
Cell Tracking according to Biological Needs -
Strong Mitosis-aware Multi-Hypothesis Tracker with Aleatoric Uncertainty

Timo Kaiser 1 Maximilian Schier 1 Bodo Rosenhahn 1

Abstract

Cell tracking and segmentation enable biologists
to extract insights from large-scale microscopy
time-lapse data. Driven by local accuracy metrics,
current tracking approaches often suffer from a
lack of long-term consistency and an inability to
correctly reconstruct lineage trees. To address this
issue, we introduce a novel assignment strategy
consisting of two key components. First, we pro-
pose an uncertainty estimation technique for mo-
tion estimation frameworks. This method relaxes
single-point motion representations into proba-
bilistic spatial densities using problem-specific
test-time augmentations. Second, we leverage
these spatial densities to define a novel mitosis-
aware assignment problem formulation. This
formulation allows multi-hypothesis trackers to
model cell divisions and resolve false associa-
tions and mitosis detections based on long-term
conflicts. Our framework integrates explicit bio-
logical knowledge into assignment costs and com-
bines it with learned representations derived from
spatial densities. We evaluate our approach on
nine competitive datasets and demonstrate that
it substantially outperforms the current state-of-
the-art on biologically inspired metrics, achieving
improvements by a factor of approximately six
and providing new insights into the behavior of
motion estimation uncertainty.

1. Introduction
Cell tracking and lineage reconstruction allow researchers
to investigate the fate of cells over extended periods, such
as analyzing liver diseases (Yoon et al., 2024) or studying
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Figure 1. Uncertainty in motion regression. The red and blue Gaus-
sians represent the distribution of cell motion estimations when
applying our test-time shifts to the input image Ik−1. The esti-
mation variance ΣZ

k−1|1 is small if standard augmentations are
applied (T0). It increases for the red cell if Ik−1 is shifted by
one (T ′

1 ), four (T ′
4 ), or eight pixels (T ′

8 ) while the blue remains
small. This indicates a certain motion estimation for the blue but
an uncertain one for the red cell.

the interaction between redox signaling and cell migration
in the context of breast cancer (Kukulage et al., 2024). Au-
tomated tracking and segmentation algorithms are there-
fore valuable tools for reducing the substantial effort re-
quired to analyze optical microscopy output in biomedical
research (Antony et al., 2013). These algorithms aim to
segment cells in images, track them over time to form tra-
jectories, and detect mother-daughter relationships arising
from mitotic cell divisions (mitosis). Figure 2 presents
some example microscopy image sequences that visualize
the setting of cell tracking and lineage reconstruction. By
enabling the analysis of large datasets, these methods fa-
cilitate studies such as (Malin-Mayor et al., 2023), which
reconstructs cell lineages of whole-embryo development
encoded in 4.7 terabytes of images. However, despite no-
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table advancements, (Malin-Mayor et al., 2023) reports that
only 50% of cells are correctly tracked in the long term, and
mitosis detection requires further improvement to enable
deeper lineage tree analysis.

The reported cell tracking improvements in (Malin-Mayor
et al., 2023), which still lack long-term consistency and ro-
bust mitosis detection, can be systematically analyzed. Re-
visiting the so-called technical metrics (Bernardin & Stiefel-
hagen, 2008; Matula et al., 2015) used in leading tracking
benchmarks (Maška et al., 2014; Anjum & Gurari, 2020),
the isolated focus on local correctness appears reasonable
at first glance. Local errors, such as missing segmentations,
are penalized more heavily than rare association errors or
missed mitosis detections. In fact, cell tracking metrics
penalize the correction of faulty associations when cells
are re-associated in future frames. As a result, some cell
tracking methods achieve near-perfect benchmark scores,
approaching 100% tracking accuracy (Maška et al., 2023),
while primarily relying on local cues within only a few
consecutive frames (Löffler & Mikut, 2022; Gallusser &
Weigert, 2024; Malin-Mayor et al., 2023). Although conven-
tional technical metrics suggest that the tracking problem is
nearly solved, the aforementioned limitations persist, under-
mining the practical usability of cell tracking algorithms.

The discrepancy between technical metrics and biologically
relevant indicators (Ulman et al., 2017), which are essential
for biomedical research, has been highlighted in several
studies (Maška et al., 2023; Kaiser et al., 2024; O’Connor &
Dunlop, 2024). Recognizing this gap, the primary tracking
benchmark (Maška et al., 2014) has recently begun incor-
porating these biologically relevant metrics into specialized
challenges.

To bridge the gap between technical and biological mea-
sures, this work addresses the challenges of missing long-
term consistency and mitosis detection in modern cell track-
ing algorithms. We tackle these issues by introducing an ex-
tended association framework that enhances existing heuris-
tic approaches with probabilistic models and explicitly in-
corporates the likelihood of cell division during mitosis.
Specifically, we first introduce an advanced test-time aug-
mentation (Wang et al., 2019) using spatial shifts to esti-
mate position and motion densities of cells. These densities
capture aleatoric uncertainty (Gawlikowski et al., 2023)
of tracking methods, which arises from ambiguous image
data where the correct tracking result is not obvious. To
demonstrate our contribution, we apply this approach to the
heuristic state-of-the-art framework EmbedTrack, relaxing
its discrete position and motion predictions into probabilistic
densities.

As our second contribution, we leverage these densities to
introduce a novel mitosis-aware Multi-Hypothesis Track-
ing (MHT) framework. MHT solves the tracking task by

integrating association costs across all possible hypotheses
and selecting the most likely one a posteriori. Compared
to standard MHT (Reid, 1979), our framework supports
non-bijective assignments to model mitosis—the process
by which a single parent cell divides to produce two geneti-
cally identical daughter cells. While mitosis timing depends
on various factors, the interval between successive mitotic
events can be approximated by an Erlang distribution in
homogeneous cell cultures (Yates et al., 2017; Paul et al.,
2024). Thus, we explicitly model mitosis probability based
on expected lifetimes and define mitosis costs derived from
the Erlang distribution. These globally inferred mitosis
costs are combined with local assignment costs, derived
from position and motion densities, to determine the most
likely tracking hypothesis. By integrating global prolifera-
tion aspects with local aleatoric uncertainty, our framework
resolves long-term conflicts a posteriori, correcting both
association errors and false or missing mitosis detections.

We evaluated our method on nine well-established Cell
Tracking Challenge (Maška et al., 2014) datasets and demon-
strate that it achieves substantial improvements in biologi-
cally relevant metrics—by up to a factor of 5.75 compared
to the state-of-the-art. At the same time, our method main-
tains performance on technical measures without notable
differences, confirming our initial assertion that current algo-
rithms do not align with biomedical metrics while showing
that long-term consistency can significantly enhance track-
ing quality.

Our contributions can be summarized as follows:

• We estimate position and motion densities of cells us-
ing a novel test-time augmentation strategy.

• We introduce a mitosis-aware MHT tracker to model
cell splits.

• We define mitosis costs to incorporate biological knowl-
edge and ensure long-term consistency.

• By integrating these components, we establish a new
state-of-the-art based on biologically inspired metrics.

The remainder of this article is structured as follows: Sec-
tion 2 reviews prior work relevant to cell tracking and
uncertainty estimation. Section 3 provides background
on the baseline methods, EmbedTrack and MHT track-
ing. Next, Section 4 introduces our novel uncertainty es-
timation technique and demonstrates its implementation
in EmbedTrack. These densities are then utilized in our
mitosis-aware MHT framework, presented in Section 5,
where we introduce non-bijective assignment and mitosis
costs. Finally, we evaluate and discuss our results in Sec-
tion 6 and conclude in Section 7. Code is available at:
https://github.com/TimoK93/BiologicalNeeds .
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Figure 2. Lineage trees of varying complexities, where the trajectory color indicates the cell generation. For instance, mouse hematopoietic
stem cells (BF-C2DL-HSC) exhibit extensive proliferation, providing rich cell cycle information. The mouse muscle stem cells (BF-
C2DL-MuSC) dataset combines strong proliferation with high cell motility. In contrast, other settings, such as Glioblastoma-astrocytoma
U373 cells (PhC-C2DH-U373), show little to no proliferation, with minimal mitosis and immobile cells. Our method addresses the more
complex scenario involving proliferation and motility by incorporating cell cycle information and introducing a robust implicit motion
model.

2. Related Work
Prior works related to our contribution can be divided into
cell tracking and uncertainty estimation techniques, espe-
cially for multiple object tracking. This section discusses
both.

2.1. Cell Tracking

The prevalent Tracking-by-Detection (TbD) paradigm em-
ploys a two-stage approach, where proposals of object de-
tections obtained from detectors like (Ronneberger et al.,
2015; Lalit et al., 2022) are associated, e.g. , using sim-
ple strategies such as greedy matching (Bao et al., 2021;
Stegmaier et al., 2012), based on spatial similarity scores
or Siamese networks (Gupta et al., 2019). More sophis-
ticated association strategies aim to find globally optimal
associations between all detections by constructing a graph
and optimizing a minimum-cost flow, for example, with the
Viterbi algorithm (Magnusson et al., 2015). The graph’s
edge costs adhere to the Markov property and rely only on
local features between two temporal positions. These fea-
tures can be spatial or appearance-based, such as distances
between the positions (Löffler et al., 2021) or phase cor-
relation of detections (Scherr et al., 2020). Additionally,
over- and under-segmentations are addressed with graph
models (Schiegg et al., 2013). Classical graph-based meth-
ods disregard the global cell life cycle because they do not
include features between detections with long temporal dis-
tances. A more advanced graph-based approach uses graph
neural networks that share feature information over longer

temporal gaps with autoregressive message passing (Ben-
Haim & Raviv, 2022).

