
Color-aware Deep Temporal Backdrop Duplex Matting System
Hendrik Hachmann and Bodo Rosenhahn

Institute for Information Processing (tnt) / L3S - Leibniz University Hannover
Hannover, Germany

{hachmann,rosenhahn}@tnt.uni-hannover.de

ABSTRACT
Deep learning-based alpha matting showed tremendous improve-
ments in recent years, yet, feature film production studios still rely
on classical chroma keying including costly post-production steps.
This perceived discrepancy can be explained by some missing links
necessary for production which are currently not adequately ad-
dressed in the alpha matting community, in particular foreground
color estimation or color spill compensation. We propose a neu-
ral network-based temporal multi-backdrop production system that
combines beneficial features from chroma keying and alpha matting.
Given two consecutive frames with different background colors, our
one-encoder-dual-decoder network predicts foreground colors and al-
pha values using a patch-based overlap-blend approach. The system
is able to handle imprecise backdrops, dynamic cameras, and dy-
namic foregrounds and has no restrictions on foreground colors. We
compare our method to state-of-the-art algorithms using benchmark
datasets and a video sequence captured by a demonstrator setup. We
verify that a dual backdrop input is superior to the usually applied
trimap-based approach. In addition, the proposed studio set is actor
friendly, and produces high-quality, temporal consistent alpha and
color estimations that include a superior color spill compensation.

CCS CONCEPTS
• Computing methodologies → Video segmentation; Neural net-
works; • Human-centered computing → Virtual reality.
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1 INTRODUCTION
During the production of the 2019 Disney+ series “The Mandalo-
rian”, Industrial Light & Magic introduced StageCraft [1], a very
high-definition LED video wall, in which visual effects are displayed
on the wall, directly captured by the camera and thus appear in the
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(a) Foreground (b) RGBa and trimap

Figure 1: (a) a collage of 4 images of a troll in front of an retrore-
flective background, that has been illuminated with different
colors. ((b), upper area) three compositions of an alpha-blended
troll in front of a checkerboard background. The colored fringes
are a problem called color spill, which is background color in-
correctly extracted as foreground. ((b), lower area) a so-called
trimap, that signals foreground, background and a gray area, the
latter may contain transparencies.

footage. In this setup, traditional green screens are rendered unnec-
essary and no color keying or pulling the matte of objects or actors
is needed, which simplifies the production and reduces visual effects
(VFX) shot costs. Some say this may leave green screen technology
obsolete. However, the option to change VFX at post-production
is hereby abandoned. Nevertheless, the integration of similar video
walls in studios may create interesting options for improved matting
applications, one of which is proposed in this paper.

Foreground transparency estimation is called alpha matting, with
𝛼 being the amount of transparency for each pixel. 𝛼 = 0 denotes
fully transparent foregrounds and 𝛼 = 1 meaning opacity. Formally,
the matting equation

𝐶 = 𝛼𝐶𝑓 𝑔 + (1 − 𝛼)𝐶𝑏𝑔 (1)

needs to be solved, which is an ill-posed problem. The image 𝐶 is
often named composition, since it is an 𝛼-weighted superposition
of the foreground color 𝐶𝑓 𝑔 and the background color 𝐶𝑏𝑔. Chroma
keying refers to blue or green screen matting frequently applied
in feature film production, a technique in which the color of the
background is a priori given and thus key to the matting task. In
production, the foreground color 𝐶𝑓 𝑔 needs to be estimated as well
as 𝛼 , resulting in an RGBa stack.

A large number of green screen applications exist. They are
used e.g. in news studios, weather forecasting, and film produc-
tion. Chroma keying works well in expensive studios with highly
controlled illumination. However, it poses algorithmic limitations as
well as undesirable interference with actors.

https://doi.org/10.1145/3587819.3590973
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Figure 2: Images of a troll with yellow hair, that are captured
with the same, static camera under varying monochromatic illu-
minations. It can be seen that the troll under green illumination
appears detailed, while the red and blue illuminated images
are blurry. This effect is called chromatic aberration, an effect
caused by dispersion at the camera lens. The superposition of
the three mono chromatic images is shown at the right. Here, the
effect of chromatic aberration is visible as purple fringes.

There is obviously the limitation that the background color is to
be avoided in the foreground. Furthermore, as can be seen in Figure
1, there is a problem called color spill: Visible background colored
fringes shine through the foreground object at transparent points or
are projected onto the foreground object from the side. Color spill is
very noticeable in the composition with an alternative background
and should be avoided or compensated for as much as possible.

In addition, matting is challenging if chromatic aberration [21]
occurs. While this effect is often neglected in alpha matting litera-
ture, it is increasingly important if camera resolution increases or
if consumer cameras are used. The effect of chromatic aberration
is caused by dispersion at the camera lens. It can be seen in Figure
2, in which images of a troll are captured with monochromatic illu-
mination. It can be observed that under green illumination the troll
appears detailed, while the image becomes blurred or out of focus
with red and blue illumination. This effect leads to colored fringes
also known as rainbow edge in images with white illumination. In
context of chroma keying systems using green or blue screens this
effect can lead to a misperception as can be seen in Figure 3. The
red hair of the troll is perceived less transparent in front of a green
background compared to a blue background.

A color-aware matting system needs to predict foreground colors
along with alpha mattes, while compensating color spill and being
robust against chromatic aberration.

We summarise another category of problems as human discomfort
impacting involved persons, i.e. newscasters or actors. Green screens
must be illuminated very homogeneously. This is often achieved
by strong illumination, which causes huge amounts of spotlights to
heat up the room. In addition, humans feel the artificial environment,
renders them disoriented and it is difficult for actors to put them-
selves into a scene, lacking so-called immersive feedback. That is
why i.e. markers are often used so that actors at least look in the
right direction of the VFX content. Markers, on the other hand, have
to be masked to not influence chroma keying.

In this paper, we propose a temporally alternating backdrop mat-
ting system permitting dynamic cameras and foregrounds, alleviating
foreground color restrictions, and allowing imprecise backings. The
system deploys a one-encoder-dual-decoder neural network, that in
an overlap-blend approach produces high-quality alpha and color
estimation, including an advanced color spill compensation. The

resulting simplification of studio sets along with high-quality mat-
ting can reduce production and post-processing costs. In addition,
our system provides an actor-friendly environment with visual clues
without any color restriction, enabling the actor to dive into the scene
while performing.

