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Abstract. We present a new model-based approach for an automated
labeling and segmentation of the rib cage in chest CT scans. A mean
rib cage model including a complete vertebral column is created out of
29 data sets. We developed a ray search based procedure for rib cage
detection and initial model pose. After positioning the model, it was
adapted to 18 unseen CT data. In 16 out of 18 data sets, detection,
labeling, and segmentation succeeded with a mean segmentation error of
less than 1.3 mm between true and detected object surface. In one case
the rib cage detection failed, in another case the automated labeling.

1 Introduction

Although bony structures show high contrast in Computed Tomography (CT)
images, their detection, identification, and correct segmentation remain still a
challenge today. The image analysis process is complicated by, e.g., similarity of
adjacent structures to the object to be segmented, partial volume effects resulting
in no clear object boundary, or the fact that scans frequently contain pathology.
One attempt to overcome these difficulties is to include prior knowledge in the
form of anatomical models.

The rib cage shapes the human chest protecting all inner soft-tissue organs.
For that reason, a geometric model of the osseous thorax is of special interest
because it can serve as a reference for the location of soft-tissue organs. A model
of the vertebral column is in itself of clinical relevance since it may support
orthopedic and neurological applications. In this context, a precise segmentation
of the vertebral column including an identification of the individual vertebrae is
essential.

Model-based segmentation is known to be dependent on a good initialization.
Once adaptation is misled, it can hardly recover. Especially in the case of the
rib cage with its amount of similar adjacent structures, careful positioning is an
important point.
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To our knowledge not many publications address the segmentation and la-
beling of the rib cage or the complete vertebral column. In contrast to semi-
automatic region-based approaches, Shen et al. present a fully automatic tracing-
based algorithm extracting and identifying rib centerlines [1]. A different work
also providing a segmentation and labeling of individual ribs is done by Staal et
al. [2]. Compared to our method, these approaches are specifically tuned to ribs
and do not offer an additional vertebra segmentation.

From the modeling perspective, some work has been done in modeling partic-
ular complex anatomical objects as, e.g., the human heart [3]. Also the modeling
of individual vertebrae has been addressed earlier [4]. However, to our knowl-
edge it is the first time that a complete osseous thorax has been modeled and
adapted to CT data scans. With its amount of particular structures, the thorax
is thereby an extension from individual object to object-group modeling.

The remainder of this text is organized as follows. Section 2.1 describes the
setup of the initial rib cage model. For positioning of the complete model to
given CT data, a ray search based approach was developed which is introduced
in Sect. 2.2. As an alternative, Sect. 2.3 describes an iterative positioning of
vertebra models. By using these approaches, relevant structures were segmented
in 29 CT data sets from which a mean model has been built as described in Sect.
2.4. The results of the positioning and adaptation of the mean model to unseen
data are given in Sect. 3.

2 Methods

2.1 Inital Model Setup

Triangulated surface models of all 24 ribs and all 24 presacral vertebrae were
initially created. Vertebra model generation was based on the scanning of com-
mercially available plastic phantoms with a Philips Brilliance40 CT scanner.
For rib model generation, an interactive segmentation from patient CT data
was performed similar to [3]. By adapting all created surface models to their
corresponding anatomical objects in reference patient CT data, the individual
models were assembled to form an initial rib cage model including a complete
vertebral column on the basis of patient data. Adaptation was done using a
shape-constrained deformable surface model approach [4], which minimizes an
energy term consisting of internal Eint (shape similarity) and external Eext (im-
age features) energies.

Due to the characteristic shape of the ribs, we establish a centerline-based
description as an alternative for rib surface meshes. We calculate a rib’s center-
line by iteratively cutting a given rib mesh with planes being perpendicular to
the surface. The center points of the obtained cut contours correspond to the
desired centerline points. Shape information is added to the centerline by calcu-
lating an ellipse fit [5] to each cut contour. Between centerline points and ellipse
parameters, we interpolate using B-Splines. Compared to a simple surface mesh
description, this alternative enables an automatic rib surface generation when
the location of the centerline of a rib is given and the centerline is identified.



Automated Model-Based Rib Cage Segmentation and Labeling in CT Images 3

2.2 Global Model Positioning

Before positioning the model to a data set, at least parts of the corresponding
structures have to be found. Since the ribs provide a framework for the entire
chest, a proper positioning for the complete model can be determined from a
correct rib detection. For object detection, we apply a ray search based approach
[6]. By sending rays through the data set searching for a typical gray value profile,
rib candidates can be detected. Due to the characteristic shape of the thorax,
rib detection is divided into two symmetrical problems - one search for the left
and one for the right ribs. In each case, a radial cylindrical ray search is applied
in every image slice with an angular sampling of n = 180 and the cylinder axes
pointing in head-foot direction. The location of the cylinder axes are determined
by the top points of the lungs.

