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Abstract
Language acquisition is fundamental for the development of
various skills in the early stage of a children’s life. Unfor-
tunately, developmental language disorder (DLD) is the most
common developmental disorder during childhood. A common
indicator of DLD is that children with such condition struggle
to correctly use grammatical forms. Therefore, we focus in this
work on automatic grammatical error detection on spontaneous
children’s speech. We extend the state of the art by an iterative
pseudo labeling scheme to account for the ambiguity of gram-
matical error labels. Such ambiguity becomes obvious, when it
is unclear which word is incorrect, e. g., for agreement errors.
In terms of the F1 gain score (FG1) we significantly improve
upon the baseline on sentence- and word-level label. On au-
tomatic transcriptions of the kidsTALC corpus we increase the
sentence-level FG1 from 0.38 to 0.63. Further, our best per-
forming system achieves a recall of 0.45, while maintaining a
precision of 0.36.
Index Terms: Grammatical error detection, automatic speech
recognition, spontaneous children’s speech

1. Introduction
Language acquisition is one of the most fundamental prerequi-
sites for the children’s development in various areas of the early
stages in life [1]. A delayed language acquisition, besides im-
pacting the skill development, increases the risk for issues with
mental health and social behavior [2]. Unfortunately, develop-
mental language disorder (DLD) is the most common develop-
mental disorder during childhood [3]. Further, for a success-
ful intervention an early identification is necessary [2], which
increases the need for an assessment tool suitable for everyday
use. A common indicator for children in kindergarten that suffer
from a DLD is that these children struggle with the correct use
of grammatical forms [4]. Therefore, in this work we focus on
automatic systems to detect grammatical errors (GED), which
work on manually as well as automatically generated transcrip-
tions of recordings from spontaneous children’s speech.

One solution to children’s speech assessment is to directly
predict the final proficiency scores using end-to-end classifier,
see also Fig. 1. Knill et al. [5] proposed a classifier that uses
handcrafted features, like part of speech (POS)-tags and flu-
ency metrics, to predict these proficiency scores. The authors
especially investigated the impact of automatic speech recog-
nition (ASR)-performance in terms of word error rate (WER)
on the GED performance. Wang et al. [6] predict proficiency
scores and compare different network structures as well as fea-
ture encoder. Context-aware, transformer-based models, like
BERT [7], clearly performed best. Getman et al. [8] specialize
on the subfield of phonological proficiency and predict scores
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Figure 1: Flowchart of our automatic grammatical proficiency
scoring system. In this work we lay our focus on the usage of
an ASR-system, the necessary segmentation (SEG) of its output,
and the GED-model. The diarization (DIAR) and computation
of a final proficiency score (SCORE) is left for future work. Our
iterative pseudo labeling scheme (IPLS) requires a pretrained
GED-model and, if automatically generated transcriptions are
used, the confidence (Conf.) of the ASR-model to iteratively
optimize the GED-model.

based on Wav2Vec-based features [9]. Again, context-aware
feature representations performed best. All those methods have
a low degree of interpretability for the end-user, since the rea-
soning behind the final decision happens within the classifier.
Further, the adaption to different scoring metrics or new settings
requires finetuning.

Therefore, we focus on an alternative approach and predict
error labels on word-level, which allows the derivation of profi-
ciency scores in an interpretable fashion. Morley et al. [10] pre-
dict per word error labels by training a dependency parser that
incorporates error labels in the dependency tree. Besides high
quality labels for error labels this requires also labels for the de-
pendency trees and has not been tested on automatically gener-
ated transcriptions. He et al. [11] avoid the necessity for depen-
dency label by training a transformer-based classifier to directly
predict errors on word-level. Furthermore, Knill et al. [12] and
Lu et al. [13] leverage the knowledge of pretrained feature em-
beddings from Word2Vec and use it as input to a bidirectional
RNN-based classifier. The latter also uses ASR-generated tran-
scriptions and compensates its errors by assuming words always
as grammatically correct if the confidence of the ASR-model
falls below a predefined threshold. Bell et al. [14] compare dif-
ferent word representations as input to a GED-model and show
that BERT [7] performed best.

