
EFFICIENT ENCODING OF BINARY SHAPES USING
MPEG-4

Jörn Ostermann

A T & T Labs Research
100 Schultz Dr.

Red Bank, NJ 0 7 7 0 1 , U S A
Email: os terman@research.a t t .com

ABSTRACT
MPEG-4 Visual, that part of the upcoming MPEG-4 standard
describing the coding of natural and synthetic video signals,
allows the encoding of video objects using motion, texture and
shape information. In this paper, the MPEG-4 context-based
arithmetic encoder for encoding binary shape information is
presented in the context of a new MPEG-4 video encoder
architecture. The encoder architecture enables us to efficiently
encode lossless and lossy shape, motion and texture of a moving
video object. Several non-normative choices for efficient
computation and bit efficient encoding of arbitrarily shaped
video objects are investigated in order to enable real-time
encoding.

1. INTRODUCTION
MPEG-4 Visual will be the first international standard allowing
the transmission of arbitrarily shaped video objects (VO). A time
instant of a VO is called Video Object Plane (VOP). A VOP is a
rectangular video frame or a part thereof. Following an object-
based approach, the MPEG-4 video encoder applies the motion,
texture and shape coding tools to the VOP using I, P, and B
modes similar to the modes of MPEG-2. The encoder transmits
texture, motion, and shape information of one VO within one bit
stream. The bit streams of several VOs and accompanying
composition information can be multiplexed such that the
decoder receives all the information to decode the VOs and
arrange them into a video scene (Figure 1).

VOPI

VOP2 V O P 3

Figure 1: Object-based coding requires the decoder to
compose different Video Object Planes (VOP) into a
scene.

Two types of VOs are distinguished: For opaque objects, binary
shape information is transmitted as a bitmap using a context-
based arithmetic coder (Section 2). Transparent objects are

described by binary shape and a transparency value.
Alternatively, the transparency is described by a gray-scale alpha
map (8 bits) defining the outline as well as the varying
transparency of an object. The outline of these objects is also
encoded as a bitmap using the binary shape coder.

Coding of texture for arbitrarily shaped VO is described in
Section 3. MPEG-4 leaves it up mainly to the encoder to achieve
efficient coding of texture at object boundaries by employing an
appropriate texture extrapolation algorithm. The efficient coding
of a VO with lossily encoded shapes requires an encoder
architecture as described in Section 4.

In Section 5, experimental results will be presented. Different
shape encoding modes are investigated in order to achieve a bit
efficient representation of a VO or in order to allow for fast
encoding that is important for real-time applications.

2. Context-Based Arithmetic Shape Coding

In order to enable content based access to video objects, MPEG-
4 codes the shape of video objects. The shape is encoded as a
bitmap. For binary shape coding, a rectangular bounding box
enclosing the arbitrarily shaped VOP is formed such that its
horizontal and vertical dimensions are multiples of 16 pels
(macroblock size).

Each block of size 16x16 pels within this bounding box is called
binary alpha block (BAB). Each BAB is associated with the co-
located macroblock. Three types of BABs are distinguished and
signaled to the decoder: Transparent blocks do not contain
information about the object, opaque blocks are located entirely
inside the object and boundary blocks cover part of the object as
well as part of the background. For boundary blocks a context-
based shape coder was developed. This coder exploits the spatial
redundancy of the binary shape information to be coded. Pels are
coded in scan-line order and row by row. In the following
paragraphs, shape encoding in intra mode is described in Section
2.1. Then, this technique is extended to include an inter mode
(Section 2.2).

2.1 Intra Mode
In intra mode, three different types of macroblocks are
distinguished: Transparent and opaque blocks are signaled as
macroblock type. The macroblocks on the object boundary
containing transparent as well as opaque pels belong to the third
type. For these boundary macroblocks, a template of 10 pels is
used to define the causal context for predicting the shape value of
the current pel (Figure 2a). For encoding the state transition, a

mailto:osterman@research.att.com

context-based arithmetic encoder is used. The probability table of
the arithmetic encoder for the 1024 contexts was derived from
sequences that are outside of the test set used for comparing
different shape coders. With two bytes allocated to describe the
symbol probability for each context, the table size is 2048 bytes.
In order to avoid emulation of start codes like VOP start code,
the arithmetic coder stuffs one T' into the bitstream whenever a
long sequence of '0' is sent.
The template extends up to 2 pels to the left, to the right and to
the top of the pel to be coded (Figure 2a). Hence, for encoding
the pels in the 2 top and left rows of a macroblock, parts of the
template are defined by the shape information of the already
transmitted macroblocks on the top and on the left side of the
current macroblock. For the 2 right-most columns, each
undefined pel of the context is set to the value of its closest
neighbor inside the macroblock.

a b

Intra X X X Inter X X X X
x X X X X X x~ X X ?
X X 0 X

Previous Current
Frame

Figure 2: Templates for defining the context of the pel to
be coded (o), a) defines the intra mode context, b) the
context when coding in inter mode. The alignment is
done after motion compensating the previous VOP [4].

