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For the last twodecades, the amount of genomic data producedby scientific andmedical applications
has been growing at a rapid pace. To enable software solutions that analyze, process, and transmit
these data in an efficient and interoperable way, ISO and IEC released the first version of the
compression standard MPEG-G in 2019. However, non-proprietary implementations of the standard
are not openly available so far, limiting fair scientific assessment of the standard and, therefore,
hindering its broad adoption. In this paper, we present Genie, to the best of our knowledge the first
open-source encoder that compresses genomic data according to the MPEG-G standard. We
demonstrate that Genie reaches state-of-the-art compression ratios while offering interoperability
with any other standard-compliant decoder independent from its manufacturer. Finally, the ISO/IEC
ecosystem ensures the long-term sustainability and decodability of the compressed data through the
ISO/IEC-supported reference decoder.

Since the first sequencing of the human genome, the speed and efficiency of
DNA sequencing have undergone dramatic improvements. This is why the
amount of DNA sequencing data is expected to continue growing expo-
nentially for the next years1. Further, the data generated by the sequencing
machines passes through different processing steps that render the data in
various formats with distinct statistical properties. Thus, new challenges in
storing andprocessing of large volumes of genomic information continue to
emerge. As a response, several specialized data compression algorithms that
exploit the statistical properties of the various data formats have been
developed to mitigate storage requirements via efficient encoding.

Specifically, the raw information returned by the sequencingmachines
consists of unordered records of nucleotide sequences annotated with
record identifiers and nucleotide-level quality scores. They are commonly
represented in the ASCII-based FASTQ format2. FASTQ files are then
usually compressedwith the general-purpose compressor gzip3. Specialized
compression approaches for FASTQ data were developed and improved
over the years; early and low-latency compressors (DSRC 24) rely on
separation and optimized encoding of the different data streams directly
contained in FASTQ files (nucleotide sequences, record identifiers, quality
scores). Later approaches improve the compression ratio by exploiting
similarities between nucleotide sequences through record reordering
(SCALCE5) or record assembly (Quip6, LEON7). Recent compressors utilize
a combination of reordering and assembly (FaStore8, SPRING9, PgRC10,

Mstcom11) taking advantage of each approach while further improving
compression performance. Some mentioned tools are full compressors for
FASTQ-Files, including quality scores and record identifiers (e.g., FaStore8,
SPRING9, Genozip12, while others only focus on the nucleotide sequences
and provide no functionality to encode the other data types (e.g., PgRC10,
Mstcom11).

Nucleotide sequences are then aligned to one or multiple reference
sequences to reconstruct themost likely position of origin in the underlying
genome. The generated aligned data is mostly stored in the binary BAM13

format, which uses gzip as its compression engine. More specialized com-
pression approaches for aligned data include DeeZ14, CRAM 3.115 and
Genozip12. These approaches explicitly exploit the redundancies between
the mapped records and the reference sequence. Instead of encoding each
mapped nucleotide sequence completely, it is sufficient to encode the
mapping position, sequence length, and mismatches with the reference
sequence.

While specialized compressors achieve excellent gains in compression
ratio with respect to gzip9,16, all solutions are incompatible with each other,
hindering their broad applicability. Interestingly, ensuring interoperability
while enabling specialized and continuous improvements is a well-known
problem in audio and video coding. Leveraging years of developing highly
successful standards17–19, the Moving Picture Experts Group (MPEG), a
working groupof ISOand IEC, released itsfirst international standard (ISO/
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IEC 23092, known asMPEG-G) for genomic information representation in
201920. Among others, MPEG-G defines decoding processes aimed at
improving storage and access to genomic information. Importantly, the
encoding process is not standardized to allow implementation-specific
improvements and innovations while maintaining full interoperability
across alternative solutions. The standard currently comprises six parts (1.
Transport and Storage of Genomic Information, 2. Coding of Genomic

Information, 3. Metadata and Application Programming Interfaces, 4.
Reference Software, 5. Conformance Testing, 6. Coding of Genomic
Annotations). The processes implemented in the Genie encoder are mostly
based on the second part of the standard. For more information about the
standard and its features beyond the scope of this paper, we refer to the
MPEG-G introductory paper20. Unfortunately, no open-source software
solution implementing MPEG-G has been available so far, a situation that

