Strategy Game-Playing with Size-Constrained State Abstraction

Linjie Xu, Diego Perez-Liebana
School of EECS
Queen Mary University of London, London, UK
{linjie.xu, diego.perez}@qmul.ac.uk

Alexander Dockhorn
Faculty of EECS
Leibniz University Hannover, Hannover, Germany
dockhorn@tnt.uni-hannover.de

Abstract—Playing strategy games is a challenging problem for artificial intelligence (AI). One of the major challenges is the large search space due to a diverse set of game components. In recent works, state abstraction has been applied to search-based game AI and has brought significant performance improvements. State abstraction techniques rely on reducing the search space, e.g., by aggregating similar states. However, the application of these abstractions is hindered because the quality of an abstraction is difficult to evaluate. Previous works hence abandon the abstraction in the middle of the search to not bias the search to a local optimum. This mechanism introduces a hyper-parameter to decide the time to abandon the current state abstraction. In this work, we propose a size-constrained state abstraction (SCSA), an approach that limits the maximum number of nodes being grouped together. We found that with SCSA, the abstraction is not required to be abandoned. Our empirical results on 3 strategy games show that the SCSA agent outperforms the previous methods and yields robust performance over different games. Codes are opensourced at https://github.com/GAIGResearch/Stratega.

Index Terms—Game artificial intelligence, state abstraction, monte carlo tree search, planning

I. INTRODUCTION

Strategy games have helped advance the development of Artificial Intelligence (AI) to achieve significant progress in competing with human players [1] [2], AI-AI cooperation [3] [4] [5] and human-AI cooperation [3] [6] [7] [8]. Most of this progress depends on deep reinforcement learning (DRL). However, DRL agents have their neural networks trained and tuned for a specific game, making it difficult to apply these agents to other game variants. In contrast, search-based algorithms such as Monte Carlo Tree Search (MCTS) have shown outstanding performance in general video game-playing [9] [10] [11]. The ability to play different game variants is important because real-world games are frequently updated by their developers. Therefore, in this work, we focus on search-based methods for strategy game playing.

One of the most challenging problems for search-based algorithms is the combinatorial search space. Unfortunately, strategy games typically have a combinatorial search space. In strategy games such as Starcraft, a number of units (e.g., buildings, and armies) are distributed on the map. The state space of these games is defined as the combination of unit properties (e.g., positions, health points). This combinatorial space increases exponentially with the number of game components (including the unit number and unit property etc.) [12] [13]. On top of that, most strategy video games have a large set of unit variants and each unit has a diverse set of properties. Together, they produce large state and action spaces, resulting in a much larger branching factor compared to other games. With a large branching factor, MCTS finds it difficult to explore the tree deeply for accurate action-value approximation and thus fails to perform well in these games.

State abstraction [14] [15] is a powerful technique that helps MCTS solve large-scale planning problems. State abstraction methods focus on simplifying the search space, which is often achieved by aggregating similar states. In strategy games, state abstraction [16] [17] [18] [19] has been applied to reduce the search space and gain significant performance improvements. However, one of the issues that hinder the application of state abstraction is a lack of data for approximating the state abstraction, resulting in a possible poor-quality state abstraction. To avoid this state abstraction to degrade the performance, Xu et al. [19] proposed an early stop mechanism to abandon the constructed state abstraction at an early stage. However, this approach introduces a hyperparameter whose range depends on the training budget, making it difficult to select an appropriate value.

In this paper, we propose the size-constrained state abstraction (SCSA), a novel approach to address the negative effect of a potential poor-quality state abstraction. SCSA limits the maximal number of nodes in the same node group and does not need the early stop. Meanwhile, its hyperparameter is less sensitive to the previous approach. Finally, we evaluate the SCSA agent in 3 strategy games using a common value of this size limit. It outperforms all the baseline agents in 2 simple games and achieves results competitive to Elastic MCTS [19] in another more complex game.

The main contributions of this work are listed below:
1) We proposed a novel approach to address planning with a poor-quality state abstraction in strategy game-playing.
2) Our empirical results show that the proposed method achieves outstanding performance in 3 strategy games of different complexity.
3) We analyzed the compression rate under the SCSA and Elastic MCTS [19]. SCSA shows a lower compression rate and robust performance.
II. RELATED WORK

State abstraction for MCTS recently gained much interest from the community. Jiang et al. [14] proposed to aggregate same-layer tree nodes with Markov decision process homomorphism approximated from samples. This method shows a promising performance in the board game Othello. Anand et al. [20] proposed a state-action abstraction method that aggregates state-action pairs instead of states (tree nodes). Anand et al. [21] propose progressive state abstraction that updates the state abstraction more frequently instead of per batch. Hostetler et al. [15] proposed a progressive refinement method to construct state abstraction. Baier et al. [22] proposed abstraction over opponent moves to aggregate tree nodes having the same opponent moving history. Sokota et al. [23] proposed abstraction refinement to reject similar states to be added in the tree. These methods prove the effectiveness of state abstraction in tackling large branching factors in MCTS. However, their application is mainly limited to planning problems and board games. This work instead focuses on more complex strategy games.

