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Abstract—One of the notorious issues for Reinforcement
Learning (RL) is poor sample efficiency. Compared to single
agent RL, the sample efficiency for Multi-Agent Reinforcement
Learning (MARL) is more challenging because of its inherent
partial observability, non-stationary training, and enormous
strategy space. Although much effort has been devoted to
developing new methods and enhancing sample efficiency, we
look at the widely used episodic training mechanism. In each
training step, tens of frames are collected, but only one gradient
step is made. We argue that this episodic training could be
a source of poor sample efficiency. To better exploit the data
already collected, we propose to increase the frequency of the
gradient updates per environment interaction (a.k.a. Replay
Ratio or Update-To-Data ratio). To show its generality, we
evaluate 3 MARL methods on 6 SMAC tasks. The empirical
results validate that a higher replay ratio significantly improves
the sample efficiency for MARL algorithms. The codes to
reimplement the results presented in this paper are open-sourced
at https://github.com/egg-west/rr_for_MARL,

Index Terms—Reinforcement Learning, Multi-Agent Rein-
forcement Learning, Starcraft II, Sample efficiency

I. INTRODUCTION

With the ongoing development of simulation [1, [2f], ren-
dering [3l 4], and content generation [5l 16l [7]] techniques,
video games have reached a new level of complexity, rep-
resented by concurrent events, display resolution, and content
diversity. Higher complexity empowers more realistic video
games that provide players with a better immersive experience.
Meanwhile, it costs significant computing power to run these
games. However, when developing agents for these games,
these computation becomes an indispensable concern because
agent training depends on interacting with the game. Worsely,
powerful artificial intelligence methods such as Reinforcement
Learning (RL), are notorious for their poor sample efficiency
and may require hundreds of millions of game interactions [8]
for training. In conclusion, the combination of game complex-
ity and poor sample efficiency makes it even more challenging
to develop autonomous agents for game playing.

In this work, we focus on the cooperative multi-agent set-
ting, similar to a wide range of games (RTS [9], MOBA [10],
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etc). Multi-agent reinforcement Learning (MARL) [1L1} [12} [13]]
is a powerful technique for training agents to play cooperative
games. Compared to single agent RL, the sample efficiency
for MARL is more challenging because of its inherent partial
observability, non-stationary training, and enormous strategy
space. Recently, much effort [L1, [12} [13} [14} [15] has been
devoted to developing new methods and enhancing sample
efficiency. However, the training framework remains mostly
unchanged. At each training step of MARL, a complete
trajectory is collected by taking actions from the current policy.
After that, one gradient update step is made to optimize the
policy. To converge, current methods usually need to collect
millions of trajectories (approximately hundreds of millions of
frames), making sample efficiency a notorious issue.

In single agent RL, a line of work [16} [17, [18] shows
that increasing the Replay Ratio (RR, a.k.a. Update-To-Data
ratio [19]) significantly accelerates convergence and improves
the final performance. This observation provides insight that
the collected data can be better exploited by performing more
parameter-update steps. Compared to single agent RL, MARL
has less frequent parameter updates (per trajectory VS per
frame in single agent RL). Therefore, MARL has a higher
risk of not exploiting the collected data well. Without learning
well about the current data, an agent fails to collect new data
efficiently and thus further harms the sample efficiency.

Although the use of higher RRs is studied in single agent
RL, to the best of our knowledge, the RR is not yet investigated
in MARL. To address the data exploitation issue mentioned
above, we propose to increase the RR for MARL training. It
is worth noting that there are other approaches to accelerate
the parameter updates, such as using higher learning rates
or tuning batch sizes [20]]. Surprisingly, these approaches are
much less effective compared to increasing RR (please refer
to Section for details).

Increasing the RR causes a linear growth in the number of
parameter updates. This might raise concerns about losing the
neural network plasticity that causes issues such as primacy
bias [16]]. In this work, we also investigate the plasticity
of MARL agents by visualizing the dormant ratio of the
neural network during training. Surprisingly, our empirical
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analysis shows that the RNN (commonly used in MARL) helps
maintain plasticity. Therefore, using higher RRs performs well
without the need for additional techniques (e.g. reset [[16]]) to
maintain the network plasticity.

