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1. Implementation Details
Training details. We train our model for 600K steps with
a batch size of 8 using Adam [10]. The learning rate is set
to 5× 10−4 and we sample training examples from H36M,
3DPW and SURREAL with probabilities 0.4, 0.3 and 0.3.
The images are cropped and resized to 224 × 224 while
maintaining the aspect ratio. Additionally, with a prob-
ability of 0.5, we add Gaussian noise to the pose, shape
and camera parameters. We select the PARE prediction
with probability of 0.3 and take a sample from ProHMR
with probability of 0.5. To also focus on fine-grained dis-
placements, we use ground-truth pose with PARE predicted
shape and camera parameters with probability of 0.2. Fol-
lowing [12], image data augmentation includes random ro-
tations, scaling and channel-wise pixel noise [12]. Besides,
we adopt photometric distortion [3] and for H36M and
SURREAL self-mixing [5]. The channel-wise pixel noise
is also applied on the texture map.

Preprocessing details. To benchmark our approach, we
generate predictions using the latest OpenPose [4] version
(v1.7.0) and a state-of-the-art DensePose [8] model1. For
fair comparison, we feed both models with the images
cropped around the target subject using the ground-truth
bounding boxes. By transforming the DensePose predic-
tions to points on the SMPL body, they can be used for the
reprojection loss [7]. For 3DPW, we use the OpenPose de-
tections included in the dataset. Because RICH only pro-
vides SMPL-X bodies, we convert the provided model pa-
rameters to SMPL using the official implementation [1].

Runtime. The PyTorch implementation of the displace-
ment field prediction network takes on average 26.4 ms to
process one frame on a RTX4090. Running our slightly
modified SMPLify [2, 12] implementation for 100 itera-
tions with the reconstructed 2D vertices brings no overhead
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compared to sparse 2D keypoints and takes around 614 ms
and 769 ms with the GMM [2] and VPoser [13] prior re-
spectively. Rendering and transforming the per-pixel 2D
displacements to per-vertex displacements is in total done
in 1 ms. For faster evaluation, we run SMPLify in batch
mode. SMPLify with a batch size of 32 takes around 644 ms
and 815 ms with GMM and VPoser pose prior respectively.
Note that we did not spend any effort optimizing the runtime
of our approach. A highly optimized custom implementa-
tion can reduce the fitting time to a few milliseconds [6],
which would enable our approach to run in real-time. Ad-
ditionally, by using the refined estimate of the last frame
as initialization for the next frame, the 3D pose regressor
would only need to be evaluated once.

2. Additional Results
We provide more qualitative refinement results on im-

ages from 3DPW [14] and RICH [9] in Fig. 1 and Fig. 2.
We use PARE [11] predictions and SMPLify with VPoser.
Our approach generalizes well to different scenes and sub-
jects with varied body shapes, can handle poor lighting and
challenging poses, and can even improve fine details such
as head rotation.

OpenPose comparison. We show additional visual com-
parisons with refinements using OpenPose keypoints in
Fig. 3. Our approach better refines the reconstruction of the
back (row 4, 6), better detects barely visible body parts (row
2, 5, 7) and leads to more accurate depth estimates (row 3).
Additionally, body parts that are visible in the initial SMPL
prediction but not in the image can be correctly pushed to
be occluded in the refinements (row 1) using our approach.

DensePose comparison. We visually compare our refined
3D human models with refinements using DensePose pre-
dictions in Fig. 4. Each person pixel detected by DensePose
is colorized in the image and shown on the ground-truth hu-
man body. While DensePose is good at detecting pixels be-
longing to a person, the predicted correspondences between



the pixels and the 3D SMPL surface lack in accuracy. This
is especially noticeable at the boundary between body parts,
where no pixels are assigned to even though the regions are
visible in the image. Our approach computes more accu-
rate dense correspondences, leading to significantly better
refined 3D bodies.

Failure cases. In Fig. 5, we show a few examples where
our network fails to estimate reasonable 2D displacement
vectors. The scenarios range from (a) extreme occlusion,
(b) very poor initial body estimates and (c) close interac-
tions and overlap with other subjects. To improve the per-
formance for large occlusions, it could be helpful to learn
visibility masks [15,16] or per-pixel confidence scores. The
problem of wrongly associating limbs could be mitigated
by integrating more examples of closely interacting persons
in the training set. Finally, in some cases our refinement
leads to improved image-model alignment but degrades the
3D pose (see Fig. 6). This is due to the depth ambiguity
inherent in monocular 3D motion capture and could be al-
leviated by regarding multiple images or integrating scene
constraints.

Garments with complex texture. When evaluating
on the 3DPW test subject with the most com-
plex texture pattern using VPoser and PARE
as base model, we achieve an MPJPE of 68.1
and a PVE of 81.2, compared to 75.9 and
90.2 when using OP joints and 75.6 and 88.8
with the base model. Note that most real
world cases allow for a cooperative setting
where the person is first turning around in
front of a camera, which would allow accu-
rate texture estimation even for complex patterns.



Figure 1. Additional results from the 3DPW [14] dataset. From left to right: input images, initial body estimates, our predicted displacement
fields, our refined 3D human models and side views of initial, refined and ground-truth bodies.



Figure 2. Additional results from the RICH [9] dataset. From left to right: input images, initial body estimates, our predicted displacement
fields, our refined 3D human models and side views of initial, refined and ground-truth bodies.



Figure 3. Comparison with refinements using OpenPose [4] keypoints on images from 3DPW [14] and RICH [9].



Figure 4. Comparing refinements using DensePose [8] on 3DPW [14] and RICH [9]. Each person pixel detected by DensePose is colorized
in the image and shown on the ground-truth human body.



Figure 5. Failure cases of our approach with examples from 3DPW [14] and RICH [9]. (a) Large occlusions may lead to wrong displacement
estimates. (b) If the initial estimate is too far away, displacements may not be enough to fit the model. (c) In some cases of close interactions
and overlap with other actors the model may wrongly associate limbs.

Figure 6. In some cases the 2D alignment may be improved by our approach while leading to a worse 3D pose. Example from 3DPW [14].
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