
SCALABLE LINEAR PREDICTIVE CODING OF
TIME-CONSISTENT 3D MESH SEQUENCES

Nikolče Stefanoski, Xiaoliang Liu, Patrick Klie, Jörn Ostermann

Leibniz Universität Hannover, Appelstr. 9A, 30167 Hannover, Germany

ABSTRACT

We present a linear predictive compression approach for time-
consistent 3D mesh sequences supporting and exploiting scalability.
The algorithm decomposes each frame of a mesh sequence in layers
employing patch-based mesh simplification techniques. This layered
decomposition is consistent in time. Following the predictive coding
paradigm, local temporal and spatial dependencies between layers
and frames are exploited for compression. Prediction is performed
vertex-wise from coarse to fine layers exploiting the motion of al-
ready encoded 1-ring neighbor vertices for prediction of the current
vertex location. It is shown that a predictive exploitation of the pro-
posed layered configuration of vertices can improve the compression
performance upon other state-of-the-art approaches by up to 16% in
domains relevant for applications.

Index Terms— Animation compression, dynamic 3D mesh co-
ding, scalability, linear predictive coding, time-consistent mesh se-
quence.

1. INTRODUCTION

Multimedia hardware is getting evermore powerful and affordable.
This development enables a permanent improvement of existing ap-
plications or even development of new applications based on time-
varying 3D content, like 3D television, immersive telesurgery, or im-
mersive computer games. Efficient compression of time-varying 3D
content gets crucial importance in this context.

Due to an increasingly broadening range of access networks, li-
ke the Internet or local area networks, mobile networks, etc., the bit
rate of compressed time-varying 3D content has to be adapted to
network transfer rates and end-user devices. To meet this require-
ment we developped a scalable compression scheme. This technique
enables to encode 3D content once only, while decoding can be per-
formed on different devices with a quality adapted to the capacity
of the network and the end-user device. This is achieved by creating
structured bit streams that allow layer-wise decoding and successive
reconstruction of 3D content with increasing quality.

Time-varying 3D content is usually represented by a sequence
of 3D meshes called frames. Frames consist of two types of data:
connectivity and 3D locations. In this paper we assume that we are
dealing with frames that have constant connectivity throughout time,
i.e. time-consistent 3D mesh sequences consisting of F frames and
V vertices per frame. Each vertex v in frame f is associated with a
location in 3D space denoted by pf

v for v ∈ V := {1, . . . , V } and
f ∈ F := {1, . . . , F}. Furthermore, the set of all vertices V is de-
composed into L layers, i.e. disjoint sets of vertices Vl for 1 ≤ l ≤ L
with the property ∪1≤l≤LVl = V (see Fig. 1). Since connectivity
does not change throughout the entire mesh sequence, it has to be
encoded only once. We assume that connectivity is compressed in
the beginning of the encoding process by one of the nearly optimal

Fig. 1. Illustration of a decomposition of two frames into three
layers.

connectivity compression techniques [1, 2]. While connectivity does
not vary over time, vertices change their location. Therefore, the ma-
jor part of an encoded mesh sequence generally consists of vertex lo-
cations. For this reason, in this paper we concentrate on compression
of vertex locations of time-consistent 3D mesh sequences.

The rest of the paper is organized as follows. Section 2 gives
an overview about recent developments in the area of compression
of mesh sequences. An overview of the proposed scalable coder is
given in Section 3, describing in detail the decomposition in layers,
prediction, and entropy coding. In Section 4, compression results are
evaluated and discussed. Finally we end with a conclusion in Section
5.

