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Abstract—In this work, we propose a hybrid learning-based
method for layered spatial scalability. Our framework consists
of a base layer (BL), which encodes a spatially downsampled
representation of the input video using Versatile Video Coding
(VVC), and a learning-based enhancement layer (EL), which con-
ditionally encodes the original video signal. The EL is conditioned
by two fused prediction signals: a spatial inter-layer prediction
signal, that is generated by spatially upsampling the output of the
BL using super-resolution, and a temporal inter-frame prediction
signal, that is generated by decoder-side motion compensation
without signaling any motion vectors. We show that our method
outperforms LCEVC and has comparable performance to full-
resolution VVC for high-resolution content, while still offering
scalability.

Index Terms—VVC, video coding, spatial scalability, scalable
coding, conditional coding

I. INTRODUCTION

Delivering video content over the Internet is very en-

ergy and bandwidth intensive. In order to keep the required

bandwidth and thus also the energy consumption as low

as possible, adaptive streaming standards such as MPEG-

DASH [1] and HLS [2] are used. MPEG-DASH and HLS

allow for providing different representations of a media file,

e.g. different resolutions and qualities. The user device can

adaptively switch between these representations, providing a

high quality experience while minimizing the bandwidth. In a

setting such as video-on-demand, where one video is encoded

once, but transmitted many times, independently decodable

representations offer the lowest energy footprint. However,

in a broadcast setting, where all streams are transmitted

simultaneously, having interdependent representations results

in the lowest overall bandwidth. An example of such a setting

is the planned deployment of Low Complexity Enhancement

Video Coding (LCEVC) by the Brazilian SBTVD Forum [3].

Scalable video coding describes methods that provide mul-

tiple interdependent representations of the same video, varying

in spatial, temporal or fidelity dimensions. The architecture of

a scalable codec consists of a base layer (BL) and one or more

enhancement layers (EL). The BL representation is encoded

with a standard codec and the EL representations are encoded

with a scalable video codec that encodes only the difference

between the BL and EL representations.

Scalable video coding extensions have been developed for

all recent video coding standards. Advanced Video Coding

(AVC) has been extended by Scalable Video Coding (SVC)
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Fig. 1: Architecture of our proposed hybrid layered scalable

codec with spatial inter-layer and temporal inter-frame predic-

tion in the EL (inter codec).

[4], High Efficiency Video Coding (HEVC) [5] has been

extended by the HEVC Scalability Extension (SHVC) [6] and

the latest video coding standard Versatile Video Coding (VVC)

has built-in support for multi-layer coding which also provides

scalability [7]. Unlike the aforementioned coding standard-

specific scalable extensions, LCEVC is BL codec agnostic [8].

However, these scalable video coding extensions, other than

LCEVC, have never found many real-world applications.

In recent years, several learned image [9]–[12] and video

compression [13]–[20] methods have been proposed. The

learning-based video codec by Li et al. [20] is even able to

outperform the prototype of the next-generation video coding

standard [21]. Besides these end-to-end learned codecs, there

are also hybrid approaches, that combine conventional codecs

with learning-based modules. Examples for learning-based

modules in hybrid codecs are loop filters [22], intra [23]

and inter prediction modes [24]. A special form of hybrid

codecs are learning-based scalable coding extensions, that use

conventional codecs as BL and encode the high-resolution

details using learning-based codecs [25]–[28]. However, these
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Fig. 2: Architecture of our proposed hybrid layered scalable

codec with spatial inter-layer prediction in the EL (intra

codec).

learning-based scalable extensions are all designed for the

compression of images or I-frames.

In this paper, we present a hybrid layered approach for

scalable video coding based on CAESR [28]. While CAESR

only uses the downscaled representation of the input image

from the BL codec as a prediction signal, we additionally

propose to use motion-compensation to improve the prediction

signal, without signaling any additional information such as

motion vectors or flow-maps. Furthermore, we upscale the

BL output using super-resolution before feeding it to the EL

codec, while CAESR uses bicubic upscaling and applies super-

resolution only in a final step after decoding the EL. A deep

conditional [17] autoencoder is serving as the codec of the

EL. During downscaling and quantization in the BL, mainly

high-frequency details are lost. While super-resolution can

recover some of the lost detail, motion-compensation has the

benefit that it can access higher quality reference pictures to

recover additional detail. By leveraging both, spatial inter-layer

prediction and temporal high-resolution inter-frame prediction,

we aim to achieve a compression performance that is compa-

rable to full-resolution VVC in low-delay configuration, while

providing the flexibility of scalable coding.