In the early study, hand-crafted state abstraction were applied to help strategy game play. Chung et al. [16] used a handcrafted state abstraction to divide the game map into tiles. Synnaeve et al. [17] proposed a mechanism to separate the map rate, revealing a trade-off between memory usage and agent performance under the state abstraction.

III. THE STRATEGA PLATFORM

Stratega [26] is a general strategy game platform for testing AI agents. To evaluate the general performance of the proposed method, we select 3 two-player turn-based strategy games from the Stratega platform. They are Kill The King (KTK), Push Them All (PTA) and Two Kingdoms (TK). We next introduce the details of these games.

In KTK (Figure 1), each player controls a set of units including a king. The goal of this game is to kill the opponent’s king. We instantiate the army for each player as a king, a warrior, an archer, and a healer. All units have the move action. Based on that, the king and the warrior can attack neighbour enemy units. The archer can attack enemy units in range. The healer can heal ally units. Following Xu et al. [19], each unit also has an Do-nothing action. The action space size for a 4-unit army is about 10^5.

In PTA (Figure 2), a player controls units to push enemy units in different directions. The unit being pushed will move
its position toward the corresponding direction. To win this
game, all the enemy units need to be pushed into holes
distributed in the map. Each player has 3 pusher units. The
action set for each pusher is [Move, Push, Do-nothing],
resulting in an action space of \((4 + 1) \times 4 \times 4 = 80\).
The first term indicates moving in 4 directions or not moving,
the second term is selecting a neighbour unit (there are 4
neighbour grids) and the last term is pushing the enemy unit
in 4 different directions. With 3 pushers, the final action space
is \(80^3 = 512,000\).

The TK game (Figure 3) is more complex. It consists of
technologies, resources, unit spawning, and combat. At the
beginning of a gameplay, each player has a castle and a king.
The aim is the same as KTK, i.e. kill the opponent king.
However, a set of units need to be spawned from the castle. A
technology Mining is required to be researched for spawning
worker. The research takes one round to be finished. The
Worker unit can collect gold from gold veins and Warrior,
Night, Wizard and Healer can be spawned with gold.

IV. BACKGROUND
A. Monte Carlo Tree Search

MCTS [27] is a method to solve sequential decision-making
problems with a forward model. The forward model is used to
roll out the game. I.e., given a state and a valid action under
this state, the forward model returns the next state. Using the
forward model, MCTS builds up a tree to approximate the
value for actions under the current state. In the generated tree,
each node represents a game state and each branch represents
a valid action of its source node. We next introduce the 4
stages for building up this tree: selection, expansion, rollout
and back-propagation.

The selection stage selects a tree node as an input for the
subsequent stages. The selection starts from the root node and
keeps selecting a branch to the next layer until a target node
is reached. The target node could be a leaf node (a node with
no children) or a node where not all its actions have been
added to the tree as branches. To select the next-layer node,
node values (e.g. the UCB value [28]) for all its children are
calculated and the node with the highest UCB is selected.
Depending on the node type of the target node, MCTS enters
different stages. If the target node is a terminal state, it enters
the back-propagation directly. In another case, the target node
is a non-terminal state, an action that has not yet been added
as a branch. By running this action in the forward model, the
next state is returned and is added as a new child. Based on this
new state, a roll-out policy takes a sequence of actions until
a pre-determined depth or a terminal state is reached. This is
the rollout stage. The output state from rollout is evaluated
by a state evaluation function to obtain a score. This score
is used by the back-propagation stage. In the back-propagation
stage, the score from the target state is added to all states in
the trajectory of selection, i.e. a node sequence from the root
node to the target node.

Each MCTS iteration consists of these 4 or 3 stages (the
roll-out stage is skipped if the selected node is a terminal
state). The computation budget in this work is set as the
maximum number of forward model calls. After running out
of the budget, a recommendation policy selects an action to
execute in the game. A common recommendation policy is
selecting the branch leading to a node with the highest visit
count.

B. Monte Carlo Tree Search with Unit Ordering

In strategy games where many units are distributed on the
map, the action space is the combination of all unit actions,
which can easily reach a high complexity. e.g. in KTK, the
combinatorial action space reaches a magnitude of \(10^5\). To
reduce the action space, Xu et al. [19] propose the MCTS
with unit ordering (MCTS_u). In MCTS_u, the move ordering
of units is randomly initialized and is fixed throughout the whole
game. Each node controls only one unit and its children control
the subsequent unit in the move order. With this setting, the
node values become deeper but narrower. MCTS_u has shown a strong
performance in the multi-unit strategy games.

