected fringes. The use of a programmable SLM, e.g.,
LCD [247] or DMD [248], [249], permits to control very pre-
cisely the spacing, color, and structure of the projected fringes
[250]. Synthetic FPs produced by an SLM, however, suffer from
the presence of the higher harmonics. The discrete nature of the
projected fringes entails tiny discontinuities in the projected pat-
tern that lead to loss of information.

Over the years, a host of phase evaluation algorithms have
been proposed and tested [251]. To fulfill the goal of 3-D cap-
ture, an algorithm must ensure real-time precise calculation of
the absolute 3-D coordinates of complicated objects character-
ized with large depth variation and discontinuities such as steps,
holes, and protrusions that entail processing of wideband FPs
without dominant frequency. Such are closed FPs in which the
phase experiences nomonotonous change or FPs, in which the
signal is noise-dependent. There exist different classifications
of the adopted techniques for phase retrieval such as spatial
or temporal methods, single or multiple shot methods, local or
global methods, methods with and without a spatial carrier, or
methods with or without phase unwrapping. A common fea-
ture of temporal analysis methods is that the phase value of a
pixel is extracted based on the phase-shifted intensities of this
pixel recorded in succession. Spatial analysis methods extract a
phase value by evaluating the intensity of a neighborhood of the
pixel being studied. A crucial requirement for implementation
of any algorithm is the ability for automatic fringe analysis. As

the phase retrieval involves nonlinear operations, implementa-
tion of many algorithms requires some constraints to be applied.

A popular local or pointwise approach for phase demodula-
tion is the phase-shifting technique [252] based on sinusoidal
fringe projection of at least three patterns that have undergone
equal (conventional case [253]) or arbitrary (generalized case
[254]) phase shifts with respect to each other. In general, the
phase is retrieved by the least squares approach [255], which
is applied iteratively in the case of unknown phase steps [256],
[257]. The main advantage of the phase-shifting technique is
its high spatial resolution, accuracy, and dynamic range. It can
process patterns with closed fringes. The main drawbacks are
the sensitivity to noise and the degrading effect of higher fre-
quency components. Higher harmonics suppression has been
achieved by specially designed phase-shifting algorithms [258]
or by more flexible techniques such as, for example, a signal
subspace method [259]. However, acquisition of several FPs is
unacceptable for real-time capture.

A typical spatial analysis method is the Fourier transform
method with carrier fringes [260] and without carrier fringes
[261]. Introduction of a carrier frequency creates a pattern with
open fringes. This is equivalent to separation in the Fourier
domain of both counterparts of the fundamental spectrum
from each other and from the background intensity contribu-
tion around the zero frequency. Due to the global character
of the Fourier transform, the phase estimate calculated at
an arbitrary pixel depends on the whole recorded FP. The
Fourier-transform phase demodulation is a single-shot tech-
nique but suffers from filtering problems caused by wideband
noisy carriers and a limitation on object height variation [262].
In addition, introduction of a carrier frequency which adapts
to the dynamic behavior of the observed object may require
expensive equipment. The choice of the filter parameters in
the frequency domain is problem-dependent and relies on
preliminary information about the noise and bandwidth of the
modulating signals. This hampers automatic Fourier transform
processing of the FPs. The Fourier transform approach uses
the concept of the analytic signal. Contrary to the traditional
opinion that it is not possible to find natural isotropic extension
of the Hilbert transform beyond one dimension, a novel 2-D
quadrature (or Hilbert) transform is developed in [263] and
[264] as a combined action of two multiplicative operators:
2-D spiral-phase signum function in the Fourier space and an
orientational phase spatial operator. Recently, the space-fre-
quency representations [265], [266] have gained popularity
for processing of patterns with great variation of density and
orientation of fringes—the case in which the standard Fourier
analysis fails. The continuous wavelet transform can be applied
both to open and closed fringes and shows promising results
as a denoising tool. Both gradient-based and phase-based
modifications of the method have been tested [267], [268]. In
the wavelet transform analysis, it is not necessary to choose
the filter in the frequency domain. The other methods that are
capable to ensure localized phase retrieval, as the windowed
Fourier transform [269] or the regularized phase-tracking algo-
rithm [270], generally would require a priori information about
the fringe density and orientation. A frequently met problem
is phase demodulation from patterns with partial-field fringes,
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in which the FP is available in a subregion of the image. The
full-field methods as the Fourier transform applied to such a FP
leads to artefacts at the borders. This motivates concentration of
efforts on the development of phase demodulation techniques
from a single FP which in general may consist of closed fringes.
From the mathematical point of view phase demodulation of a
single FP is an ill-posed problem because of the inherent sign
ambiguity [270]. This makes impossible derivation of a unique
solution from the observed data without introduction of prior
constraints in the demodulation algorithm [271]. Filtering an
image or phase unwrapping of noisy images are also ill-posed
problems due to unknown information near the borders of
the filter and noise-generated inconsistencies. Different local
algorithms have been designed as the phase lock loop [272],
adaptive quadrature filters [273], [274] or the regularized phase
tracking [270]. The latter shows high accuracy both for patterns
with open and closed fringes and is capable to process noisy
images with irregular shape borders. It fits local plane surfaces
to the recovered phase which makes unavoidable averaging
over several pixels. Due to the fact that it seeks the phase
estimate through minimization of a cost function, this approach
involves iterative solving of a set of linear equations and is
time-consuming. There have been developed other methods
as phase demodulation based on fringe skeletonizing when an
extreme map is introduced by locating the fringes minima and
maxima [275], phase-stepping recovery of objects by numerical
generation of multiple FPs from a single recorded FP [276] or
by developing a spatial modification based on assumption of
slowly varying phase [277]. The shortcoming of many of the
spatial analysis methods is inevitable averaging over several
pixels in the neighborhood of the point of interest.

