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ABSTRACT

We present a layered predictive compression approach for time-
consistent dynamic 3D meshes. The algorithm decomposes each fra-
me of a dynamic 3D mesh in layers employing patch-based mesh
simplification techniques. This layered decomposition is consistent
in time. Following the predictive coding paradigm, local temporal
and spatial dependencies between layers and frames are exploited
for compression. Prediction is performed vertex-wise from coarse to
fine layers exploiting local linear and non-linear dependencies bet-
ween vertex locations for compression. It is shown that a non-linear
predictive exploitation of the proposed layered configuration of ver-
tices can improve the compression performance upon other state-of-
the-art approaches by more than 15% in domains relevant for appli-
cations.

Index Terms— Animation compression, dynamic 3D mesh co-
ding, scalability, layered predictive coding, time-consistent mesh se-
quence.

1. INTRODUCTION

Applications based on static and dynamic 3D content like, 3D navi-
gation services and 3D television, are coming closer to reality. Effi-
cient storage and broadcasting of 3D content gets crucial importance
for commercial success of this new emerging technologies. Due to an
increasingly broadening range of access networks, like the Internet
or local area networks, mobile networks, etc., the bit rate of com-
pressed dynamic 3D content has to be adapted to network transfer
rates and end-user devices. We developed a layered predictive com-
pression scheme. This technique enables to encode 3D content once
only, while decoding can be performed with a quality adapted to the
capacity of the network and the end-user device. This is achieved by
creating structured bit streams that allows for layer-wise decoding
and successive reconstruction of 3D content with increasing quality.

Dynamic 3D content is usually represented by a sequence of 3D
meshes called frames. Frames consist of two types of data: connec-
tivity and 3D locations. In this paper we assume that we are de-
aling with frames that have constant connectivity throughout time,
i.e. time-consistent mesh sequences consisting of F frames and V
vertices per frame. Each vertex v in frame f is associated with a lo-
cation in 3D space denoted by pf

v for v ∈ V := {1, . . . , V } and
f ∈ F := {1, . . . , F}. Furthermore, the set of all vertices V is de-
composed into L layers, i.e. disjoint sets of vertices Vl for 1 ≤ l ≤ L
with the property ∪L

l=1Vl = V (see Fig. 1).
Since connectivity does not change throughout the entire mesh

sequence, it has to be encoded only once. We assume that connecti-
vity is compressed in the beginning of the encoding process by one
of the nearly optimal connectivity compression techniques [1, 2].
While connectivity does not vary over time, vertices change their
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Fig. 1. Illustration of a decomposition of two frames into three
layers.

location. Therefore, the major part of an encoded mesh sequence ge-
nerally consists of vertex locations. For this reason, in this paper we
concentrate on compression of vertex locations of time-consistent
dynamic 3D meshes.

The rest of the paper is organized as follows. Section 2 gives an
overview about recent developments in the area of compression of
dynamic 3D meshes. An overview of the proposed scalable coder is
given in Section 3, describing in detail the decomposition in layers,
prediction, and entropy coding. In Section 4, compression results are
evaluated and discussed. Finally we end with a conclusion in Section
5.

2. RELATED WORK

Several approaches for compression of dynamic 3D meshes have
been presented recently. Karni and Gotsman [3] and Sattler et al.
[4] transform dynamic meshes using principal component analysis
(PCA) to reduce the amount of coded data. Guskov et al. [5] and
Payan et al. [6] propose wavelet-based approaches for compressi-
on. While Guskov et al. apply the wavelet transform for each frame
separately exploiting later the temporal coherence between wavelet
coefficients, Payan et al. apply the wavelet transform in temporal
direction on vertex trajectories and use a model-based entropy co-
der for entropy compression. A method for error resilient streaming
of dynamic 3D meshes that minimizes the perceptual effect of data
loss was introduced by Varakliotis et al. [7]. Recently Müller et al.
[8] presented a rate-distortion optimized compression scheme which
exploits the coherence between motion vectors by combining oc-
tree based motion vector clustering with an optimized selection of a
compression mode for each cluster. Yang et al. [9] and Ibarria and
Rossignac [10] presented vertex traversal based compression algo-
rithms using linear predictors. In the first paper a parallelogram-like