The contributions of this paper are summarised by:
• We present a fully-functional temporal backdrop duplex setup,

consisting of a camera and FPGA controlled LED panels
synchronized @100 fps.

• Our hardware setup demonstrates the feasibility of an actor
friendly studio set.

• A novel one-encoder-dual-decoder neural network architec-
ture allows prediction of RGBa foregrounds from two con-
secutive frames with alternating backdrop color.

• The network handles dynamic scenes by combination of an
inner patch prediction and an overlap-blend subdivision.

• We quantify the benefit of using dual backdrops instead of
trimaps as input for neural alpha-matting.

• An automatic advanced color spill suppression method is
proposed for post-production.

In the remainder of this paper, we review related work, describe
our method and compare the performance to state-of-the-art ap-
proaches.

2 RELATED WORK
Studio sets: While the green or blue color is key for chroma keying,
artifical homogeneous walls often leave actors without orientation.
To regain orientation markers can be inserted that are later, some-
times even manually, masked out and removed from the footage.
Tzidon and Tzidon [45] introduce a synchronized time duplex sys-
tem in which markers are projected to a green screen at the readout
time of the camera, generally called blanking time. Consequently,
those markers do not appear in the footage at all. Vidal and La-
fuente [47] use video projectors to add amplitudes of green to a
green screen, without impacting the chroma keying. Within certain
limits, these shades of green can give monochromatic visual clues to
actors. Furthermore, Borja Vidal [46] uses polarized light and polar-
ization filters to provide immersive feedback in combination with
retroreflective screens. In this studio, the content is projected onto
the background but is filtered so that the camera does not capture it.
Grau et al. [11] use additional cameras to locate and track the actors’
heads, in order to render VFX content based on the location of the
actor. In this system, the actor sees view-dependent VFX content
without geometric distortions to increase immersiveness into the
scene.

Matting methods: Matting is a long-studied research field. In
2007, Wang and Cohen [49] published a survey paper on image
and video matting, in which they describe and compare 50 mat-
ting approaches. The most common scenario is to predict the alpha
matte given an input image and a trimap (see Figure 1), in which
pure foreground and pure background are marked as well as a gray
area, which is an unknown region that may contain transparencies.
Trimaps are often seen as user input. For this matting task, there
is an online benchmark by Rhemann1 et al. [33], that is currently
comparing 68 algorithms.
1alphamatting.com

alphamatting.com
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Figure 3: Effect of chromatic aberration illustrated by two con-
secutive frames taken form a troll sequence. The red hair is
better visible in front of the green background compared to
the blue background. Consequently, the hair strands on the left
are perceived less transparent by humans and estimated by al-
gorithms, which results in flickering alpha predictions in an
alternating background color system.

To our knowledge, the first deep learning-based matting algo-
rithm is deep image matting by Xu et al. [52]. They manually create
a dataset with ground truth alpha mattes and train a fully convo-
lutional neural network, that given a stack of RGB images and a
trimap predicts an alpha matte. The network consists of an encoder-
decoder stage predicting a coarse alpha matte and a refinement stage
that locally improves the results. Since then researchers argue that
the natural structure of foregrounds is inherently learned by neural
networks which provides superior performance compared to tra-
ditional alpha matting. Recent approaches such as Sun et al. [41]
combine the matting with a classification task. This semantic im-
age matting uses multiple object categories and individual matting
networks are trained. Given hardware memory limitations matting
on high-resolution images becomes challenging, which is why Yu
et al. [53] introduce a patch-based method in which query patches
are compared to context patches from different image regions to in-
crease intra-image consistency. Similarly, consistency across scales
or hierarchical structures are optimized [25, 31]. Animal matting is
particularly challenging due to fur and camouflage effects. Thus Li
et al. [24] introduce a matting network in which two separate glance
and focus networks work together combining the task of recognizing
animals and locally extracting fur details.

In feature film production, a trimap is not given. Instead, the
color key separates the foreground from the background. A coarse
foreground estimation can be generated by different means: Recent
progress in face detection initiated a sequence of portrait matting
publications [19, 20, 23, 37], background subtraction is adopted by
Sengupta et al. [35], saliency maps by Gupta and Raman [13], and
attention by Zhou et al. [56] and Zhang et al. [54].

Alpha matting can also be used on videos. Erofeev et al. [8]
maintain a video matting benchmark2 created by triangulation in
a stop motion fashion. In video matting, typically information is
propagated from one frame to the next. For this task, rotoscoping
can be applied which is the tracing of shapes or foregrounds in a
sequence of images. Agarwala et al. [2] reduce the manual work
of a human in the loop by semi-automatic rotoscoping. Today, this
process is automated [4, 5, 30] and temporal consistency enforced
[22, 27, 36, 42, 54].

2videomatting.com

Many matting approaches predict mattes only. However, for most
applications this represents just one of two parts, since the fore-
ground colors need to be estimated as well. Occurring color spill,
as a result of imprecise foreground colors is often seen as an inde-
pendent problem. FBA matting by Forte et al. [10], SIM by Sun et
al. [41] and the method of Hou and Liu [15] are neural networks
that simultaneously predict alpha and foreground colors. FBA is
currently the leading algorithm on the benchmark of Erofeev et al.
[8].

The effect of color spill (see Figure 1) for blue screen keying
and a compensation technique was published as early as 1977 by
Petro Vlahos [48]. Since then, the problem has not been fully solved,
especially for non-perfect backing information. A common conceal-
ment practice is to just reduce the saturation of the foreground color
in transparent areas, since a gray color spill attracts less attention.
In feature film production color spill removal still requires manual
work. More recently, Teng et al. [43] introduce a matting method for
non-uniform illuminated blue screens.

As a note, convolutional neural networks have successfully been
applied to matching and optical flow estimation as in FlowNet [9],
FlowNet 2.0 [16] and deep convolutional matching [17, 32]. All of
them can jointly process information that is spatially separated.