A single-shot measurement without decrease in spatial res-
olution can be realized by simultaneous acquisition of several
FPs which are further processed by known methods. Simulta-
neous projection of three color patterns (i.e., red, green, and
blue) on the object at different angles and Fourier analysis of the
deformed image recorded by a single CCD camera is realized in
[278]. A phase-shifting method for measuring the 3-D surface
of a moving object by projection of a sinusoidal grating pat-
tern and continuous intensity acquisition by three phase-shifted
linear array sensors positioned along the projected stripes is pro-
posed in [279]. High-resolution 3-D measurement of absolute
coordinates using three phase-shifted FPs coded with three pri-
mary colors and recorded at data acquisition speed of 90 fps is
presented in [280]. A single-shot fringe projection system based
on simultaneous projection of four phase-shifted sinusoidal FPs
generated at four different wavelengths in the near infrared is
proposed in [281].

In a simple pattern projection system, only one part of the ob-
ject surface is viewed both by the projector and the image sensor,
which yields a solid angle of about 2 for reliable measure-
ment. Measurement of surfaces with almost vertical structures,
such as, for example, cylindrical surfaces and of front and back
sides of a body requires 360 of observation. In addition, shad-
owing in objects with a strong surface tilt or distortions caused
by nonlinear recording due to specular reflection and diffraction
at the object surface makes observation impossible within these
parts of the image. To compensate for the loss of information,

Fig. 5. Top: wrapped phase maps; bottom: unwrapped phase maps and 3-D
reconstruction of the object surface. Shadow zones are masked with black.

systems with multiple directions of illumination or observation
are required [282]–[284]. Fig. 5 shows reconstruction of a 3-D
object from two phase maps corresponding to double symmet-
rical observation with two CCD cameras [282]. One of the main
problems that should be solved for accurate performance of such
systems is to make precise transformation of the coordinate sys-
tems attached to all sensors into a common global coordinate
system [283]. The matching of the point clouds obtained as a
result of phase demodulation of the FPs recorded by different
sensors can also be done numerically.

VI. TIME-OF-FLIGHT RANGE IMAGING

Range imaging has rapidly gained popularity due to integra-
tion of distance measurement with imaging of 3-D objects. Dis-
tance measurement predominantly implements time-of-flight
(TOF) range or depth acquisition principle going back to radar
and lidar remote sensing, where it has been used for more
than three decades [285]. In a TOF system, the time, which is
required by the probing signal to travel to the target and back to
the receiver multiplied by the signal velocity in the propagation
medium, gives the distance to the object. Generally speaking,
the information about the TOF is encoded in some measurable
parameter of the signal which changes after reflection from the
object, although the TOF can also be measured directly. Modern
TOF systems are low-cost scannerless portable devices that are
capable of yielding not only the depth map but also grayscale
images of brightness distribution on the 3-D scene in real time.
They use RF modulated near-infrared light emitted by an array
of LEDs or laser diodes which create uniform illumination of
the object [286]; an optical system focuses the incoming light
field on an array of pixels, which can register both the intensity
and the phase of the reflected light. If modulation of the light
field is a periodic waveform , where is the time and

is a radio frequency, the intensity of the reflected signal
as received at a single pixel is ,
where is the modulation amplitude, is the distance to
the object, and is the speed of light. Hence, the phase shift

between the emitted and the reflected modulated
light waves carries depth information, whereas the contrast
of the reflected waveform permits to build brightness images as
well. The phase shift is determined using a four-step algorithm

, where
are four samples of the reflected waveform at ,
phase shifted at . In practice, a square modulation waveform
is used [287].
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The TOF depth sensors suffer from the aliasing effect due to
the periodic nature of the modulated signal [287]. A phase shift
of sets the so-called ambiguity distance which is equal to
7.5 m at MHz. Lowering the modulation frequency
increases the ambiguity distance at the expense of decreased
spatial resolution. The solution of this problem to ensure both a
large range of unambiguous depth determination and reasonable
resolution is to use multiple modulation frequencies [287].