Fig. 2. Decomposition of mesh connectivity in patches with degree
≤ 6. Gray shaded triangles are part of patches, while white triangles
are not.

prediction rule is applied, while in the second paper motion vector
averaging is employed to exploit local inter and intra frame cohe-
rence between vertex locations. Stefanoski and Ostermann [11] pre-
sented a non-linear angle-preserving predictor for vertex traversal
based compression, improving the prediction accuracy at high bit-
rates compared to linear predictors. Recently, Stefanoski et al. [12]
presented a spatially and temporally scalable linear predictive coding
approach, showing that a layered exploitation of spatio-temporal de-
pendencies can improve coding efficiency. The algorithm presented
in this paper is based on [11, 12]. It uses a layered configuration of
vertices [12], which is exploited for predictive coding of dynamic 3D
meshes with increased coding efficiency. In [12] a linear predictor is
applied. Here we extend the approach by a non-linear predictor.

3. LAYERED PREDICTIVE CODING

The coder presented in this paper follows the predictive coding para-
digm. In this section we describe a layered one-directional predictive
coder (LOPC). A simple extension to a predictive coder supporting
bi-directional prediction is described in Section 4. LOPC encodes
all frames in order 1, . . . , f − 1, f, . . . , F encoding all vertex loca-
tions pf−1

v with v ∈ V before encoding all pf
v with v ∈ V . Vertex

locations pf
v of an arbitrary frame f are encoded layer-wise in order

v ∈ V1, . . . , v ∈ Vl, . . . , v ∈ VL,

starting with all vertex locations of the base layer V1 and ending
with all vertex locations of the highest layer VL. Fig. 1 illustrates the
organization in layers.

3.1. Layer Design

Layers, i.e. disjoint sets Vl, are defined by employing a determini-
stic mesh simplification technique. The basic simplification opera-
tion used in this algorithm is based on patches. A degree-d patch
is a set of triangles incident to a vertex of valence d. In Fig. 3(a) a
gray shaded degree-6 patch is presented. The employed simplificati-
on algorithm consists of two major steps: Patch Decomposition and
Simplification.

Patch decomposition determines a series of K non-overlapping
patches of degree 6 or lower, described by their middle vertices
w1 . . . , wk, . . . , wK (s. Fig. 2). Subsequent simplification is perfor-
med only to these patches [12].

All K patches obtained during patch decomposition are traver-
sed again in the order they were conquered during decomposition.
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Fig. 3. Illustration of patch-based vertex removal: (a) a degree-6
patch with middle vertex wk, (b) patch after removal of wk, (c)
re-triangulated patch. Numbers represent valences of corresponding
vertices.

The middle vertex wk of each patch is removed and the remaining
polygon is re-triangulated (see Fig. 3). We define the set of all possi-
ble re-triangulations of a degree-d patch as Td := {1, . . . , Td} (see
Fig. 4). We select that triangulation t for re-triangulating a patch
which leads to the smallest deviation of patch vertex valences from
the desired valence 6. Overall, this kind of selection reduces the ab-
solute deviation of valences from valence 6. Hence, it prevents the
creation of vertices with large valences, which usually lead to long
narrow triangles. Furthermore, large vertex valences would also lead
to many valence 3 vertices, which can not be predicted accurately
later on.

3.1.1. From Simplification to Layers

The set of all vertices V is decomposed in L disjoint subsets Vl by re-
cursively applying the procedures of Patch Decomposition and Sim-
plification to the already simplified connectivity. First, patch decom-
position and simplification is applied to the connectivity consisting
of vertices in V . Thus, a set of KL vertices VL = {wL

1 , . . . , wL
KL

}
is removed and a simplified connectivity consisting of vertices in
V \ VL remains. Recursively applying this procedure to the sim-
plified connectivity we obtain for each l = L− 1, . . . , 2 a set of
vertices Vl = {wl

1, . . . , w
l
Kl
} and a simplified connectivity consi-

sting of vertices V \ ∪L
k=lVk. At last we define the base layer as the

remaining set of vertices V1 := V \ ∪L
k=2Vk.