According to the survey of Wang and Cohen [49] our matting
approach would be classified as “matting with extra information”.
Those matting algorithms e.g. use flash image pairs as Sun et al. [40],
camera arrays as Neel et al. [18], defocussing as McGuire et al. [29]
or passive polarization as McGuire et al. [28]. Others use, as we do,
multiple backgrounds with changing colors as Smith and Blinn[39]
and Grundhöfer et al. [12]. These two methods share a common
hardware setup with our approach. Therefore, the next paragraph
presents them in detail and they are included in our experimental
evaluation (cf. Section 4).

Smith and Blinn [39] propose a system directly linked to the mat-
ting equation 1, which becomes overdetermined and thus solvable for
static scenes if two known backgrounds are used. The corresponding
method is called triangulation. For each pixel it can be implemented
as a system of linear equations and is frequently used to generate
ground truth datasets. Triangulation can be used to exactly calculate
alpha values and foreground colors. The method is also applied by
Erofeev et al. [8] and by Rhemann3 et al. [33].

Another multi-background matting system is proposed by Grund-
höfer et al. [12], in which they are chroma keying video frames
with alternating complementary background colors. In offline mode,
trimaps are created by the color difference of backgrounds and
Bayesian matting [6] is applied. For static scenes, similar to Smith
and Blinn [39] this system can create perceptual high-quality mattes
by superposition of two mattes since the color spill in both backdrop
colors adds up to a neutral “white”. Being aware that foreground
movements introduce errors they apply a seam color compensation
heuristic that conceals errors.

While these temporal backdrop systems are similar in hardware,
our deep learning-based matting technique is capable of handling
moving foregrounds and backgrounds, is not restricted to precise
knowledge of backing colors, and is superior in color spill compen-
sation. Internally our proposed matting system can partly be seen

3alphamatting.com
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as a frame-wise registration system, followed by matting of regis-
tered foregrounds with two known backings which can then be done
flawlessly.

3 METHOD
3.1 Time duplex system
As illustrated in Figure 4, our proposed studio hardware setup con-
sists of a freely moving global shutter camera (a FLIR ORX-10g-
51S5-C set to a resolution of 2448×1600 @100 fps), a diffusor and a
synchronized RGB LED wall. The diffuser smoothes individual LED
spots of the 6 mm pitch modules so that individual LEDs are not
recognizable in the camera image. Our demonstrator consists of 4
panels each with 32×32 individually controllable LEDs. The panels
are aligned to a roughly 50 cm by 50 cm “wall”, which, however, can
easily be increased to any desired size. The panels are controlled by
a BeagleBone Black and a LogiBone with a Xilinx FPGA according
to a description by Glen Akins [3]. A signal generator synchronizes
the camera and the BeagleBone. The LED wall displays the fol-
lowing sequence: a homogeneous green screen, VFX content, and
a homogeneous blue screen followed by VFX content. Then the
cycle starts again from the beginning. The system is synchronized so
that the camera only captures the green and blue screen during the
1 ms exposure time respectively, but not the VFX content, which is
shown for 9 ms during the camera’s blanking time. The human eye,
on the other hand, interpolates the full 10 ms and therefore mainly
perceives the VFX content. Using our demonstrator, we simulate
VFX content by a homogeneous red background, which at 100 fps is
visible to us without any flickering on our wall. In detail, our panel
illuminates only four of the 32 LED rows simultaneously, while the
other 28 rows are switched off, which is called a 1:8 scan rate. Our
FPGA implementation ensures that all rows are turned on for the
same amount of time within the 1 ms global shutter exposure time,
which is why we can achieve a homogeneous illumination across
the whole panel. To sum up, our system can provide chroma keying
information to the camera as well as different information for actors,
e.g. VFX content or markers.

3.2 Multiple backdrop matting
Dataset: Our image processing pipeline (Figure 4) is built on a deep
neural network that predicts alpha mattes based on incoming camera
frames. This network is trained on the Adobe dataset [52], which pro-
vides 432 foreground images with corresponding ground truth alpha
mattes. In order to adapt to our use-case, we create our own back-
ground dataset, which either includes pure green (𝑅𝐺𝐵 = [0, 255, 0])
and pure purple (𝑅𝐺𝐵 = [255, 0, 255]) backgrounds or consists of
two consecutive frames taken from a 5000 frame video. This video
is acquired with our demonstrator that captures the LED panel wall
from different angles, resulting in green and blue backings as can
be seen in Figure 6, 8 and 10. These real-world backgrounds have
challenging properties: their color varies i.e. because of unwanted
reflections, changing viewpoints, and noise from the camera’s image
sensor. These fore- and backgrounds are strictly divided into train-
ing and validation samples, with a split of 80% to 20%. Random
selection of foreground-background combinations creates a 34560
samples training set and a 8640 samples validation set.

Figure 4: Studio setup: a camera captures a person or an object
in front of an LED panel wall with a diffusor, which can pro-
vide chroma keying information, e.g. a green or blue screen for
matting. In time duplex VFX content or markers for actors are
displayed on the same wall as well. The panels are controlled by
a BeagleBone and the system is synchronized by a signal gen-
erator. For each frame, the image processing pipeline creates a
composition of the extracted foreground and a new background.

Deep neural network: The focus of this work is on the overall
matting system rather than a highly optimized network architecture.
Thus, our network structure (Figure 5) is by design very traditional
and close to Xu et al.’s [52] encoder-decoder stage. The input to our
network are two patches 𝑝1 and 𝑝2, which are extracted from con-
secutive RGB frames (𝑓1 and 𝑓2) with different background colors.
The decoder is realized by two separate branches that each outputs
4-channels consisting of RGB foreground color and an alpha esti-
mation. We add the second decoder branch because our network
processes patches from consecutive frames 𝑓1 and 𝑓2. The encoder
and decoder are identical in construction to Xu et al. [52], using 14
convolutional layers with ReLUs and 5 max-pooling layers. Each
of the two decoders has 6 convolutional layers with ReLUs and 5
unpooling layers. We add skip connections between feature maps of
encoder and decoder.