Other methods following the TbD paradigm attempt to
maintain global consistency by extracting and clustering
appearance embeddings, such as with spatio-temporal Mean
Shift (Payer et al., 2019) or Siamese Networks (Chen et al.,
2021), or by using recurrent neural networks like LSTMs in
the object detector (Arbelle & Raviv, 2019). Recent trends
use transformers to link or identify detections, like Trackas-
tra (Gallusser & Weigert, 2024) or Cell DINO (Liao et al.,
2024). Trackastra uses visual or spatial features and po-
tentially learns global dependencies. However, Trackastra
performs well on short sequences but not on very large ones,
where proliferation and cell division are more frequent. Cell
DINO uses mask tokens to detect former cells in future
frames.

Another paradigm is Tracking-by-Regression (TbR), where
the position and motion of potential objects are re-
gressed jointly based on local features using neural net-
works (Bergmann et al., 2019). For example, Embed-
Track (Löffler & Mikut, 2022) introduces a multitask re-
gression head that takes two subsequent frames as input and
estimates instance segmentation, center position, and motion
of cells. By its very nature, this paradigm can only preserve
local dependencies. Nevertheless, TbR proves to be an effec-
tive and competitive data-driven tracking approach, leading
to state-of-the-art results on technical tracking metrics.

The most relevant class of global optimal association strate-
gies in our context follows the TbD paradigm and is known
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as Multi-Hypothesis Tracking (MHT) (Reid, 1979). These
trackers re-evaluate multiple hypotheses a posteriori based
on new information and can use prior sub-optimal hypothe-
ses to resolve errors. The MHT framework is more fre-
quently used in general multiple object tracking and is im-
proved with random finite sets (Mori et al., 1986), such as
Poisson multi-Bernoulli mixtures (Granström et al., 2018).
MHT is also applied in cell tracking (Rezatofighi et al.,
2015; Theorell et al., 2019; Nguyen et al., 2021; Hossain
et al., 2018). For instance, these methods model mitosis as a
hypothesis and score it based on local appearance (Nguyen
et al., 2021; Hossain et al., 2018), but do not incorporate
cell lifetime or other long-term temporal features.

2.2. Uncertainty Estimation

Without focusing on tracking, a lot of research is dedi-
cated to estimating the uncertainty in NN-driven predic-
tions (Kaiser et al., 2023; Wehrbein et al., 2025). In medical
imaging, Bayesian approaches (Wang & Lukasiewicz, 2022)
approximate epistemic uncertainty, while test-time augmen-
tation (Wang et al., 2019) is used to quantify aleatoric uncer-
tainty. However, NN-derived uncertainty estimation is rarely
applied, neither in cell tracking nor general object tracking.
To the best of our knowledge, the only commonly utilized
NN-derived uncertainty in tracking pertains to the probabil-
ity of being clutter to filter detection noise, as seen in (Hor-
nakova et al., 2021) and other works. A few approaches
employ advanced strategies like normalizing flows (Man-
cusi et al., 2023) for optimizing association during training
or fuzzy logic (Stegmaier & Mikut, 2017). More recently,
methods have employed uncertainty quantification for the
association task in general object tracking (Zhou et al., 2024;
Solano-Carrillo et al., 2024).

3. Preliminaries
The task of cell tracking and segmentation involves detect-
ing and segmenting each visible cell while consistently as-
signing unique IDs over time. Additionally, cell division
must be detected to reconstruct the lineage tree.

Formally, the input is an image sequence I = {Ik}Kk=1,
containing images Ik ∈ RIH×IW , where k denotes the tem-
poral position and IH × IW represents the spatial resolution.
The resulting tracking and segmentation outputs are discrete
ID maps Mk ∈ NIH×IW

0 corresponding to the images. A
map Mk labels pixels based on whether they belong to a
specific cell ID or the background. Pixels belonging to a
specific cell j are denoted as Mj

k. Segmented areas from
different images that belong to the same cell instance should
be labeled with the same unique ID to form temporally con-
sistent tracks. To construct a lineage tree, every cell ID
should be assigned to its parent ID from which it descends,
or assigned to 0 if the parent does not exist in the given

Table 1. Notation
General Cell Detections and Representation

I Image j Index for Detections
IW Image Width i Index for previous Objects
IH Image Height Z Set of Detections
I Image Sequence NZ Num. of Detections in Z
K Sequence Length µ Mean of Spatial Density
k Time Index Σ Variance of Spatial Density

λC Clutter Probability
Age(i) Age of Cell i

r Probability of Existence

Uncertainty in EmbedTrack MHT

M Label Map H Hypotheses Parameter
Mj Pixels belonging to label j H Num. of Hypotheses
D Segmentation Score Hmax Max. Num. of Hypotheses
OC Centroid Estimation h Hypothesis
OM Motion Estimation lh Hypothesis Likelihood
OC,Σ Centroid Covariance Nh Num. of Cells in h
OM,Σ Motion Covariance PB Probability of Birth
p Index for a Pixel PD Probability of Detection
T Image Augmentation Ψ Assignment Hypotheses

Amax Max. Num. of Assignments
C Assignment Cost Matrix
c Cost Value
u Abbreviation for Unassigned

image sequence.

To solve the described task, this paper presents a fully prob-
abilistic algorithm without heuristics, which can be applied
to existing baseline frameworks. Next, we recapitulate two
baseline methods that aim to solve the described tasks in dif-
ferent ways. First, we discuss the heuristic neural network
EmbedTrack (Löffler & Mikut, 2022), which is enhanced to
predict probabilistic position and motion densities through
our first contribution. Second, we describe the probabilistic
multi-hypothesis tracking framework (MHT) (Reid, 1979),
which is not directly suitable for cell tracking, but is later
extended using the densities to model cell division and lin-
eage reconstruction in our second contribution. Our novel
fully probabilistic tracking framework leverages the local
expressiveness of the first method while adapting the global
optimal association strategy of the latter. The notations used
are summarized in Table 1.

3.1. Motion Regression with EmbedTrack

Our baseline EmbedTrack (Löffler & Mikut, 2022) follows
the TbR paradigm and solves the tracking and segmentation
tasks by jointly estimating cell segments and motion with
a single neural network (NN). It operates in two steps: (1)
estimating pixel-wise segmentation scores, offsets to cell
centroids, and motion to the last frame, and (2) clustering
these into cell instances linked to cells in the previous frame.
The architecture of EmbedTrack is visualized in the upper
part of Figure 3, excluding the red elements.

More precisely, using two subsequent images (Ik−1, Ik) as
input, the first step estimates a pixel-wise probability of
belonging to a cell Dk ∈ (0, 1)IH×IW , a relative offset to
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Figure 3. Overview of our tracking framework applied to a time-lapse image sequence. Compared to vanilla frameworks, red elements
highlight our contributions and novelties. The centered image sequence shows the result of vanilla EmbedTrack (Löffler & Mikut, 2022)
with an over-segmentation in frame k = 2, which is resolved using our framework. Our test-time augmentation strategy (top) generates
position and motion estimation densities that are required to calculate association costs in our extended MHT framework (Reid, 1979)
(bottom). First, to estimate cell segments (Mk) as well as their Gaussian-distributed position (µZ

k , ΣZ
k ) and motion densities (µZ

k−1|k,
ΣZ

k−1|k), we augment the two subsequent input images (Ik−1, Ik). We extend standard augmentations (T ) with problem-specific shifts
(T ′) that increase the estimation variance in ambiguous images. Second, the densities are used as input detections Zk for iterations of
our MHT framework. Hypothesis states from the last frame (Hk|k−1) are compared with the estimated position and motion densities
of Zk to calculate matching costs (C). The costs are utilized to sample new potential associations, which are then used to update
the hypotheses in the new state (Hk). Unlike other MHT frameworks, we model cell splits and design mitosis costs using the Erlang
distribution. Association and mitosis costs are used to calculate hypothesis likelihoods lhk . In the shown example, the hypothesis state
(Hk) mostly contains two hypotheses (h), where the underline indicates the most likely hypothesis. In frame k = 2, a mitosis (black
track) is reasonable and perhaps more likely than a randomly appearing cell or clutter (orange track). However, using posterior knowledge
from frame k = 5 and our novel mitosis costs, our extended MHT framework corrects the falsely detected mitosis in frame k = 2 by
identifying an implausible short life cycle for the blue cell in the black graph.
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the corresponding cell centroid OC
k ∈ (−1, 1)IH×IW×2, and

a motion offset OM
k ∈ (−1, 1)IH×IW×2 that estimates the

motion, i.e., the offset relative to the preceding frame Ik−1.
The second step uses Dk and OC

k to cluster pixels into cell
instances, where a cell instance j is represented by a two-
dimensional centroid µj

k and pixels Mj
k in the ID map Mk.

Compared to other frameworks (Ronneberger et al., 2015),
EmbedTrack uses the regressed motion offsets OM

k to warp
the cell centroids to the previous frame, denoted as µj

k−1|k.

