
Non-iterative Camera Calibration Procedure Using A Virtual Camera

Tobias Elbrandt, Ralf Dragon, Jörn Ostermann

Institut für Informationsverarbeitung
Leibniz Universität Hannover, Appelstr. 9A, 30167 Hannover, Germany
{elbrandt/dragon/ostermann}@tnt.uni-hannover.de

Abstract

This article presents a method to improve camera
calibration by separating determination of the non-
linear calibration parameters from that of the lin-
ear ones. We measure correspondences between the
distorted image on a camera target and a flexible
undistorted calibration pattern displayed on a TFT
monitor. Using these correspondences the image
of the camera may be projected onto the plane of
the calibration pattern to remove the distortion. We
prove that this projection follows the principles of
a pinhole camera and call it virtual camera. Using
the undistorted images of the virtual camera for tra-
ditional camera calibration methods, linear camera
parameters can be calculated with a 7.5% to 39.5%
higher precision compared to Zhang/Heikkilä. The
described procedure allows a camera calibration
process in a non-iterative way.

1 Introduction

Every time a camera is used for geometric measure-
ment, which is determination of the position or size
of an object or its distance to another object, it is
necessary to know the properties of the optical sys-
tem of the camera.

Determining these properties is a classic research
topic in computer vision [5][10][12] so the reader
is refered to established literature (e.g. [4], chap-
ter 6) for description of the parameters and how to
work with them. The main parameters needed for
measurement are the linear extrinsic and intrinsic
camera parameters. Extrinsic parameters describe
the position C̄c (translation to the origin of the co-
ordinate system1) and the orientation R̄c (rotation)
of the camera. Linear intrinsic camera parameters

1Cartesian coordinates are marked here with a crossbar over
the letter whereas there is no additional tag for homogeneous co-
ordinates.

describe the linear properties of the optical system
within the camera – i.e. the focal length f , aspect ra-
tio of the pixels sx/sy , shear r, and displacement of
the principal point (hx, hy). The linear parameters
may be conveniently combined into the so called
camera matrix Mc:

Mc = KcRc (1)
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Non-linear parameters describing radial, tangen-
tial, or prism distortion are also considered as in-
trinsic parameters (see [13] for their description).

Most calibration methods for single cameras
(Tsai [10], direct linear transformation [4], Zhang
[12], Heikkilä [5]) derive the parameters of the cam-
era model on the basis of corresponding points in
the world coordinate system and on the camera tar-
get. For this procedure, they need one or more cam-
era images of a planar calibration pattern or calibra-
tion object with marks on the surface with known
size or distance to each other. For each visible mark
the position on the camera target is determined giv-
ing a list of correspondences between points Pi in
world coordinates and points pi in camera target
coordinates, i.e. pixel. By using Equation (4) of
the mapping of a pinhole camera, these correspon-
dences are also modeled by algebraic means. The
projective linear factor λ is calculated such that the
third component of p equals 1.

p = λMcP (4)
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Traditional calibration methods determine the
coefficients of the camera matrix Mc minimizing
the sum of the errors d done by mapping the known
world points to the measured camera points:

M̂c = argmin
Mc

X
i

d(λMcPi, pi) (5)

Prerequisite for this approach is that the corre-
spondences between points in the world and the tar-
get can be described by the pinhole camera model.
The image of a scene taken by a pinhole camera is
undistorted. A real camera uses a system of dif-
ferent lenses and an aperture within the course of
the light rays to bundle the light projecting a scene
onto the camera target, so the image of the scene
becomes distorted. The distortion by the optical
system is represented here shortly with the function
l : (pc → p), pc, p ∈ (R,R, 1)T . With this func-
tion, mapping a point onto the camera target may be
written in contrast to Equation (4) as:

p = l(λMcP ) (6)

To be able to determine the camera parame-
ters although the mapping is distorted, many au-
thors typically describe the distortion l using a non-
linear mathematical model. The radial distortion
describes the major part of the distortion. It is esti-
mated by most of the established calibration meth-
ods like [12]. Some approaches additionally model
tangential distortion [5] and prism distortion [13].
By naming the distortion model lθ with the re-
spective parameter set θ, the camera parameters are
again determined by minimizing the sum of errors:

(M̂c, θ̂) = argmin
Mc,θ

X
i

d(lθ(λMcPi), pi) (7)

Multi camera calibration methods work quite
similar but they use corresponding points on camera
images from different views. Silhouettes [8] or cor-
responding feature points [9], on the recorded scene
may be used.