C. State Abstraction and Approximate MDP Homomorphism

A Markov Decision Process (MDP) is defined as
\((S, \mathcal{A}, R, P, \gamma)\), where the \(S\) is the state space, \(\mathcal{A}\) the action
space, \(R : S \times \mathcal{A} \to \mathbb{R}\) the reward function, \(P : S \times \mathcal{A} \to S\)
the transition function and \(\gamma \in \mathbb{R}\) is a discount factor. A state
abstraction for an MDP is \(<S_\phi, \mathcal{A}, R, \bar{P}, \gamma>\), where the \(S_\phi\)
is the abstract state space. Each abstract state includes a set
of states. The \(\bar{P} : S_\phi \times \mathcal{A} \to S_\phi\) defines a transition function
based on abstract states.

A key step to construct state abstraction is defining a state
mapping function \(\phi : S \mapsto S_\phi\) that maps a ground state to an
abstract state. The function \(\phi\) can be implemented by defining
similarity between states and aggregating similar states to the
same abstract state. Approximate MDP homomorphism [29]
is a typical state similarity measurement. For two states \(s_1\) and
\(s_2\), it is defined by the approximate error of reward function
\(\epsilon_R\) and the approximate error of transition function \(\epsilon_T\):

\[
\epsilon_R(s_1, s_2) = \max_{a \in \mathcal{A}} |R(s_1, a) - R(s_2, a)|
\]

\[
\epsilon_T(s_1, s_2) = \max_{a \in \mathcal{A}} \sum_{s'_0 \in S_\phi} \sum_{s' \in S_\phi} T(s'|s_1, a) - \sum_{s'' \in S_\phi} T(s''|s_2, a)
\]

where \(T(s'|s, a)\) is the transition probability, \(\epsilon_R\) measures the
maximal difference between reward functions of the given
states and \(\epsilon_T\) measures the worst-case total variation distance
between state transition distributions.

D. Elastic Monte Carlo Tree Search

The elastic MCTS method [19] is built upon MCTS_u. It
aggregates tree nodes with approximate MDP homomorphism.
The constructed node groups are split into ground tree nodes
with early stop. Algorithm [1] and Algorithm [2] (without the
blue parts) provide pseudocode for elastic MCTS.

For every \(B\) MCTS iteration (line 6 in Algorithm [1]), elastic
MCTS checks all the tree nodes that have not yet been added
in an abstraction node and calculates their approximate MDP homomorphism errors (line 8-9 in Algorithm 2). If the errors between the candidate state \(s_1 \) and an abstraction node \(\hat{s} \) are below the pre-determined error thresholds \(\eta_R \) and \(\eta_T \), \(s_1 \) is added into \(\hat{s} \) (line 13). If there is no abstract node that matches this condition, a new abstract node is created with the \(s_1 \) as the only member node (line 15). The early stop shows in line 4-5 from Algorithm 1. It splits all abstract nodes into ground nodes once the MCTS iteration reaches an early stop threshold \(\alpha_{ES} \).

V. METHOD

Based on MCTS, our method automatically groups tree nodes by the approximate MDP homomorphism. Following Jiang et al. [14] and Xu et al. [19], SCSA groups tree nodes from the same layer at every batch (a fixed number of MCTS iterations). At each iteration, the MCTS samples one trajectory that consists of a sequence of nodes, starting from the root node to a leaf node. To approximate the MDP homomorphism, a batch of samples is required for calculating the approximate errors (Equation 1). Therefore, for every iteration(s), SCSA checks every tree node that has not yet joined a node group to expand the current abstraction. There are two approaches for a node to be added to the existing abstraction, depending on the approximate MDP homomorphism errors. If the approximate errors between this candidate node and a node group are below the thresholds, this candidate node is added to the corresponding node group, becoming a member node of this group. When the approximate errors between the candidate node and all same-layer groups are found higher than the thresholds, a new node group is created and this node becomes the only member node.

It is found that a large number of samples are required to obtain high-quality state abstractions [14]. In strategy games where the search space is large, it is infeasible to obtain enough samples. Under limited samples, the constructed state abstraction might be of unstable quality. Moreover, it is difficult to evaluate the quality of the constructed state abstraction. Xu et al. [19] discovered that abandoning the existing state abstraction in the middle of MCTS running can bring significant performance improvement. In contrast to their approach [19], SCSA does not abandon the state abstraction. Instead, a global size constraint is defined to limit the maximum number of member nodes for every node group. Below, we introduce the abstraction construction in detail.