This is done by selecting the predicted offset oM,j
k ∈ OM

k

at the same two-dimensional position as the respective cell
centroid µj

k and adding it to the current position. Thus,
the estimated position in the previous frame is the sum of
the current position and the motion regression: µj

k−1|k =

µj
k + oM,j

k . The output per frame can be described as a set
of detected cell instances

Zk =

{(
µj
k, µ

j
k−1|k,M

j
k

)}NZ
k

j=1

. (1)

Finally, EmbedTrack solves the tracking task with nearest-
neighbor matching between the warped cell positions
µk−1|k in frame k and previous cell centroids µk−1 in frame
k − 1. If multiple cells from k are matched to a single cell
from k − 1, it is classified as mitosis detection.

The lightweight method EmbedTrack is state-of-the-art, re-
quires few hyperparameters, and can be learned end-to-end
from existing data. However, the association is done only
with local visual features and heuristic nearest-neighbor
matching, which does not ensure consistency over long tem-
poral periods. This can lead to errors, especially when cells
appear similar in ambiguous image data. To overcome this
limitation, we introduce a method to extend the single-point
position and motion estimation to density estimations in
subsequent sections.

3.2. Multi-Hypothesis Tracking with Random Finite
Sets

In contrast to EmbedTrack, the well-known probabilistic
MHT (Reid, 1979) framework follows the TbD paradigm,
i.e. , it relies on precomputed cell instance detections, and
finds the most likely assignment hypothesis between all
detections over the entire image sequence. In this section,
we present a realization of the MHT framework, namely
the Multi-Bernoulli Mixture (MBM) tracker. We discuss the
high-level concepts and formalize necessary details. A high-
level visualization of the iterative MHT framework applied
to an example image sequence is visualized in the lower
part of Figure 3. Note that the visualization also includes
contributions that are introduced in subsequent sections,
highlighted in red. For the full framework, we refer to the
literature or our code.

In the MBM framework, the spatio-temporal position of
objects is described by 2D Gaussians. A potential object
i is defined by its mean position µi

k, the corresponding co-
variance Σi

k, and the probability rik, which describes the
likelihood that object i is indeed present. At a specific
time k, there are Nk potentially existing objects. The cor-
rect tracking result is assumed to be one of Hk potential
hypotheses h that form a multi-Bernoulli mixture:

Hk =

{(
lhk ,

{(
ri,hk , µi,h

k ,Σi,h
k

)}Nh
k

i

)}Hk

h

, (2)

in which lhk is the log-likelihood of the hypothesis being
correct.

To find the most likely tracking solution for an image se-
quence, the iterative MBM framework generates new hy-
potheses Hk at every time step k up to the last time step
K, selecting the most likely hypothesis with the highest
log-likelihood lhK . The input consists of a set of potential
object detections Zk for each time step, typically provided
by an external detector (e.g. , EmbedTrack). A detection j is
defined by its Gaussian position density N (·;µj,Z

k ,Σj,Z
k ),

the probability of being clutter λC,j
k , and the probability

of newly appearing in the scene (”born”) PB,j , i.e. , not
existing in the image sequence before. Additionally, the
MBM framework requires a model for the probability of
detection PD,i

h , which describes the likelihood that an object
is detected by the detector, i.e. , is in Zk. Since PD and
PB are difficult to model, they are typically set to constant
values.

Given these inputs and starting with an empty initial hypoth-
esis state H0 = {(l10 = 1, ∅)}, HK is derived by applying
an iterative filter recursion to every hypothesis h ∈ Hk

beginning at frame k = 0 and ending at k = K. The re-
cursion, which is divided into prediction, sampling, update,
and reduction, is elaborated next in detail. To illustrate the
algorithm alongside the abstract formulation, we showcase
a filter recursion applied to hypothesis h4 in image k = 3,
where it receives new detections Z4 from frame k = 4 in
Figure 3 (black graph).

3.2.1. PREDICT

The first step is to estimate the expected position densities
of all objects that are in h ∈ Hk in the next frame k + 1.
This is done with a motion model such as the linear Kalman
filter (Kalman, 1960) that predicts the new state based on
prior motion patterns. When the prediction is applied to all
hypotheses in Hk, the result is a warped state Hk+1|k.

In our example hypothesis h4, we model random-walk-like
cell motion and increase the variances Σ6,h4

3 and Σ7,h4

3 of
the existing objects 6 and 7.

6
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3.2.2. SAMPLE ASSOCIATION HYPOTHESES

Next, the predicted state h ∈ Hk+1|k is mapped to the
new detection data Zk+1. A known object i ∈ h is either
represented by a detection j ∈ Zk+1 or remains undetected
by the detector, for instance, if it moves outside the field of
view. If a detection j does not represent an object i, it is
either a newly appeared object or clutter. Note that mitosis,
where two new detections are assigned to a former object,
is not modeled in the vanilla MBM. However, to find the
correct mapping, multiple likely assignments Ψh

k between
new detections and known objects are possible. This is
modeled by association costs cj,i,hk between detections and
objects, and unassignment costs cj,u,hk for leaving detection
j unassigned. Higher costs reflect a lower likelihood that an
assignment is reasonable. The exact definition of these costs
is not essential for this paper, but for completeness, they
are formalized below using a score ni,j,h

k that evaluates the
spatial similarity between the Gaussian-distributed positions
of object i and detection j:

cj,i,hk = −log
((

1− λC,j
k+1

) PDri,hk+1|kn
i,j,h
k

PB +
∑

i′ P
Dri

′,h
k+1|kn

i′,j,h
k

)
(3)

and cj,u,hk = −log
((

1− λC,j
k+1

)
−
∑
i

e−cj,i,hk

)
(4)

with ni,j,h
k = N

(
µi,h
k+1|k;µ

j,Z
k+1,Σ

i,h
k+1|k +Σj,Z

k+1

)
. (5)

To finally sample assignments, the costs are arranged in a
matrix

Ch
k =

[
Cj,i,h

k Diag∞
(
cj,u,hk

) ]
(6)

in which Diag∞ maps the values to the diagonal of a square
matrix with all other elements set to ∞. A row represents
a detection and a column an object. Potential object to de-
tection assignments are located in the left submatrix, unas-
signed detections in the right submatrix. A bijective sam-
pling algorithm like Murty (Murty, 1968) or Gibbs (Geman
& Geman, 1984) is applied to Ch

k to sample the Amax most
likely assignments Ψh

k . The assignments minimize the total
assignment costs and always assign a column to a row but at
most a single row to a column. Thus, mitosis is not allowed
in this formulation.

In our example hypothesis h4 in Figure 3, multiple assign-
ments are possible, e.g. , 8 to 6, 8 to 7, 8 is unassigned, and
so further. Since the positions of detections Z4 and objects
H4|3 are very similar, only the assignment that assigns 6 to
8 and 7 to 9 has low costs and is therefore likely.

3.2.3. UPDATE

For each sampled assignment in Ψh
k , a new hypothesis h∗

is created by refining the object states from h, under the
assumption that the corresponding assignment is true. The

object states from h are updated with their assigned detec-
tions and the motion model (e.g., the Kalman filter). Unas-
signed detections are added as new objects to h∗. The
log-likelihood of the new hypothesis, lh

∗

k+1, is adjusted by
adding the assignment costs corresponding to the assign-
ment. Finally, the updated hypotheses are added to Hk+1,
contributing to the state density of the next frame.

For the example hypothesis h4, we create the new hypoth-
esis h6 and update the positions of objects 6 and 7 by ap-
plying Kalman’s update rule using the predicted positions
and variances of objects 8 and 9. The log-likelihood of the
new hypothesis is computed as lh6

4 = lh4
3 + c8,62 + c9,72 and

is added to H4.

3.2.4. REDUCTION

Since the number of hypotheses Hk = |Hk| grows exponen-
tially, it becomes computationally expensive and impracti-
cal. To address this, hypotheses that describe the same state
can be merged, and hypotheses with low probability (i.e.,
high lhk ) are pruned until the number of hypotheses satisfies
Hk ≤ Hmax.

In our example, after the recursion, the two hypotheses
h6 and h7 remain. They only differ in the age of object
8: it is 3 in the black graph of h6 and unknown in the
orange graph of h7. Without utilizing this information in
standard MHT frameworks, one of the hypotheses might
be deleted to save computational time. However, in our
approach presented later, we preserve this distinction to
enable long-term lineage tracking.

The primary advantage of MBM/MHT lies in its ability to
re-evaluate the likelihoods of hypotheses a posteriori. Hy-
potheses that initially appeared likely can be rejected if they
lead to unlikely outcomes in subsequent frames. MBM
and other MHT-based approaches are effective because they
provide a globally optimal tracking solution, incorporating
all available detection information. However, the frame-
work does not model cell division and heavily depends on
a strong motion model, which is challenging to define for
random-walk-like cell movements in time-lapse sequences.
In later sections of this paper, we introduce a strong implicit
motion model and extend the standard MBM framework
to model cell division and ensure long-term consistency in
cell tracking. It is important to note that the core of our
contribution can be similarly applied to other MHT-based
frameworks, such as (Granström et al., 2018; Rezatofighi
et al., 2015). For simplicity, we use the term MHT instead
of specifically referring to MBM.
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4. Uncertainty in Tracking-by-Regression
In this section, we introduce our first contribution and esti-
mate the uncertainty of regression frameworks, exemplarily
applied to EmbedTrack, to derive continuous spatial posi-
tion and motion estimation distributions that are necessary
for our extended association strategy in MHT frameworks
(Section 5). We want to emphasize that our concepts apply
to arbitrary TbR frameworks that estimate motion. Our con-
tributions applied to EmbedTrack are visualized in Figure 3.