An analytical solution of Equation (7) cannot be
calculated in general. For this reason, an initial set
of distortion parameters is presumed to be able to
estimate the camera matrix Mc. Then the distortion
parameters are adjusted to minimize the projection
error. Afterwards, the camera matrix is estimated
again. This is done iteratively until the projection

error is small enough or there are no improvements
by adjusting the distortion parameters.

The basic premise for this approach is that the
distortion of a real lens system can be completely
described using algebraic formulas and that their
degrees of freedom can be calculated. Both assump-
tions are usually not valid: The lenses are different
to each other and normally have unknown charac-
teristics. There are manufacturing tolerances in the
fabrication process of both the lenses and the lens
system; the lenses are not perfectly symmetrical,
they are not exactly concentric and orthogonal to the
optical axis, etc. In addition, the global optimum of
Equation (7) cannot be calculated.

In this article we compensate the non-linear dis-
tortion l of the optical system prior to the camera
calibration. The distortion is measured by associ-
ating every point of the camera target with a cor-
responding point on a known image plane. If it is
known for every point of the camera target which
point of the image plane it is the mapping of, then
every camera image can be undistorted by repro-
jecting it onto that image plane.

A similar approach was presented in [7] where
correspondences between camera target and image
plane were measured using structured light shown
on a plasma display panel and then used to undis-
tort camera images. In contrast to that paper, we
quantify exactly the projection error at each point
of the camera target, whereas the other paper justs
fits in a line for visual control of its results. Also,
we proceed using the undistorted images for camera
calibration.

In photogrammetry, distortions are sometimes
calculated in a comparable manner using a réseau
technique [2]. A small list of correspondences is
build by measuring the position of grid points pro-
jected onto a film at exposure. The undistorted po-
sitions for the points of the image are then inter-
polated using these measured control points. Due
to the control points being too sparsely distributed,
this approach lacks accuracy.

We prove algebraically that by undistorting cam-
era images with the presented method the real cam-
era target is substituted by a virtual target with
known measurements and without distortions. The
usual iterative two-step camera calibration proce-
dure is substituted by a three-step non-iterative pro-
cedure. The first step of the procedure results in an
undistorted image of the scene. A second step ad-



justs the virtual target to an upright position. This
step can be skipped if the undistorted images are
used for photogrammetry only. After both steps,
there is a complete mapping from the real camera
to a virtual camera which is without distortions and
which has an optical axis identical to that of the real
camera.

In a third step, the images undistorted with this
mapping are used for traditional camera calibration,
skipping the estimation of the non-linear parame-
ters, to obtain the linear camera parameters of the
virtual camera. The big advantage is that the undis-
torted image of a calibration pattern follows the lin-
ear pinhole camera model, so the calibration proce-
dure is much more stable and precise since estima-
tion of the non-linear parameters can be skipped.

The following Section 2 describes the compen-
sation method in detail. Subsection 2.1 explains the
first step, the measurement and compensation of the
distortions, and Subsection 2.2 explains the second
step, the adjustment to an upright position. The last
Subsection 2.3 discusses practical considerations of
the proposed method. In the following Section 3,
measurements of the accuracy of the method and
their results are shown. The last Section 4 summa-
rizes the paper.

2 Measurement and compensation of
non-linear distortion

We assume that it is practically impossible to com-
pletely describe the properties of the distortion of an
optical system with a parametrized algebraic model.
Therefore, we determine for every point p on the
camera target the exact coordinates of the corre-
sponding point PV on a real image plane V whose
image is p. Having corresponding points for all
points on the camera target we are able to reproject
the camera image onto the plane V .

Figure 1 clarifies this approach. The object space
is projected onto the camera target through the fo-
cus. Due to the camera lens system, the pro-
jected image is distorted which is indicated by the
non-rectangular camera target. The light ray that
projects the world point PW onto the point p on the
camera target also goes through point PV of the vir-
tual target. As the image plane is undistorted by
definition, the camera image becomes undistorted

by reprojecting it onto V , the virtual target2.
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Figure 1: Mapping onto the virtual target

A set of points on the image plane is arranged
on a rectangular grid. Within the coordinate sys-
tem of the image plane, the position in homoge-
neous coordinates is pv = (u, v, 1)T . The image
plane is at position C̄I in world coordinates and is
rotated in space with the rotation matrix R̄I . Both
matrices may be combined to RI = R̄I

ˆ
I| − C̄I

˜
.