The pseudocodes of the SCSA algorithm are shown in Algorithm 1 and Algorithm 2 with highlighted lines in red representing the removed part from Elastic MCTS, and the lines highlighted in blue are newly introduced by the SCASA method. The computation budget constant is \(N_{FM} \), meaning the maximum number of available forward model calls. In Algorithm 1 lines 6-7 presents the early stop with a threshold \(\alpha_{ES} \). Our method removes this part.

We first introduce the hyperparameters, \(N_{FM} \), the computation budget, \(B \) the batch size, \(\eta_R \) reward function error, \(\eta_T \) transition error and \(SIZE_LIMIT \) the maximum node group size. In the beginning, the abstraction \(\phi \) is initialized by mapping states to themselves. Within the computation budget (line 4), an MCTS iteration is run with the forward model cost \(c_{FM} \) and the current tree depth \(L \) returned (line 5). For every \(B \) iteration, the state abstraction is updated by calling the ConstructAbstraction function (Algorithm 2), after which the forward model call counter \(n_{FM} \) and the MCTS iteration counter \(n_{MCTS} \) are updated.

We next introduce the ConstructAbstraction function. Algorithm 2 iterates from the bottom of the tree to the root node, layer by layer (line 2). For each layer, all nodes that are not added to the abstraction are iterated (line 3). For a candidate node \(s_1 \), the algorithm iterates through all same-layer abstract nodes to consider accepting \(s_1 \) (line 5). Specifically, SCSA limits the maximal abstract node size. Therefore, if an abstract node is found exceeds the limit, this abstract node is skipped (line 6-7). Otherwise, the approximate errors between \(s_1 \) and each state from the abstract node is calculated (line 10-11). A node is added into an abstract node (line 14-15) only if the similarities between \(s_1 \) and all ground nodes from the abstract node are below the thresholds (line 9-13). If a node is finally find not added into any abstract node, a new abstract node is created (line 17-18).

VI. EXPERIMENTS

Baselines: We implement 5 baseline agents to evaluate the performance of the SCASA agent. They are Rule-based, MCTS, MCTS\(_u\), RG MCTS\(_u\) and Elastic MCTS\(_u\). Details about each agent are listed below:

1) Rule-based : Stratega platform has implemented a Rule-based agent for each game. We here briefly introduce their implementation. The Rule-based agent for KTK prioritizes attacking isolated enemy units and healing strong ally units. For each enemy unit, an isolation score is calculated considering its nearby ally units and enemy units. At each round, the Rule-based agent controls its units to i) approach the enemy units with the highest isolation score and attack them; and ii) approach an ally unit to heal it. The PTA Rule-based agent controls pushers to approach the nearest enemy unit and push it towards the nearest hole. In TK, the Rule-based agent first researches Mining, which is necessary for spawning

Algorithm 1 Elastic MCTS

1. **Require:** \(N_{FM}, B, \eta_R, \eta_T, K, SIZE_LIMIT \)
2. **Initialize:** \(n_{FM} = 0, n_{MCTS} = 0 \)
3. \(\phi := s \rightarrow \hat{s}, \hat{s} = \{s\} \) # Initialize the abstraction
4. **while** \(n_{FM} < N_{FM} \) **do**
5. \(c_{FM}, L = MCTS_Iteration(\phi) \)
6. **if** \(n_{MCTS} > \alpha_{ES} \) **then**
7. \(\phi := s \rightarrow \hat{s}, \hat{s} = \{s\} \)
8. **else if** \(n_{MCTS} \% B = 0 \) **then**
9. \(\phi = \text{ConstructAbstraction}(\phi, \eta_R, \eta_T, L, SIZE_LIMIT) \)
10. \(n_{FM} = n_{FM} + c_{FM} \)
11. \(n_{MCTS} = n_{MCTS} + 1 \)
Algorithm 2 ConstructAbstraction

1: Require: $\phi, \eta_R, \eta_T, L, \text{SIZE_LIMIT}$
2: for $l = L$ to 1 do
3: for all node s_1 in depth l that is not grouped do
4: $s_1.in_{\phi} = \text{false}$
5: for all abstract node \hat{s} in ϕ do
6: if $|\hat{s}| > \text{SIZE_LIMIT}$ then
7: break
8: $s_1.in_{\hat{s}} = \text{true}$
9: for all node s_2 in \hat{s} do
10: $\epsilon_R = \max_u \left[R(s_1, a) - R(s_2, a) \right]$
11: $\epsilon_T = \sum_u \left[T(s', s_1, a) - T(s', s_2, a) \right]$
12: if $\epsilon_R > \eta_R$ or $\epsilon_T > \eta_T$ then
13: $s_1.in_{\hat{s}} = \text{false}$, break
14: if $s_1.in_{\hat{s}} = \text{true}$ then
15: Add s_1 in abstract node \hat{s}
16: $s_1.in_{\hat{s}} = \text{true}$
17: if $s_1.in_{\hat{s}} = \text{false}$ then
18: $\hat{s}(s_1) = \{s_1\}$ # Create a new abstract node

Heuristic functions

The same as typical MCTS in games, we utilize heuristic functions to evaluate states reached by the MCTS roll-out. The heuristic functions are game-specific. In each game, all agents except for the Rule-based agent share the same heuristic function. Below, we introduce the implementation details of the heuristic functions for each game.