The contributions of this work are concluded as follows:

1) We look into the training mechanism of MARL and
propose to increase the RR to enhance sample efficiency.

2) Our experiments on 3 widely investigated baseline al-
gorithm verify the significance of the proposed method
among different StarCraft II tasks.

3) Although higher RR in single agent RL usually ex-
acerbates the loss of network plasticity, our empirical
analysis of dormant neurons reveals a low risk of losing
network plasticity for RNN agents used for MARL.

II. PRELIMINARY

The cooperative multi-agent setting studied in this work is
modeled as a Decentralized Partially Observable Markov Deci-
sion Process (Dec-POMDP) [21]]. A Dec-POMDP is defined as
M=(S8, A R,P,Z,0,n,v), where s € § is the global state.
Each agent ¢ € {1,...,n} only receives a partial observation
0; € Z from the observation function O(s, ) to formulate a
joint observation o := [0;]"_; at each time step. These agents
choose and execute their own actions {a; € A}, combined
as the joint action a = [a;]_, and then receive a team reward
rt°t from the global reward function R : S x A — R. This
results in a transition to next state s’ ~ P (s’ | s,a), where
P € P represents the transition probability. At each training
step, an episode of gameplay (a completed trajectory) 7 is
collected by interacting with the environment. A trajectory 7
includes a sequence of transitions 7' = {s,0,a,r!"! s’ o'},
consisting of a global state s, a global reward 7%, agent
observations o, agent actions a, next global state s’, and
the next agent observations o’. The goal is to learn a joint
policy w = [m;], where m; : O; — A;, to maximize the
expectation of discounted return

t<H
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where v € [0,1) is a discount factor.

A. Centralized-Training Decentralized-Execution

In the execution of a Dec-POMDP, each agent receives only
a local observation. However, it is difficult to make decisions
depending on only the local observation that does not reveal
complete game information. Fortunately, during training, it is
convenient to obtain the global state from the environment.
The Centralized-Training Decentralized-Execution (CTDE) is
an effective and widely used mechanism that utilizes the global
state in agent training. Next, we introduce how CTDE works
for two types of RL methods.

In value-based RL methods [12, [13| [22], a mixer function
that utilizes the global state is learned with the local agent
utility function. The mixer function is used to predict the
global value function and is updated by Temporal Difference

(TD) learning [23]. In actor-critic methods [24], the critic takes
the global state as part of the input to better approximate the
global value function. The actors, whose input is the local
observation, are responsible for the execution.

B. Agent Parameterization and Parameter Update

If each agent is parameterized independently, the total
parameters increase linearly with the number of agents. To
obtain a scalable parameterization, a common approach to
parameterize agents 7r is to use a shared [11} [12 25] neural
network, which has been shown to outperform independent
agents [20].

As an effective technique for addressing partial observ-
ability, RNN is usually used for MARL agents [27]. An
RNN agent is updated by the backpropagation through a time
algorithm mechanism, where the forward passing starts from
the beginning of the trajectory and iterates through the whole
trajectory. The backpropagation, in reverse, starts from the last
time step and ends at the first time step.

C. Data Reuse

The MARL training iteratively collects data from the en-
vironment and updates the agent parameter. The on-policy
methods and off-policy methods have different approaches to
reuse the data collected at each training step.

The on-policy methods [14] firstly collect a small-size
dataset (e.g. 3,200 frames in Yu et al. [14]) and then trains
on these data for several epochs. After every training step, the
dataset is thrown away. The data reuse for off-policy methods
differs in that a replay buffer is maintained. At each training
step, an episode is collected and put in a replay buffer. After
that, a batch of trajectories B = {19, 71, ...7v } of batch size
N are sampled from the replay buffer D.

III. METHODS

The RR measures the number of update steps per collected
data (per frame in single agent RL). In MARL, the update
interval is an episode instead of a frame, hence we define the
RR for MARL as the number of gradient steps per episode.