Lu et al. [15] investigate the impact of a disfluency classifier
on GED performance if applied as additional post-processing
step. The authors train the disfluency classifier end-to-end and
assume likely disfluent words as grammatically correct. How-
ever, we noticed a larger source of errors originates in the am-



biguity of grammatical errors. Let’s look at the sentence: Our
cat love food. In this number agreement error, depending on the
context, either the verb loves or the noun cats should be labeled
as incorrect, but the respective other word is correct. The result-
ing error labels, therefore, depend on the context and are pos-
sibly inconsistent if multiple annotators are involved. This am-
biguity of grammatical error labels has been first identified by
Chodorow et al. [16]. Katinskaia et al. [17] address this prob-
lem in a computer-aided language learning systems (CALL)-
system by integrating a learning-based GED-system and, on its
failure, fall back to the rule-based baseline.

In the present work we aim to incorporate the aforemen-
tioned problem of ambiguity of manual grammatical error la-
bels into the proposed GED-model of Bell et al. [14]. Specif-
ically, we train a bidirectional GRU-based network and use
BERT embeddings as input. To address the ambiguity problem,
we propose an IPLS, which adds highly confident false positives
to the set of training labels. Inspired by Xu et al. [18] in the do-
main of ASR, we use a trained instance of our GED-system to
iteratively extend our set of training labels. In contrast to Xu et
al., we do not extend the training data with unlabeled data, but
update the labels of the existing data to smooth label noise. The
extended label set is again used to retrain a new instance of the
GED-model. In our evaluation we demonstrate the significant
gain in classification performance achieved by our IPLS, both
on manual and automatic transcriptions.

2. Method
In this section we describe our pipeline for grammatical error
detection including our IPLS.

2.1. Grammatical Proficiency Scoring

Grammatical proficiency scoring on spoken speech requires five
essential steps: Speaker diarization, automatic speech recog-
nition (ASR), text segmentation, grammatical error detection
(GED), and the derivation of a proficiency score based on the
predicted errors. All steps are summarized in Fig. 1. The di-
arization is only necessary, if spontaneous speech with multi-
ple speakers is assessed. In this work we assume this step as
manually given. The downstream proficiency scoring is highly
dependent on the desired purpose. Therefore, we leave the in-
vestigation for suitable scoring methods to future work. Further,
this flow chart includes our IPLS, which is described in Sec. 2.3
and summarized in Alg. 1. When relying on automatically gen-
erated transcriptions, an ASR is necessary and its confidence
scores are passed to our IPLS. Details to the used ASR-system
are given in Sec. 3.2. The text segmentation is always necessary
and described in Sec. 3.4.

2.2. Preliminaries

Given a transcript X consisting of words xi with i < T and T
being the number of words in X . We define a sentence sj ∈ S
as a range sj = (m,n) with m < n < T . Given a manual
word label yi ∈ Y the sentence label zj ∈ Z is positive if any
label yi for i ∈ sj is positive, i. e., zj is positive if a grammat-
ical error occurs in the corresponding sentence sj . A feature
encoder f maps the sequence of words X to a sequence of fea-
tures of length T . A classifier M(yi = 1|xi, f(X ), θ) predicts
the likelihood of sample xi being positive given the full con-
text of X in feature space. θ is a set of learnable parameters
for classifier M and is optimized using word-level label Y in a
supervised fashion with a given loss L.

Algorithm 1 Iterative Pseudo-Labeling

Require: Transcripts X , manual label Y , model M , feature
encoder f , threshold τ , loss L, maximum iterations K and
warm-up iterations K′.

1: Find initial parameter set θ0 for M on f(X ), Y using L
2: Initialize joined label set Y∗ = Y
3: for k = 1 to K do
4: Predict labels Y ′ for X using M , f , θk−1 and τ
5: If k < K′ and zj = 0 with i ∈ sj enforce y′

i,k = 0
6: Expand joined set of labels Y∗ = Y∗ ∪ Y ′

7: Optimize θk for M on f(X ), Y∗ using L
8: end for
9: return θ∗

2.3. Iterative Pseudo Labeling

Our iterative pseudo labeling scheme (IPLS) has the purpose to
refine the exiting labels and not to label unlabeled data. First,
we optimize the initial set of parameters θk=0 of the model M
using the manual labels Y and loss L. k is the iteration index
in the IPLS and K represents the maximal number of iterations.
Using the model of the previous iteration we predict a set of
pseudo label y′

i,k ∈ Y ′
k for the k-th iteration as follows

y′
i,k =

{
1, if M(yi = 1|xi, f(X ), θk−1) ≥ τ

0, otherwise.
(1)

The threshold τ is a hyperparameter. The resulting set is joined
with the manual label set Y , to a joined label set Y∗. The joined
label set Y∗ is only extended and will not be reset during the
entire training. We noticed a warm-up phase of K′ iterations is
beneficial for the overall training, in which the predicted label
y′
i,k in Eq. 1 is always negative if zj for i ∈ sj is negative. The

algorithm is summarized in Alg. 1. We do not extend the label
set in the validation and test data. As usual, the final parameter
set θ∗ is selected based on the validation data.