Naming the horizontal distance and the vertical dis-
tance between the points on the grid on the image
plane with dx and dy , respectively, one can calcu-
late the world coordinates PV of the point pv with
SI(u, v, 1)T = (dxu, dyv, 0, 1)T ):

PV = RISIpv (8)

with RI =

»
R̄I −R̄IC̄I

0 1

–

and SI =

2664
dx 0 0
0 dy 0
0 0 0
0 0 1

3775
The function f maps all points (u, v, 1)T of the

image plane onto the camera target:

p = l(λIMcPV ) (9)

= l(λIMcRISI(u, v, 1)T )

= f((u, v, 1)T ) (10)

By determining the correspondences Φ between
points (u, v)T on the image plane and points
(x, y)T on the camera target f : (u, v, 1) →
(x, y, 1) can be ascertained. Thus, by building the
inverse f−1 : (x, y, 1) → (u, v, 1) one gets the
mapping (provided that l is bijective):

f−1(p) = S−1
I R−1

I M−1
c λ−1

I l−1(p) (11)
2In the following text, the term image plane is used when talk-

ing about the source of the calibration points. The term virtual
target is used when the target of the reprojection is meant. How-
ever, these two planes are the same.



By reprojecting the point PW onto the virtual target
one receives

f−1(l(λW McPW ))

= S−1
I R−1

I M−1
c λ−1

I l−1(l(λW McPW ))

=
λW

λI
S−1

I R−1
I PW (12)

Since SI is not a square matrix, S−1
I can be cal-

culated using the pseudo inverse. Please note that
the term S−1

I R−1
I has size 3 × 4 like a homoge-

neous camera matrix; therefore it maps the point
PW onto the virtual target with the camera matrix
MV = S−1

I R−1
I with λV = λW /λI . Hence,

pv = λV MV PW (13)

This is the reason why we call the reprojection onto
the image plane a virtual camera. In contrast to
Equation 6, this mapping is calculated without the
distortion by function l.

If the image plane is orientated exactly orthogo-
nal to the optical axis of the camera and the hori-
zontal and vertical axes of the image plane and the
camera target are parallel to each other, then the re-
projected image is free of any distortion, no mat-
ter what physical origin it has. If the image plane
was not adjusted exactly, then the reprojected im-
age shows a certain slanted position. Subsection 2.2
describes how to compensate this slant.

2.1 Undistorted Virtual Camera

The first step of the compensation method is to
determine the correspondences Φ between points
(ui, vi, 1)T on the image plane V and points
(xi, yi, 1)T on the camera target. The exact posi-
tion and orientation of the plane in the world is rel-
atively irrelevant for this step given that only points
within the image plane are mapped onto the camera
target and the camera image is sharp enough to de-
termine the position of projected points on the cam-
era target.

In order to determine the correspondences, points
are displayed on the visible part of the image plane.
The method used for that does not matter in general
as far as the position is exact and well-known. A
conventional TFT-monitor is used here (Subsection
2.3) because a single white pixel on a black back-
ground has the effect of a point light source. For
every point (ui, vi, 1)T , ui, vi ∈ N displayed on

the image plane, which lies in the field of view of
the camera, the position of its image on the cam-
era target is determined with sub-pixel accuracy by
calculating its centroid.

The list of correspondences Φ : (ui, vi, 1)T →
(xi, yi, 1)T of all observable points of the image
plane describes the mapping function f with very
fine granularity. We use f for two purposes:
• Determine the inverse function f−1 in order to

convert camera target coordinates (2.1.1)
• Resample camera images onto the virtual tar-

get using a scanline-algorithm (2.1.2)

2.1.1 Building the Inverse Mapping Function

The points (ui, vi, 1)T on the image plane V build
a dense grid at discrete equidistant coordinates, i.e.
ui, vi ⊂ N. The corresponding points (xi, yi, 1)T

on the camera target are distributed densely, too, but
not necessarily at equidistant locations, i.e. xi, yi ⊂
Q. Inverting these correspondences directly would
result in an inverse function f−1 : Q2 → N2 of the
optical mapping function f .

To be able to easily reproject coordinates mea-
sured on the camera target onto the virtual target,
the inverse function f−1 should have a domain in
N2 and its codomain in Q2. This means, for every
point (xj , yj , 1)T , xj , yj ∈ N, on the camera tar-
get a point (uj , vj , 1)T , uj , vj ∈ Q on the image
plane has to be determined by interpolation.