Before we formally introduce our methods, we first define
the agents. By using a shared neural network among dif-
ferent agents, we define the local utility function as u; =
ug(04, a;). The policy can be derived from this utility function
m; = argmaxg, up(o;,a;). We define the joint utility as
u = [u;|’,. To learn with the global reward, we define
a mixer function g4(s,u). Depending on the algorithm, the
mixer function can be instantiated differently (See [[V-A). To
obtain more stable training, we defined the target functions
uy(0i,a;) and g;(s,u). The TD loss is calculated as

Lo = ErsErr[go(s,u0) — (1 +7g,(s" 1)), @)

and the agent parameter is updated by applying the gradient
descent operator

011 = 0; — gV Ly, 3)
Gt41 = ¢t — ayp VL, “4)
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MARL Training with higher replay ratio

Fig. 1: Training pipeline for MARL. 6, represents the agent parameter on the ¢-th update. For each update, a batch of
trajectories is sampled from the replay buffer for the gradient calculation. Left: Conventional MARL training that takes one
back-propagation for each environmental interaction (one episode). Right: MARL training with RR = N, where multiple
backpropagations are applied for each interaction to better exploit the collected data.
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Fig. 2: The performance of VDN on MMM?2 task under
different RR values. The results are plotted with standard
errors among 5 random seeds.

where oy and «g4 are the learning rates of uy and gy,
respectively. The target functions are updated by exponential
moving average with a proportion 1 € (0, 1.0).

As shown in Figure [T} we use N-gradient backpropagation
as a high RR. The multiple gradient steps are made and the
agent parameter 6, becomes 60, after one training step to
better exploit the collected data in the buffer 3. We summarize
the pseudo-code in Algorithm [T}

In the following subsections, we introduce several design
options for using higher RRs in MARL.

A. Batch Resampling

At each training step, a data batch is sampled from the
replay buffer for loss calculation. When RR > 1, there is a
choice of resampling a new batch for each loss calculation.
Surprisingly, we find that multiple gradient updates with the
same batch could still improve performance. However, there

Algorithm 1 MARL Training
1: Hyperparameters: replay ratio [V, learning rate ap and

Qps M0s N
2: Initialize: Environment &, 0, 0/, ¢ , ¢/, D =)
3: for j=1,2,---,J do

4: Tj ~ £

5: D=DuU {Tj}

6: fork=1,2,--- N do

7: Bk ~ D

8 0+ 06— a9V£9(0, Bk) (Equation i
9: ¢ ¢ —aypVL (), Br) (Equation
10: 0"+ (1 —np)0 + neb

1 ¢ (1 =1na)¢ + nad

is a risk of overfitting to a minimum by using the same batch.
Therefore, we resample the batch after each gradient update.

B. Quantifying the risk of losing network plasticity

Using a RR > 1 leads to a linear growth of the number of
gradient steps. Recent studies in continual learning and single
agent RL present that the plasticity of neural networks is lost
with more gradient steps. The loss of plasticity raises issues
for RL such as primacy bias [16], inefficient exploration [28],
etc. To measure the risk of plasticity loss in MARL, we use the
Dormant Neural Ratio (DNR) [29] as an indicator of plasticity.

Definition IIL.1. For the /-th layer of a neural network, let
h(z)¢ denote the activation of all neurons and h(z)¢ denotes
the i-th neuron. x € D, where D is the output of the last
layer for all data in the batch. The score of the ¢-th neuron is
defined as follows

v Eaeplh(@)]

[ bl (5)
7 Lken Ezep|h(2)g]




Performance with 1M episodes Performance with 2M episodes

g
o
Iy
=}

3 RR-1 T RR-1
0.8 =3 RR-N 0.8 = RR-N
0 0
Q I3
S 2
206 206
£ £
%0.4 % 0.4
] il
8 &
0.2 0.2
0.0 u y ' 0.0 u y '
VDN QMIX QPLEX VDN QMIX QPLEX

Methods Methods

Fig. 3: Comparison of common MARL training (i.e., RR = 1)
and using a higher RR (the best performance with RR €
{2,4}) in 6 Starcraft-II tasks. 3 MARL methods are evaluated
and their performances of using 1 million and 2 million
environmental interactions are visualized.

where H* is the output dimension of layer £. The i-th neuron
in layer ¢ is p-dormant if d/ < p. The DNR for layer ¢ is
defined as the proportion of the p-dormant neurons.

