
Python Wrapper for Context-based Adaptive Binary
Arithmetic Coding

Christian Rohlfing, Thibaut Meyer, Jens Schneider
Institut für Nachrichtentechnik,

RWTH Aachen University, Germany
{rohlfing, thibaut.meyer, schneider}@ient.rwth-aachen.de

Jan Voges
Institut für Informationsverarbeitung,

Leibniz University Hannover, Germany
voges@tnt.uni-hannover.de

Abstract—A Python wrapper for Context-based Adaptive Bi-
nary Arithmetic Coding (CABAC), extracted from the Test Model
(VTM) for Versatile Video Coding (VVC), is presented. Besides
providing Python access to CABAC, two extensions are proposed:
the probability estimation progress for each context can be
traced, and sequences of integer values can be coded without
designing a dedicated context model set.

I. INTRODUCTION

The entropy coding method Context-based Adaptive Binary
Arithmetic Coding (CABAC) [1] was introduced in the video
compression standard Advanced Video Coding (AVC) and
is still used in its successors High Efficiency Video Cod-
ing (HEVC) and Versatile Video Coding (VVC) for entropy
coding of all syntax elements. Note that a more efficient core
coding engine was introduced in VVC [2].

The CABAC coding procedure can be summarized as fol-
lows: integer symbols are binarized in a first step, resulting in a
sequence of binary values (bin-string). Each bin is then passed
to the arithmetic coding engine, operating with two modes:
the faster bypass mode codes bins using a fixed probability
of p = 1

2 whereas the more complex regular mode estimates
the probability using adaptive models, i.e. contexts, which are
chosen based on previously coded information. We refer to [2]
for a detailed explanation of the VVC variant of CABAC.

This paper introduces PyCABAC, a Python wrapper for
CABAC. The core part of CABAC was extracted from the
VVC reference software of VVC (VVC Test Model, VTM).
The corresponding C++ code was then exposed to Python via
pybind11 [3] bindings, resulting in a Python package which
can be installed via the package installer pip. Two extensions
to the core part were implemented: firstly, the current state
of the probability estimator after the corresponding update
step can be traced, enabling the evaluation of the efficiency
of each context. Secondly, symbol sequences can be coded
combining binarization, the corresponding context selection
and the subsequent bin-wise coding, providing a beginner-
friendly entry point to understanding CABAC. The code of
PyCABAC is available online1.

II. IMPLEMENTATION

Four Python/C++ classes for encoding (and three corre-
sponding classes for decoding) are available:

1https://github.com/ient/pycabac

0 250 500 750 1000 1250 1500 1750 2000

Bin position

0.0

0.5

1.0

p1

MPS

Source

Fig. 1: Tracing of p1 and MPS for a simple binary source.

1) cabacEncoder provides the core CABAC part includ-
ing context-dependent or bypass encoding of bins.

2) cabacTraceEncoder keeps track of the value of the
most probable symbol (MPS) as well as p1, the currently
modelled probability of the symbol being equal to 1 after
each context update step as shown in Fig. 1.

3) cabacSymbolEncoder accepts integer values as in-
put which are binarized and then encoded bin-wise. For
context-coding, a function providing the corresponding
context ID for each bin has to be provided as well. The
following binarization schemes are supported: Direct
binary representation of N bits, truncated unary or
exponential-Golomb coding of order k.

4) cabacSimpleSequenceEncoder accepts a se-
quence of integer values and provides some simplistic
context model sets for context-dependent coding. For ex-
ample, a unique context is assigned to each combination
of the position of the to-be-coded bin in the bin-string
and the values of previously coded symbols.

For a beginner-friendly access, several demo and test cases
were developed as well which are also available online.

REFERENCES

[1] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7,
pp. 620–636, Jul. 2003.

[2] H. Schwarz, M. Coban, M. Karczewicz, T.-D. Chuang, F. Bossen,
A. Alshin, J. Lainema, C. R. Helmrich, and T. Wiegand, “Quantization
and entropy coding in the versatile video coding (vvc) standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 31,
no. 10, pp. 3891–3906, 2021.

[3] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11 — seamless
operability between c++11 and python,” 2016. [Online]. Available:
https://github.com/pybind/pybind11

https://github.com/ient/pycabac
https://github.com/pybind/pybind11

	Introduction
	Implementation
	References