This is done here with an image warping algo-
rithm [11]. When calculating the inverse function it
is assumed, that the mapping function is locally lin-
ear, which is reasonable as the points are very close
to each other.

The resulting inverse function f−1 can then
be used to convert camera target coordinates into
undistorted coordinates of the virtual target.

2.1.2 Undistortion Using a Scanline Algorithm

The list of correspondences may also be used di-
rectly, i.e. without inverting, to undistort camera im-
ages.

It was determined for every point Pi of the visible
image plane onto what coordinates pi on the camera
target it maps. Therefore, it is possible to reproject
the camera image onto the image plane by taking
the pixel value at position pi for the point Pi on the
image plane. As the coordinates of the points pi are
not discrete in general, the color/grey values have



to be interpolated, e.g. using a Sinc-function with
a Blackman-Harris window[3]. The filters for the
horizontal and vertical direction are separable, and
their coefficients have to be calculated only once for
a correspondence list. Therefore the calculation ex-
pense for the undistortion is within bounds for this
method. However, a bilinear interpolation would be
less expensive, but would result in images of lower
quality.

2.2 Deskewed Undistorted Virtual Cam-
era

If the image plane is not orthogonal to the optical
axis of the real camera, the reprojection adds a slant
to the image. To completely undistort reprojected
images, this slant has to be compensated. As it can
be seen in Figure 1, the real camera target and the
virtual target have the same focus. This fact does
not change if the virtual target is tilted. Two map-
pings that have the same focus are connected by a
homography, i.e. one mapping can be transferred
into the other. The mapping tilting the virtual tar-
get into the correct orientation is given by

p′v = M ′
V M−1

V pv (14)

Each point pv is reprojected into space using the in-
verse of the camera matrix MV of the virtual cam-
era to be projected onto the upright virtual camera
using the camera matrix M ′

V . The term M ′
V M−1

V

is denoted as homography.
The camera matrix M ′

V is a short form for
K′

V R′
V and is unknown from the beginning. By us-

ing a traditional camera calibration method, the ma-
trices KV and RV of the virtual camera are deter-
mined using undistorted camera images (see 2.1.2).
The intrinsic camera matrix K′

V should have the
same focal length and the same image resolution as
the virtual target, but the principal point of the up-
right virtual target is moved to P ′, the center of the
image.

To move the principal point to the image center,
the optical axis of the virtual target has to be rotated.
Figure 2 demonstrates this: On the left side, there
is the real camera target with the optical axis Ac

defined by Rc orthogonal on its center. The tilted
virtual target is shown on the right side of the dia-
gram. It is clear, that tilting the image plane may
move the principal point outside of the actual im-
age region. Now the principal point P is moved to

AV

P

P’
A

f

c=A’Vα

deskewed
virtual target

virtual target
Focus

camera target

Figure 2: The virtual target is tilted into an upright
position such that its principal point P moves to the
center P ′ of the image.

the center P ′ of the image, rotating the optical axis
of the virtual target to that of the real target. The
angles α and β needed for that rotation can be cal-
culated directly from the difference of P and P ′.
The optical axis AV defined by RV has to be ro-
tated around these angles to obtain A′

V defined by
R′

V , i.e. R′
V = Ry(β)Rx(α)RV with Rx(α) and

Ry(β) being the rotation matrices around the x- and
y- axis.

Finally, the homography M ′
V M−1

V required to
tilt the virtual target into an upright position accord-
ing to Equation (14), is given by:

M ′
V M−1

V = K′
V R′

V (KV RV )−1

= K′
V Ry(β)Rx(α)RV R−1

V K−1
V

= K′
V Ry(β)Rx(α)K−1

V (15)

By applying this homography onto the camera
matrix MV of the virtual camera, the virtual cam-
era gets an optical axis that is exactly orthogonal to
the virtual target and which intersects it in its cen-
ter. The deskewed virtual camera is completely de-
scribed.

2.3 Practical Considerations

This subsection describes the technique to deter-
mine the correspondences required for the undistor-
tion.

Firsts tests were done using a conventional TFT
monitor. It is reasonable to assume that its pixels
are equidistant in both directions, their distance can
be measured and the horizontal and vertical axes are
orthogonal to each other. The prerequisites for us-
ing it as a image plane are therefore given.