Training: At the training of our network, both decoder outputs
are compared to the corresponding alpha and RGB ground truth. The
loss is defined as

L𝑖, 𝑗
𝛼 =

√︃
(𝛼𝑖, 𝑗𝑝 − 𝛼

𝑖, 𝑗
𝑔 )2 + 𝜖2),

L𝑖, 𝑗
𝑐 =

√︃
(𝑐𝑖, 𝑗𝑝 − 𝑐

𝑖, 𝑗
𝑔 )2 + 𝜖2),

L𝑖 = 𝜔𝛼L𝑖,1
𝛼 + 𝜔𝛼L𝑖,2

𝛼

+ 𝜔𝑐𝔪
𝑖,1L𝑖,1

𝑐 + 𝜔𝑐𝔪
𝑖,2L𝑖,2

𝑐

(2)

in which L𝑖 is the (𝜔𝛼 ,𝜔𝑐 )-weighted superposition of the 𝛼-prediction
loss L𝑖, 𝑗

𝛼 and the color prediction loss L𝑖, 𝑗
𝑐 , with 𝑖 indicating pixels

and 𝑗 ∈ 1, 2 frames. The 𝛼-prediction loss L𝑖, 𝑗
𝛼 measures the 𝛼-value

prediction 𝛼
𝑖, 𝑗
𝑝 in comparison to the ground truth 𝛼

𝑖, 𝑗
𝑔 . Similar, the
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color loss L𝑖, 𝑗
𝑐 is calculated comparing the predicted color 𝑐𝑖, 𝑗𝑝 for

each channel to the ground truth 𝑐
𝑖, 𝑗
𝑔 . All 4 channels are scaled to

a range of [0, 1]. The color loss is L𝑖, 𝑗
𝑐 masked and only active for

pixels where

𝔪𝑖, 𝑗 =

{
0, if 𝛼𝑖, 𝑗𝑔 = 0,
1, if 𝛼𝑖, 𝑗𝑔 > 0

(3)

since we do not want the network to estimate foreground colors
if the foreground cannot be seen. Similarly, in case of foreground
movements, prediction of parts that are not visible in both input
patches is prevented by limiting the output region. Thus, the overall
loss L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =

∑
𝑖∈𝛾 L𝑖 is evaluated at the inner region 𝛾 of each

patch only, leaving a loss-free region of 50 pixels surrounding 𝛾 (see
Figure 6 and 7). In doing so, we ensure that each inner region pixel
exists in both input frames, even if the foreground moves by up to
50 pixels.

As part of our training, we use foreground and background dis-
placement augmentation (Figure 7), simulating foreground move-
ments and a freely moving camera. In detail, given two consecutive
frames of our background dataset, we first sample a position 𝐴

within the background, composite a foreground, and cut out the first
training input by sampling a position 𝐵. Then, we randomly sample
two vectors 𝑉𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 and 𝑉𝐶𝑢𝑡𝑜𝑢𝑡 that displace foreground and
cutout positions for the second frame 𝑓2 and cut out a patch 𝑝2. As
before, we limit all movements to a maximum of 50 pixels.

We follow a similar approach as Xu et al. [52] and crop image
pairs to different sizes (320×320, 480×480, and 640×640) and down-
scale them to patches of size 320×320, thus covering multiple scales.
Further training details can be found in Section 3.3.

Network deployment: As part of our image processing pipeline,
we calculate foreground and alpha estimations for the consecutive
frames 𝑓1 and 𝑓2. In the remainder of this section, we describe the
network deployment or inference for the first frame 𝑓1 only, which

Figure 5: Given two sequential input patches, our convolutional
neural network predicts an alpha matte as well as foreground
colors for each frame, using a single-encoder-dual-decoder ar-
chitecture with skip connections.

Figure 6: Comparison of foreground color 𝑐𝑝 and alpha 𝛼𝑝 pre-
dictions and the ground truth (𝑐𝑔, 𝛼𝑔). The loss of our neural
network is only active at the center of each patch 𝑝, which we
call region 𝛾 , leaving a 50 pixel “don’t care”-area at the bound-
aries. It is very important to note, that both color predictions 𝑐𝑝
(top and bottom) do not contain green or blue color spill in the
inner patches.

Figure 7: We operate on different image sizes. Consecutive cam-
era frames are denoted as 𝑓1 and 𝑓2. Our neural network operates
on patches 𝑝1 and 𝑝2 and on inner patch regions 𝛾1 and 𝛾2. In
order to train our network, we augment two input patches with
simulated foreground and background movements. Given two
background frames, we randomly sample a foreground position
A, a cutout position B and composite the first input patch 𝑝1. We
displace foreground and cutout region by two randomly sampled
displacement vectors 𝑉𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 and 𝑉𝐶𝑢𝑡𝑜𝑢𝑡 for the second in-
put patch 𝑝2. Similarly, we obtain our ground truth alpha matte.

is similarly applied for the second frame 𝑓2. We define 𝑓1 = 𝑓 ,
𝑝1 = 𝑝 and 𝛾1 = 𝛾 . Similar to Yu et al. [53], the incoming frame
𝑓 is subdivided into a set of overlapping patches 𝑝𝑎, 𝑝𝑏 , 𝑝𝑐 , ... ∈ 𝑃 ,
which are sequentially processed by the network and we gain a set of
overlapping predictions, the corresponding patches 𝛾𝑎, 𝛾𝑏 , 𝛾𝑐 , ... ∈ Γ.
All patches in the set 𝑃 are of size 320×320 and all inner patches
in Γ are of size 220×220. The overlap between neighboring patches
in 𝑃 is 100 pixels so that also the inner patches Γ overlap by 50
pixels. Two neighboring patches 𝛾𝑎, 𝛾𝑏 ∈ Γ are linearly blended in
the overlapping area 𝛾𝑎 ∪ 𝛾𝑏 , with blending weights proportional to
the distances to the patch boundaries (see [53]). Thus the influence
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of the prediction 𝛾𝑎 gradually diminishes at its boundaries with the
increasing influence of the neighboring prediction 𝛾𝑏 .