Fig. 1 | Genie architecture and parameters. a Genie encoding process: the input
data format is the uncompressed, binary MPEG-G record format that can store
unaligned as well as aligned genomic data. FASTQ/BAMdatamust be transcoded to
MPEG-G records before starting the encoding process. The records are regrouped
into access units based on their alignment properties. Nucleotide sequences, record
identifiers, and quality scores are then encoded into descriptor subsequences. To
improve the efficiency of entropy encoding, a sequence transformation, splitting of
symbols into subsymbols, and a subsymbol-level transformation are applied. Then
the data is binarized into a stream of bits and compressed with CABAC. Finally, the

compressed bitstreams and decoding parameters (collected during encoding) are
wrapped intoMPEG-G data structures. Optionally, these can be encapsulated into a
container file together with external data (e.g.metadata or datasets encoded by third-
partyMPEG-G compliant software).We refer the reader to themethods section for a
detailed description of all transformations. b Parameter optimization for the first
subsequence of some selected descriptors (listed in Supplementary Table 1). Shown
is the normalized compressed size, ordered from the worst (i.e., optimization pro-
gress of 0%) to the best (i.e., optimization progress of 100%) set of parameters found.
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dramatically hindered the adoption of the standard. In this paper, we pre-
sent Genie, to the best of our knowledge, the first open-source encoder that
produces MPEG-G compliant bitstreams. Genie combines existing
encoding solutions such as SPRING9 and GABAC21 with newly imple-
mentedprocesses specified in the standard into a single framework, allowing
to compress unaligned as well as aligned genomic data in an MPEG-G
compliant manner.

Results and discussion
Encoding process
All parts of Genie are modular and exposed through interfaces. Therefore,
the encoding process (Fig. 1a) can be modified and even extended with
minimal changes to existing code. This allows Genie to be a future testbed
for subsequent research on the topic of genomic data coding.

Genie groups genomic data into access units, the smallest indepen-
dently decodable structures in MPEG-G. Records in an access unit
must share specific alignment properties, such as the types of mismatches
to the reference sequence. Multiple access units can be processed in
parallel through multithreading, substantially boosting compression
and decompression speed, or even be selectively streamed in network
applications.

The information in the records is encoded as a set of so-called
descriptors (listed inSupplementaryTable 1).Onedescriptor represents one

aspect of the records and contains one ormultiple subsequences of encoded
data. Splitting up the information in this way is common practice in data
compression algorithms and improves the statistics in the data streams17,
allowing a more efficient entropy encoding21. Genie supports multiple
encoding strategies, depending on the availability of a reference sequence
and alignment information.
1. Reference-based encoding (Genie-Ref) is selected automatically for

aligned records if the reference sequence is provided. Nucleotide
sequences are encoded by storing the alignment position, sequence
length, and the edit operations (insertion, deletion, substitution)
necessary for a reconstruction from the reference sequence.

2. Local assembly encoding (Genie-LA) is selected automatically for
aligned records if the reference sequence is not provided. A buffer of
recently encoded sequences is maintained, and a consensus reference
sequence is computed by determining the most frequent nucleotide
among the buffered sequences for each locus. That consensus reference
is then used for reference-based encoding.

3. Global assembly encoding (Genie-GA, implemented by SPRING9) is
selected automatically for unaligned records by default. A pseudo
reference (i.e., not considering biological correctness) is created by
searching formatching nucleotide sequences between all records in the
dataset. The unaligned sequences are then aligned to the pseudo
reference and used for reference-based encoding.

Fig. 2 | Experimental compression ratios and runtime. aMedian compressed sizes
of unaligned items (n = 57 items). The sizes are normalized in respect to gzip with
quality scores. Note: the drop-in replacement pigz was used instead of gzip to make
use of multi-threading capabilities. Q: Quality Scores. N+ I: Nucleotide Sequen-
ces+ Identifiers. bMedian compressed sizes of aligned items (n = 23 items). The
sizes are normalized in respect to BAM with quality scores. Q: Quality Scores,
N+ I+A:Nucleotide Sequences+ Identifiers+Alignments, Genie-LL: Genie Low

Latency encoding, Genie-GA: Genie Global Assembly encoding, Genie-LA: Genie
Local Assembly encoding, Genie-Ref: Genie Reference-Based encoding. cMedian
encoding and decoding runtime for unaligned items, normalized to the encoding
time of gzip. The small arrow for Mstcom indicates a value outside the displayed
range. dMedian encoding and decoding runtime for aligned items, normalized to
the encoding time of BAM. Whiskers in all panels show 1.5 times the interquartile
range, boxes show quartiles 1–3, the center line shows the median.
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4. Low latency encoding (Genie-LL) can be selected manually for una-
ligned records and encodes nucleotides verbatim instead of using any
reference sequence.