2. RELATED WORK

Several approaches for compression of dynamic 3D meshes have
been presented recently. Karni and Gotsman [3] and Sattler et al.
[4] transform dynamic meshes using principal component analysis
(PCA) to reduce the amount of coded data. Guskov et al. [5] and
Payan et al. [6] propose wavelet-based approaches for compressi-
on. While Guskov et al. apply the wavelet transform for each frame
separately exploiting later the temporal coherence between wavelet
coefficients, Payan et al. apply the wavelet transform in temporal
direction on vertex trajectories and use a model-based entropy co-
der for entropy compression. A method for error resilient streaming
of dynamic 3D meshes that minimizes the perceptual effect of data
loss was introduced by Varakliotis et al. [7]. Recently Müller et al.
[8] presented a rate-distortion optimized compression scheme which
exploits the coherence between motion vectors by combining octree
based motion vector clustering with an optimized selection of a com-
pression mode for each cluster. Yang et al. [9] and Ibarria and Ros-
signac [10] presented vertex traversal based compression algorithms

Fig. 2. Illustration of patch-based vertex removal: (a) a degree-6
patch with middle vertex wk, (b) patch after removal of wk, (c)
re-triangulated patch. Numbers represent valences of corresponding
vertices.

using linear predictors. In the first paper a parallelogram-like pre-
diction rule is applied, while in the second paper motion vector ave-
raging is employed to exploit local inter and intra frame coherence
between vertex locations. Recently, Stefanoski and Ostermann [11]
presented a non-linear predictor for vertex traversal based compres-
sion improving the prediction accuracy at high bit-rates compared
to linear predictors. Mamou at al. [12] introduced a novel technique
for compression of mesh animations based on a skinning animation
technique. They employ vertex clustering and propose a weighted af-
fine transform in order to exploit inter and intra cluster dependencies
for prediction. The algorithm presented in this paper is related to the
predictive approaches [11, 10, 9] introducing a novel configuration
of vertices for scalable compression.

3. SCALABLE COMPRESSION

The coder presented in this paper follows the predictive coding pa-
radigm and supports scalability. In this section we describe a spati-
al scalable linear predictive coder (SSLPC). A simple extension to
spatio-temporal scalability is described in Section 4. The proposed
coder encodes all frames in order 1, . . . , f − 1, f, . . . , F encoding
all vertex locations pf−1

v with v ∈ V before encoding all pf
v with

v ∈ V . Vertex locations pf
v of an arbitrary frame f are encoded

layer-wise in order

v ∈ V1, . . . , v ∈ Vl, . . . , v ∈ VL,

starting with all vertex locations of the base layer V1 and ending
with all vertex locations of the highest layer VL. Fig. 1 illustrates the
organization in layers.

3.1. Layer Design

Layers, i.e. disjoint sets Vl, are defined by employing mesh simplifi-
cation techniques. A deterministic mesh simplification algorithm is
applied exploiting only mesh connectivity. Hence, no additional si-
de information is needed for describing layers Vl, since connectivity
in known at the decoder side in the beginning of the compression
process. The basic simplification operation used in this algorithm is
based on patches. A degree-d patch is set of triangles incident to a
vertex of valence d. In Fig. 2(a) a gray shaded degree-6 patch is pre-
sented. The employed simplification algorithm consists of two major
steps: Patch Decomposition and Simplification.

3.1.1. Decomposition into Patches

Mesh connectivity is first decomposed into patches using a determi-
nistic patch-based region-grow traversal algorithm conquering only

Fig. 3. Triangulations Td for d = 4, 5, 6.

patches of degree ≤ 6. Decomposition starts with an arbitrarily se-
lected initial seed patch of degree ≤ 6 by marking it as not con-
quered and enqueueing it into a FIFO. In the traversal loop, the first
patch is dequeued from the FIFO. If this patch is already marked as
conquered it is skipped an the loop starts from the beginning. If it is
not yet conquered, it is marked as conquered, its middle vertex wk

is saved, and all neighboring patches of degree≤ 6 are enqueued in-
to the FIFO. Here neighboring patches are patches which have only
one common edge with the current patch. This procedure is iterated
until the FIFO is empty. As output we obtain a series of K patches,
described by their middle vertices w1 . . . , wk, . . . , wK . Subsequent
simplification is performed only to these patches.

3.1.2. Patch Based Simplification

All patches obtained during patch decomposition are traversed again
in the order they were conquered. The middle vertex wk of each
patch is removed and the remaining polygon is re-triangulated (see
Fig. 2). The number of different triangulations Td for a degree-d
patch depends on d, i.e. there are T3 = 1, T4 = 2, T5 = 5, T6 = 14
triangulations [13]. We define the set of all triangulations of a degree-
d patch as Td := {1, . . . , Td} (see Fig. 3). Let N (wk) denote the
set of 1-ring vertices of the middle patch vertex wk.