II. PROPOSED SOLUTION

The general structure of our proposed hybrid layered scal-

able codec is as follows. The input picture x is bicubically

downscaled and encoded with a standardard codec, which

forms the BL. In this work, we choose VVC as the codec

for the BL, but our method is generally BL codec agnostic.

The reconstructed BL output x̂BL is then upscaled using a

neural super-resolution network. Due to its low complexity

and good performance, we choose EDSR [29] for this task.

The super-resolution upscaled signal x̃SR is then fed together

with the input picture x into the EL.

Like other video codecs, our EL has two modes: one for

I-frames and one for P-frames. The I-frame (intra) mode relies

solely on inter-layer prediction using the super-resolution

signal x̃SR. The P-frame (inter) mode implements both, inter-

layer prediction using the super-resolution signal x̃SR and
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Fig. 3: Internal structure of the conditional autoencoder.

motion-compensated inter-frame prediction. In the following,

we will first describe the intra-mode and then the inter-mode.

In intra-mode, the EL is implemented as shown in Fig. 2.

The encoder and decoder are based on the end-to-end learned

image compression model from [12]. To enable conditional

coding, we extend their model with a scheme similar to [17]:

the input signal x and the spatially predicted signal x̃SR are

concatenated and fed into the encoder. Since the latent space

dimensionality differs from the predicted signal x̃SR, the two

cannot be concatenated directly. Instead, a shortcut network is

used, which has the same architecture as the encoder network

(see Fig. 3). x̃SR is fed into the shortcut and the output is

concatenated together with the quantized latent.

In inter-mode, the EL is implemented as shown in Fig. 1.

We use the same conditional autoencoder architecture as in

our intra-mode. However, the prediction signal used as the

condition for the autoencoder is calculated in a different way:

We still obtain the spatial inter-layer prediction signal x̃SR

in the same way as described above. To exploit remaining

redundancies between successive frames, we additionally in-

troduce the motion-compensated prediction signal x̃MC . Both

prediction signals x̃MC and x̃SR are fused together with x̂ref

using a fusion network into the fused prediction x̃F . For the

fusion network, we use the same U-Net structure as in [19].

Motion estimation generates the flow-map f between x̃SR

and the past frame in the picture buffer x̂ref . In our work,

we use the PWC-Net [30] as the motion estimation network.

Using x̃SR instead of x to estimate f has the advantage that

the estimation can be done on the decoder side. Therefore,

no additional information needs to be signaled. Finally, the

flow-map is used to warp the reference picture x̂ref into a

prediction for x. In Section IV, we will show the benefits of

decoder-side motion estimation.

Our inter-mode differs from other codecs’ inter-modes in

that we combine both spatial and temporal prediction. In some

cases this combination of both modes may not be optimal,

so we introduce a Rate Distortion Optimization (RDO) step

during encoding: All potentially inter-predicted frames (P-

frames) are encoded twice. Once using the intra-mode and

once using the inter-mode. The best mode is signaled.

III. IMPLEMENTATION AND TRAINING

We train our models using the BVI-DVC dataset [31]. The

dataset consists of 200 UHD (3840 × 2160) sequences of

64 frames each. Additionally, the dataset also contains down-

scaled representations of these 200 sequences with resolutions

of 1920 × 1080, 960 × 540, and 480 × 270 pixels. First, all 800

sequences of the dataset are bicubically downscaled by a factor
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Fig. 4: Average RGB-PSNR for reference pictures warped

using different flow-maps over BL QPs in the JVET dataset

classes A, B, C, D. Reference pictures were generated using

the corresponding intra EL codecs.

of 2 and then encoded using the VVC [7] reference software

VTM version 19.0 in low-delay P configuration (YUV 4:2:0)

for the quantization parameters (QP) 15, 17, 22, 27, 32, and

37. After this procedure, the reconstructed frames are used as

our reconstructed BL representation x̂BL. Together with their

corresponding unscaled and uncoded original frames x, they

form our dataset. This dataset is then randomly split into 1000

frames for validation and the rest for training.