Record identifiers are represented as delta-encoded, tokenized strings,
exploiting the often prevalent naming patterns among records in a dataset.
Supplementary Table 2 contains a list of available tokens. Quality scores in
Genie are encoded verbatim or lossy through the compression scheme
CALQ22.

The descriptor subsequences generated by the previously mentioned
encoding strategies are then entropy encoded with GABAC21. GABAC is
based on various optional transformations that are followed by Context-
AdaptiveArithmeticCoding (CABAC)23. The result of the encodingprocess
in Genie is an MPEG-G compliant bitstream containing access units with
genomic information, as well as the parameters needed for decoding. Genie
optionally supports the encapsulation of bitstreams into an MPEG-G

container file that can provide additional features, such as the inclusion of
metadata.

The Genie encoding process involves parameters that fall into two
distinct categories. As described above, the first category encompasses
parameters for the different encoding strategies responsible for generating
descriptor sequences. The selection of these parameters is inherently
determinedby the characteristics of thedata, such aswhether the records are
aligned or unaligned and the lengths of the nucleotide sequences within
those data sets. Since these characteristics are directly data-dependent,
optimization in this context is not necessary. The second category pertains
to parameters associated with subsequent (optional) transformations of
previously generated descriptor sequences and the final entropy encoding
stage. Unlike the first category, these parameters are not rigidly dictated by
the simple properties of the records. Instead, they provide flexibility and
room for optimization to adapt to the statistical properties of the descriptor
streams. Therefore, optimized parameters in the following context refers to

Fig. 3 | Additional experimental data regarding block size and sequencing
technology. a Compressed size of the first 218 records in item 38 (Ref, LA) or items
49+ 50 (GA, LL), respectively, depending on the encoding block size (smallest block

size: 29 records, largest block size 218 records). b, c Compression ratios itemized by
tool and sequencing technology. Normalized to gzip and BAM. Empty cells indicate
items that are not supported by the tool or that processing failed.
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the choice of transformations (sequence transformation, subsymbol trans-
formation) andparameters of the entropy coding (binarization, context size,
etc.) after descriptor subsequences have been created (see the Descriptor
Subsequences arrow in Fig. 1a).

To compare the compression achieved by Genie to the state of the art,
we used all available datasets from the MPEG-G genomic information
database. Note that Genie in the current version does not support some
aligned records with special properties (e.g., half-aligned records). For a fair
comparison, these records were removed from all datasets or transformed
into supported records prior to our experiments. For unaligned data, we
compared gzip, DSRC 24, Genozip12, PgRC10, Mstcom11 and Genie (low
latency encoding, global assembly encoding). For aligneddata,we compared
BAM13, CRAM 3.115, DeeZ14, Genozip12 and Genie (local assembly encod-
ing, reference-based encoding).

Parameter optimization
To assess the reachable compression ratio ofGenie, we created anoptimized
set of parameters by performing an exhaustive search. To achieve that, we
generated a set of access units using four datasets (01-1, 2, 32, 37, more
details available in Supplementary Table 3) from the MPEG-G genomic
information database (https://mpeg.chiariglione.org/standards/MPEG-G/
genomic-information-representation/MPEG-G-genomic-information-
database-4) with all Genie encoding strategies and then chose those para-
meters that resulted in the best average compression. The inferred para-
meter set (shown in Supplementary Table 4) was then hard-coded for the
entirety of the analysis. Figure 1b shows the normalized compressed size for
a selected set of descriptors, ordered from the worst (i.e., optimization
progress of 0%) to the best (i.e., optimization progress of 100%) set of
parameters found. It can be concluded that parameter optimization can

Fig. 4 | Extended experimental data regarding multithreading and memory
consumption. a Ratio between single-threaded and multithreaded (8 threads)
encoding/decoding times for item 01-1 (unaligned data) and item 9-2 (aligned data),
respectively. bMedianmaximummemory usage for unaligned items (n = 57 items),
normalized to thememory usage of gzip. Note that the scale is logarithmic because of
the large difference in scale. The memory usage during compression (blue) is

displayed as the left box and the memory usage during decompression (red) as the
right box for each tool. cMedian maximummemory usage for aligned items (n = 23
items), normalized to the memory usage of BAM. Whiskers in all panels show 1.5
times the interquartile range, boxes show quartiles 1–3, the center line shows the
median.
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impact the compression ratio substantially and, therefore, is crucial to reach
acceptable results. We refer to Supplementary Data 1 for the final numeric
results of all experiments. All numbers are distinct samples and were not
measured repeatedly because of the computational requirements. During
subsequent reruns of subsets of the simulations, we did not encounter any
inconsistencies.