In order to select one triangulation t ∈ Td for a degree-d patch
after removing its middle vertex wk we apply a measure Dev(wk, t).
It measures the average absolute deviation of all valences of vertices
in N (wk) from the valence 6:

Dev(wk, t) :=
1

|N (wk)|
X

v′∈N (wk)

|val(v′, t)− 6|.

Here val(v′, t) denotes the valence of vertex v′ after removing the
middle vertex wk and re-triangulating the remaining polygon using
triangulation t. Note that different triangulations can lead to diffe-
rent deviations, since valences of vertices v′ change depending on
the triangulation t. We select that triangulation t for re-triangulating
a patch which leads to the smallest deviation Dev(wk, t). Overall,
this kind of selection reduces the absolute deviation of valences from
valence 6. Hence, it prevents the creation of vertices with large va-
lences, which usually lead to long narrow triangles. Furthermore,
large vertex valences would also lead to many valence 3 vertices,
which can not be predicted accuratelly later on.

3.1.3. From Simplification to Layers

The set of all vertices V is decomposed in L disjoint subsets Vl

by recursively applying the procedures described in Sections 3.1.1

and 3.1.2 to the simplified connectivity. First, patch decompositi-
on and simplification is applied to the connectivity consisting of
vertices in V . Thus, a set of KL vertices VL = {wL

1 , . . . , wL
KL
}

is removed and a simplified connectivity consisting of vertices in
V \ VL remains. Recursively applying this procedure to the sim-
plified connectivity we obtain for each l = L− 1, . . . , 2 a set of
vertices Vl = {wl

1, . . . , w
l
Kl
} and a simplified connectivity consi-

sting of vertices V \ ∪L
k=lVk. At last we define the base layer as the

remaining set of vertices V1 = V \ ∪L
k=2Vk.

Patch based simplification guarantees that the neighbors of each
vertex are located one layer below, i.e. for each vertex v ∈ Vl for
l = 2, . . . , L we have N (v) ⊂ Vl−1. In the following it will be
shown that a configuration of interleaving vertices like this allows a
robust exploitation of inter layer dependencies of vertex locations pf

v

in space and time.

3.2. Prediction

Vertex locations of meshes representing real objects show correla-
tions. In order to exploit this coherence in spatial and temporal di-
rection predictive coding is applied. Vertex locations pf

v which are
part of the base layer, i.e. v ∈ V1, are encoded for f = 1, . . . , F
using a single resolution (flat) predictive coder presented in [11]. Af-
ter having encoded all vertex locations of the base layer of a frame
f , vertex locations of higher layers of the same frame are encoded
subsequently. Vertex locations pf

v part of a layer l > 1 are predicted
using already encoded vertex locations. This prediction of pf

v is per-
formed by a linear predictor p̂f

v based on motion vector averaging
(see Fig. 4) [11, 9]:

p̂f
v = pf−1

v +
1

|N (v)|
X

u∈N (v)

(pf
u − pf−1

u).

For f = 1 we define pf−1
v = pf−1

u = (0, 0, 0)T . This allows a
prediction of vertex locations of layers l > 1 also for frame f = 1
using predictor p̂f

v . Thus, encoded vertex locations of frame f − 1,
which are part of layers l and l−1, and of frame f , which are part of
layer l − 1, are used for prediction of pf

v exploiting inter frame and
inter layer dependencies.

Fig. 4. Prediction of location pf
v based on pf−1

v and locations of
neighboring vertices N (v) = {u1, . . . , u6} in frames f − 1 and f .

3.3. Quantization and Entropy Coding

Prediction errors δf
v = pf

v − p̂f
v are uniformly quantized and entropy

coded in order to exploit statistical dependencies. We apply an adap-
tive order-0 arithmetic coder combined with Golomb codes [11] for
entropy coding. Separate entropy coders are employed for encoding
quantized predictions errors of each layer l, adapting arithmetic co-
ders separately to statistical distributions of residuals in each layer.