2.4. Incorporation of ASR Confidence

The literature [5, 13] showed that transcription errors of the
ASR-system lead to an increase in false positives. In the present
work, we noticed a similar trend. Lu et al. [13] account for these
errors by setting M(yi = 1|xi, f(X ), θ) to zero if the ASR-
model confidence of word xi falls below a threshold κ. This
prevents the model being trained on erroneous words generated
by the ASR. We also apply this masking during the computa-
tion of pseudo labels in our IPLS. An ablation study is carried
out in Sec. 4.

3. Experimental Setting
In this section we outline the used speech corpus, namely
kidsTALC, the ASR-system, the label transfer, the text segmen-
tation, the GED-model, and the metrics used for evaluation.
The diarization is done manually in our work and taken from
kidsTALC.

3.1. Speech Corpus

For evaluation, we use kidsTALC [19], a corpus of monolin-
gual, typically developing, German-speaking children in the age
range from 3½ to 11 years. The corpus is extended by additional
recordings of 40 children. All additional children are recorded
in an identical setting as the ones in kidsTALC. The setting



always includes an adult or speech language therapist (SLT),
which are also present in the transcriptions. In total, this results
in 87 children distributed as followed across the age groups pro-
posed alongside the kidsTALC corpus: 26 (AG1) - 41 (AG2) - 9
(AG3) - 11 (AG4). The original train set of kidsTALC is exclu-
sively used for ASR training. All other recordings are split in
train, validation, and test set for this work. Latter, is consistent
across all experiments in Sec. 4 and contains 5 children.

For all children a manual utterance-level segmentation,
transcription, and annotation of error labels are available. The
annotations in kidsTALC contain three classes of error labels:
Grammatical, lexical and phonological errors. Further details
on the specific error type are not annotated. In this work we
consider only grammatical errors. In total 1480 grammatical er-
rors are present in the dataset, which contains in total 118,163
words. We define the positive label to refer to the presence of
a grammatical error. This leads to fraction of positive labels
π of 1.25 %. Across all folds and splits this values varies in
π ∈ [1.15%, 1.39%].

3.2. Automatic Speech Recognition

Gebauer et al. [20] showed that sequence-to-sequence models
outperform connectionist temporal classification (CTC)-based
systems [21] on orthographic transcriptions. However, when
we use a pretrained Wav2Vec 2.0 model from Hugging Face1 as
feature encoder and tune the dropout rate to 0.05 the WER gen-
erally decreased and CTC-based ASR-systems performed over-
all best. Therefore, in this work the feature encoder is com-
bined with two small dense layers and trained using the CTC-
loss [21]. We only finetune the contextual layer of Wav2Vec
jointly with the classification head. As suggested by Rumberg et
al. [19], we extend kidsTALC by the German Mozilla Common
Voice (MCV)2, version 16.1. The token set includes all charac-
ters of the German alphabet, is lower cased and excludes punc-
tuations.

As decoding scheme we use the flashlight beam search al-
gorithm [22] with a beam size of 500 and constrain it to a lexi-
con as well as language model. As language model we deploy
a 4-gram KenLM [23]. The lexicon and language model are
based on the train-set from kidsTALC as well as MCV. Over-
all, we achieve a WER of 0.349 on the test-set of kidsTALC
averaged across two seeds and two splits.

3.3. Label Transfer

When using ASR-based transcriptions no manual labels Y are
present and have to be transferred from the manual transcrip-
tions. First, the manual and automatic transcriptions are aligned
on word-level. Given an aligned word pair, if the manual word
is grammatically incorrect and the words match, the labels are
always transferred to the automatic word. In case of a non-
matching word pair two options for label transfer exist [13].
Unfortunately, both method are faulty in different ways. Either
these labels are discarded. This will cause the GED-system to
be falsely penalized, if the corresponding word for the discarded
labels is identified as grammatically incorrect. This leads to
wrong negative labels, but ensures that the set of positive la-
bels is always correct. On the other hand, if these labels are
transferred regardless of the matched word, incorrect positive
labels are introduced. Further, the set of negative labels is still
not ensured to be correct, because a grammatically correct word

1facebook/wav2vec2-large-xlsr-53-german
2https://commonvoice.mozilla.org/en/datasets

in the manual transcriptions could be aligned with a grammat-
ically incorrect word from the automatic transcript. Therefore,
we choose to only transfer the manual labels if the aligned word
pair matches. This leads to a loss of about half of the manual
labels of grammatically incorrect words.