Compression ratios
Figure 2a, b shows the achieved compression ratios of all benchmarked
tools. The exact commands are documented in SupplementaryNote 1.Note
that the results of PgRC and Mstcom contain the compressed size of the
record identifiers as computed in Genie, since these tools do not provide a
way to encode this data themselves. For unaligned records, the reordering
andassembly-basedapproachesgenerallyoutperform theother approaches,
with Genie-GA, PgRC, and Mstcom all reaching a median compression
ratio below 0.15 with respect to gzip, while the other approaches do not
reach compression ratios below 0.25 with respect to gzip. Among the
evaluated methods, Mstcom, PgRC, and Genie-GA were found to have the
bestmedian compression ratios, respectively. It should be noted that Genie-
GA demonstrated a relatively higher degree of variance. Genozip outper-
forms both Genie-LL and DSRC-2, especially in quality score compression,
while Genie-LL achieves better compression ratios than DSRC-2.

For aligned records, the difference in compression ratio between the
benchmarked approaches (except BAM) is substantially smaller than that
observed for unaligned records. It should be noted that Genie-LA does not
use an external reference and therefore has to encode additional informa-
tion. Thus, Genie-LA is not directly comparable to the othermethods in the
benchmark. Genie-Ref achieved a slightly better compression ratio than
CRAM, while both are outperformed by Genozip.

Interestingly, while earlier benchmarks16 showed a substantially better
compression ratio forDeeZ in comparison toCRAM,we observed a similar
compression ratio for both tools in our benchmarks. This is most likely
attributed to the continuous development of the CRAM format over the last
years, especially the introduction of new entropy codecs and specialized
codecs for quality values and record identifiers in the latest version
CRAM 3.115.

InGenie, the sizeof anaccess unit is a trade-off betweengranular access
capabilities and compression ratio, as compression overhead as well as
access granularity increase with smaller access units. Figure 3a shows the
impact of access unit size on compression ratio in Genie. The compression
ratio saturates as block sizes increase. The reference-based encoding mode
(Genie-Ref) benefits most from larger block sizes, with a 32% decrease in
compressed size between 29 and 218 records per access unit. The reason is
likely that most of the record information is already located in the external
reference, leading to smaller descriptor streams, thusmore overhead for the
same number of records compared to other encoding modes. For all other
encoding modes, the impact of larger access units is similarly small, at
approximately 23%.

Compression runtimes
Figure 2c, d shows the median runtime required by each tool for the
encoding and decoding processes. In general, the reordering and assembly-
based approaches requiremore time during the encoding process compared
to the other approaches for unaligned records. Mstcom is 40 times slower
compared to the median runtime of gzip, while Genie-GA uses around 7
times and PgRC around 3 times as much runtime as gzip. Encoding of
Genozip and DSRC-2 is even faster than gzip encoding, most likely due to
reduced I/O requirements based on the substantially better compression
rate those tools achieve compared to gzip. The PgRC, Genozip andDSRC-2
decoding runtimes are in the same order of magnitude as the gzip decoding
process, while the decoding processes of the other tools took substantially
longer, up to twice the encoding time of gzip. For aligned records, BAM,
CRAM, and Genozip show comparable encoding speeds, while DeeZ
encoding takes around 5 times as long. Genie-Ref and Genie-LA encoding
runtimes are similar to each other, but approximately 3 to 4 times longer

than DeeZ. Further analysis shows that over 80% of the Genie runtime for
aligned data is spent for the entropy encoding using CABAC. A plausible
explanation for the high computational complexity of CABAC is the bit-
based compression approach it employs, while most other entropy codecs
process larger symbols. However, this issue could be resolved in future
versions of Genie, as upcoming editions of the MPEG-G standard promise
faster entropy encoding by including a number of low-complexity entropy
codecs, such as BSC24, LZMA25, or Zstandard26.

We also recorded the single-threaded performance of all tools for two
selected data items to provide a qualitative comparison of the impact of
multithreading. These results are reported in the extended data Fig. 4a. The
benefit of multiple threads differs notably between tools. A plausible reason
could be a difference in how coding speed is limited by CPU resources in
comparison to I/O bandwidth.