Let N (v) denote the set neighboring vertices (1-ring) of vertex
v. Patch based simplification guarantees that the neighbors of each
vertex are located in the layers below, i.e. for each vertex v ∈ Vl for
l = 2, . . . , L we have N (v) ⊂ ∪l−1

k=1Vk. In the following it will be
shown that a configuration of interleaving vertices like this allows a
robust exploitation of inter layer dependencies of vertex locations pf

v

in space and time.
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Fig. 4. Triangulations Td for d = 4, 5, 6.
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Fig. 5. Non-linear prediction based on encoded neighboring vertex
locations in spatial and temporal direction.

3.2. Prediction

In order to exploit the coherence between vertex locations in spatial
and temporal direction, predictive coding is applied. Vertex locations
pf

v which are part of the base layer, i.e. v ∈ V1, are encoded for
f = 1, . . . , F using the single resolution predictive coder [11]. After
having encoded all vertex locations of the base layer of a frame f ,
vertex locations of higher layers of the same frame are encoded.

Vertex locations pf
v part of a layer l > 1 are predicted using al-

ready encoded vertex locations. We employ two predictors, one line-
ar motion vector averaging predictor predmvavg(v, f) [12] and a new
non-linear predictor predpatch(v, f) For each layer l in each frame
f , we select that predictor, which leads to a lower prediction error.
Thus, L additional bits of side information are encoded per frame, in
order to specify for the decoder which predictors were used.

Both predictors, predmvavg(v, f) and predpatch(v, f), use only
encoded vertex locations of the local spatio-temporal neighborhood,
i.e. pf−1

v and all pf−1
v′ and pf

v′ with v′ ∈ N (v) are used for predic-
tion of pf

v with v ∈ Vl. For convenience, we define first a function
which calculates the barycenter of a vertex v in frame f :

bary(v, f) =
1

|N (v)|
X

v′∈N (v)

pf
v′ .

The motion vector averaging predictor also used in [9] is defined as:

predmvavg(v, f) = pf−1
v − bary(v, f − 1) + bary(v, f).

We propose a new non-linear predictor predpatch(v, f), which
preserves the spatial relationships of vertex locations of a patch in
frame f−1 also in frame f when predicting pf

v (Fig. 5). Let A be an
orthonormal 3× 3 matrix, which is calculated based on neighboring
encoded vertex locations of frames f − 1 and f . We define

predpatch(v, f) = A
“
pf−1

v − bary(v, f − 1)
”

+ bary(v, f).

Matrix A is calculated as the product of orthogonal coordinate fra-
mes Mf−1 = (~xf−1, ~yf−1, ~zf−1) and Mf = (~xf , ~yf , ~zf ), which
are attached in the barycenters of the corresponding patches in fra-
mes f − 1 and f , respectively (Fig. 5). Thus, A := Mf−1(Mf )T is
a rotation matrix predicting the rotation of vector pf−1

v −bary(v, f−
1) from frame f −1 to frame f relative to its barycenter. Coordinate
frames Mf−1 and Mf are determined here by calculating a regres-
sion plane through encoded neighboring vertex locations of vertex v
in frame f − 1 and frame f , respectively, which involves non-linear
operations.

3.3. Quantization and Entropy Coding

Prediction errors δf
v = pf

v − p̂f
v are uniformly quantized and entropy

coded in order to exploit statistical dependencies. We apply an adap-
tive order-0 arithmetic coder combined with Golomb codes [11] for
entropy coding. Separate entropy coders are employed for encoding
quantized predictions errors of each layer l, adapting arithmetic co-
ders separately to statistical distributions of residuals in each layer.

4. EVALUATION AND RESULTS

For experimental evaluation, we used the dynamic meshes Chicken
consisting of 400 frames and 3030 vertices per frame and Cow con-
sisting of 204 frames and 2904 vertices per frame. Evaluation with
other dynamic meshes led to comparable results. As result of the
layered representation of connectivity, we obtain time-consistent dy-
namic meshes in different spatial resolutions (Fig. 1). The connecti-
vities of the sequences Chicken and Cow were decomposed in 8 and
6 layers respectively. Each time a new layer is added, the number of
vertices is increased by about 38%, i.e. spatial resolution increases
with a nearly constant factor.