Table 1. Number of vertices Kl per layer l and percentage of incre-
ased spatial resolution per new layer.

Chicken Cow

l Kl Kl/
Pl−1

k=1 Kk Kl Kl/
Pl−1

k=1 Kk

1 318 ∞ 593 ∞
2 103 32.4% 225 37.9%
3 166 39.4% 290 35.5%
4 221 37.6% 423 38.2%
5 299 37.0% 554 36.2%
6 442 39.9% 819 39.3%
7 600 38.7% - -
8 881 41.0% - -
Σ 3030 2904

4. EVALUATION AND RESULTS

For experimental evaluation, we used the mesh sequences Chicken
consisting of 400 frames and 3030 vertices per frame and Cow con-
sisting of 204 frames and 2904 vertices per frame. Evaluation with
other mesh sequences led to comparable results.

As result of the layered representation of connectivity we obtain
time-consistent mesh sequences in different spatial resolutions (Fig.
1). The connectivities of the sequences Chicken and Cow were de-
composed in 8 and 6 layers respectively (Table 1). Each time a new
layer is added the number of vertices is increased by about 38%, i.e.
spatial resolution increases with a nearly constant factor.

The quality of encoded vertex locations is measured relative to
corresponding original vertex locations using a normalized vertex-
wise L2 norm [3]. We denote it here as KG error. Bit rate is measu-
red in bits per vertex and frame (bpvf). In order to allow a compa-
rison with other approaches using this measure, all vertex locations,
i.e. all L layers per frame, are encoded.

Before entropy coding, prediction errors are quantized uniform-
ly in each spatial direction using a predefined quantization bin size
∆ [11]. Operational rate-distortion curves shown in Fig. 5 were pro-
duced by varying ∆. Besides the already in Section 3 introduced
coder SSLPC, which supports only one-directional prediction based
on a previous frame f − 1, we evaluated also a spatio-temporal co-
der (STSLPC) by employing bi-directional prediction. It is realized
by first encoding an odd frame f predictively based on an encoded
odd frame f − 2 and then encoding the even frame f − 1 using bi-
directional prediction. It is performed by calculating the average of
two one-directional predictions, one based on frame f and the other
one based on frame f − 2.

In Fig. 5 the proposed coders SSLPC and STSLPC were evalua-
ted against state-of-the-art compression algorithms. Due to the usa-
ge of different error measures we were not able to compare against
all algorithms mentioned in Section 2. We compared against the flat
predictive coder Dynapack [10], the flat predictive coder (FPC) of
Stefanoski and Ostermann [11], the wavelet based approaches of Pa-
yan et al. (TWC) [6] and Guskov et al. (AWC) [5], and the PCA-
based approach of Sattler et al. (CPCA) [4]. Both proposed coders
outperform all other approaches except of FPC. FPC shows higher
gains in the domain of very high bit rates because of its better ex-
ploitation of non-linear dependencies between vertex locations and
a frame-wise adaption of the predictor. Note that an error of 0.02 for
Chicken and 0.15 for Cow can be regarded as lossless with regard
to visual quality. In this domain STSLPC and FPC show best per-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 3 4 5 6 7 8 9

Chicken

Dynapack
CPCA
TWC
FPC

SSLPC (proposed)
STSLPC (proposed)

bit rate [bpvf]

K
G

 e
rr

o
r

(a) Sequence Chicken encoded using l =8 layers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9

K
G

 e
rr

o
r

bit rate [bpvf]

Cow

AWC
CPCA
LPCA

FPC
SSLPC (proposed)

STSLPC (proposed)

(b) Sequence Cow encoded using l =6 layers.

Fig. 5. Evaluation results.

formance. Thus, STSLPC provides the feature of scalability without
any overhead in bit rate. In domains of higher errors both, SSLPC
and STSLPC, show significant gains. For instance for the Chicken
sequence in the area of errors above 0.08, SSLPC achieves gains of
over 10%, while STSLPC achieves even higher gains of over 16%.
This gains are due to the configuration of interleaving vertices bet-
ween neigboring layers. This kind of configuaration enables a pre-
diction based on interpolation, which is robust against quantization
noise. A bi-directional prediction increases the robustness even mo-
re. Obviously in domains relevant for applications scalability can
lead to additional gains.