To measure the correspondences the camera is
orientated towards the TFT-monitor such that the
camera image only shows pixels of the monitor. To
prevent reverberations from the border of the mon-
itor, a certain distance to it has to be kept. A white
pixel on the monitor illuminates some sensor ele-
ments (ẋj , ẏj) of the camera target with the inten-
sities I(ẋj , ẏj). The center of gravity of the inten-
sities is given by the sum of the positions of the
elements each weighted with its intensity [1, Eq.
3.291]. For this method to work, the images of
the points on the monitor must be relatively sharp.

To normalize the intensity values, a black and a
white screen is shown and captured by the camera
at the beginning. The brightness is adjusted to the
best intensity range while preventing over- and un-
derexposure. Next, the center, the direction of the
axes, and the horizontal and vertical distances of the
points on the camera target are determined by dis-
playing three points in the center of the screen.

Now the actual measurement of correspondences
is started. A pattern consisting of single points ar-
ranged uniformly with horizontal and vertical dis-
tances rx and ry , respectively, is shown full screen.
The shorter the distance between the points, the
more points are displayed at the same time and
therefore, the less images have to be captured. On
the other hand, the distance between the points has
to be large enough such that the unsharp images of
two pixels do not overlap. The tests for this arti-
cle were done with a raster distance of (rx, ry) =
(32, 32).

Each point pattern is captured four times to re-
duce the effect of camera noise. Then the point
pattern is displayed at a new position. After all
32 ∗ 32 = 1024 point patterns, the correspondence
for every visible pixel on the monitor is measured;
the correspondence list Φ is completely determined.

3 Experimental Results

In this section, results of our camera calibration
method are presented and compared with a tradi-
tional calibration method. We used an IEEE1394
Prosilica EC 1380C single-CCD chip camera with a
mounted Schneider-Kreuznach Cinegon 1.4/8-0512
industrial lens. The full-color RGB images used
for the experiments were calculated using the high-
quality AHD demosaicing algorithm [6]. The non-
linear distortions were determined using a NEC

Figure 3: Upper left quarter of the difference be-
tween screen-shot and undistorted camera image of
about 600×450 pixel size. White means no differ-
ence, blue medium difference and red means big
difference. To be able to assess the colors an ad-
ditional color wedge is added. On the left side, a
zoom on the image shows that the line is perfectly
undistorted and has constant width.

MultiSync LCD1860NX TFT monitor.
In the first step, the correspondence list was de-

termined. Then, a checkerboard was displayed on
the monitor without touching camera and monitor.
The image captured by the camera was then undis-
torted using the scanline algorithm of Subsection
2.1.2. Now the difference between the undistorted
camera image and the screen-shot was calculated
and converted to a colored gradient to be able to
assess the difference values. No difference is dis-
played as white, medium difference as blue and big
difference as red. The upper left quarter of the re-
sulting image is shown in Figure 3.

There are three main observations: First of all,
one can recognize the checkerboard pattern. The
reason for this is that the black of the screen-shot
is really black (grey value 0) whereas the black as
seen by the camera is only dark grey (grey value
10). The difference between black and dark grey
can be observed. Secondly, the difference increases
near the upper left corner. This can be traced to the
fact that the pixel’s luminosity on the TFT monitor
lowers with a greater viewing angle. Both errors are
due to an insufficient normalization of the intensity
signal but have only a minor impact on the undis-
tortion method.

The third observation is that one can clearly see
the edges between the chessboards, due to a slightly



unsharp camera image. It is important that the edges
are absolutely straight and have constant width.
This means that the image was undistorted accu-
rately. Otherwise, the width of the edges would dif-
fer.

A second test examines the accuracy of the undis-
tortion more precisely. Camera images of the cap-
tured point patterns used for determining the cor-
respondence list Φ are undistorted using the scan-
line algorithm from Subsection 2.1.2. These undis-
torted images are again used as input for determin-
ing a correspondence list. If the determination of
the position of the points as well as the compensa-
tion of the optical mapping errors based on the first
correspondence list was perfect, every point in the
second correspondence list would be mapped to its
original location.

Measuring the distributions of the reprojection
errors in horizontal and vertical direction indicate
that both are approximately Gaussian distributed.
The standard deviation of the error in horizontal
direction is 0.0344 pixel and in vertical direction
0.0305 pixel. More than 99% of the errors are
lower than 0.09 pixel and 0.078 pixel, respectively.

The last experiment shows that by preprocess-
ing camera images with the presented undistortion
method, the accuracy of traditional camera calibra-
tion methods is substantially improved.