Memory consumption
The extended data Fig. 4b, c show thememory consumption of all encoding
and decoding processes. For unaligned records, the memory consumption
of the benchmarked tools spans over several orders of magnitude, with
Mstcom requiring over 104 times the memory resources of gzip. Genie-GA
requires substantially more memory than Genie-LL due to the pseudo
reference thatGenie-GAconstructs inmemory. BothGenie-GAandGenie-
LL require lessmemory thanMstcomandPgRCbut substantiallymore than
Genozip, DSRC-2, and gzip. The difference between the tools in memory
consumption is considerably smaller for aligned records. Genie-Ref and
Genie-LA use the most memory, around twice the amount of Genozip and
DeeZ. Genie-Ref uses slightly more memory than Genie-LA because of the
reference sequence that is kept in memory during the coding processes.
CRAMrequires only around aquarter of thememoryofGenozip andDeeZ.

Impact of sequencing technology
We also examined the achievable compression ratio of all tools, depending
on sequencing technology. The results are shown inFig. 3b, c. For unaligned
records, compatibility between sequencing technologies and compression
tools is restricted by properties such as record length. For example, Mstcom
and PgRC require constant record length, and Genie-GA has a maximum
compatible read length of 511 bases. Sequencing technologies that typically
do not generate data complying to those restrictions are not compressible
with those tools. Only Genie-LL and Genozip are able to compress datasets
fromall tested sequencing technologies in our benchmarks. For bothGenie-
LL and Genie-GA, the compression ratio for Illumina-based sequencing
data is considerably better than for Ion Torrent data, for which the com-
pression ratio does not outperform gzip. This is likely due to a combination
of factors. Generally, there is less overlap between records in this sequencing
technology, caused by longer record length and higher base error prob-
abilities. This reduces the performance of assembly-based approaches such
as Genie-GA. While the compression parameters in our benchmark are
tuned towards Illumina data only, Ion Torrent sequencing data exhibits
different statistical properties. Lastly, in the absence of a good statistical data
approximation through parameter tuning and pseudo reference construc-
tion, the greater context size of gzip can lead to better generalization. Further
parameter tuning could help to alleviate this issue.

For aligned records, the results of allmethods aremore comparable than
for unaligned records. For Illumina NovaSeq sequencing data, a relatively
better compression ratio can be observed across all methods. This perfor-
mance is achieved through the quality score binning applied in the NovaSeq
sequencing technology. In contrast, Ion Torrent exhibits a relatively worse
compression ratio across allmethods, which canmost likely be attributed to a
lower base quality and, therefore, a higher noise level in the data.

Note that on datasets that have not been used previously for the
optimization of transformation and entropy encoding parameters as
described above, Genie still achieves acceptable compression ratios if the
underlying statistical properties and sequencing technology do not differ
entirely. This indicates that an optimized parameter set can generalize to
other datasets, and adapting it to new data is rather a matter of fine-tuning.
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Additional gains in compression ratio can be expected with amore versatile
way to determine parameter sets.

Conclusions
In summary, Genie— the, to the best of our knowledge, first open-source
encoder for MPEG-G compliant compression — reaches state-of-the-art
compression ratios while at the same time facilitating the interoperability
and sustainability provided by the ISO/IEC ecosystem.

Methods
Data
We used all available datasets from the MPEG-G genomic information
database (https://mpeg.chiariglione.org/standards/MPEG-G/genomic-
information-representation/MPEG-G-genomic-information-database-4)
for our simulations.We refer the reader to Supplementary Table 3 formore
information.

Genie, in its current version, does not implement all features of the
MPEG-G standard needed to represent all alignments possible in BAM
format. To allow a fair comparison to other compression approaches, we
filtered or transformed aligned items containing the following features that
Genie does not support:
1. The alignment information of half-aligned paired records (one

nucleotide sequence aligned, the other unaligned) was removed, i.e.
the records were converted to completely unaligned records.

2. Supplementary and secondary alignments were removed.
3. Optional tags were removed from the records. Optional tags in SAM

files provide additional annotations on a per-record level, such as
details from base calling, alignment processes, or information about
mate records in paired sequencing. The usefulness of these tags largely
depends on the specific downstream tasks and their requirements.-
Genie includes a script in its repository to perform that filtering. All
relevant information left in the resulting files is compressible in a
lossless way by all tools used in the experiments.