In order to increase coding efficiency as well as to allow lossy
shape coding, a macroblock can be subsampled by a factor of 2
or 4 resulting in a sub-block of size 8*8 pels or 4*4 pels,
respectively. The sub-block is encoded using the encoder as
described above. The encoder transmits to the decoder the
subsampling factor such that the decoder decodes the shape data
and then upsamples the decoded sub-block to macroblock size.
Obviously, encoding the shape using a high subsampling factor is
more efficient, but the decoded shape after upsampling may or
may not be the same as the original shape. Hence, this
subsampling is mostly used for lossy shape coding.
Depending on the upsampling filter, the decoded shape can look
somewhat blocky. Several upsampling filters were investigated.
The best performing filter in terms of subjective picture quality is
an adaptive non-linear upsampling filter. The context of this
upsampling filter is shown in Figure 3.

The efficiency of the shape coder differs depending on the
orientation of the shape data. Therefore the encoder can choose
to code the block as described above or transpose the macroblock
prior to arithmetic coding.

2.2 Inter Mode
In order to exploit temporal redundancy in the shape information,
the coder described above is extended by an inter mode requiring
motion compensation and a different template for defining the
context.
For motion compensation, a 2D integer pel motion vector is
estimated using full search for each macroblock in order to
minimize the prediction error between the previous coded VOP

shape M_, and the current shape Mk. The shape motion vectors
are predictively encoded with respect to the shape motion vectors
of neighboring macroblocks. If no shape motion vector is
available, texture motion vectors are used as predictors. The
shape motion vector of the current block is used to align a new
template designed for coding shape in inter mode (Figure 2b).
The template defines a context of 9 pels resulting in 512
contexts. The probability for one symbol is described by 2 bytes
giving a probability table size of 1024 bytes. Four pels of the
context are neighbors of the pel to be coded, 5 pels are located at
the motion compensated location in the previous VOP. Assuming
that the motion vector (d^dy)7 points from the current VOP k to
the previous coded VOP'it. t. the part of the template located in
the previously coded shape is centered at m'(x-d„y-dy) with U,y) T

being the location of the current pel to be coded.

X x ° x x ° x o
X

X
X

X X
X ° x

X X
x ° x

X
x °

X
1
X

X X
x ° x

X X
x ° x

X
x °

X X X

o
X X

o
X

o

Figure 3: For shape upsampling, the upsampled pels (x)
lie between the location of the subsampled pels (o).
Neighboring pels (bold o) defining the values
(transparent or opaque) of the pels to be upsampled (bold
x).

In inter mode, the same options as in intra mode like
subsampling and transposing are available. For lossy shape
coding, the encoder may also decide that the shape representation
achieved by just carrying out motion compensation is sufficient
thus saving bits by avoiding the coding of the prediction error.
The encoder can select one of 7 modes for the shape information
of each macroblock: transparent, opaque, intra, inter with and
without shape motion vectors, and inter with/without shape
motion vectors and prediction error coding. These different
options with optional subsampling and transposition allow for
encoder implementations of different coding efficiency and
implementation complexity.

3. Texture Coding of Boundary Blocks

For motion compensated prediction of the texture of the current
VOP, the reference VOP is motion compensated using
overlapped block motion compensation. In order to guarantee
that every pel of the current VOP has a value to be predicted
from, some or all of the boundary and transparent blocks of the
reference VOP have to be padded. Boundary blocks are padded
using repetitive padding: First boundary pels are replicated in
horizontal direction, then in vertical direction making sure that if
a value can be assigned to a pel by both padding directions an
average value is assigned to the pel. Since this repetitive padding
puts a significant computational burden on the decoder, a simpler

mean padding is used in a second step.
Transparent macroblocks bordering boundary
blocks are assigned to an average value
determined by the pels of its neighboring padded
blocks.