In all games, the scores of states where the player wins, loses and draws the game are 1, -1 and 0, respectively. For all the other states, the heuristic function returns a score between 0 and 1. The KTK heuristic function returns a score of $R = 1 - \frac{d.h}{D_{\text{max}}}$, where the d is the sum of the distance from each ally unit to the enemy king, D_{max} is the maximum value of d, h is the health points of the enemy king and H is the maximum value of h. The strategy is controlling the units to approach the enemy king and try to search for a state that leads to victory.

For PTA, the score of a state is a sum of three parts. The first one is $0.2 \times \sum_u \min_u \left[\text{dis}(u,u') \right]$, where the u is an ally unit, u' is an enemy unit, $\text{dis}(\cdot, \cdot)$ returns the Euclidean distance between the two units. The second part is $0.4 \times |U_0 - U_1|$, where $|U_1|$ is the number of alive ally units at time step 1 and U_0 is the number of the units in the beginning. The last part is $0.4 \times |U_1'| - |U_0'|$, where $|U_1'|, |U_0'|$ are the number of enemy units at time step t, respectively.

In TK, the state score is calculated according to finishing a series of tasks. Finishing Mining research returns 0.2, having worker alive returns 0.1 and having units that have action attack returns 0.1. Other scores include $0.1 \times$ the distance of ally workers to its nearest gold vein, $0.2 \times$ collected gold, $0.3 \times$ the distance between all ally units and enemy units. The normalized score lands in $[0, 1]$.

A. Agent Parameter Optimisation with NTBEA

As each agent has different optimal parameters for each game, we apply the N-Tuple Bandit Evolutionary Algorithm (NTBEA) to automatically optimize agent parameters in different games. The NTBEA uses an N-Tuple system to break down the combinatorial space of the parameters. NTBEA has its own parameters, an exploration factor, the number of neighbours and the number of iterations. Following Xu et al. [19], these values are set to 2, 50 and 50, respectively. Next, we introduce the parameter space for each game-playing agent.

The parameters for MCTS and MCTS* are the exploitation factor $C \in \{0.1, 1, 10, 100\}$ and rollout length $K \in \{10, 20, 40\}$. RG MCTS* has C, K and an early stop threshold $\alpha_{ES} \in \{4 \times B, 8 \times B, 10 \times B, 12 \times B\}$, where the $B = 20$ is a constant batch size. Elastic MCTS* has C, K, α_{ES} and approximate errors for reward function and transition function $\eta_R \in \{0, 0.04, 0.1, 0, 3, 0.5, 1.0\}, \eta_T \in \{0, 0.1, 0.5, 1.0, 2\}$.

<table>
<thead>
<tr>
<th>Agents</th>
<th>C</th>
<th>K</th>
<th>α_{ES}</th>
<th>η_R</th>
<th>η_T</th>
<th>SIZE_LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kill The King (KTK)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCTS</td>
<td>0.1</td>
<td>10</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>MCTS*</td>
<td>1.0</td>
<td>10</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>RG MCTS*</td>
<td>0.1</td>
<td>10</td>
<td>8</td>
<td>0.05</td>
<td>1.0</td>
<td>/</td>
</tr>
<tr>
<td>Elastic MCTS*</td>
<td>0.1</td>
<td>10</td>
<td>10 0.05 1.0</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SCSA</td>
<td>0.1</td>
<td>10</td>
<td>/</td>
<td>0.05</td>
<td>1.0</td>
<td>2</td>
</tr>
<tr>
<td>Push Them All (PTA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCTS</td>
<td>0.1</td>
<td>10</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>MCTS*</td>
<td>1.0</td>
<td>10</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>RG MCTS*</td>
<td>0.1</td>
<td>10</td>
<td>4</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Elastic MCTS*</td>
<td>0.1</td>
<td>10</td>
<td>8 1.0 1.0</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SCSA</td>
<td>1.0</td>
<td>10</td>
<td>/</td>
<td>1.0</td>
<td>1.0</td>
<td>2</td>
</tr>
<tr>
<td>Two Kingdoms (TK)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCTS</td>
<td>0.1</td>
<td>20</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>MCTS*</td>
<td>1.0</td>
<td>20</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>RG MCTS*</td>
<td>0.1</td>
<td>10</td>
<td>8</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Elastic MCTS*</td>
<td>1.0</td>
<td>20</td>
<td>6 0.05 1.0</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SCSA</td>
<td>1.0</td>
<td>20</td>
<td>/</td>
<td>0.05</td>
<td>1.0</td>
<td>2</td>
</tr>
</tbody>
</table>
\subsection*{B. Performance on multi-unit-grid-based games}