Transcoding
The Genie encoding/decoding processes use MPEG-G records as uncom-
pressed input and output formats.MPEG-G records (referred to by their file
extension mgrec) are a flexible binary data structure that can represent
unaligned aswell as aligned genomicdata.Other uncompressed formats like
FASTQ or BAM must be transcoded into MPEG-G records before any
encoding with Genie can be executed. In the case of aligned data, the Genie
encoder expects the records to be ordered by the alignment position of their
first nucleotide sequence. Transcoders that can convert BAM and FASTQ
files intoMPEG-G records are included in theGenie application. Records in
BAMfilesmust be sorted by record identifiers before the BAM transcoder is
started (for example, by using samtools). The transcoder output is auto-
matically sorted by alignment position and thereby directly suitable as input
for Genie compression.

Regrouping of records
As a first step of encoding, the records are regrouped into access units. An
access unit is a set of jointly encoded records, and the smallest decodableunit
defined in MPEG-G. Records in an access unit must share specific prop-
erties. Those properties are:
1. Record class: the class of an MPEG-G record describes the type of

alignment. Available classes are P (fully aligned to a reference sequence
without mismatches), N (fully aligned to reference and the only
mismatches are substitutions with N, referring to an unknown
nucleotide),M(fully aligned to referencewith arbitrary substitutions), I
(fully aligned to reference with insertions, deletions, or clipping), U
(completely unaligned) and HM (record with two paired nucleotide
sequences, one aligned and one unaligned).

2. The number of nucleotide sequences in the records, i.e., if the records
consist of two paired nucleotide sequences or single nucleotide
sequence.

3. The specific reference sequence that the nucleotide sequences in the
records are aligned to, if any.

Records with the same set of those properties are put in a buffer
together. With 5 classes of records (P, N, M, I, HM), 2 pairing config-
urations (paired/unpaired), and n reference sequences, there are at most
5 ⋅ 2 ⋅ n buffers for aligned records. Additionally, with one class (U), 2
pairing configurations (paired/unpaired), and no references, there are at
most 2 buffers for unaligned sequences. However, inmost datasets, not all
of these record types occur, thus some of these buffers typically remain
unused. Once the buffer reaches a certain threshold size or nomore input
data is available, the buffer is flushed, and all records in it are encoded as
one access unit. Multiple threads can encode multiple access units in
parallel.

Encoding of records into descriptors
Once an access unit is assembled, it is encoded into descriptor subsequences.
An overviewof descriptors used inMPEG-G is contained in Supplementary
Table 1. Nucleotide sequences are encoded by comparing them to their
reference sequence and storing only the information necessary to recon-
struct the records from the reference sequence. In the case of no available
external reference sequence, a reference can be computed from the genomic
records themselves (local assembly encoding, global assembly encoding
based on SPRING9, or the nucleotide sequence can be encoded verbatim
(low latency encoding) without exploiting the redundancy between over-
lapping records and their reference.

Record identifiers in MPEG-G are represented as delta-encoded,
tokenized strings. In the first step, each record identifier is converted into
a sequence of tokens independently. We refer the reader to the Sup-
plementary Table 2 for a list of all tokens available. In the next step, the
record ID of each record is compared token by token with the ID of the
previous record. If possible, tokens are replaced with the delta token
(indicating two different numbers at the same place in both IDs) or the
match token (tokens are completely identical). Assuming that record
identifiers in a dataset often follow a certain naming pattern (e.g., con-
taining incrementing numbers or constant strings), this exploits
redundancy between the record IDs. For each token position, a
descriptor subsequence encoding the token types and further descriptor
subsequences for parameters associated with each token type are
created.

Quality scores in Genie can be completely discarded or encoded ver-
batim. It is also possible to employ a lossy compression scheme using
CALQ22, which uses genotype uncertainty to quantize the quality scores
adaptively, such that subsequent analysis of the genomic data is minimally
impacted.

Sequence transformations and entropy encoding
The descriptor subsequences generated by the previously mentioned
encoding schemes are finally entropy encoded. This is performed by
GABAC21, an entropy encoding solution consisting of various transfor-
mations that can be optionally carried out, followed by CABAC (Context
Adaptive Arithmetic Coding)23 encoding.