Following this overlap-blend approach, we obtain full-size fore-
ground predictions with colors 𝐶𝑓 𝑔,𝑝𝑟𝑒𝑑 , and alphas 𝛼𝑝𝑟𝑒𝑑 for each
frame 𝑓 . For the composition of the foreground prediction with a new
background 𝐶𝑏𝑔, i.e. VFX content, we modify the original matting
equation 1 to

𝐶 = 𝛼𝑝𝑟𝑒𝑑 (𝛼𝑝𝑟𝑒𝑑𝐶𝑓 𝑔,𝑝𝑟𝑒𝑑 + (1 − 𝛼𝑝𝑟𝑒𝑑 )𝐶𝑓 𝑔,𝑜𝑟𝑖𝑔)
+ (1 − 𝛼𝑝𝑟𝑒𝑑 )𝐶𝑏𝑔 .

(4)

Thus, we blend the color information, using the original colors
𝐶𝑓 𝑔,𝑜𝑟𝑖𝑔 = 𝑓 if 𝛼𝑝𝑟𝑒𝑑 is close to 1 and the predicted color 𝐶𝑓 𝑔,𝑝𝑟𝑒𝑑

if 𝛼𝑝𝑟𝑒𝑑 is close to 0. In short, equation 4 introduces our color spill
correction.

3.3 Implementation details
In the following, we want to add further details on training and
implementation of our method and our implementation of DIM [52]
to facilitate reimplementations. These details are described detached
from the description of the method in order to increase readability
of the previous subsection.

Architecture: The architecture of our network can be seen in
Figure 5. Input dimensions are 6×320×320 and output dimensions
are 4×320×320, for each decoder. The encoder is similar to Xu et
al. [52] and consists of blocks with 2 or 3 2D convolutional layers
(kernel size 3), followed by group normalization (as introduced
by Wu and He [51]), rectified linear unit (ReLU) activation and
max pooling. With each encoder block, the output shape is reduced
by a factor of 2, while the number of channels increases in the
sequence 64, 128, 256, 512 to 1024. The encoder parameters of
the 14 layers are initialized by the pre-trained VGG16 network
of Simonyan and Zisserman [38]. Both decoders have the same
architecture with blocks consisting of convolutional layers followed
by group normalizations, ReLUs, and 2D transposed convolutions
(kernel size 6 and stride 2). The final convolution (yellow in Figure
5) is followed by a ReLU activation and clipping of values to a
maximum of 1. This is motivated by the observation that color values
tend to be evenly distributed. This is in contrast to alphas values,
which are typically close to one or close to zero, for which sigmoid
activation is preferred. The decoder weights are initialized randomly.
Similar to Forte and Pitié [10], we use a mini-batch size of 1. The
long skip connections (Figure 5), connecting encoder and decoder,
are motivated by U-nets introduced by Ronneberger et al. [34] and
which are beneficial for the prediction of fine-grained details. In
our implementation, the skip connections are additive as in ResNets
introduced by He et al. [14]. Our dual decoder network consists of
81.59M trainable parameters.

Parameters: In Equation 2, 𝜔𝑐 is set to 0.5 and 𝜔𝛼 to 1. As
described in the paper, the color loss L𝑖, 𝑗

𝑐 can be masked by 𝔪𝑖, 𝑗 .
If it is not masked, meaning 𝔪𝑖, 𝑗 ≠ 0, color prediction errors have
a larger impact on the loss L𝑖 than alpha prediction errors, since
three channels are each weighted by 𝜔𝑐 = 0.5. In Equation 2, 𝜖 is
set to 1𝑒 − 6. In Figure 7, each displacement vector 𝑉𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 and
𝑉𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 is limited to 50 pixels, resulting in a maximal combined
foreground-background movement of 100 pixels.

Training: As training dataset we use the 432 foreground images
of the Adobe dataset [52] and 5000 frames of recorded background
samples from our demonstrator setup. Foreground and background
samples are divided into training (80%) and validation (20%) data
each. Within each dataset (training and validation) foreground and
background combinations are sampled resulting in a training set of
34560 and a validation set of 8640 foreground-background tuples.
The data split and the combinations were created once and stayed
the same during training. A tuple consists of one foreground image
and two consecutive background images with different background
colors. During training, within one foreground-background tuple,
random cropping augmentation is conducted as illustrated in Figure
7. This randomized real-time augmentation leads to increased data
diversity. In addition, augmentation techniques such as randomly
flipping, changing contrasts, or adding color jitter are applied. Our
network is implemented in pytorch. As optimizer we chose stochastic
gradient descent with an initial learning rate of 0.01 and momentum
of 0.9. We enforce a steadily falling validation loss by reinitialization
with a saved checkpoint from the previous epoch, if the validation
loss increase. If no decrease in validation loss is achieved within
2 epochs, the learning rate is decreased by a factor of 0.6. If no
decrease in validation loss is achieved within 5 epochs, training is
terminated. The network was trained for 50 epochs, which took 89
hours using an Nvidia GeForce RTX 2080 Ti GPU.

Inference: During training, we apply a randomized movement
augmentation to simulate foreground and background movements,
to increase the robustness of the network for moving scenes. During
inference, meaning the deployment of the network as part of the
proposed matting system, overlapping patches are cropped from the
camera frames 𝑓1 and 𝑓2 in a fixed grid and corresponding patches
𝑝1 and 𝑝2 are extracted from the same coordinates but from two
consecutive frames, meaning that using a camera speed of @100 fps
the second frame 𝑓2 was captured 10 ms after 𝑓1. Thus, moving or
non-static foregrounds and backgrounds have a displacement in 𝑝1
and 𝑝2.

4 RESULTS
Algorithms: We compare our method to the following related algo-
rithms. The first method is denoted BSM, which is our implemen-
tation of Smith and Blinn’s [39] blue screen matting. The authors
of BSM claim that matting with a “multi-background technique”
can only be applied in a static case, without “live actors or other
moving objects”. In addition BSM needs a perfect knowledge of
the background colors. Furthermore, Smith and Blinn write that an
application without these requirements is “powerful”. We see our
approach as an extension of their work, which is able to overcome
these limitations and show that multi-background matting can be
applied on dynamic scenes.