To evaluate the general performance of SCSA agents, we ran an experiment with agents playing against each other in a two-player manner. For each game, we set up 50 initial unit positions (randomly sampled). For each initial unit position, 2 evaluations are made by switching sides. Each evaluation is made with 5 random seeds, resulting in 500.

The general performance of each agent is shown in Figure 4. In KTK and PTA, SCSA outperforms all its opponents. In the more complex TK game, SCSA shows a competitive performance to Elastic MCTS$_u$.

The detailed win rates for each agent pair are shown in Tables II, III and IV. In KTK, the SCSA agent outperforms all its opponent agents in a significant gap. MCTS shows a weaker performance than the rule-based agent. MCTS$_u$ shows a stable and better performance than the MCTS. Elastic MCTS$_u$ outperforms both RG MCTS$_u$ and MCTS$_u$.

In PTA, the overall win rates are higher than KTK. In this game, the SCSA agent also outperforms all its opponents. Elastic MCTS$_u$ shows a strong performance in that it beats all agents except for the SCSA agent. MCTS$_u$ outperforms MCTS by a large margin. The MCTS agent is still weaker than the rule-based agent.

In TK, the Rule-based agent outperforms the MCTS significantly while other agents outperform Rule-based with large margins. In this complex game, MCTS$_u$, Elastic MCTS$_u$ and SCSA are showing close performances.

\begin{table}[h]
\centering
\caption{Win rates with standard errors for games Kill The King}
\begin{tabular}{|c|c|c|c|c|}
\hline
Agent 1 & Agent 2 & Agent 1 & Agent 2 \\
\hline
1 King, 1 Archer, 1 Warrior and 1 Healer & & & \\
\hline
MCTS & Rule-based & 47.2(1.9)% & 52.8(1.9)% \\
MCTS$_u$ & Rule-based & 62.2(1.1)% & 37.6(1.3)% \\
RG MCTS$_u$ & Rule-based & 63.4(1.0)% & 36.6(1.0)% \\
Elastic MCTS$_u$ & Rule-based & 54.2(1.4)% & 44.8(1.6)% \\
SCSA (ours) & Rule-based & 55.6(0.8)% & 44.0(0.6)% \\
\hline
MCTS$_u$ & MCTS & 58.0(1.2)% & 41.1(1.2)% \\
RG MCTS$_u$ & MCTS & 61.6(0.9)% & 38.4(0.9)% \\
Elastic MCTS$_u$ & MCTS & 61.4(1.2)% & 36.6(1.2)% \\
SCSA (ours) & MCTS & 58.2(1.9)% & 30.2(1.7)% \\
\hline
RG MCTS$_u$ & MCTS$_u$ & 49.0(0.9)% & 51.0(0.9)% \\
Elastic MCTS$_u$ & MCTS$_u$ & 61.2(1.4)% & 38.8(1.4)% \\
SCSA (ours) & MCTS$_u$ & 53.8(1.7)% & 38.8(1.7)% \\
\hline
Elastic MCTS$_u$ & RG MCTS$_u$ & 50.2(1.0)% & 49.8(1.0)% \\
SCSA (ours) & RG MCTS$_u$ & 52.4(1.4)% & 47.4(1.3)% \\
\hline
SCSA (ours) & Elastic MCTS$_u$ & 49.2(2.1)% & 38.8(1.9)% \\
\hline
\end{tabular}
\end{table}

In conclusion, these experiments verify the performance improvement brought by the unit ordering and Elastic MCTS. It also evaluates the performance of the SCSA agent, confirming its outstanding performance in all three games. In addition, it shows good performance of SCSA agents in different games can be achieved by the same value for SIZE_LIMIT. In this experiment, we show that 2 is an appropriate value for SIZE_LIMIT. Comparing different games, the SCSA agent performs less strongly in the more complex TK game, indicating a potential issue of scalability.

\subsection*{C. Influence of abstract state size}

To better investigate the influence of different values for SIZE_LIMIT, we assigned different values from 2 to 5 and run the agent pair of SCSA - Rule-based agent. The same as in Section VI-B, 500 games are run for each value of SIZE_LIMIT. Figure 5a-c shows the win rates with standard errors in three games. We observe the optimal SIZE_LIMIT values for KTK and PTA is 3 but TK has its optimal values at 2 and 4. We also observed that larger SIZE_LIMIT values (e.g. a value of 5) can degrade the performance, which reveals the trade-off between the tree size and the performance. With a larger SIZE_LIMIT, more groups are aggregated together therefore the tree size becomes smaller. However, a tree that is too small might cause performance degradation.