For the sentence-level labels Z this effect is much less rele-
vant, since misalignment usually does not cross sentence bor-
ders. Therefore, we keep all manual labels that have been
aligned into a given automatic sentence regardless of whether
the aligned words match. Further, we track manual words with
grammatical error labels that are not assigned to any automatic
sentence and pass them to the next sentence. This ensures that
no manual labels Y are lost during their transfer to the auto-
matic, sentence-level labels Z .

3.4. Text Segmentation

Due to capacity limitations of model M and feature encoder f
the full transcriptions have to be segmented into context win-
dows. To maximize context, we keep the utterances from the
adult speaker within the transcriptions and mask it during train-
ing as well as evaluation of the GED-model. We select con-
text windows based on multiple consecutive sentences. Sen-
tences are defined by punctuation, which is reconstructed using
a pretrained, state-of-the-art punctuation model from Hugging
Face3. It is specifically trained on the reconstruction of punctu-
ation and is not allowed to further change the inferred text.

Due to varying length of sentences, we cannot define a fixed
context window size and shift width. We constrain the windows
to be close to a size of 50 words and shift the windows close to
a length of 10 words. This leads to an average window size of
49.7 ± 6.8 and an average hop length of 13.7 ± 9.3. Due to
the combination of window size and hop length each word can
appear multiple times within the resulting dataset. On average
each word appears 8.6 times within each epoch.

3.5. GED Model

In this section we describe the classifier M based on Bell et
al. [14]. However, the feature encoder f is relevant for the out-
come of the classifier and will be discussed as well. We use
an uncased, German BERT model from Hugging Face4. For
words that are split into multiple token, we aggregate by tak-
ing the mean feature vector, as this method is supposed to work
best [24]. The classifier M is a small RDNN model consist-
ing of roughly 1M trainable parameters. First, the features are
passed to a two-layered, bidirectional GRU network. Accord-
ing to Chung et al. [25] these outperform LSTMs. Next, we
have two fully-connected layers followed by the sigmoid func-
tion. For training efficiency, we keep the weights of the BERT
model fix. The set of trainable parameters θ is optimized using
the AdamW [26] optimizer with a learning rate of 0.001 and the
binary cross entropy (BCE)-loss. We selected a dropout rate of
0.5 and a weight decay of 0.25. Both values are comparably
high, because the model tends to overfit. In the automatic set-
ting, we also use the focal loss [27] for stability, leading to a
slight improvement. We set α to 0.5 and γ to 0.75.

3.6. Performance Metrics

In our work we mainly use the F1 gain (FG1) score [28], but also
the non-gain recall and precision. The FG1 score normalizes the

3oliverguhr/fullstop-punctuation-multilang-large
4dbmdz/bert-base-german-uncased



general F1 score with the proportion of positive labels π:

FG1 =
F1 − π

(1− π)F1
.

The family of gain-scores has two advantages. First, they are
linearized, which allows us to average across different tasks
with varying fraction of positive labels π. This is necessary,
as π varies across folds and depends on the underlying auto-
matic transcriptions due to the varying number of lost labels
(see Sec. 3.3). Secondly, the gain-scores have two consistent
thresholds: 0.0 for outperforming a random classifier and 0.5
for outperforming an all positive classifier.

4. Results
In this section we evaluate the performance of our GED-system.
We consider the first iteration as the baseline, since the design
of our GED-model is state-of-the-art [14]. We start by compar-
ing the systems on the manual transcription. As summarized
in Tab. 1, using our IPLS significantly (p < 0.05) improves
the FG1 score. This holds for word- and sentence-level classifi-
cation. In this work we measure significance using a dependent
t-test for paired samples. The lower FG1 on sentence- compared
to word-level originate in the higher fraction of positive labels
π, not in an overall worse performance. Absolutely speaking
the system performs better on sentence-level, but according to
the gain score normalization [28] the task itself is easier. All
values are averaged across three splits and three seeds.