To estimate the intrinsic camera parameters of a
traditional calibration method, we use the camera
calibration tool of Jean-Yves Bouguet3 which im-
plements Zhang/Heikkilä [12][5]. Optionally, some
non-linear distortion parameters, i.e. radial distor-
tion of first to third order (κ1-κ3) and tangential
distortion of first and second order (t1, t2) can be
estimated. Pictures of a flat calibration pattern in 10
different positions and orientations are captured for
this purpose.

The standard deviations of the parameters in Ta-
ble 1 are given in pixel. In the first column the
method used to undistort the camera images is
listed. The second to fifth column give the stan-
dard deviations of the intrinsic camera parameters4.
Finally, the reprojection error for the calibration
points is given in the last two columns.

3Freely available under http://www.vision.caltech.
edu/bouguetj/calib_doc.

4The used calibration toolbox outputs three times the parame-
ters’ standard deviation instead because it aims to show the uncer-
tainties.

The first row shows the standard deviation of the
linear intrinsic camera parameters without prior es-
timation of the non-linear distortion parameters. In
the following five rows, the stabilities of the intrin-
sic parameters are listed if the non-linear distortion
parameters are estimated using the toolbox. The
second to last row shows the results of the estimated
parameters if the camera images are first undistorted
using our method and then are used for estimating
the linear camera parameters. The last row lists the
results when applying both the traditional and our
method for camera calibration.

As can be seen from the standard deviations in
the table, the accuracy of the estimation of the in-
trinsic linear camera parameters is substantially im-
proved if the images are undistorted before with the
presented method, while decreasing the reprojec-
tion error. Since different camera parameters have
different stability in the reference method, only the
most stable results are used here for comparison:
It can be calculated, that the accuracy of the focal
lengths fsx and fsy is improved by 20% and 7.5%,
respectively5, whereas the stability of the estimation
of the principal point (hx, hy) is yet improved by
37.5% and 40%, respectively. When trying to es-
timate any distortion parameters on the undistorted
images, the reprojection error is slightly improved
but the accuracy of the camera parameters drops.

It has to be pointed out that these are results for
a normal lens, i.e. no wide-angled or fisheye lens.
This is especially remarkable because the lens is
of high industrial quality, which normally means it
was manufactured with high precision.

4 Conclusions

This article introduces a non-iterative camera cali-
bration procedure. The method uses a flexible cal-
ibration pattern displayed by a TFT monitor. By
capturing a high number of different calibration pat-
terns from the monitor, a correspondence list be-
tween pixels on the camera target and points on the
calibration patterns is calculated. Using this cor-
respondence list, subsequent images may be undis-
torted precisely by projecting them onto a virtual
target. The intrinsic linear camera parameters of
this virtual target are then determined using a tra-
ditional calibration method. These can be adjusted

5Since the pixel width and height need not be equal the focal
lengths may be different.



Intrinsic parameters Reprojection error
Undistortion method σ[fsx] σ[fsy] σ[hx] σ[hy] σ[ex] σ[ey]

no undistortion 1.6964 1.7701 0.9062 1.1979 0.9673 0.7906

re
fe

re
nc

e undistortion using κ1 0.5728 0.5877 0.4156 0.4982 0.2534 0.3144
undistortion using κ1, κ2 0.4846 0.4980 0.3547 0.4228 0.1905 0.2812
undistortion using κ1, κ2, t1 0.4700 0.4836 0.3430 0.6514 0.1899 0.2684
undistortion using κ1, κ2, t1, t2 0.4697 0.4833 0.8893 0.6513 0.1898 0.2681
undistortion using κ1-κ3, t1, t2 0.4833 0.4976 0.8898 0.6509 0.1896 0.2681

ne
w

undistortion using virtual camera 0.3749 0.4479 0.2144 0.2555 0.1599 0.2316
undistortion using virtual camera
and additionally κ1-κ3, t1, t2 0.3785 0.4335 0.7552 0.5151 0.1433 0.2236

Table 1: Impact of the virtual camera on camera calibration. The standard deviations of the parameters are
given in pixel.

to rotate the optical axis of the virtual camera onto
that of the real one.

Examination of the accuracy of the undistortion
method shows a very low reprojection error. Undis-
torting camera images with our method greatly im-
proves the accuracy of traditional calibration meth-
ods by 7.5% to 39.5%. Since the undistortion pro-
cess is independent from the actual camera calibra-
tion process, it is very suitable to be used as a pre-
processing method.

In particular, multi camera calibration methods,
which are very complicated for distorted camera
images, should greatly benefit by using this method.
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