4.1. Test-Time Augmentation for Motion Regression

Test-Time Augmentation is a widely used strategy to reduce
data noise during inference by applying a set of transfor-
mations, T , to the input image I and averaging the inferred
estimations (Wang et al., 2019). For example, EmbedTrack
utilizes rotations of 0◦, 90◦, 180◦, and 270◦, as well as
reflections, resulting in a set of |T | = 8 Euclidean transfor-
mations that are equally applied to both input images Ik−1

and Ik.

While this strategy tackles geometrical variances, motion
regression networks that aim to estimate the position of
the cell instances in the previous frame (i.e., the motion),
based on visual cues, suffer from two problems that are not
addressed by standard augmentations: Cell appearance is
similar within a population and can change between consec-
utive frames, as highlighted in the upper row of Figure 1.
The appearance of the cell marked in blue is more or less
static, but the red one changes shape and pixel intensities.
Since reliable re-identification is sometimes impossible even
for humans, we suspect regression networks to perform a
heuristic and random assignment, such as a simple nearest-
neighbor matching, in those cases.

To overcome this heuristic, we add spatial transformations
to T that keep Ik unchanged but shift Ik−1. The shift should
induce slight variances in the spatial arrangement without
creating implausible motions of cells. Thus, we shift the im-
ages in all vertical and horizontal directions by the average
cell radius rCell, which can be extracted from training data
or with a segmentation framework. Using training data, one
can approximate the average cell radius by modeling cell
shapes as perfectly round circles and employing the circle
areas

rCell =
1∑KGT

k=1 N
GT
k

KGT∑
k=1

NGT
k∑

n=1

√
1

π
∥Mn,GT

k ∥
1
, (7)

in which KGT is the number of ground truth images, NGT
k

denotes the number of ground truth segmentations in frame
k, and Mn

k is the respective binary segmentation map of
cell n. It’s worth noting that this approximation is only
useful if training data is available and has the same cell
size distribution as the test data. If no data is available, the

ground truth segmentation Mn,GT
k can be substituted with

the results of high-performing segmentation frameworks,
as, for example, shown in Equation (1). In this work, we
use training data that is available for the respective datasets
employed in our experiments presented in Section 6. The
shift parameter rCell is static for the entire tracking sequence
and therefore not adaptive to changing cell sizes in the
sequence.

The resulting set of transformations, T ′, consists of the
original transformations as well as shifted transformations
in all spatial directions with the shift rCell, such that |T ′| =
5·|T |. Using the new shifts, all motion estimations should be
similar when visual cues are unambiguous but may vary in
uncertain situations. The variance of the prediction reflects
ambiguity and uncertainty and is used in the next section.

4.2. Uncertainty in Centroid and Motion Distributions.

While averaging test-time augmentations reduces the influ-
ence of geometrical variances in tasks like instance seg-
mentation, simple averaging is not useful for multi-modal
distributions in centroid or motion regression. The networks
implicitly try to find the object location in the (subsequent)
image based on visual cues. If multiple similar cell instances
exist, averaging the respective predictions leads to a random
average prediction that may point to a position with no cell.
Thus, we transform the uncertainty revealed by shifted test-
time augmentation applied to EmbedTrack into continuous
spatial distributions.

Before we apply our contribution, the estimated centroid
and motion of a detection j are described by discrete 2D
positions, µj

k and µj
k−1|k. To represent spatial estimation

uncertainties, we describe the detection centroids and mo-
tion with multivariate Gaussian densities N

(
·;µj,Z

k ,Σj,Z
k

)
and N

(
·;µj,Z

k−1|k,Σ
j,Z
k−1|k

)
with respective mean and vari-

ance parameters for specific detection instances. To get
the parameters, we first calculate pixel-wise (co)variances
of the centroid and motion offsets, denoted as OC,Σ

k ∈
RH×W×2×2

+ and OM,Σ
k ∈ RH×W×2×2

+ . Then, every
pixel p ∈ Mj

k that belongs to a specific cell j defines a
weighted Gaussian with the weights Dk,p and the parame-
ters (OM

k,p,O
M,Σ
k,p ) (the index p denotes the matrix value at

the respective pixel position). The Gaussians can be seen as
a Gaussian mixture (GM) and merged according to (Crouse
et al., 2011), such that the spatial distribution parameters of
a cell instance j are defined as

{(
Dk,p,O

C
k,p,O

C,Σ
k,p

)
| p ∈ Mj

k

}
Merge7−−−→

(
µj,Z
k ,Σj,Z

k

)
(8)
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Dk,p,O

M
k,p,O

M,Σ
k,p

)
| p ∈ Mj

k

}
Merge7−−−→

(
µj,Z
k−1|k,Σ

j,Z
k−1|k

)
(9)

Moreover, we estimate the probability that detection j is a
false detection (a.k.a. clutter). The clutter probability λC,j

k

is defined using the inverted segmentation score 1−Dk,p

at the centroid pixel p = µj,Z
k .

With our contribution, the new output of EmbedTrack ex-
tends Equation (1) to

Zk =
{(

λC,j
k , µj,Z

k ,Σj,Z
k , µj,Z

k−1|k,Σ
j,Z
k−1|k,M

j
k

)}NZ
k

j=1
.

(10)
The additional variance indicates situations in which Em-
bedTrack may causes errors and and needs to be corrected.

5. Mitosis-aware Multi-Hypothesis Tracking
Our first contribution allows strong neural regression mod-
els to estimate position densities that are required by MHT
frameworks. However, the presented MHT tracker suffers
from several drawbacks for cell tracking: There is no accu-
rate motion model due to the often unpredictable cell motion
in time-lapse videos, and the bijective one-to-one associa-
tion does not allow modeling mitosis. Thus, the following
sections introduce A) our novel implicit motion model for
MHT trackers based on our uncertainty-aware regression
system, and B) a model that also accounts for mitosis and
enables long temporal consistency with our novel cell cycle-
preserving mitosis costs. Furthermore, without going into
further detail, we replace the typically handcrafted probabil-
ity of clutter with our uncertainty-based λC,j

k introduced in
the previous section. An example MHT filter recursion with
our novelties highlighted in red is visualized in Figure 3.

5.1. Implicit Motion Model

The MHT framework predicts the motion of objects from the
current frame k to the subsequent frame k+1. The estimated
positions are then matched to the positions of new detections
and updated according to the Kalman filter. Instead of only
using the spatial position of detection proposals, we propose
the additional use of the motion estimation output from our
uncertainty-aware regression framework, as given in Equa-
tion (10). Motion regression is an implicitly learned, solid
appearance-based motion model and replaces the linear and
spatial Kalman prediction step. The association costs can
be calculated directly between the previous object positions
and the estimated motion prediction of the detections. To
achieve this, Equation (5) needs to be modified to

ni,j,h
k = N

(
µi,h
k ;µj,Z

k|k+1,Σ
i,h
k +Σj,Z

k|k+1

)
. (11)

Consequently, we also do not apply the Kalman filter dur-

ing the update step and instead directly use the estimation
of the usually high-performing centroid estimation model
to update the object positions with µi,h

k+1 = µj,Z
k+1 and

Σi,h
k+1 = Σj,Z

k+1. Objects that are not assigned to a detec-
tion keep their mean but have their covariance increased as
Σi,h

k+1|k+1 = Σi,h
k + Σ̄ by the mean cell motion per frame,

Σ̄. Using our regressed motion estimation densities leads to
large estimation variances only for cells with high aleatoric
uncertainty.

5.2. Mitosis-aware Association Costs

Due to the bijective assignment, the vanilla MHT does not
allow mitosis, where object i from h ∈ Hk+1|k has an asso-
ciation with two detections, j1 and j2, from measurement
Zk+1. This limitation arises from the design of the cost ma-
trix Ch

k in Equation (6) for the assignment problem, where
only one association per row and column is allowed. To
enable the assignment of j1 and j2 to an object i during cell
mitosis, we extend the cost matrix Ch

k by adding a submatrix
C′j,i,h

k to the right, such that

Ch
k =

[
Cj,i,h

k Diag∞
(
cj,u,hk

)
C′j,i,h

k = Cj,i,h
k

]
.

(12)
In the new cost matrix, a detection is represented in a single
row, while objects are represented in two columns. If the
costs cj1,i,hk and cj2,i,hk are relatively small, solving the as-
signment problem leads to assignments of j1 in Cj,i,h

k and
j2 in C′j,i,h

k , or vice versa, such that both are assigned to i.