The TOF depth sensors outperform other depth sensors as a
result of the TOF measurement specifics. Uniform illumination
of the scene a priori assumes that, as a whole, the system may
operate with less light in comparison with coded light and fringe
projection techniques whose accuracy depends on the contrast
of the projected pattern. In addition, no moving light parts are in-
troduced and the eye-safety problem is avoided. The TOF mea-
surement is texture-independent, and the retrieval of 3-D coordi-
nates requires minimal post-processing procedures and can be
done without necessity of a baseline between the light source
and the camera. Thus, very fast frame rates can be achieved, and
tracking of moving objects can be easily realized. There have
been proposed CCD-based TOF systems as described in [288]
and [289], but the receiver part of the sensor can be designed as a
single low-cost CMOS chip combined with a CPU [290]–[292].
The depth resolution of the working TOF systems which at the
first place depends on the amount of light captured by the array
of pixels is of the order of a few millimeters. Performance of the
TOF depth sensor could be improved by hardware and software
noise reduction and precise calibration [293], which ensure re-
moval of the systematic errors and more accurate recovery of
the 3-D coordinates.

Several amplitude-modulated continuous-wave TOF range-
imaging devices are currently under development, such as the
SR2 and the SR-3000 developed by the Centre Suisse d’Elec-
tronique et de Microtechnique SA (CSEM) or the CanestaVision
DP205 developed by Canesta, Inc. The SR2 [294], [295] imple-
ments a CMOS/CCD sensor array with approximately 20 000
pixels and an illumination block of 48 infrared LEDs with

MHz. The SR-3000 has about 25 000 pixels [296] and back-
ground suppression to avoid saturation effects, which permits its
usage in outdoor conditions. The depth resolution varies from 5
to 10 mm. The Canesta system is a CMOS-based device [287]
that is able to operate in a dual-frequency mode having four
modulation frequencies (13, 26, 52, or 104 MHz).

The achieved depth resolution and their real-time operation
make the TOF range-imaging systems suitable for different
middle-accuracy applications, such as scene extraction for
3DTV, tracking, recognition, image understanding, autonomous
navigation, real-time modeling, and mapping, which all benefit
from the direct delivery of geometry information by the depth
images.

VII. CONCLUSION

The type of 3-D scene and its specific requirements for the
3-D dynamic display envisaged for its visualization predeter-
mine the choice of the proper methodology and instrumentation
for recording of a 3-D object shape and color and further
digital reconstruction. Evaluation of the inherent advantages
and drawbacks of the existing time-varying scene-capture
techniques shows that all of them might find applications in the

coming era of 3DTV. The low-cost single-camera technique
solves the problems in mono-view video content and is espe-
cially promising as a link between the available conventional
video sequences and the 3-D displays. Among the approbated
techniques for single-camera capture, the structure-from-mo-
tion method can be accepted as the most suitable approach
for capturing real life scenes. A perspective branch in this
area of research is development of specific scene-oriented
approaches with particular applications, such as the human
face and body capture techniques. On the other hand, imple-
mentation of synchronized multicamera acquisition imposes
stringent requirements on the hardware and increases the cost
of the overall 3DTV system. A variety of algorithms has been
proposed for creation of dynamic scene representations from
the data acquired from the multiview points. In this aspect, the
virtual free-viewpoint video generation from arbitrarily chosen
viewing angles is an important step for 3DTV displays. A
low-cost hardware alternative for real-time 3-D shape capture
of moving objects is the implementation of different types of
pattern projection, such as coded light approach or sinusoidal
fringe projection. The extraction of point clouds and color co-
ordinates of the recorded objects out of 2-D images by using a
one-shot system relies on development of decoding algorithms
from a single image or on the design of special methods for
simultaneous acquisition of several images. Finally, digital
holography is another candidate for low-cost capture systems,
provided that certain issues, such as image resolution, data
storage, and true color recording and reconstruction, are suc-
cessfully solved. Resolution achieved by the modern TOF
range-imaging system that are capable of determining the
distance map, i.e., the 3-D model of its environment, as well
as the local brightness in the scene in real time, make them a
useful tool in middle-accuracy applications of computer vision.

The time-varying 3-D scene-capture techniques are still rel-
atively immature to fulfill all of the existing requirements of
3DTV systems and remain a challenging research field. How-
ever, their potentials in areas such as computer graphics, virtual
reality, robot navigation, metrology, cultural heritage protection,
and biomedical investigations are yet to be fully exploited.
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