Image

Analysis

a

Tamaa | | B M B % '
qh»f fcigÉOC I

Chan*
Parameter

Coding

Parameter

Decoding

Shape Melon

Shape

In order to encode the texture of a boundary block,
MPEG-4 treats the macroblock as a regular
macroblock and encodes each block using an 8*8
DCT. The decoder decodes the texture and
discards all information that falls outside of the
decoded shape. In order to increase coding
efficiency, the encoder can choose the texture of
pels outside of the object such that the bitrate is
minimized. This non-normative process is also
called padding. For intra mode, a lowpass
extrapolation filter was developed, for inter mode
setting these pels to 0 gives good efficiency.

4. Encoder Architecture

Figure 4a shows the block diagram of this object-
based video coder. In contrast to the block
diagram shown in the MPEG-4 standard, this
diagram focuses on the object-based mode in
order to allow a better understanding of how shape
coding influences the encoder and decoder. Image
analysis creates the bounding box for the current
VOP Sk and estimates texture and shape motion of
the current VOP Sk with respect to the reference
VOP S'k.i. Shape motion vectors of transparent
macroblocks are set to 0. Parameter coding encodes the
parameters predictively. The parameters get transmitted, decoded
and the new reference VOP is stored in the VOP memory and
also handed to the compositor of the decoder for display. The
increased complexity due to the coding of arbitrarily shaped
video objects becomes evident in Figure 4b that shows a detailed
view of the parameter coding.

The parameter coder encodes first the shape of the boundary
blocks using shape and texture motion vectors for prediction.
Then shape motion vectors are coded. The shape motion coder
knows which motion vectors to code by analyzing the possibly
lossily encoded shape parameters. For texture prediction, the
reference VOP is padded as described above. The prediction
error is then padded using the original shape parameters to
determine the area to be padded. Using the original shape as a
reference for padding is again an encoder choice not
implemented in the Momusys MPEG-4 CD software [4]. Finally,
the texture of each macroblock is encoded using DCT.

5 . Experimental Results

The encoder is evaluated showing the influence of the non-
normative texture padding prior to DCT coding and the influence
of different shape coding options. These are the encoder options
evaluated:

1. Padding for coding using original or coded shape.

2. Padding for coding using 0 padding or lowpass
extrapolation filter.

vop
Memory

Coder

Coder

Coder

t—

Coded Shop*

- 9
Padding

for Coding
Coder

P r e d i c t i o r

i t -

Padding
for MC

— X —

Shape Data

Brtsjrtam_ ^
TextuTB/Mottog
Diu

VOP Sì,.,

Figure 4: Block diagram of the video encoder (a) and the parameter coder
(b) for coding of arbitrarily shaped video objects.

Shape motion vectors: no motion compensation versus
hierarchical shape motion estimation versus full search
shape motion estimation versus texture motion vectors.

4. Lossy shape coding using
adaptive subsampling of shape.

fixed subsampling versus

5. Horizontal scanning of macroblocks versus vertical
scanning versus adaptive scanning.

The following paragraphs will provide detailed experimental
results in the full paper.

6. CONCLUSIONS

MPEG-4 Visual standardizes an object-based decoder. At the
encoder, several choices regarding texture extrapolation at object
boundaries and shape encoding are available to the encoder. It
was found that for texture extrapolation a simple filter setting the
texture outside of the o r i g i n a l object shape to gray is sufficient.
In the case of lossy shape coding, not using the o r i g i n a l object
shape for defining the support region of the texture extrapolation
may increase the overall bitrate by more than 100%. Therefore,
lossy shape coding makes only sense if the encoder architecture
presented in this paper is used.

When using texture motion vectors for motion compensation of
the shape, the overall bitrate increases usually by 1-2% with the
benefit that shape motion vectors have not to be computed. Using
a hierarchical shape motion vector estimator instead of a full
search estimator decreases the computational load of the encoder
without effecting the bitrate.

Fixing the macroblock scanning to horizontal instead of
adaptively switching between horizontal and vertical scanning
increases the bitrate by just 1% but saves significant compute
time since the compute intensive arithmetic coding with context
determination has to be used only half as often.

7. REFERENCES
[1] ISO/IEC JTC1/WG1I N1902, 'Text for CD 14496-2

Visual", November 1997.
[2] ISO/IEC JTC1/WG11 N1901, 'Text of CD 14496-1",

November 1997.
[3] ISO/IEC JTC1/WG11 N1905, 'Text of CD 14496-5",

November 1997.
[4] N. Brady, F. Bossen, N. Murphy, "Context-based arithmetic

encoding of 2D shape sequences", Special session on shape
coding, ICIP 97, Santa Barbara, 1997