The new cost matrix enables the MHT framework to model
mitosis, but it does not explicitly incorporate biological
knowledge about the cell life cycle and mitosis. Thus, the
likelihood of mitotic events is not assessed in the rating
lhk of the corresponding hypotheses. To close this gap, we
reformulate C′j,i,h

k and add biologically inspired costs such
that C′j,i,h

k = Cj,i,h
k +CM,i,h

k to guide the mitosis detection.
A value cM,i,h

k in column i reflects the probability that cell i
from hypothesis h should not split at this moment. We set

cM,i,h
k =

−log
(∫ Age(i)

−∞ Erlangα,β(t)dt
)

if known

0 else
(13)

with the current lifetime Age(i) of the cell (which may
also be unknown) and the cumulative Erlangα,β(t) distri-
bution, which describes the expected lifetime distribution
of cells (Yates et al., 2017). Adding these costs penalizes
hypotheses that imply implausibly short cell life cycles. For
example, in Figure 3, even if the black hypothesis is more
likely before frame 5, mitosis in frame 5 causes high asso-
ciation costs. This leads the orange track, which does not
involve mitosis in frame 2, to appear more likely a-posteriori.
The Erlang distribution is parameterized by α and β, which
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Table 2. Benchmark on biological measures on the test data following the official Cell Tracking Challenge (Maška et al., 2023). Colored
numbers represent the performance of the official top #k state-of-the-art methods. Applied to identical input detections, the baseline
compares heuristic association of EmbedTrack (Löffler & Mikut, 2022) and Trackastra (Gallusser & Weigert, 2024) transformer-based
association to our association approach using . Numbers highlighted in bold indicate that we surpass other the association methods on
identical inputs and underlined numbers that our approach is the new state-of-the-art over all participating methods.[

%
]
↑ BF-C2DL-

HSC
BF-C2DL-

MuSC
DIC-C2DH-

HeLa
Fluo-C2DL-

MSC
Fluo-N2DH-

GOWT1
Fluo-N2DL-

HeLa
PhC-C2DH-

U373
PhC-C2DL-

PSC
Fluo-N2DH-

SIM+

C
T

Top #1 5.94 5.32 24.06 29.29 36.58 67.45 57.33 17.13 59.58
Top #2 5.4 1.65 16.88 20.29 34.13 63.34 50.40 16.79 58.53
Top #3 4.42 1.53 12.20 19.77 31.63 59.59 50.22 14.23 53.09

Cell DINO N/A N/A 24.06 19.77 31.63 N/A 26.19 N/A 34.17

Baseline 5.94 1.00 12.20 6.79 27.26 58.76 50.22 14.23 59.88
Trackastra 16.23 1.73 20.54 14.29 25.57 64.91 30.08 17.30 61.33

Ours 20.59 2.32 29.19 20.75 29.10 65.42 56.94 17.68 56.09

T
F

Top #1 62.26 68.46 87.14 75.29 94.16 98.05 100.0 84.16 93.66
Top #2 59.62 68.16 80.93 74.96 93.57 96.95 99.85 83.65 92.72
Top #3 57.14 63.49 75.30 68.12 89.76 96.85 99.82 82.65 91.71

Cell DINO N/A N/A 87.14 66.11 89.76 N/A 92.15 N/A 90.03

Baseline 62.26 68.16 75.30 59.59 84.00 96.95 97.07 82.65 93.66
Trackastra 75.85 68.73 81.02 69.14 84.93 97.94 99.82 85.99 93.82

Ours 79.88 75.67 82.08 65.44 88.34 97.21 94.20 84.18 94.74

B
C

(i
)

Top #1 44.05 65.10 N/A N/A N/A 88.21 N/A 60.04 92.16
Top #2 32.46 55.07 N/A N/A N/A 88.12 N/A 57.59 91.79
Top #3 27.68 39.20 N/A N/A N/A 81.10 N/A 53.58 89.67

Cell DINO N/A N/A N/A N/A N/A N/A N/A N/A 69.59

Baseline 32.46 24.68 N/A N/A N/A 77.09 N/A 48.17 92.16
Trackastra 56.77 30.59 N/A N/A N/A 85.76 N/A 54.04 91.69

Ours 58.82 60.40 N/A N/A N/A 85.05 N/A 59.29 83.07

C
C

A

Top #1 56.33 85.18 N/A N/A N/A 93.12 N/A 85.34 94.76
Top #2 51.79 34.02 N/A N/A N/A 91.37 N/A 64.89 91.71
Top #3 43.33 25.37 N/A N/A N/A 89.71 N/A 63.49 90.52

Cell DINO N/A N/A N/A N/A N/A N/A N/A N/A 70.92

Baseline 12.23 11.82 N/A N/A N/A 62.75 N/A 34.75 85.29
Trackastra 34.35 15.04 N/A N/A N/A 77.71 N/A 49.68 89.61

Ours 69.63 36.05 N/A N/A N/A 85.10 N/A 57.65 90.15

Method

KIT-GE (1) (Stegmaier et al., 2012)
KIT-GE (2) (Löffler et al., 2021)
KIT-GE (3) (Scherr et al., 2020)

KIT-GE (4) (Löffler & Mikut, 2022)
KTH-SE (1) (Magnusson et al., 2015)
KTH-SE (1*) (Magnusson et al., 2015)
KTH-SE (3) (Magnusson et al., 2015)
KTH-SE (5) (Magnusson et al., 2015)
BGU-IL (1) (Arbelle & Raviv, 2019)

BGU-IL (5) (Ben-Haim & Raviv, 2022)
HD-GE (BMCV) (1)

HD-GE (IWR) (Schiegg et al., 2013)
FR-GE (2) (Ronneberger et al., 2015)

HKI-GE (5) (Belyaev et al., 2021)
THU-CN (2) (Hu et al., 2021)
TUG-AT (Payer et al., 2019)

USYD-AU (Chen et al., 2021)
ND-US (1)
DREX-US

IMCB-SG (1)
UVA-NL (Gupta et al., 2019)

HIT-CN (1) (Zhou et al., 2019)
CVUT-CZ (Sixta et al., 2020)
NUDT-CN (Liao et al., 2024)

can be approximated from the data by regressing the expo-
nential proliferation rate, as done, for instance, in (Paul et al.,
2024). For short sequences of length K that rarely contain
cell splits and do not allow reasonable approximations, we
set α = K and β = 1

K to penalize cell splits with relatively
high costs. The novel cost matrix, together with mitosis
costs, allows modeling cell proliferation and explicitly uses
statistical biological knowledge to identify the most likely
hypothesis in MHT frameworks.

6. Experiments
This section presents experimental results analyzing our
uncertainty estimation and tracking framework. We evalu-
ated our method on nine publicly available and compet-
itive datasets provided by the Cell Tracking Challenge
(CTC) (Maška et al., 2023), that cover a wide range of cell
types and modalities as summarized in table 3. The data con-
sists of mouse muscle stem cells (BF-C2DL-HSC/MuSC,
Fluo-N2DH-GOWT1), HeLa cells (DIC-C2DL-HeLa, Fluo-
N2DL-HeLa), rat mesenchymal stem cells (Fluo-C2DL-
MSC), glioblastoma-astrocytoma U373 cells (PhC-C2DH-
U373), pancreatic stem cells (PhC-C2DL-PSC), and simu-
lated HL60 nuclei (Flup-N2DH-SIM+). They are captured
in short (e.g. , Fluo-C2DL-MSC) and long microscopic
video sequences with different distinction of proliferation

trees (e.g. , BF-C2DL-HSC). To provide an intuition about
the differing complexity with respect to the tracking task,
Table 3 presents metadata about the cell culture derived
from our results. This clearly shows that the mouse stem
cell data (BF-C2DL-HSC and BF-C2DL-MuSC) have the
longest proliferation trees, beginning with a few initial cells
and growing exponentially to hundreds or thousands of cells
in the colony. The lineage tree of a sequence from BF-
C2DL-HSC and BF-C2DL-MuSC compared to the much
smaller PhC-C2DH-U373 is shown in Figure 2. As such,
BF-C2DL-HSC and BF-C2DL-MuSC are the most impor-
tant datasets to evaluate the long-term tracking capabilities
of our method.

The CTC undisclosed ground truth for the test data used for
benchmarking and only publishes a limited set of evaluation
measures. Since our method aims to enhance long-term
consistency, which is essential for monitoring entire cell life
cycles, we assess its performance using biologically relevant
metrics (Ulman et al., 2017) that are most suitable for evalu-
ating long-term tracking. Specifically, we report Complete
Tracks (CT), Track Fractions (TF), Branching Correctness
(BC(i)), and Cell Cycle Accuracy (CCA). While CT in-
dicates the fraction of tracks that are fully reconstructed
without error, TF reports the average fraction of a track
that is continuously reconstructed correctly. For evaluating
mitosis detection, BC(i) indicates the fraction of correctly
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Table 3. Additional information to the test datsets presented in Table 2. Each dataset includes two video sequences for evaluation. The
number of cell instances describes the total number of cell detections captured by our method, that are then clustered to a distinct number
of trajectories. The average cell size in pixel is the area of cell detections, together with the average cell motion per frame in pixel
and relative cell radian, the initial cells the number of cells in the first frame, and cell splits the branching events. From the technical
perspective, the data differs in the used microscope and lens, pixel grid size, image resolution, number of frames and the time elapsed
between two consecutive frames.