The second method CIM is our implementation of Grundhöfer et
al.’s [12] method, in which they use hardware keying units (Ultimatte
11) with additional Bayesian matting. Since we do not own Ultimatte
11, we cannot recreate this particular matting pipeline. Instead, CIM
uses ground truth alpha mattes or “learning-based digital matting”
by Zheng and Kambhamettu [55] on the Troll sequence, for which
no ground truth is available. CIM requires complementary backing
colors, that sum up to a neutral white, which is the core idea of
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Figure 8: Evaluation dataset: (left) Composition of Castle and
Dmitriy of Erofeev et al.’s [8] benchmark5 in front of a realistic
blue and green background respectively, (middle) composition of
Alex (also [8]) in front of a pure and orthogonal green and purple
background and (right) two consecutive frames with Trolls using
our demonstrator.

their color spill neutralization. Therefore, similar to BSM, perfect
backgrounds are needed, however, this requirement is only fulfilled
by the pure color background sequences.

In contrast to the previous two alternating backdrop methods, the
following two methods are trimap-based. In our scenario trimaps are
generated from the ground truth alpha matte by setting all pixels that
fulfill 0 < 𝛼 < 1 to “unknown”, followed by morphological dilation
of this gray zone. The distribution of foreground, background and
unknown areas of the test sequences can be seen in Table 1.

The third matting technique DIM is an implementation of Xu et
al. [52]. The basic structure of this neural network can be explained
with the help of Figure 5, applying a few modifications. Instead of
the second input patch 𝑝2, the network receives a trimap and the
second decoder branch is omitted. By comparing to DIM we can
directly measure any performance gain achieved by substituting the
trimap version with our dual-frame version.

The forth method Semantic Image Matting or SIM by Sun et al.
[41], we use official repository, enhances the matting results by first
classifying the foreground, creating a semantic trimap which guides
the matting network. In our evaluation the classification into the
classes fur, hair_hard and hair_easy should be beneficial along with
motion for the Trolls sequence. The class defocus may help to cope
with chromatic aberration. SIM ranks in the top-5 of Rhemann4 et
al. [33] benchmark.

Finally, we compare with FBA, the official demonstrator of Forte
et al. [10], which is publicly available. The method is currently
the leading algorithm on the benchmark5 of Erofeev et al. [8] and
represents the state-of-the-art in trimap-based matting.

Test dataset and metrics: We evaluate our method on the three
sequences from Erofeev et al. [8], called Dmitriy, Alex and Castle.
While this dataset includes more sequences, these are the only se-
quences for which ground truth alpha mattes are publicly available.
In this paper, these are necessary for the alternating color back-
ground sequence generation and for evaluation. The foregrounds
Dmitriy, Alex and Castle are composited with alternating blue and

4alphamatting.com
5videomatting.com

Alex Dmitriy Castle Troll

White area in trimap 18.35% 23.81% 29.66% 29.87%
Black area in trimap 71.35% 65.75% 23.50% 31.13%
Gray area in trimap 10.29% 10.44% 46.84% 39.01%

max(PSNR) 60.0 60.0 60.0 n.a.
max(VMAF) 99.86 99.98 97.43 n.a.

max(MS-SSIM) 0.9999 0.9999 0.9999 n.a.

Table 1: Dataset properties. Top rows: trimap color distribution
with the percentage of foreground (white pixel), background
(black pixel) and unknown region (gray pixel). Bottom rows:
upper metric limits for PSNR, MS-SSIM and VMAF.

green backdrops acquired by our demonstrator or with complemen-
tary pure green and pure purple backings. The resulting samples
can be seen in Figure 8 and the top row of Figure 10. Evaluation on
composition level has several advantages compared to independent
evaluation of alpha values and foreground color prediction, since
the effect of errors in foreground color prediction are linked to alpha
values. If alpha is zero, colors may be erroneous without impacting
the composition. Evaluation on the composition solves this issue by
measuring alpha and color estimation at the same time. Furthermore,
some measures, such as Gradient and Connectivity (see below), do
not make sense for colors.

For quantitative evaluation, the matting results are composited
with checkerboard backgrounds, compared to the ground truth, and
evaluated with the following metrics: PSNR, MS-SSIM [50] and
the perceptual Video Multi-Method Assessment Fusion (VMAF)
[26]. The peak-signal-to-noise ratio (PSNR) is based upon the mean
squared error (MSE), which measures a pixel-wise comparison to
the ground truth. Temporal inconsistencies or flickering are of major
importance, since the human visual system is strongly affected by
them. Furthermore, error concealment methods seldomly correct
matting results, but diminish the impact of occurring errors. This
is why we also evaluate the structural similarity (MS-SSIM) and
perceptual (VMAF) scores. We calculate all metrics using FFmpeg
[44] and lossless H.264 encoding (𝑞𝑝 = 0) with 𝑌𝐶𝑏𝐶𝑟 = 4:4:4,
meaning without chroma subsampling. The highest achievable scores
can be obtained by comparing the ground truth to itself. These upper
metric limits can be found in Table 1 and it can be seen that the
maximal VMAF score is dataset dependent. The metrics PSNR, MS-
SSIM and VMAF are frequently used in the video coding community
that has a long record of in-depth video quality assessment.

In the matting community, the alpha mattes are typically evaluated
independently from the foreground colors. In Table 2, we show
results on the alpha prediction measures SAD, MSE, Gradient and
Connectivity as proposed by Rhemann et al. [33]. The results of
our method ours𝑚𝑎 on these scores are on a similar level as FBA
and SIM and far better than DIM, BSM and CIM. Nevertheless, this
paper focuses on foreground color prediction as a part of a matting
system and thus the results on the scores MS-SSIM, PSNR and
VMAF are of major importance.

As part of our assessment, we provide quantitative results on our
Troll sequence, a video captured by our demonstrator. In contrast
to the virtual dataset, the Troll dataset has additional challenges

alphamatting.com
videomatting.com
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such as noise, chromatic aberration, and non-homogeneous, not
fully known backgrounds. The Troll dataset can only be used for
qualitative evaluation as no ground truth exists. The Troll dataset
and other sequences from the demonstrator are publicly available at
(anonymous_submission).