5. CONCLUSION

In this paper, we presented a scalable coder for time-consistent 3D
mesh sequences. Layers were defined by employing patch-based mesh
simplification techniques and a robust interpolation based predic-
tion was applied in order to exploit spatio-temporal dependencies
between layers and frames. We experimentally showed that a scala-
ble configuration of vertices can improve the exploitation of spatio-
temporal dependencies. The proposed algorithm outperforms state-
of-the-art approaches in domains relevant for applications. Further-
more, it can be used for real-time compression due to its low com-
putational cost (linear run-time in the number of vertices).

6. ACKNOWLEDGMENT

This work is partly supported by the EC within FP6 under Grant
511568 with the acronym 3DTV. We would like to thank Matthi-
as Müller from ETH Zürich for providing the Cow sequence. The
Chicken character was created by Andrew Glassner, Tom McClu-
re, Scott Benza, and Mark Van Langeveld. This short sequence of
connectivity and vertex position data is distributed solely for the pur-
pose of comparison of geometry compression techniques.

7. REFERENCES

[1] P. Alliez and M. Desbrun, “Valence-driven connectivity enco-
ding for 3d meshes.,” Comput. Graph. Forum, vol. 20, no. 3,
2001.

[2] J. Rossignac, “Edgebreaker: Connectivity compression for tri-
angle meshes.,” IEEE Trans. Vis. Comput. Graph., vol. 5, no.
1, pp. 47–61, 1999.

[3] Z. Karni and C. Gotsman, “Compression of soft-body anima-
tion sequences,” Computers & Graphics, vol. 28, no. 1, pp.
25–34, 2004.

[4] M. Sattler, R. Sarlette, and R. Klein, “Simple and efficient
compression of animation sequences,” in ACM/EG Symposium
on Computer Animation, NY, USA, 2005, pp. 209–217, ACM
Press.

[5] I. Guskov and A. Khodakovsky, “Wavelet compression of
parametrically coherent mesh sequences,” in Proceedings of
ACM/EG Symposium on Computer Animation, August 2004,
pp. 183–192.

[6] F. Payan and M. Antonini, “Temporal wavelet-based geometry
coder for 3d animations,” Computers & Graphics, 2006.

[7] S. Varakliotis, S. Hailes, and J. Ostermann, “Optimally smooth
error resilient streaming of 3d wireframe animations.,” in
VCIP, 2003, pp. 1009–1022.

[8] K. Muller, A. Smolic, M. Kautzner, P. Eisert, and T. Wiegand,
“Predictive compression of dynamic 3D meshes,” in Interna-
tional Conference on Image Processing, 2005, pp. I: 621–624.

[9] J.-H. Yang, C.-S. Kim, and S. U. Lee, “Compression of 3-d
triangle mesh sequences based on vertex-wise motion vector
prediction.,” IEEE Trans. Circuits Syst. Video Techn., vol. 12,
no. 12, pp. 1178–, 2002.

[10] L. Ibarria and J. Rossignac, “Dynapack: space-time compressi-
on of the 3d animations of triangle meshes with fixed connecti-
vity,” in Proceedings of Eurographics ’03. 2003, pp. 126–135,
Eurographics Association.

[11] N. Stefanoski and J. Ostermann, “Connectivity-guided predic-
tive compression of dynamic 3d meshes,” in Proceedings of
the International Conference on Image Processing, ICIP2006,
Atlanta, 2006.

[12] K. Mamou, T. Zaharia, and F. Prêteux, “A skinning approach
for dynamic 3d mesh compression: Research articles,” Com-
put. Animat. Virtual Worlds, vol. 17, no. 3-4, pp. 337–346,
2006.

[13] Robert Sedgewick and Philippe Flajolet, An Introduction to the
Analysis of Algorithms, Addison-Wesley, 1996.