BF-C2DL
-HSC

BF-C2DL
-MuSC

DIC-C2DH
-HeLa

Fluo-C2DL
-MSC

Fluo-N2DH
-GOWT1(Bártová et al., 2011)

Fluo-N2DL
-HeLa(Neumann et al., 2010)

PhC-C2DH
-U373

PhC-C2DL
-PSC(Rapoport et al., 2011)

Fluo-N2DH
-SIM+(Svoboda & Ulman, 2017)

Cell Instances 185475 14830 2631 723 5243 31099 1244 146902 10077
Trajectories 1475 330 105 56 107 943 24 4211 263
Cell Splits 652 130 15 6 10 309 3 1638 98
Initial Cells 4 2 19 13 56 164 11 140 43

Avg. Cell Size [Pixel] 299 889 21151 9768 35895 569 4240 130 1728
Avg. Motion [Pixel] 5 (46%) 12 (70%) 7 (13%) 21 (37%) 3 (9%) 2 (17%) 4 (10%) 1 (14%) 4 (16%)

Frames 3528 2752 230 96 184 184 230 600 248

Resolution [Pixel] 1010x1010 1036x1070 512x512
832x992

782x1200 1024x1024 700x1100 520x696 576x720
718x660
790x664

Microscope
Zeiss PALM/

AxioObserver Z1
Zeiss PALM/

AxioObserver Z1
Zeiss LSM
510 Meta

PerkinElmer
UltraVIEW ERS Leica TCS SP5 Olympus IX81 Nikon Olympus ix-81 Zeiss Axiovert 100S

Micromax 1300-YHS

Objective Lens
EC Plan-Neofluar

10x/0.30 Ph1
EC Plan-Neofluar

10x/0.30 Ph1
Plan-Apochromat

63x/1.4 (oil)
Plan-Neofluar 10x/0.3
(Plan-Apo 20x/0.75)

Plan-Apochromat
63x/1.4 (oil) Plan 10x/0.4 Plan Fluor

DLL 20x/0.5 UPLFLN 4XPH Plan-Apochromat
40x/1.3 (oil)

Pixel Size [micron] 0.645x0.645 0.645x0.645 0.19x0.19 0.3x0.3 0.24x0.24 0.645x0.645 0.65x0.65 1.6x1.6 0.125x0.125
Time Step [min] 5 5 10 20 5 30 15 10 29

Table 4. Impact of augmentations on the variance of motion esti-
mation adding shifts T ′ to standard augmentations T0. In addition
to our shift, we halfed (T ′

Half) and doubled (T ′
Double) the amount of

pixels. We present the average motion estimation per frame for T0

in pixels and otherwise the relative amplification. Also, the impact
to CHOTA is visualized.

Mean Motion
[
Pixel

] Test-Time Shift
T0 T ′

Half T ′
Ours T ′

Double

D
at

as
et

BF-C2DL-HSC 1.55 ×1.33 ×2.97 ×6.32
BF-C2DL-MuSC 9.61 ×1.04 ×1.19 ×1.76
DIC-C2DH-HeLa 14.13 ×1.31 ×2.58 ×4.76
Fluo-C2DL-MSC 30.48 ×1.05 ×1.28 ×2.09

Fluo-N2DH-GOWT1 3.88 ×1.09 ×1.87 ×9.87
Fluo-N2DH-SIM+ 3.82 ×1.07 ×1.40 ×7.50
Fluo-N2DL-HeLa 2.21 ×1.08 ×1.92 ×7.24
PhC-C2DH-U373 6.32 ×1.08 ×1.57 ×5.39
PhC-C2DL-PSC 1.45 ×1.07 ×1.40 ×3.07

CHOTA ↑
[
%
] Test-Time Shift

T0 T ′
Half T ′

Ours T ′
Double

D
at

as
et

BF-C2DL-HSC 73.27 75.40 76.75 73.98
BF-C2DL-MuSC 81.36 81.26 82.24 80.25
DIC-C2DH-HeLa 90.52 90.51 91.78 87.96
Fluo-C2DL-MSC 83.21 83.19 86.74 80.69

Fluo-N2DH-GOWT1 96.80 96.80 96.81 97.07
Fluo-N2DH-SIM+ 96.29 96.37 96.37 96.06
Fluo-N2DL-HeLa 92.45 92.57 92.61 92.52
PhC-C2DH-U373 92.28 92.28 92.28 92.05
PhC-C2DL-PSC 82.50 82.75 83.07 82.74

detected cell splits, and CCA measures the overlap between
predicted and ground truth life cycle distributions. Further-
more, to gain in-depth insights into long-term tracking, we
use the CHOTA metric (Kaiser et al., 2024) in our ablation
studies, which are performed on the CTC training/validation
data with disclosed ground truth. CHOTA evaluates long-
term tracking capability by rating each association based
on its impact on the entire tracking result. Qualitatively,
CHOTA quantifies the fraction of connected descendant and
ascendant cell detections in the ground truth proliferation

tree that are also connected in the tracking result for every
cell detection. Therefore, CHOTA is the most comprehen-
sive tracking metric used in this paper, as it includes both
short- and long-term relationships between cells.

To ensure a fair comparison, we employ the code and pre-
trained models of EmbedTrack (Löffler & Mikut, 2022)
without any modification or re-training, applying only our
uncertainty estimation strategy. We use EmbedTrack’s pre-
processing during inference, generating overlapping crops
of size 256x256 (512x512 for Fluo-C2DL-MSC) and apply-
ing min-max normalization to the range [0, 1] using the 1%
and 99% percentiles per crop. Thus, we refer to EmbedTrack
as our baseline. If not stated otherwise, our extended MHT
tracker is implemented using hyperparameters Amax = 7,
Hmax = 150. After tracking, we remove very small tracks
and interpolate at gaps. The code is publicly available (see
page 2). To precisely compare our association strategy with
the current state-of-the-art, we apply Trackastra (Gallusser
& Weigert, 2024) to the same input detections used by our
method, derived from EmbedTrack. We use the official im-
plementation of Trackastra that can be found here1 without
modifications. Inference was performed in mode greedy
and with the provided pretrained model general 2d that is
trained on the CTC data as used in our experiments.

6.1. Quantitative Results

Our method is specifically designed to enhance tracking
results in long and complex scenarios by effectively resolv-
ing long-term conflicts through the introduction of mitosis
costs. To evaluate this capability, we present the results
obtained on nine diverse datasets, assessed using the CTC
evaluation server. The results are summarized in Table 2,
which presents the top three leading benchmark methods
for each dataset in the CTC, as well as a comparison of
our method to the baseline EmbedTrack, differing only in
the association strategy. Additionally, we compare our as-

1https://github.com/weigertlab/trackastra
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Ours (Extended MHT)

Baseline (EmbedTrack)

Figure 4. Superior Case. The image sequence illustrates a scenario in which our method achieves significant improvements over the
baseline (BF-C2DL-HSC). The cells are densely packed, similar in appearance, and the sequence is relatively long, containing extensive
lineage tree information. An abrupt increase in the motion of cell 1 at frame k = 1005 displaces cells 2 and 3. While our tracker
successfully reconstructs the correct trajectories, the baseline’s local assignment strategy results in several implausible cell splits. White
numbers indicate cell IDs, and braces show the parent ID when available in the displayed sequence. Cells without label are not of interest
and can be considered as tracked correctly.

k = 10 k = 11 k = 58 k = 59 k = 70

Ours (Extended MHT)

Baseline (EmbedTrack)
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Figure 5. Failure Case. The image sequence showcases a scenario in which our method struggles and induces errors (Fluo-N2DH-SIM+).
The image sequence is relatively short, with only a few cell cycles. As a result, the modeled mitosis costs based on sequence statistics do
not accurately reflect the true lifetime distribution. In frame k = 59, cell 3 divides into cells 9 and 10 (see baseline). Our tracker discards
this mitosis due to high mitosis costs and instead spawns a new cell 9 (see ours). In contrast, the baseline’s local assignment strategy
benefits from the distinct appearance of the cells and their limited movement, successfully detecting the correct mitosis event. White
numbers indicate cell IDs, and braces show the parent ID when available in the displayed sequence. Cells without label are not of interest
and can be considered as tracked correctly.

sociation strategy to the latest trends in cell tracking by
showing results achieved by transformer-based methods,
Cell DINO (Liao et al., 2024) (if available) and Trackas-
tra (Gallusser & Weigert, 2024). Note that Trackastra is
applied to same input detections as our method to enable a
fair comparison.

The most meaningful comparison to evaluate the associa-
tion strategy is against the baseline and Trackastra, which
use the same input detections. Our method shows a sub-
stantial improvement in metrics, particularly for complex
datasets, with improvements of up to a factor of ×5.7 (CCA,
BF-C2DL-HSC). As the data complexity decreases, the im-

provement diminishes, aligning with our method’s design,
as smaller datasets rarely include complete cell life cycles.
Our method does not improve metrics on relatively short
sequences such as Fluo-N2DH-SIM+ or PhC-C2DH-U373.
This behavior is expected because the former includes only
a limited number of mitotic events, and the latter contains al-
most no mitotic events that could benefit from our extended
association strategy.

Our method emerges as the new state-of-the-art in 5 out
of 9 datasets on the biological metrics benchmark, out-
performing all other competitors in the challenge. Since
our association strategy relies on the predictive capabilities
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of EmbedTrack, the method only performs less well when
EmbedTrack itself has a large performance gap compared
to the current state-of-the-art. For example, in BF-C2DL-
MuSC, EmbedTrack suffers from many over- and under-
segmentations. This dependency on detection quality is
clearly visible, as our method performs best on BF-C2DL-
MuSC when better input detections are used, as evaluated
in the next section.