With the settings of the cylindrical ray searches, the profile for rib detection
can be defined. A ray crossing a rib bone shows a pattern of a high gray value
when entering the rib through cortical bone followed by a lower one when travers-
ing the bone marrow and again a high gray value exiting the rib through cortical
bone. Before crossing a rib, a ray passes through lung tissue and a certain length
of soft tissue. The entire profile is shown in Fig. 1. If a ray owns the defined
profile, the middle point of the two positions, where the ray enters and exits the
rib, is saved as a rib candidate. After detection, left and right rib centerlines
are extracted seperately out of the candidates by using the coordinate system
of the radial cylindrical ray searches as a reference. At first, the center of mass
of candidates of successive slices obtained from rays with the same angle in the
cylinder coordinate system is calculated. Afterwards, all combined candidates
are grouped to individual rib clusters. Neighbouring candidates belong to the
same cluster if they have approximately the same distance to the origin of the
cylinder coordinate system and do not significantly vary in their z-coodinate.

Fig. 1. Defined search profile for rib detection. The individual lengths are able to vary
between zero and empirically determined maximal values. The thresholds Tcm and Tlung

separate the particular crossings. While Tlung is constantly set to Tlung = −100 HU, the
exact value for Tcm has to be automatically determined for each patient.
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Model centerlines and extracted centerlines are registered with an iterative clos-
est point (ICP) algorithm [7] allowing an affine transformation. The extracted
centerlines are identified by registering all possible model combinations. If for
instance seven rib pairs are extracted, combination 1-7, 2-8,...6-12 are registered.
The configuration with the minimal residual error is supposed to correspond to
the true configuration. After identifying the detected ribs and iteratively regis-
tering model centerlines to candidates, we apply a thin-plate spline approxima-
tion [8] of centerline points in order to cope with inter-patient variability of rib
centerlines and to provide an improved positioning for the following segmenta-
tion. To take possible outliers into account, approximation is preferred to pure
interpolation. An example for the registration is given in Fig. 2.

With the found location of the rib centerlines and their identification, rib sur-
face models are automatically generated as mentioned in Sect. 2.1. The initial
positioning of the vertebrae is given by applying the transformation obtained
from the rib cage model registration. However, the vertebrae can be segmented
more precisely when translating the vertebra models in direction of the mean
difference vectors calculated out of the locations of the first centerline points of
corresponding ribs after global model registration and thin-plate spline approx-
imation.

Fig. 2. An example for the entire registration process. The black dots correspond with
the extracted centerlines of the rib candidates. The blue lines are the registered center-
lines of the model using ICP. The red lines indicate the difference vectors of candidates
and closest model centerline point of the corresponding rib. After thin-plate spline ap-
proximation, the final positioning of the model is found (yellow). See electronic version
for color figure.

2.3 Iterative Vertebra Model Positioning

Global model positioning requires thoracic CT scans covering the entire chest.
Since the approach determines the initial model pose by detecting ribs it can not
be applied for, e.g., lumbar or head-neck scans. Due to this fact, we developed an
alternative model positioning for the vertebra models based on object relations.
In order to express relations between the individual vertebrae, we have defined a
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local vertebra coordinate system (VCS). Since the shape of the vertebrae signifi-
cantly changes down the spine, the VCS had to be derived from typical invariant
object characteristics.

The definition of the VCS is based on the automatic calculation of three
object-related simplified representations: a cylinder fit to the vertebral foramen,
the middle plane of the upper and lower vertebral body surfaces, and the verte-
bra’s sagittal symmetry plane (see Fig. 3). Out of the three representations, the
VCS was defined. The intersection point of the axis of the fitted cylinder with
the middle plane defines the origin of the VCS. The normal vector of the middle
plane defines the zvcs-axis. The xvcs-axis is defined as the orthogonal component
of the normal vector of the symmetry plane to the zvcs-axis. The yvcs-axis is
defined as the cross-product of the zvcs- and the xvcs-axis.

By using the derived object relations expressed in the form of VCSs, the
vertebra models can be iteratively positioned. Starting from one adapted ver-
tebra model, neighboring models can be positioned in the data set by applying
the transformation between corresponding vertebrae obtained from the vertebral
column model. From this initial position, the models are automatically adapted
using again [4] and their patient specific VCSs are calculated. An iterative repeti-
tion of this process provides a segmentation of the shown extract of the vertebral
column.

(a) Cylinder fit (b) Middle plane (c) Symmetry plane

Fig. 3. Different vertebra representations. An example for a cylinder fit to the vertebral
foramen is given in (a). Figure (b) shows the middle plane of the vertebral body upper
and lower surfaces. In each case, the corresponding automatically detected triangles
are shown as filled. The symmetry plane is shown in (c).

2.4 Mean Model Building

For mean model generation, we adapted the initial model to a sample of 29 CT
data sets showing different portions of the rib cage and the vertebral column.
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In 17 data sets, all being chest CT scans, the model was positioned with the
approach described in Sect. 2.2 and adapted using [4]. In the other twelve data
sets, being whole spine, head-neck, thoracic, and lumbar scans, only the ver-
tebrae were segmented using the iterative positioning from Sect. 2.3. In each
case, the automatic adaptation was inspected by the first author and local mis-
adaptations were manually corrected. A clinical expert verified the results. By
adapting the same particular surface models to different patient data sets, point
correspondences between the models were preserved.