Discussion: Quantitative results of seven algorithms on our test
dataset with real-world backgrounds can be found in Table 2 and the
following five key findings can be observed.

First, our method ours𝑚𝑎 performs better than BSM [39] and
CIM [12] by a large margin. This comparison is important as these
three methods receive the same input data and can share the same
hardware setup.

Second, the comparison of DIM [52] to our method shows the
direct benefit of replacing the trimap with a 2 frame input, since
both networks are otherwise similar in architecture and trained on
the same dataset with identical hyper parameters. The results show a
drastic gain in performance, which is directly linked to the architec-
ture changes introduced with our method.

Third, our method performs on a similar level as FBA by Forte
et al. [10] and SIM by Sun et al. [41], which proofs that ours𝑚𝑎

can provide state-of-the-art results. Note that FBA and SIM need a
trimap as input which is not easily obtained and any errors in the
foreground and background areas of the trimap directly lead to errors
in the alpha mattes. In our evalutation, the trimaps given to FBA and
SIM are without errors and contain 53.16% to 89.71% of ground
truth data (white and black area in Table 1).

Fourth, an ablation study illustrates the impact of our motion aug-
mentation. The column ours𝑠𝑎 shows results of our network trained
statically, while ours𝑚𝑎 used motion augmentation during training.
Static means that 𝑉𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 = 0 and 𝑉𝐶𝑢𝑡𝑜𝑢𝑡 = 0 (cf. Figure 7).
From all scores, it can be observed that the motion augmentation
is of enormous importance. In Figure 9 both models show quali-
tative results on two frames of the non-static Castle dataset. The
static model ours𝑠𝑎 clearly fails to cope with foreground movements,
which leads to double contours in the alpha matte and increased
color spill in the composition with a checkerboard background.

Fifth, Table 2 provides MAD scores on the Troll sequence, for
which no ground truth alpha values are available. However, we can
measure temporal alpha value consistency as follows. With changing
background colors the average alpha values of the foreground should
remain unchanged. The accumulated mean alpha value deviation

𝑀𝐴𝐷 =
1
𝑁

𝑁−1∑︁
𝑛=1

1
𝑤ℎ

������ 𝑤∑︁𝑥=1
ℎ∑︁
𝑦=1

𝛼𝑛 (𝑥,𝑦) −
𝑤∑︁
𝑥=1

ℎ∑︁
𝑦=1

𝛼𝑛+1 (𝑥,𝑦)

������ (5)

measures alpha estimation inconsistencies between frames on the
Troll dataset, with 𝑁 = 25 the number of frames, alpha values
ranging from 0 to 255 and a video resolution with width 𝑤 = 2448
and height ℎ = 1600. In theory, MAD may also consist of an alpha
deviation due to foreground movements and deformations. However,
this share of the MAD score is the same for all algorithms. Table
2 illustrates that the alpha predictions of ours𝑚𝑎 achieve the best
MAD score and are thus most consistent.

As a sanity check we evaluate on an artificial dataset with pure
green and purple backgrounds (see center columns in Figure 8).
As we expect, BSM performs best and creates perfect results on
Dmitriy and Alex (see Table 1). Only the Castle sequence scores are

Figure 9: Effect of motion augmentation illustrated on the Castle
sequence: (top): input frames to the network and overview of
the cropped region, (lower, left): ground truth alpha matte and
ground truth superposition with a checkerboard background
corresponding to the blue background input image (lower, cen-
ter): predictions by the proposed network ours𝑠𝑎 trained without
motion augmentation or static and (lower, right): predictions by
the proposed network ours𝑚𝑎 trained using motion augmenta-
tion. The lack of motion augmentation during training leads to
double contours and increases color spill.

non-perfect with MS-SSIM 0.9993, PSNR 49.90 and VMAF 97.20,
which is probably due to numerical inaccuracies.

Qualitative results on our test dataset with real-world backgrounds
and the Troll sequence can be found in Figure 10. In the first three
columns, it can be seen that the foreground movement has a drastic
impact on BSM and CIM, which show color seams and erroneous
transparencies in the foreground. It can be seen on the lower row
of CIM’s Castle examples that superimposing alpha mattes without
registration leads to visible double contours at single hair strands.
On the right column, in the Troll sequence, we observe that DIM,
FBA, SIM and CIM suffer from blue color spill, while our method
shows close to no color spill, a slight blue shade in the green hair
merely. Quite curiously, BSM seems to have shades of red in the
yellow hairs and yellow shades in the green hairs, which seems to
be the triangulation error. Furthermore, FBA, SIM and CIM seem to
be affected by the noise in this dataset.

A comparison of the consecutive frames from the Troll dataset,
as in Figure 3, 8 and 10, reveals that single hair fibers can be more
easily recognized with green backing, which is most probably due
to chromatic aberration [21]. As can be seen in Figure 3, this effect
leads to overestimated alpha values for green and underestimated
alpha values for blue backdrops, which we experience systematically
with all seven matting algorithms. While the effect of chromatic

(anonymous_submission)
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Data Metric better DIM6 [52] FBA [10] SIM [41] BSM6 [39] CIM6 [12] ours𝑠𝑎 ours𝑚𝑎

Trimap ✓ ✓ ✓ - - - -
2 frames - - - ✓ ✓ ✓ ✓

Alex MS-SSIM ↑ 0.98332 0.99691 0.99544 0.93664 0.96418 0.95779 0.99714
Dmitriy MS-SSIM ↑ 0.98984 0.99566 0.99574 0.89001 0.92781 0.96851 0.99574
Castle MS-SSIM ↑ 0.98327 0.98847 0.98675 0.96927 0.97122 0.97759 0.98705
Alex PSNR ↑ 31.311 43.374 41.681 26.367 29.655 30.931 44.867

Dmitriy PSNR ↑ 37.805 39.852 39.678 24.194 27.319 29.623 39.482
Castle PSNR ↑ 27.811 33.088 32.814 27.544 27.805 29.346 31.759
Alex VMAF ↑ 94.689 99.370 99.164 74.482 92.388 93.585 99.513