We optimize our model using adam and the RD loss

L(λ) = D(x̂EL, x) + λR. (1)

The distortion D is measured by Mean Squared Error (MSE)

between the original frames x and x̂EL. The rate R is

calculated using the Shannon entropy of the latent space. With

λ, the trade-off between distortion and rate can be configured.

This loss function is commonly used in the field of end-to-end

learned image and video compression.

Before training, the training data is converted from YUV

color space to RGB. In each epoch, we randomly crop one co-

aligned 256 x 256 patch from x and one 128 x 128 patch from

x̂BL per input datum. One model is trained per BL QP and

per λ. We choose a batch size of 22 and an initial learning rate

of 10−4. The parameters of the motion estimation and super-

resolution networks are preloaded with the weights provided

by their respective authors. For the conditional autoencoder,

which consists of an encoder, a decoder and a shortcut

network, we use the implementation provided by Compres-

sAI [32]. All three modules of the conditional autoencoder

are preloaded with the pre-trained model at quality level 2

provided by CompressAI.

The training is done in several steps: First, only the fusion

network is trained using a MSE loss function for 10 epochs.

Then, only the conditional autoencoder is trained for 8 epochs,

while the fusion network is kept static. After that, the fusion

network and the conditional autoencoder are trained jointly

for another 5 epochs. Finally, all models, including motion

estimation and super-resolution, are trained jointly for another

16 epochs. During the last 6 epochs, the learning rate alternates

between 1/2 and 1/4 of its initial value. In total, the final

model is trained for 39 epochs. After this training procedure,

the model is trained for another 50 short epochs with only

264 training image pairs each. Between each of these short

epochs, the model is evaluated using the validation dataset.

Out of these 50 short epochs, the model state with the best

evaluation performance is kept as the final model.

The reference picture for the inter-mode is generated during

the first 28 epochs by encoding the past frame using an already

trained intra codec. After epoch 28, the reference picture is

generated by using the pre-trained intra codec followed by

two iterations of the current state of the inter codec.

IV. SELECTION OF FLOW ESTIMATION METHODS

Conventionally, motion estimation is done by estimating the

motion between the reference picture and the original frame.

Since the original frame is unknown to the decoder, the result-

ing flow-map must be signaled. In this work, however, we can

also use the spatial inter-layer prediction x̃SR or the upscaled

motion vectors (MVs) that VVC used to encode the BL, both

of which are already known to the decoder. Besides these three

methods, the flow-map between the original frame x and the

past frame x
−1 could also be estimated. We compare all four

methods by warping the reference picture with the flow-maps

estimated by each method and measuring the PSNR between

these warped frames and the original frames. The flow-maps

are not coded and the reference pictures are generated by

feeding the past frame through a trained intra-mode EL codec.

The results of this experiment using the JVET test sequences

[33] are shown in Fig. 4. It can be seen that the VVC MVs

perform the worst for most QPs while the other methods give

comparable results to each other. It can also be seen, that x̃SR

outperforms all forms of motion compensation. From this it

can be concluded that motion compensation alone, without

spatial prediction, is not suitable. Since motion estimation

between x̃SR and x̂ref has the additional advantage that

nothing needs to be signaled, this is clearly the best choice to

enhance the already very high performing spatial prediction.

V. RESULTS AND DISCUSSION

We compare our method with 3 state-of-the-art methods for

spatially scalable video coding: LCEVC, VVC multi-layer and

CAESR. All 3 reference methods use the same bicubic down-

sampling filter to generate the BL input as our approach and

operate in YUV color space with 4:2:0 chroma subsampling.

LCEVC and CAESR share the same BL configuration with

our method (low-delay P @ QP 15, 17, 22, 27, 32, 37). For

VVC multi-layer, we use BL and EL configurations based on

[34] with the only difference being the downsampling filter

and the use of low-delay P configuration instead of random

access. The VVC multi-layer EL can perform both intra-layer

and inter-layer predictions. The two step width parameters of

LCEVC are calculated according to Annex 1 of [35]. The λ
parameter of CAESR is selected based on a grid search.

We evaluate our intra and inter codecs as well as our 3

reference methods using the JVET test sequences [33]. All

sequences are first encoded in the BL in YUV 4:2:0, converted

to RGB, and finally encoded with the corresponding EL codec.