Comparing our method to the latest trends, it is evident
that we outperform transformer-based models in complex
scenarios with large proliferation trees, such as BF-C2DL-
HSC. This may be due to the fact that end-to-end neural
networks like these are not designed to model high-level bi-
ological information. However, the association performance
of transformer-based models is superior on smaller datasets
where proliferation and mitosis are limited, such as Cell
DINO on Fluo-N2DH-GOWT1. These results might also
be partially attributed to the better detection quality of Cell
DINO.

Another noteworthy observation is the discrepancy between
the reported biological metrics in Table 2 and the technical
metrics reported here2. Both our approach and the baseline
achieve technical metrics that are close to optimal, with
differences largely attributable to noise. This underscores
the concern stated in Section 1 that technical metrics often
do not reflect biological aspects. Our method addresses this
issue by prioritizing long-term consistency by effectively
resolving mitosis errors. These errors, while having a min-
imal impact on technical metrics, significantly influence
biologically relevant metrics. In addition to the discussed
benchmark metrics, Table 5 shows additional metrics from
the py-ctcmetrics framework (Kaiser et al., 2024) that we
applied to the respective train and validation datasets with
disclosed ground truth data. The metrics help practical users
to assess our method. Videos of our reported tracking results
can be found here3.

6.2. ISBI Challenge - Linking only

In addition to the evaluation on the CTC benchmark, we
applied our method to the seventh ISBI Challenge in the
linking-only track4. In this challenge, the organizers pro-
vided pre-computed and potentially faulty cell detections
that needed to be associated. To satisfy this requirement, we
replaced the detections from EmbedTrack in Equation (1)
with the provided ones, while keeping the rest of the system
unchanged.

Our first contribution in EmbedTrack may be negatively in-

2www.celltrackingchallenge.net/
latest-ctb-results

3www.tnt.uni-hannover.de/de/project/MPT/
data/BiologicalNeeds/Videos.zip

4www.celltrackingchallenge.net/ctc-vii

fluenced by the data induction in Equation (1). However,
our second contribution in the MHT framework significantly
improves performance, surpassing all other participants in
long sequences with substantial proliferation. Our method
demonstrates a notable advantage on the long and densely
populated BF-C2DL-HSC/MuSC sequences, with an im-
provement of approximately +3%. This aligns with the
observations in Table 2. However, this advantage does not
manifest in shorter sequences without significant prolifera-
tion. The full challenge results can be found here5, where
we are named LUH-GE.

6.3. Uncertainty Estimation

During test-time augmentation, we apply transformations
T ′ to shift the image Ik−1. This practice helps to increase
the variance in uncertain predictions. The impact of various
augmentations T ′ is illustrated in Figure 1, where shifts of
0, 1, 4, and 8 pixels are applied to an image containing a
crowded cell population with approximately 20× 20 pixels
per cell.

There are two cells visualized: a cell with anappearance
change (red) and an easy-to-reidentify cell (blue). When
only applying the standard T , we observe small variances
in both motion estimations in ΣZ

k−1|k, indicating low uncer-
tainty. This confirms the assumption that the default strategy
leads to very certain predictions in uncertain environments.
However, applying a small shift of 1 pixel (T ′

1 ) leads to a
small increase in uncertainty, while a shift of 4 pixels (T ′

4 )
results in significantly growing variances for the red cell.
This allows multiple plausible associations during tracking.
Lastly, applying T ′

8 leads to drastically increasing variance
for the uncertain cell, but is still small for the certain blue
cell.

Table 4 presents the average standard deviation of motion in
pixels to quantify the impact of shifts on different datasets.
We compare different augmentation settings with no shift
(T0), our shift (T ′

Ours) determined by the average cell radian,
and shifts with half (T ′

Half) and doubled (T ′
Double) radian. Fur-

thermore, the resulting CHOTA values are shown. It shows
that the radian is a well-suited distance for the shift. As
expected, the standard deviation of the estimation increases
when applying larger shifts. In most cases, the standard de-
viation increases significantly when using the doubled shift.
This indicates that the standard deviation of a larger amount
of cells increases, presumably also from certain ones. On
almost all datasets (except Fluo-N2DH-GOWT1), our dis-
tance leads to the best results compared to other parameter
settings.
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Table 5. Additional metrics derived from the py-ctcmetrics framework (Kaiser et al., 2024). The Global block contains metrics that
evaluate long-term consistencies. Local metrics are only influenced by frame-to-frame associations. The metrics denoted as Detection
evaluate the detection capabilities and SEG is a segmentation quality measure. We refer to (Kaiser et al., 2024) for detailed metric
descriptions.

BF-C2DL
-HSC

BF-C2DL
-MuSC

DIC-C2DH
-HeLa

Fluo-C2DL
-MSC

Fluo-N2DH
-GOWT1(Bártová et al., 2011)

Fluo-N2DL
-HeLa(Neumann et al., 2010)

PhC-C2DH
-U373

PhC-C2DL
-PSC(Rapoport et al., 2011)

Fluo-N2DH
-SIM+(Svoboda & Ulman, 2017)

Sequence 01 02 01 02 01 02 01 02 01 02 01 02 01 02 01 02 01 02

G
lo

ba
l

CHOTA 79.4 74.1 84.6 78.0 96.5 87.1 93.4 80.1 98.2 95.4 93.9 91.3 92.8 91.6 80.0 85.1 97.8 95.0
HOTA 79.6 89.8 79.7 76.6 96.3 93.5 93.4 76.8 97.7 96.6 94.4 92.6 89.3 87.5 86.1 89.3 97.7 93.7
IDF1 77.6 87.4 76.5 69.4 97.1 94.5 94.9 73.1 97.6 97.5 93.4 91.5 86.3 81.8 84.1 87.8 98.1 94.0
MT 95.7 84.8 66.7 42.2 97.2 89.7 86.7 60.0 92.6 90.6 94.3 92.3 85.7 85.7 82.2 85.0 97.8 87.6
ML 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

L
oc

al

MOTA 51.4 96.4 77.2 93.5 95.6 91.0 90.2 72.9 99.3 96.3 95.2 93.4 84.1 91.2 88.3 92.0 97.9 93.9
TRA 95.7 99.6 96.0 98.6 98.3 93.7 91.0 95.1 99.5 97.2 99.0 98.7 98.6 95.6 96.8 97.7 98.7 96.2
LNK 99.6 99.5 93.4 95.7 98.0 92.3 90.9 94.9 99.1 97.0 98.3 97.6 99.8 87.8 94.3 95.3 98.5 93.4

IDSW 11 159 123 170 1 1 0 4 4 2 39 185 1 3 910 620 1 31

D
et

ec
tio

n

DET 95.1 99.6 96.4 99.0 98.4 93.9 91.0 95.1 99.5 97.2 99.1 98.8 98.4 96.8 97.2 98.0 98.7 96.7
Precision 67.4 96.7 84.4 96.9 97.1 96.8 99.0 81.3 100.0 99.0 96.4 95.2 86.3 97.3 92.6 95.2 99.2 98.6

Recall 99.9 100.0 98.8 99.6 98.7 94.2 91.1 97.3 99.5 97.3 99.5 99.5 100.0 99.7 98.5 99.1 98.8 97.4
FAF 2.4 1.2 0.8 0.2 0.4 0.4 0.1 0.9 0.0 0.3 3.7 14.8 1.1 0.5 21.2 11.3 0.3 0.6
F1 80.5 98.3 91.0 98.2 97.9 95.5 94.9 88.6 99.7 98.2 97.9 97.3 92.7 98.5 95.5 97.1 99.0 98.0
FP 4192 2172 987 235 33 32 4 42 1 24 320 1280 121 19 5599 2814 22 48
FN 5 14 67 31 15 60 38 5 10 68 41 137 0 2 1068 537 32 89

SEG 90.4 86.2 80.2 76.6 89.7 87.8 63.2 68.3 92.6 95.9 86.5 89.5 94.1 86.1 77.5 75.9 89.4 78.6

Table 6. Ablation studies using training data with complete cell life
cycles. We set sampling parameter Amax = 1, Hmax = 1, deacti-
vated mitosis costs cM,i,h

k = 0, substituted our motion model with
Kalman and compare it to EmbedTrack (Löffler & Mikut, 2022)
and Trackastra (Gallusser & Weigert, 2024). Our method performs
substantially better on long sequences (upper three datasets) with
complex scenarios if all contributions are applied.