We used a value of 2 for all games and the agents showed satisfactory performance. Compared to different α_{ES} values are required in each domain (See Table V in Xu et al. [19]), the SIZE_LIMIT is less sensitive across domains.

\subsection*{D. Compression Rate}

To compare the influence of different state abstractions on tree size, we visualize compression rate at different MCTS iterations (see Figure 6a-c). The compression rate is defined as the number of tree nodes dividing the number of abstract nodes. We can see that the SIZE_LIMIT has constrained

{0.0, 0.5, 1.0, 1.5, 2.0}. For SCSA, we use the same parameters as Elastic MCTS$_u$. SCSA does not require the early stop threshold but requires a SIZE_LIMIT, which is linearly searched and set to 2 in the first group of experiments. The hyper-parameters tuned by NTBEA are shown in Table I. Except for parameters, the budgets for search-based agents vary in different games. We set this budget based on the competitive performance of MCTS$_u$ playing against the corresponding Rule-based agent. In KTK and PTA the budget is set to 10,000 number of forward model calls. In TK, the budget is 5,000 forward model calls.

Fig. 4: The number of opponents that the agent outperforms.

TABLE II: Win rates with standard errors for games Kill The King

In conclusion, these experiments verify the performance improvement brought by the unit ordering and Elastic MCTS. It also evaluates the performance of the SCSA agent, confirming its outstanding performance in all three games. In addition, it shows good performance of SCSA agents in different games can be achieved by the same value for SIZE_LIMIT. In this experiment, we show that 2 is an appropriate value for SIZE_LIMIT. Comparing different games, the SCSA agent performs less strongly in the more complex TK game, indicating a potential issue of scalability.
the compression rate by limiting the maximal size of each abstract node. The overall compression rates of Elastic MCTS\textsubscript{u} are higher than SCSA and differ in different games. The vertical lines in Figure 5(c) indicate the iteration when Elastic MCTS\textsubscript{u} drops state abstraction.

We observe from the plots that Elastic MCTS\textsubscript{u} without early stop can obtain a higher compression rate but this degrades the performance (See [19]). The SCSA agent out-performs Elastic MCTS\textsubscript{u} in two of the three games and it has lower compression rates. These observations reveal a trade-off between the abstracted tree size and the agent performance.

VII. CONCLUSION AND FUTURE WORK

Automatic state abstraction has recently been applied to MCTS to address large search spaces in strategy gaming. However, the lack of data results in state abstraction of unstable quality. We propose the novel SCSA to control Automatic state abstraction has recently been applied to MCTS to address large search spaces in strategy games. We propose the novel SCSA to control

<table>
<thead>
<tr>
<th>Agent 1</th>
<th>Agent 2</th>
<th>Agent 1</th>
<th>Agent 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCTS</td>
<td>Rule-based</td>
<td>12.6(0.5)%</td>
<td>81.2(1.2)%</td>
</tr>
<tr>
<td>RG MCTS\textsubscript{u}</td>
<td>Rule-based</td>
<td>90.8(1.7)%</td>
<td>7.6(1.6)%</td>
</tr>
<tr>
<td>Elastic MCTS\textsubscript{u}</td>
<td>Rule-based</td>
<td>88.0(1.1)%</td>
<td>11.8(1.2)%</td>
</tr>
<tr>
<td>SCSA (ours)</td>
<td>Rule-based</td>
<td>89.2(1.4)%</td>
<td>9.6(1.3)%</td>
</tr>
<tr>
<td>RG MCTS (ours)</td>
<td>MCTS</td>
<td>88.8(1.0)%</td>
<td>9.8(1.3)%</td>
</tr>
<tr>
<td>Elastic MCTS (ours)</td>
<td>MCTS</td>
<td>96.0(0.4)%</td>
<td>4.0(0.4)%</td>
</tr>
<tr>
<td>SCSA (ours)</td>
<td>MCTS</td>
<td>96.0(0.5)%</td>
<td>4.0(0.5)%</td>
</tr>
<tr>
<td>RG MCTS\textsubscript{u}</td>
<td>MCTS</td>
<td>94.0(0.6)%</td>
<td>6.0(0.6)%</td>
</tr>
<tr>
<td>Elastic MCTS\textsubscript{u}</td>
<td>MCTS</td>
<td>43.6(1.6)%</td>
<td>56.2(1.6)%</td>
</tr>
<tr>
<td>SCSA (ours)</td>
<td>MCTS</td>
<td>52.2(2.1)%</td>
<td>47.6(1.9)%</td>
</tr>
<tr>
<td>RG MCTS (ours)</td>
<td>MCTS</td>
<td>49.0(1.8)%</td>
<td>50.8(1.8)%</td>
</tr>
<tr>
<td>Elastic MCTS (ours)</td>
<td>MCTS</td>
<td>62.4(1.0)%</td>
<td>37.6(1.0)%</td>
</tr>
<tr>
<td>SCSA (ours)</td>
<td>Elastic MCTS\textsubscript{u}</td>
<td>57.0(1.6)%</td>
<td>43.0(1.6)%</td>
</tr>
<tr>
<td>SCSA (ours)</td>
<td>Elastic MCTS\textsubscript{u}</td>
<td>51.4(2.7)%</td>
<td>48.6(2.7)%</td>
</tr>
</tbody>
</table>