Surprisingly, the DNR of the shared RNN neural network
used in our MARL training maintains a low level of DNR
during training, which indicates a low risk of plasticity loss.
This observation leads to our simple method without extra
mechanisms to address the plasticity loss.

By comparing the RNN agent and the non-RNN agent in
MARL training (see Figure [7b), we find the RNN might
help maintain the network plasticity. For a feedforward neural
network without RNN, it learns a static X — Y. Instead, the
RNN network takes a latent variable from the previous time
step and breaks the static X —Y relation. That is, the output Y
depends not only on X but also on the latent variable H. The
H, produced by the history trajectory, could result in different
Y for the same X . This natural property of RNN increases the
stochasticity during the network training, which might hinder
the neurons from dormant.

IV. EXPERIMENTS

In this section, we provide empirical analysis for 3 widely
investigated methods with higher RRs using mean =+ standard
error with five random seeds. Our experiments focus on the
following research questions (RQs). RQ1: Does a higher RR
increase the sample efficiency for MARL methods? RQ2:
Does a higher RR raise the concern of losing network plas-
ticity for MARL training? RQ3: How does the computation
budget (the number of updates) trade off with the environment
interaction budget?

A. Experimental setting

Baselines. To show that a higher RR is a general approach to
improve sample efficiency, we evaluate 3 value-based MARL
methods: VDN [11], QMIX [12], and QPLEX [13]]. The 3
methods aim to learn a local utility function w;(0;,a;) for
the agent 4. The Q-value function g(s,u) is a composition of
the local utility function. VDN defines an additive Q-value

function g(u) = >, u;. QMIX defines a monotonic Q-value
function that satisfies % > 0,Vi € {1,...,n}. The last one,
QPLEX utilizes a dueling structure based on the additive Q-
value function to enhance the expressiveness.

Environment. For our performance evaluation, we select 6
tasks with different difficulties from the SMAC benchmark [9]].
The SMAC benchmark is built on StarCraft II for cooperative
game study. In SMAC, units are controlled by their policies to
play against a rule-based opponent. We select two easy tasks:
2s_vs_Isc, where two Stalkers are controlled to play against 1
Spine Crawler; 3s_5z where each side controls 3 Stalkers and
5 Zealots. We also select four super hard tasks: MMM?2 where
each group includes 1 Medivac, 2 Marauders and 7 Marines;
3s_vs_5z where the agent controls 3 Stalkers to play against
5 Zealots, 3s5z_vs_3s6z with 3 Stalkers and 5 Zealots to play
against 3 Stalkers and 6 Zealots, and corridor where 6 Zealots
play against 24 Zerglings.

B. RQI: The effect of high RRs

To reveal the effect of RR > 1, we first visualize
the performance of VDN under different RR values on the
MMM?2 task. As presented in Figure 2l we observed that
RR € {2,4} could drastically improve the sample efficiency
but larger RRs cause poor performance. A possible reason for
the performance decrease is that exploiting the collected data
too frequently causes the overfitting of current data and thus
the agent soon fails to efficiently explore the environment. In
conclusion, the results verify that the current MARL training
does not efficiently exploit the collected data.

Based on the above observation, we apply higher RR(s) on 3
baseline methods: VDN, QMIX, and QPLEX. In Figure E], we
present the averaged performance on 6 tasks for each agent. To
show the effectiveness of RR > 1, we tune RR € {2,4} and
select the best performance task-wise to calculate the averaged
performance, the RR— N agent resulting in Figure[3] From the
results, we observe that using RRs higher than the base-rate 1
significantly improves the agents’ win rates. Furthermore, this
improvement is consistent for all the 3 MARL methods with
both 1 million episodes and 2 million training episodes.