One of the following transformations is applied at symbol level for each
descriptor subsequence, yielding one or multiple transformed descriptor
subsequences:
1. No transformation: No transformation is applied to the descriptor

subsequence.
2. Equality encoding: The descriptor subsequence is demultiplexed into

two transformed descriptor subsequences. The first transformed sub-
sequence contains a binary flag Fi for each symbol Si.
Fi = 1 indicates that Si = Si−1.
Fi = 0 indicates Si ≠ Si−1 and that the next value in the descriptor
subsequence shall be reconstructed from the second transformed
subsequence. The second transformed subsequence contains a
reconstruction value Rj for the jth flag Fwith value 0. Rj is computed
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such that:

Rj ¼
Si; if Si < Si�1

Si � 1; if Si > Si�1

�

3. Match encoding: The descriptor subsequence is demultiplexed into
three transformed descriptor subsequences. A buffer of the last B
encoded symbols is maintained. It is determined if for an l as large as
possible, with 1 < l ≤ B, the string of the next l symbols matches with a
substring of length l in the buffer. If amatch is found, the starting index
of that substring in the buffer is appended to the first transformed
subsequence and l to the second transformed subsequence. If nomatch
is found, 0 is addedas length to the second subsequenceand the current
symbol Si to the third subsequence.

4. Run length encoding: The descriptor subsequence is demultiplexed
into two transformeddescriptor subsequences. For a guard valueG, the
descriptor subsequence is partitioned into the longest possible runs
(Lj, Sj) of consecutively equal symbols, with the length Lj and the
symbol Sj of the jth run. Each length Lj is then decomposed into the
form Lj = nj ⋅G+ rj with 0 < rj ≤G. Finally, for every run, nj symbols
with valueG followed by one symbol with value rj− 1 are appended to
the first transformed subsequence, and one symbol with value Sj is
appended to the second transformed subsequence.

After the sequence transformation is applied, each symbol can be
optionally split into smaller subsymbols. The size in bits of the subsymbols
must be a factor of the symbol size in the transformed descriptor sub-
sequence. For example, a sequence of 6-bit symbols can be split into a 3-bit
subsymbol sequence with twice the amount of elements. After subsymbol
splitting, for each of the subsymbols, one of the following transformations is
applied:

1. No transformation: The sequence of subsymbols is copied to an
identical sequence of transformed subsymbols.

2. Look-Up-Table transformation: A two (coding order 1) or three
(coding order 2) dimensional table is generated inwhich the frequency
of each subsymbol is sampled depending on the context of the previous
one (coding order 1) or two (coding order 2) subsymbols in the
sequence. For each context, the symbols are then ordered by their
frequency, such that the most frequent symbol is at index 0 and the
least frequent symbol at the highest index. Every subsymbol in the
sequence is then substitutedwith its index in the table given the current
context. The look-up tables needed to inverse this transformation are
included at the beginning of the transformed subsymbol sequence.

In the next step, the transformed subsymbol sequences are converted
into a stream of bits with one of the following binarizations:
1. Binary: The subsymbol is encoded as a binary number with n bits
2. Truncated unary: The subsymbol S is encoded as a run of S one bits

followed by a single zero bit. If S equals the maximum in the possible
range of values, the trailing zero is truncated.

3. Exponential Golomb: If N is the number of bits necessary to encode
S+ 1 as binary number, the subsymbol S is encoded as N zero bits,
followed by the binary representation of S.Finally, the binarized values
are entropy encoded using the context-adaptive arithmetic coding
algorithm (CABAC). The coding order of CABAC can be adjusted
between 0 and 2.

Determination of encoding parameters
A parameter set in MPEG-G contains one full configuration per descriptor
subsequence for the previously described transformations. As theMPEG-G
standard permits only 256 parameter sets per dataset, and datasets usually
contain many more access units than 256, it is impossible to find an opti-
mized parameter set individually for each access unit. There are many
advanced strategies imaginable touse the available slots forparameter sets as

efficiently as possible, and those leave room for further research. For this
paper, however, we decided to generate baseline results with a simple
approach. That approach is to use just one constant, globally optimized
parameter set for every access unit and every dataset. This implies that there
is exactly one configuration per descriptor subsequence to optimize. As an
additional experiment, we also compared this approach of using only one,
globally optimized parameter set to using an individually optimized para-
meter set per access unit under the aspect of the sequence transformation.
Our results indicate that the loss in compression ratio is insignificant (<1%)
when choosing the simpler, global approach. The numeric results for this
experiment are presented in Supplementary Table 5.