CCA
[
%
]
↑ Ours Amax Hmax cM,i,h

k Kalman EmbedTrack Trackastra

D
at

as
et

BF-C2DL-HSC 77.32 77.32 72.40 65.54 59.25 12.91 27.85
BF-C2DL-MuSC 35.09 35.09 25.41 30.13 24.07 5.24 10.56
PhC-C2DL-PSC 71.48 73.76 70.53 69.48 66.85 48.81 62.15

Fluo-N2DH-SIM+ 43.28 43.27 43.27 43.28 0.0 43.25 94.74
Fluo-N2DL-HeLa 89.00 89.42 91.94 81.55 61.73 59.05 74.84

TF
[
%
]
↑ Ours Amax Hmax cM,i,h

k Kalman EmbedTrack Trackastra

D
at

as
et

BF-C2DL-HSC 93.10 91.60 93.10 83.99 88.20 74.69 79.21
BF-C2DL-MuSC 74.57 72.19 73.35 72.49 62.45 64.46 64.06
PhC-C2DL-PSC 87.40 87.40 87.29 87.33 86.67 86.55 87.23

Fluo-N2DH-SIM+ 93.58 93.54 93.33 93.31 91.68 92.90 93.99
Fluo-N2DL-HeLa 94.05 94.02 94.55 93.70 91.71 93.02 94.96

CHOTA
[
%
]
↑ Ours Amax Hmax cM,i,h

k Kalman EmbedTrack Trackastra

D
at

as
et

BF-C2DL-HSC 76.75 74.78 77.30 48.31 69.31 54.03 56.99
BF-C2DL-MuSC 82.24 80.85 80.38 68.75 32.95 65.15 58.04
PhC-C2DL-PSC 83.07 82.51 82.23 81.85 64.91 74.56 75.86

Fluo-N2DH-SIM+ 96.37 96.37 96.33 96.36 71.51 96.35 95.74
Fluo-N2DL-HeLa 92.61 92.45 92.36 91.87 79.83 86.08 89.07

6.4. Ablations

The proposed method is a sophisticated system that ad-
dresses potential errors by integrating multiple concepts.
In the following ablations applied on training data with
publicly available ground truth, summarized in Table 6,
we explore the strengths, weaknesses, and gain further in-
sights. To assess the impact of our method, we conducted
the following experiments: 1) setting the number of sam-
pled hypotheses per association to Amax = 1, 2) limiting
the total number of hypotheses after pruning to Hmax = 1,
3) removing our introduced mitosis costs cM,i,h

k = 0, and
4) substituting our motion estimation with a Kalman fil-
ter. Moreover, we compare us to the vanilla EmbedTrack

5www.celltrackingchallenge.net/
latest-clb-results

without using our extended association strategy to quantify
the overall impact. Since EmbedTrack is used as detection
framework by your method, performance differences are
only caused by the association strategy under equal detec-
tion and segmentation preconditions. We evaluated these
experiments using training data with complete cell cycles
and reported the biological metrics that are least susceptible
to noise and the robust CHOTA metric.

The most expressive results can be observed without ex-
plicit mitosis costs in setting 3). On the long and complex
sequences BF-C2DL-HSC and -MuSC, all metrics collapse
significantly when no long-term consistency preserving mi-
tosis costs are incorporated. On the shorter sequence PhC-
C2DL-PSC, the effect is also visible but with a lower impact.
The mitosis costs do not impact short sequences with short
proliferation trees conceptually which is confirmed by the
results.

In settings 1) and 2), where we did not evaluate multiple
hypotheses, the metrics for the same long and complex
image sequences dropped by up to 10 percent points. This
drop is reasonable since the framework is forced to preserve
the local optimal hypothesis and cannot resolve long-term
errors.

Finally, setting 4) shows that the naive Kalman filter is not
a suitable motion model to induce long-time consistency.
We conclude that motion estimation based on visual cues
should be preferred. Similarly, the naive nearest neighbour
association strategy of our baseline EmbedTrack also leads
to large drops in long-term consistency.

The main conclusions of this experiment are, that all of
our proposed contributions contribute to a high perform-
ing association strategy. We demonstrate that our method
is particularly well-suited for applications involving long
sequences and complex scenarios.
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Figure 6. Runtime to solve the association problem between Nh =
NZ objects and detections with the Hungarian method. We com-
pare the standard formulation against our mitosis-aware approach
with cell splits allowed (cM,i,h = 0) and forbidden (cM,i,h = ∞).
It converges faster allowing cell splits due to the simpler optimiza-
tion problem.

1 2 3 4 5 6 7

0

1,000

2,000

Amax

D
ur

at
io

n
[s
]

0 20 40 60 80 100 120 140 160

0

1,000

2,000

Hmax

D
ur

at
io

n
[s
]

BF-C2DL-HSC Fluo-N2DL-HeLa
BF-C2DL-MuSC Fluo-N2DH-SIM+

Figure 7. Runtime of our MHT framework with varying values of
the sampling parameters Amax and Hmax.

6.5. Runtime

A significant ratio of the execution time of the MHT frame-
work is spent by the sampling algorithm to draw new asso-
ciation hypotheses Ψh

k with sampling algorithms like Mur-
tys (Murty, 1968) or Gibbs (Geman & Geman, 1984). There-
fore, the potential impact of our novel mitosis-aware associa-
tion cost matrix on the algorithms is of interest. To evaluate
the impact, we perform the Hungarian algorithm (Kuhn,
1955) (which is the core of Murtys) on instances of Cj,i,h

defined by the vanilla formulation from Equation (6) and
with our novel formulation with mitosis costs from Equa-
tion (12). We sample 2000 different Cj,i,h with random
costs and a squared but variable size (i.e. , the number of
objects and detections is equal). Moreover, we set mitosis
costs cM,i,h to either zero or infinity to simulate that mi-
tosis is always allowed or strictly forbidden. Finally, we
perform the Hungarian algorithm on all problem instances
and aggregate the execution time. The results are presented
in Figure 6.

When adding infinite costs cM,i,h = ∞ to simulate the un-
likely setting that mitosis is strictly forbidden, the execution
time increases slightly as expected. While the underlying op-
timization problem stays the same, more elements need to be
parsed by the algorithm. More interestingly, the more likely
setting with cM,i,h = 0 leads to drastic improvements in ef-
ficiency. This can be explained by the simpler optimization
problem in which a heuristic initial solution is more often
the final optimal solution. This reduces the calculation time
in the Hungarian Method and allows to decrease the number
of samples in approximations like Gibbs. Besides improv-
ing accuracy, this experiment shows that our contribution
generally increases the efficiency of MHT frameworks.

To provide an intuition of the execution time, Figure 7
presents the execution time of our MHT framework on dif-
ferent datasets. We use the standard configuration but vary
either the association sampling limit Amax or the hypotheses
storage limit Hmax. It shows that the runtime grows approxi-
mately linearly concerning the investigated parameters. The
computations were performed on a desktop PC with an Intel
i9-9900K CPU running at 16× 3.60GHz. It is important to
note that we only consider the runtime of the MHT tracker
without EmbedTrack.

6.6. Discussion

The experiments conducted on our proposed method reveal
its strengths and weaknesses. Our framework reevaluates
uncertain situations and incorporates long temporal and
globally consistent lineage information. In practice, these
advantages are taken into account in specific settings and
scenarios.

Figure 4 and Figure 5 show scenarios where our method con-
tributes to better results or leads to errors, respectively. In
Figure 4, cell instances are very small and densely populated.
The cells cannot be distinguished based on their appearance,
and even mitosis lacks visual cues. When such cells exhibit
strong displacements between consecutive frames—e.g. ,
cells 1, 2, and 3—trackers that rely on local visual cues, such
as EmbedTrack or Trackastra, are prone to errors. This can
result in implausible events, such as the mitosis observed
in frames 1005–1007 with EmbedTrack. Due to the long
temporal context, our mitosis-aware MHT system is able to
detect those uncertain situations and resolve them.

In contrast, Figure 5 shows a shorter, less populated se-
quence with larger cells that are visually more distinguish-
able. Mitosis is also more apparent due to visible nuclei.
The strengths of our method are not leveraged here, as the
mitosis cost statistics (Equation (13)) are poorly estimated
in this short sequence where cells also move in and out of
the field of view. In fact, the mitosis costs lead to suppressed
mitosis detections, as shown in Figure 5, frame k = 70 (up-
per row), where the cell with label 3 splits into two daughter
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cells. Due to unaligned mitosis costs, our system assigns
mitosis a lower probability and instead spawns a new cell
with label 9, which is incorrectly assumed to have entered
from outside the field of view.

The dataset statistics in Table 3, together with the benchmark
results in Table 2, highlight scenarios where our framework
enhances tracking accuracy. The most impressive improve-
ments can be seen in the long datasets BF-C2DL-HSC and
-MuSC. These datasets contain large numbers of cells that
are relatively small and densely populated compared to the
others. Improvement is also observed for the similarly pop-
ulated but much shorter PhC-C2DL-PSC dataset, though
the gain is smaller. It’s worth noting that the relative cell
motion per frame compared to the cell size is high in sit-
uations where our method typically performs well. This
could be an indicator of the uncertainty induced by simple
visual association methods. Short sequences with fewer and
larger cells, like in Fluo-C2DL-MSC, do not benefit to the
same extent. This clearly shows that the effectiveness of our
method varies depending on the data characteristics of the
application.

7. Conclusion
This paper presents a novel cell tracking framework that
combines the strong local performance of neural tracking-
by-regression approaches with the global optimal assign-
ment strategy of MHT trackers. This fusion is achieved by
predicting the estimation uncertainty of the motion regres-
sion framework using test-time augmentation and expanding
the MHT assignment problem formulation to incorporate
mitosis costs. We demonstrate that our approach outper-
forms the current state-of-the-art on various competitive
datasets, without the need for additional data or re-training.
Our ablation studies also offer insights into scenarios where
long-term consistency is crucial and highlight when heuris-
tic tracking-by-regression methods remain effective. We
hope that this work raises awareness about the importance
of long-term consistency within the cell tracking commu-
nity.
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