For each MARL method, the detailed results can be found in
Figure[d] [5|and[6] For VDN, using RR = 2, RR = 3 improves
the sample efficiency in 5 tasks and 6 tasks, respectively. In
super hard tasks, using RR = 4 achieves much higher win
rates as well as faster convergence compared to the base-rate
1. For QMIX, RR = 4 improves the sample efficiency in all
6 tasks and RR = 2 does the same except for the 3s_vs_5z
task. Using RR = 4, although the performance converges with
fewer samples, the performance seems to converge to a local
minimum in tasks 3s5z and MMM?2, indicating an overfit on
the previously collected data. Nevertheless, R = 4 achieves
faster convergence and higher win rates in other tasks. For
QPLEX, the RR = 2 achieves faster convergences in 3 of the
6 tasks: 2s_vs_Isc, 3s_vs_5z and 3s5z_vs_3s6z. In MMM?2,
RR = 2 converges slower than the base-rate 1 but achieves
a higher final win rate. RR = 4, even though converge faster
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Fig. 5: The evaluation performances with different checkpoints from the QMIX training.

in 2s_vs_Isc, 3s_vs_5z, fails to outperforms the base-rate 1 in
other tasks.

In conclusion, we find the improvement in sample efficiency
is consistent for all 3 MARL methods. It is worth noting that
on some super hard tasks such as 3s_vs_5z, 3s_vs_3s6z and
corridor, where the RR = 1 fails to converge to a satisfying
win rate, RR > 1 can still achieve competitive win rates.
In these tasks, the original methods with RR = 1 achieve
only near zero win rates (VDN in 3s5z_vs_3s6z and corridor,
QMIX in 3s_vs_5z and 3s5z_vs_3s6z). Surprisingly, by only
increasing the RR, the agent achieves satisfying win rates
within 2 million time steps, which indicates the effectiveness
of using a higher RR.

C. RQ2: Higher RR and plasticity loosing

Using higher RR values increases the number of parameter
updates linearly. Hence using larger RRs potentially increases
the risk of losing the network plasticity. In this subsection, we
empirically analyze the plasticity loss in MARL training.

In Figure [7} we visualize the DNR with p = 0.001 (See
Section [[II-B) for two agents, one with an RNN layer and
another one consisting of only fully-connected layers. For non-
RNN agents, we observe an increasing DNR in the beginning
and then the DNR is maintained at a high level. Surprisingly,
the RNN agent succeeds in maintaining a low-level DNR
during the training.

To further verify the plasticity of the RNN agent, we apply
the reset operator, which is widely used with higher RR to
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Fig. 7: Left: Performances on the MMM?2 task. Middle: Dormant ratios during the training. Right: Performances of the agents
with or w/o reset. For every 200k update, we reset all network weights.

address network plasticity issues. Specifically, we reset all
network weights for every 200k update. The performances
of different training checkpoints in MMM?2 are visualized in
Figure|/c| From the results, we see no significant performance
change between using resetting or not using it under small RR
values (1 and 4). However, when using a large RR value (16
in our experiment), using reset causes performance collapse.
These empirical results confirm that the RNN agent naturally
maintains good network plasticity, hence the extra technique
is not effective here.

D. RQ3: The trade-off between computation budgets and
environment interaction budgets

Although the previous experiments have shown that a
higher RR improves the training sample efficiency for multiple
MARL methods, the required computation is also increased.
In this subsection, we visualize the agent performances among
different computation budgets and data budgets. The computa-
tion budget is quantified with the number of parameter updates

and the data budget is presented by the environment steps. The
selected computation budgets are 1M, 2M,4M, and 8M and
the data budget is set to 0.5M, 1M and 2M.

Figure [8| visualizes the average win rates for the QMIX
agent on 6 SMAC tasks that are used in Section [[V-B}
In general, we find that higher RRs or more environment
interactions both increase the win rates. By comparing the win
rate increasing (with more update numbers) under different
data budgets, we find that a larger data budget enables a more
drastic win rate increase. With a low data budget (0.5M in
this case), the win rate only increases slightly.