To find a well-working, global set of parameters, we encoded datasets
01-1, 32, 02, and 37 in the MPEG-G genomic database with all encoding
processes in Genie (Reference-Based encoding, Local Assembly encoding,
Global Assembly encoding, Low Latency encoding). We extracted the
descriptor subsequences of the first 10 access units for each combination of
dataset and encoding process (in the following referred to as file) before any
transformationor entropy codingwas applied (resulting in80access units in
total). Ten access units were chosen as a sample for the full file, since we
found that this sample size provides a balanced approach, offering a man-
ageable computational complexity while also already encompassing most
types of access units that appear in the file in significant amounts.

For every descriptor subsequence, we ran an exhaustive search and
explored all possible combinations of supported parameters. For each
combination of parameters, we recorded the final compressed size. The
exploredparameters consistedof the sequence transformationchoice (none,
equality encoding, match encoding, run length encoding) and the following
parameters for each resulting transformed descriptor subsequence:

1. CABAC coding order (0, 1, 2)
2. Number of subsymbols per symbol for subsymbol splitting (1, 2, 4, 8)
3. Subsymbol transformation (No transformation, LUT transformation)
4. Binarization (binary, truncated unary, exponential Golomb)

Choice of sequence transformations
We first evaluated the choice of the sequence transformation, as it alters the
semantics and statistics of the generated transformed descriptor sub-
sequences heavily. Because it is possible to compute the optimal sequence
transformation for each descriptor subsequence directly, we chose an ana-
lytical approach over standard optimization algorithms (like genetic algo-
rithms) that only approximate the optimal solution. We determined for
each possible combination of access unit, file (combination of dataset and
encoding strategy), descriptor subsequence, and sequence transformation
the combinationof parameters resulting in the smallest possible compressed
size. With that experimental data, we performed the following calculation:

LetFbe the set of all inputfiles,T the set of all sequence transformations
and S the set of all descriptor subsequences. Let

TrDeSuðs; t; f ; iÞ j s 2 S; t 2 T; f 2 F; i 2 N; i < 10

refer to the tuple of demultiplexed transformed descriptor subsequences
obtained by applying sequence transformation t to descriptor subsequence s
in access unit i in file f. Let minSize(TrDeSu(s, t, f, i)) refer to the smallest
possible compressed size (as determined in the experiments) for that tuple
with arbitrary compression parameters, apart from the already fixed choice
of sequence transformation.

The smallest total compressed size for that tuple in all 10 access units
available for a file f is then:

totalMinSizeTrDeSuðs; t; f Þ ¼
X

j2N;j<10
minSize ðTrDeSuðs; t; f ; jÞÞ:

Now for each combination of descriptor subsequence s and file f, it is
possible to compare the compressed sizes depending on the chosen
sequence transformation t. The best sequence transformation tbest for s
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and f is the one resulting in the smallest compressed size
totalMinSizeTrDeSuðs; t; f ÞÞ. Every other sequence transformation will
result in a worse compressed size, i.e. a loss of compression ratio with
respect to the optimum occurs. That loss factor can be calculated as:

lossðs; t; f Þ ¼ totalMinSizeTrDeSuðs; t; f Þ
minj2T ðtotalMinSizeTrDeSuðs; j; f ÞÞ :

We then computed the average loss factor for a specific descriptor sub-
sequence and sequence transformation over all files:

lossðs; tÞ ¼
P

j2F lossðs; t; jÞ
k F k :

The best sequence transformation for each descriptor subsequence globally
can then be obtained by minimizing that average loss in compression ratio:

tbestðsÞ ¼ argminj2T ðlossðs; jÞÞ:

Choice of remaining parameters
We observed that the set of remaining parameters remained strongly con-
sistent among the best solutions with the smallest compressed size, given a
fixed sequence transformation and descriptor subsequence. Therefore, we
chose the remaining parameters by counting howoften they appeared in the
best solutions and chose the most frequently occurring ones. We refer the
reader to Supplementary Table 4 for the results. The resulting parameters
were hard-coded into Genie to be used for the corresponding descriptor
subsequence.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All sequencing data used for our benchmark is available in the MPEG-G
Genomic Information Database (https://mpeg.chiariglione.org/standards/
MPEG-G/genomic-information-representation/MPEG-G-genomic-
information-database-4) on request.A subset of the data has also beenmade
available for direct download from various online repositories by their
respective original authors. SupplementaryTable 3 providesmore details on
the online availability of each dataset. The numeric experimental results and
the source data behind the graphs in the paper can be found in Supple-
mentary Data 1.

Code availability
Genie is publicly available at https://github.com/MueFab/genie. The version
used for this paper is also available via Zenodo27.
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