TABLE IV: Win rates with standard errors for games Two Kingdoms

TABLE III: Win rates with standard errors for games Push Them All

<table>
<thead>
<tr>
<th>Agent 1</th>
<th>Agent 2</th>
<th>Agent 1</th>
<th>Agent 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCTS</td>
<td>Rule-based</td>
<td>48.8(1.6)%</td>
<td>51.2(1.6)%</td>
</tr>
<tr>
<td>RG MCTS\textsubscript{u}</td>
<td>Rule-based</td>
<td>69.0(1.1)%</td>
<td>30.8(1.2)%</td>
</tr>
<tr>
<td>Elastic MCTS\textsubscript{u}</td>
<td>Rule-based</td>
<td>74.0(2.3)%</td>
<td>26.0(2.3)%</td>
</tr>
<tr>
<td>SCSA (ours)</td>
<td>Rule-based</td>
<td>81.8(0.9)%</td>
<td>18.0(1.1)%</td>
</tr>
<tr>
<td>RG MCTS (ours)</td>
<td>MCTS</td>
<td>79.8(1.6)%</td>
<td>20.2(1.6)%</td>
</tr>
<tr>
<td>Elastic MCTS (ours)</td>
<td>MCTS</td>
<td>64.4(1.1)%</td>
<td>33.6(1.4)%</td>
</tr>
<tr>
<td>SCSA (ours)</td>
<td>MCTS</td>
<td>86.2(0.7)%</td>
<td>12.0(0.7)%</td>
</tr>
<tr>
<td>RG MCTS\textsubscript{u}</td>
<td>MCTS</td>
<td>85.4(1.5)%</td>
<td>13.0(1.7)%</td>
</tr>
<tr>
<td>Elastic MCTS\textsubscript{u}</td>
<td>MCTS</td>
<td>86.0(1.4)%</td>
<td>12.8(0.9)%</td>
</tr>
<tr>
<td>SCSA (ours)</td>
<td>RG MCTS\textsubscript{u}</td>
<td>73.4(2.0)%</td>
<td>25.6(1.9)%</td>
</tr>
<tr>
<td>Elastic MCTS\textsubscript{u}</td>
<td>RG MCTS\textsubscript{u}</td>
<td>80.2(1.0)%</td>
<td>18.0(1.0)%</td>
</tr>
<tr>
<td>SCSA (ours)</td>
<td>Elastic MCTS\textsubscript{u}</td>
<td>77.2(1.8)%</td>
<td>22.0(2.0)%</td>
</tr>
<tr>
<td>Elastic MCTS\textsubscript{u}</td>
<td>Elastic MCTS\textsubscript{u}</td>
<td>62.4(1.4)%</td>
<td>35.8(1.3)%</td>
</tr>
<tr>
<td>SCSA (ours)</td>
<td>Elastic MCTS\textsubscript{u}</td>
<td>58.8(1.8)%</td>
<td>40.4(2.0)%</td>
</tr>
<tr>
<td>SCSA (ours)</td>
<td>Elastic MCTS\textsubscript{u}</td>
<td>52.0(1.6)%</td>
<td>46.8(1.9)%</td>
</tr>
</tbody>
</table>

TABLE III: Win rates with standard errors for games Kill The King

TABLE IV: Win rates with standard errors for games Two Kingdoms
the abstraction quality. Compared to the previous early stop approach, our method has a much smaller range for its hyperparameter. The empirical results on 3 strategy games of different complexity present the effectiveness of SCSA on strategy game playing.

The SCSA outperforms baselines in two games but not in the complex TK game, indicating a potential shortcoming of scalability. A possible solution is to combine state abstraction with pruning. We plan to further investigate the scalability of the SCSA agent in our future work.

Limitation We analyze the tree size under different state abstraction size constraints, revealing a trade-off between memory usage and agent performance.

References