E. Empirical analysis of other hyper-parameters

Using a higher RR, each training step exploits more
samples and updates the network parameters faster. One might
ask whether only using more samples or only faster updates
leads to performance improvement. To answer this question,
we investigate the effect of using larger batch sizes or using
higher learning rates.
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Comparison to larger batch size: Compared to the con-
ventional training configuration for MARL methods, using
higher RR means more samples (batch size x RR) are used
in each training step. One might ask whether it is similar to a
larger batch size. We train VDN agents in 3s5z_vs_3s6z task
with batch size in {32, 64,128} (default 32) and compares to
RR = {2,4} with batch size 32.

As seen from the results (Figure [9), a batch size 64 slightly
improves the final win rate but a batch size 128 causes
the performance to collapse. Compared to the performance
improvement brought by a slightly larger batch size, the
RR € {2,4} improves the performance more significantly.

Comparison to a higher learning rate: As higher RR
takes several parameter updates for each training step, the
parameter changes faster than that of RR = 1. Similarly,
increasing the learning rate may also accelerate the parameter
updates. We compare the performance of higher RR and
larger learning rates. We train VND agents with learning rates
{0.0005,0.001, 0.002}.

The results are presented in Figure[9] We observe that using
a learning rate from {0.001,0.002} improves the performance,
where the learning rate 0.001 achieves the same performance
as RR = 2. However, compared to RR = 4, these improve-
ments brought by a larger learning rate are less significant.

V. RELATED WORK

To enhance the sample efficiency for MARL, several ap-
proaches have been developed. In value-based methods, one
line of works focuses on value decomposition,
factorizing the global value function to simpler local utility
function. These works developed different factorizing mecha-
nisms to obtain efficient learning. Except for the commonly-
used fully-shared neural network, Li et al. separate
the shared module and independent module to enhance the
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Fig. 9: Comparison with different batch sizes and learning
rates. Both the shaded region and the error bars refer to
standard errors.

network capacity. Note that our contribution is not to propose
new methods, but to modify widely used training mechanisms.
Higher RR is widely used in recent work. Nikishin et al. [16]]
propose to use a higher RR to enhance the training perfor-
mance and address the primacy bias issue with reset. D’Oro et
al. further raises the RR, using the shrink and perturbation
instead of the reset to maintain the network plasticity. Built on
a higher RR agent, Schwarzer et al.[18] proposed a model-free
agent that achieves human-level performance on Atari games
with 100k frames. Our work applies higher RR in the MARL
domain, where the sample efficiency is more challenging.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose to increase the RR to enhance
the sample efficiency of MARL training. By investigating 3
MARL methods on 6 SMAC tasks, we show that simply using
higher RRs can significantly improve the sample efficiency. As
the previous study raises the concern of plasticity loss brought
by higher RRs, we quantify the plasticity loss during MARL
training. Our empirical results show that the use of RNNs
helps to maintain network plasticity.

Limitation The empirical results presented in this work
have shown that higher RRs improve sample efficiency for
MARL training. However, multiple gradient calculation at
each training step increases the computation budget. This
raises a trade-off between the computation and environmental
interaction. For risky or expensive environments, using a
higher RR is effective to avoid more environmental interaction
thus reducing the risks and expense.

Future Work Although we have shown that increasing RR
is an effective approach to enhance the sample efficiency for
MARL training, higher RRs may be less effective in late train-
ing. Using adaptive learning rates or adaptive RR might solve
this issue, we leave it for future work. Another open problem is
that we only use relatively low RR values (2 and 4), compared
to tens of frames that are collected at each training step. It is an
interesting direction to seek solutions that enable higher RR to
further improve the sample efficiency. Another insight that this
work provides is the inefficient training mechanism of MARL.
Although we have shown that increasing RR could be one
effective approach for better sample efficiency, investigating



other methods to optimize the training process could enable us
to better understand the sample efficiency problem for MARL.
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