Usually, mean model building of individual objects is based on initially regis-
tering all corresponding meshes to one reference by a single global transformation
and then averaging all vertex positions. However, in the case of a constellation of
objects as, e.g., the osseous thorax not only the mean shape of the individual ob-
jects but also their mean location relative to the others has to be found. For that
reason, we apply an iterative registration and averaging process. We start with
the selection of one reference vertebra, register all corresponding vertebrae from
other samples to that chosen reference using a rigid transformation (6 degrees
of freedom) and finally average vertex positions. Starting from the calculated
mean vertebra model, we register corresponding vertebrae to the mean shape
and apply the transformation at first on the upper neighboring vertebrae. By
averaging again the vertex positions of the transformed neighboring vertebrae,
we obtain the corresponding mean shapes and also their mean location relative
to the start mean vertebra model. An iterative execution of this process provides
the upper part of the mean vertebral column. In the same manner, the lower
part can be obtained. One advantage of this procedure is the ability to cope with
sample data containing different portions of the vertebral column. In the case
of the ribs, corresponding neighboring vertebrae are registered with the mean
vertebra models. The obtained transformation is then applied on the rib models
and finally vertex positions are again averaged.

3 Results

For adaptation of the mean rib cage model to unseen data, we followed the two
different approaches for model positioning from Sect. 2.2 and Sect. 2.3. Both
approaches were performed on 18 chest CT data sets that were part of the
ensemble of the 29 data sets. In order to simulate model adaption to unseen
data, the mean rib cage model has been generated by leaving out in each case
the data set under consideration. All 18 data sets show a resolution of 0.85-0.97
mm in x- and y-direction and 2.5 mm in z-direction.

The results of the automatic adaption were inspected by the first author
and manually corrected if necessary. Again, a physician verified the corrections.
In each case, the mean and maximal distances between adapted and corrected
rib and vertebra models were calculated for all meshes of an entire data set
and afterwards averaged resulting in mean and maximal distance values, dmean

and dmax. As distance measure, we calculated the Euclidian distance between
corresponding vertices.
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Automatic rib detection and subsequent extraction of rib centerlines following
Sect. 2.2 was successful in 17 data sets. In the remaining case, the ray search
based approach could only find very few candidates so that the centerline ex-
traction failed and the rib cage model could not be positioned. In 16 out of the
remaining 17 cases the following identification succeeded. One data set did not
show a significant minimum after ICP registration. After finding an initial posi-
tion, all particular surface models were adapted individually to their correspond-
ing anatomical structure using [4]. The complete procedure including detection,
identification, positioning, and adaptation took less than 5 min on a workstation
with 2.16 GHz. The results of the segmentation are shown in Table 1. With a
mean distance error over all data sets of 1.27 mm for the vertebrae and 0.36 mm
for the ribs, we achieved an adequate level of accuracy on average. However, lo-
cal misadaptations, e.g., at the vertebra rib articulation, cause significant local
maximal errors. In one case, most parts of the model adapted to neighboring
structures caused by an imprecise object detection. In order to give a visual
impression, Fig. 4 (a) shows the segmentation result in one image slice of one
arbitrarily chosen data set and the corresponding adapted model in Fig. 4 (b).

Compared to the positioning and adaptation of the complete model, we ob-
tained similar results for the segmentation of the vertebral column using the it-
erative adaption from Sect. 2.3. In each case, we chose the lowest vertebra shown
in the data set as start vertebra. The mean values for dmean and dmax were 1.12
and 5.56 mm. However, in one data set the approach completely failed. Due to
a vertebra fracture, one vertebra could not be segmented correctly, so that the
positioning of all subsequent models was incorrect resulting in misadaptation.

Table 1. Summary of model adaptation to 16 data sets.

vertebra adaptation rib adaptation
min mean max min mean max

dmean [mm] 0.30 1.27 1.8 0.21 0.36 0.92
dmax [mm] 4.35 6.27 9.41 3.31 7.01 11.43

4 Conclusion

Model-based segmentation requires careful positioning. Especially, in the case
of the rib cage with its amount of similar neighboring structures, misadapta-
tion to neighboring structures is a crucial point. However, with the developed
positioning, the individual models adapted in almost all cases correctly to their
corresponding image objects. In 16 out of 18 data sets, detection, labeling, and
segmentation succeeded with a mean distance between the true and the detected
object surface of 1.27 mm in case of the vertebrae and 0.36 mm in case of the
ribs. An alternative approach for spine segmentation was performed that uses
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(a) Image Slice (b) Adapted Model

Fig. 4. Adapted mean model to unseen image data. Figure (a) shows the result in one
image slice. Color coding illustrates labeling (see electronic version). Each label corre-
sponds to the correct anatomical object. The arrow points to a local misadaptation.
The adapted model is shown in (b).

object relations derived from the mean model. This approach was successful in 17
out of 18 cases with a mean distance of 1.12 mm. We believe that we achieved
an acceptable level of accuracy for some applications. If a higher accuracy is
needed, the results may serve as a good basis for a locally detailed delineation.
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