The EL λ is selected manually to optimize the BD-Rate.

The selected λ/QP pairs are 0.0005/37, 0.001/32, 0.002/27,
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0.0075/22, 0.011/17 and 0.013/15 for intra and 0.0025/27,

0.008/22, 0.011/17 and 0.015/15 for inter. The inter codec

has an intra period of 8. The inter codec with RDO has no

fixed intra period, instead the frame type is determined using

Equation 1 and signaled for each frame. To simulate the bitrate

required to signal the frame type, we add one byte to the

bitrate per frame. Fig. 5 shows the results broken down into

separate classes of the JVET test sequences. Classes A1 and

A2 contain a resolution of 3840 x 2160 pixels, class B 1920 x

1080 pixels, class C 832 x 480 pixels, and class D 416 x 240

pixels. Table I lists the BD-rates for all three configurations of

our codec. The inter codec is unstable at low bitrates due to

the extremely low λ setting. High but stable λ values result in

a poor RD-performance, comparable to CAESR. To ensure a

fair comparison over the entire bitrate range, we have replaced

the missing RD points of our inter and inter RDO codecs with

the intra codec points for BD-rate calculation.

Our intra codec outperforms full-resolution VVC at low

bitrates for classes A1 and A2. The inter codec shows gains

over the intra codec for classes B, C, and D, while the intra

codec is better suited for classes A1 and A2. The combination

of inter and intra codecs using RDO gives the best results for

all classes. RDO selected 55.20 %, 68.53 %, 71.86 %, 73.09

%, and 74.63 % of all frames to be P-frames for classes A1,

A2, B, C, and D, respectively. In contrast, a fixed intra period

of 8 results in 87.50 % of all frames being P-frames.

LCEVC shows similar performance to our approach for

classes A1 and A2, while we outperform it for classes B,

C, and D. VTM (VVC) with a multi-layer configuration

outperforms our approach for UHD content, while our ap-

proach outperforms it for lower resolutions. Although CAESR

was trained in the same way as our approach, it performs

poorly when evaluated with a BL in a low-delay configuration.

However, for all-intra, we were able to reproduce the results

reported in [28]. The reason for CAESR’s poor performance

is its less steep RD-curve. If we increase its λ, the PSNR

increases, but the overall RD-performance is worse due to the

high bitrate increase.

Table II shows a complexity comparison of our models with

CAESR in terms of multiply-accumulate (MAC) operations

used to encode and decode a frame, as well as the number of

trainable parameters. Note that our inter model has to decode

during the encoding time to reconstruct reference pictures.

CAESR and our intra model do not need to do so.

TABLE I: BD-rates (RGB) relative to VTM 19.0 in low

resolution and upsampled using EDSR. Negative BD-rates

indicate increased coding efficiency.

Codec Classes A1, A2 Class B Classes C, D

Ours (intra) -9.48 % -8.74 % -17.99 %
Ours (inter) -8.08 % -12.59 % -23.72 %

Ours (inter RDO) -11.14 % -13.20 % -24.05 %
multi-layer VVC -14.82 % 11.15 % 43.71 %

LCEVC -5.67 % 35.07 % 52.21 %
CAESR 28.16 % 39.01 % 53.50 %

TABLE II: Complexity comparison

Model Size Encode MACs Decode MACs

Ours (intra) 37M 0.77 M/px 1.38 M/px
Ours (inter) 47M 2.21 M/px 1.80 M/px

CAESR 28M 0.4 M/px 1.28 M/px

VI. CONCLUSION

We present a hybrid approach for spatial scalability consist-

ing of a BL, which encodes a spatially downsampled represen-

tation of the the input video using VVC, and a learning-based

EL. The EL combines both spatial inter-layer prediction and

temporal inter-frame prediction into a fused prediction signal

for a conditional autoencoder-based coding scheme. For the

inter-layer prediction, we use a super-resolution network that

upscales the BL representation by a factor of 2. The inter-

frame prediction is done by motion estimation and compen-

sation using the inter-layer prediction signal without signaling

any motion information. In addition, we use RDO to determine

whether inter-frame prediction should be used on a frame-

by-frame basis. Our approach provides similar performance

to full-resolution VVC for UHD content, while still offering

scalability. For lower resolution content, we can show that

inter-frame prediction improves the EL performance.
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