Table 1: FG1 on the manual transcriptions of kidsTALC. All
values are averaged across three splits and three seeds. Both,
on word- and sentence-level, the IPLS (indicated by +It.) out-
performs the baseline significantly (p < 0.05).

Word Sentence
- +It. - +It.

0.97 0.98 0.89 0.91

Next, we take a look at the GED-system being evaluated on
the automatic transcriptions. In Tab. 2 we visualize the results,
when the ASR-model confidence is not taken into account. Our
IPLS is able to significantly (p < 0.05) outperform the base-
line in terms of FG1 score. Applying the focal loss instead of
BCE further improves the FG1 score to 0.87 on word-level and
0.63 on sentence-level. Especially on sentence-level our IPLS
is necessary to pass the relevant border of 0.5 with the FG1.

Table 2: FG1 on automatically generated transcriptions of
kidsTALC. We do not take the ASR-model confidence into ac-
count. All values are averaged across three splits and three
seeds and transcriptions from four different ASR-systems. Both,
on word- and sentence-level, the IPLS (indicated by +It.) out-
performs the baseline significantly (p < 0.05). Further, the
focal loss [27] leads to further improvement.

Loss Word Sentence
- +It. - +It.

BCE 0.83 0.85 0.38 0.54
Focal [27] 0.79 0.87 0.36 0.63

In Tab. 3 we visualize the results, when words with low
ASR-model confidence are assumed to be grammatically cor-

rect and neglected during loss computation. Due to our IPLS
the tuning of the confidence threshold κ is more expensive than
for Lu et al. [13], because we influence the pseudo labels with
this threshold. We tested two different values and could not
achieve an improvement in terms of FG1 score compared to not
taking the ASR confidence into account. Not averaging across
seeds, splits, and ASR-systems, but taking the best performing
model in terms of FG1 allows us to compare the precision or
recall. Even on these metrics we could not find any improve-
ment. This can have three distinct causes. Either the method
is very sensible to the threshold κ and needs a more thorough
hyperparameter search. Lu et al. [13] rely on hybrid hidden
Markov model for ASR, which natively provide a more robust
confidence score. While we use a state-of-the-art method for
CTC-based ASR confidence [29], it is an estimation and not
the true confidence. This could cause the decrease in perfor-
mance. Lastly, the baseline GED-model tends to have a low
recall in comparison to precision on kidsTALC, i. e., improving
the number of true positives has a greater impact on the perfor-
mance than reducing false positives.

Table 3: FG1 on automatically generated transcriptions of
kidsTALC. Words with low ASR-model confidence are assumed
to be grammatically correct. All values are averaged across
three splits and three seeds and transcriptions from four dif-
ferent ASR-systems. Both, on word- and sentence-level, the
IPLS (indicated by +It.) outperforms the baseline significantly
(p < 0.05). The focal loss [27] leads to further improvement.

Loss Word Sentence
- +It. - +It.

BCE 0.72 0.77 0.12 0.3
Focal [27] 0.73 0.78 0.11 0.52

While the gain scores allow averaging across different
tasks, the intuition for the absolute performance is lost. There-
fore, we present precision and recall on sentence-level for our
best performing systems according to the FG1 score. On man-
ual transcriptions we achieve a recall of 0.4, while maintaining a
precision of 0.66. On ASR-based transcriptions we slightly in-
crease the recall to 0.45, but the precision drops to 0.36. While
the absolute values seem low, this is impressive due to the low
π of about 1.38 % on our test set.

5. Conclusion
In this work, we focus on automatic GED for children’s speech
assessment in spontaneous speech recordings. We extend
Bell et al. [14] by an iterative pseudo labeling scheme to ac-
count for the ambiguity problem of grammatical error labels.
The ambiguity of grammatical error labels is obvious for, e. g.,
agreement errors, when it is unclear which of the two related
words is incorrect. Our proposed iterative pseudo labeling
scheme accounts for this problem by iteratively extending the
training labels. We significantly improve upon the baseline on
both, sentence- and word-level label, of kidsTALC. On auto-
matic transcriptions we achieve an FG1 score of 0.87 on word-
level and 0.63 on sentence-level. Further, our best performing
system according to the FG1 score achieves a recall of 0.45,
while maintaining a precision of 0.36. On manual transcriptions
the precision increases to 0.66.
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