In order to show comparative results we used the error measure
presented in [3], which is denoted here as KG error. This measure
calculates a normalized vertex-wise L2 distance. Bit rate is measured
in bits per vertex and frame (bpvf ). In order to allow a comparison
with other approaches using this measure, all vertex locations, i.e.
all L layers per frame, are encoded.

Before entropy coding, prediction errors are quantized uniform-
ly in each spatial direction using a predefined quantization bin si-
ze ∆ [11]. Operational rate-distortion curves shown in Fig. 6 were
produced by varying ∆. Besides the already in Section 3 introdu-
ced LOPC, which supports only one-directional prediction based on
a previous frame f − 1, we evaluated also a coder supporting bi-
directional prediction (LBPC). It is realized by first encoding an odd
frame f predictively based on an encoded odd frame f − 2 and then
encoding the even frame f − 1 using bi-directional prediction. It is
performed by calculating the average of two one-directional predic-
tions, one based on frame f and the other one based on frame f − 2.

In Fig. 6 the proposed coders LOPC and LBPC were evalua-
ted against state-of-the-art compression algorithms. Due to the usa-
ge of different error measures we were not able to compare against
all algorithms mentioned in Section 2. We compared against the co-
der Dynapack [10], the single-resolution predictive coder (SRPC) of
Stefanoski and Ostermann [11], the layered one- and bi-directional
linear predictive coders (LOLPC and LBLPC) of Stefanoski et al.
[12], the wavelet based approaches of Payan et al. (TWC) [6] and
Guskov et al. (AWC) [5], and the PCA-based approach of Sattler et
al. (CPCA) [4].

Both presented coders, LOPC and LBPC, outperform all other
approaches. Note that an error of 0.02 for Chicken and 0.15 for Cow
can be regarded as lossless with regard to visual quality. In this do-
main wavelet and PCA based approaches are outperformed signifi-
cantly. At an error of 0.02 for Chicken LOPC achieved gains in bit-
rate of about 5.5% against SRPC, while LBPC shows gains of over
17%. Similarly at an error of 0.15 for Cow LOPC achieved gains
in bit-rate of about 14% against SRPC, while LBPC shows gains of
over 19%. In domains of higher errors gains are even larger, i.e. over
20%. Obviously, a layered configuration of interleaving vertices in-
creases the coding efficiency of predictive coding approaches. LOPC
achieves gains in bit-rate of about 13% compared to LOLPC, while
LBPC achieves even higher gains of over 15% compared to LBLPC.
Thus, an additional exploitiation of non-linear dependencies leads to
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(a) Sequence Chicken encoded using l =8 layers. An error of 0.02
enables subjectively lossless representation.
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(b) Sequence Cow encoded using l =6 layers. An error of 0.15 ena-
bles subjectively lossless representation.

Fig. 6. Evaluation results.

significant gains in domains relevant for applications. LBPC shows
better compression performance than LOPC. This has to be attribu-
ted to an increased predictor robustness against quantization errors,
i.e. an increased prediction accuracy, due to bi-directional predicti-
on. Overall, layered exploitation of non-linear dependencies leads to
additional gains in bit-rate providing the feature of layered decoding
without any costs in bit-rate.

5. CONCLUSION

In this paper, we presented a layered predictive coder for time- consi-
stent dynamic 3D meshes. Layers were defined by employing patch-
based mesh simplification techniques and a layer-wise predictor se-
lection was applied in order to exploit linear and non-linear spatio-
temporal dependencies between layers and frames. We experimen-
tally showed that a layered configuration of vertices improves the ex-
ploitation of spatio-temporal dependencies. The proposed algorithm
outperforms state-of-the-art approaches with gains of more than 15%
in domains relevant for applications. Furthermore, it can be used for
layered decoding and it is applicable for real-time compression due
to its low computational cost (linear run-time in the number of ver-
tices).
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