Dmitriy VMAF ↑ 99.553 99.807 99.572 67.088 83.200 92.782 99.785
Castle VMAF ↑ 82.543 88.677 85.411 69.725 72.663 79.461 87.314
Alex SAD ↓ 5.251 2.382 2.571 10.841 6.125 9.620 1.198

Dmitriy SAD ↓ 6.966 1.496 1.461 14.789 9.298 10.992 1.331
Castle SAD ↓ 28.057 3.916 6.302 50.792 18.620 22.795 10.780
Alex MSE (103) ↓ 3.192 1.151 2.371 22.090 25.297 27.231 0.452

Dmitriy MSE (103) ↓ 9.129 0.898 0.745 48.158 43.058 33.835 1.084
Castle MSE (103) ↓ 4.310 0.188 0.406 31.412 11.084 7.410 1.273
Alex Grad (10−1) ↓ 93.36 30.79 39.29 683.53 877.07 765.106 18.29

Dmitriy Grad (10−1) ↓ 485.13 45.68 54.49 2422.75 2248.97 1740.41 91.46
Castle Grad (10−1) ↓ 381.44 53.03 79.32 7896.57 3594.16 2483.34 242.89
Alex Conn (10−2) ↓ 20.148 9.369 12.730 80.989 61.996 97.17 4.132

Dmitriy Conn (10−2) ↓ 51.299 8.431 7.404 128.131 94.101 110.85 10.760
Castle Conn (10−2) ↓ 157.124 12.545 26.446 459.208 184.359 211.11 71.161
Trolls MAD ↓ 2.5319 1.0696 1.2605 1.0284 1.1385 0.9393 0.8866

Table 2: Seven matting algorithms are evaluated on three ground truth datasets: Alex, Dmitriy, and Castle which are composited with
real-world backgrounds as can be seen in the left columns of Figure 10 and on the Trolls sequence captured by our demonstrator
(right columns in Figure 10). The best results of the two groups, using a trimap or using 2 frames as input, are marked in bold and the
best results globally are underlined. There are three experiments: (1) evaluation is done on composition level with a checkerboard
background. Here alpha and predictions are jointly measured using MS-SSIM, PSNR and VMAF scores. (2) alpha predictions are
measured independently using SAD, MSE, gradient and connectivity. (3) there is no ground truth for the demonstrator sequence Trolls.
However, the mean alpha deviation (MAD), as in Eq. 5, measures alpha value consistency across the predicted video sequence. The
experiments show that FBA [10], SIM [41] and our algorithm perform similarly and achieve top scores. The two columns on the right
show a short ablation study on the impact of our motion augmentation ours𝑚𝑎 during training versus a static version ours𝑠𝑎 .

aberration as described in Figure 2 and 3 is not explicitly modeled
in our approach, the joint, temporally mixed latent space in our one-
encoder-dual-decoder in combination with the motion augmentation
seems to increase temporal consistency. Although this is speculative,
we believe that the effect of aberration and foreground motion are
related in our feature space. Since neural networks interpolate and
create local smoothness between known data, this could explain
that robustness with respect to motion also has a positive effect on
aberration compensation.6

5 CONCLUSION
This paper presents a novel neural network-based dual-backdrop
duplex matting system that creates high-quality alpha as well as
foreground color predictions. It is temporally consistent, unaffected
by noise, and shows superior color spill compensation. We compare
our approach to a trimap-guided twin method that is trained and
tested on the same datasets. In this experiment we clearly show that

6reimplementation

temporal backdrop duplex matting achieves superior results to the
trimap-based approach. In addition, we propose a hardware set, that
is actor friendly and can potentially be used in upcoming LED video
wall production studios.

In the future, we intend to research the impact of chromatic aber-
ration in more detail. This effect could be explicitly modeled in the
dataset generation and augmentation, in order to further increase
temporal consistency in alpha matting. Furthermore, we will inves-
tigate adaptation to view-dependent variations of the backings by
camera motion prediction as in Dockhorn and Kruse [7].
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Figure 10: Qualitative comparison of five matting methods. Please zoom in for better comparison.



Color-aware Deep Temporal Backdrop Duplex Matting System MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

REFERENCES
[1] 2022. Stagecraft by Industrial Light and Magic. https://www.ilm.com/stagecraft/.

Accessed: 2022-01-07.
[2] Aseem Agarwala, Aaron Hertzmann, David Salesin, and Steven Seitz. 2004.

Keyframe-based tracking of rotoscoping and animation. ACM Trans. Graph. 23
(08 2004), 584–591. https://doi.org/10.1145/1015706.1015764

[3] Glen Akins. 2014. RGB LED Panel Driver Tutorial. https://bikerglen.com/
projects/lighting/led-panel-1up/

[4] Marcos H. Backes and Manuel M. Oliveira. 2019. A PatchMatch-
based Approach for Matte Propagation in Videos. Computer Graph-
ics Forum 38, 7 (2019), 651–662. https://doi.org/10.1111/cgf.13868
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13868

[5] Guangying Cao, Jianwei Li, Xiaowu Chen, and Zhiqiang He. 2019. Patch-Based
Self-Adaptive Matting for High-Resolution Image and Video. Vis. Comput. 35, 1
(Jan. 2019), 133–147. https://doi.org/10.1007/s00371-017-1424-3

[6] Yung-Yu Chuang, Brian Curless, David H. Salesin, and Richard Szeliski. 2001.
A Bayesian Approach to Digital Matting. In Proceedings of IEEE CVPR 2001
(Kauai, Hawaii), Vol. 2. IEEE Computer Society, 264–271.

[7] Alexander Dockhorn and Rudolf Kruse. 2020. Forward Model Learning for
Motion Control Tasks. In 2020 IEEE 10th International Conference on Intelligent
Systems (IS). 1–5. https://doi.org/10.1109/IS48319.2020.9199978

[8] Mikhail Erofeev, Yury Gitman, Dmitriy Vatolin, Alexey Fedorov, and Jue Wang.
2015. Perceptually Motivated Benchmark for Video Matting. In Proceedings of the
British Machine Vision Conference (BMVC). BMVA Press, Article 99, 12 pages.
https://doi.org/10.5244/C.29.99

[9] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazır-
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