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Figure 1. Spine tracking during a forehand in Tennis. Perforated kinesiology tape on the back of the player is used as a marker. The
arrangement of its dots is known a priori and exploited for matching in a multi view 3D tracking system.

Abstract

In this work, we present a marker-based multi-view
spine tracking method that is specifically adjusted to the
requirements for movements in sports. A maximal focus
is on the accurate detection of markers and fast usage
of the system. For this task, we take advantage of the
prior knowledge of the arrangement of dots in perforated
kinesiology tape. We detect the tape and its dots using
a Mask R-CNN and a blob detector. Here, we can focus
on detection only while skipping any image-based feature
encoding or matching. We conduct a reasoning in 3D by
a linear program and Markov random fields, in which the
structure of the kinesiology tape is modeled and the shape
of the spine is optimized. In comparison to state-of-the-
art systems, we demonstrate that our system achieves high
precision and marker density, is robust against occlusions,
and capable of capturing fast movements.

1. Introduction

Human motion capture is a long-studied field that is of
particular interest in application fields like health, feature
film production, and also increasingly in sports. It allows
to capture the movements and techniques of athletes and

uncovers specific traits, characteristics, that may give
them an advantage but also problems in the performance
that might raise health problems. One motivation is
straightforward: If the motion of the professional athlete of
your choice is captured with sufficient precision, a motion
capture system may tell you how to improve yourself
to come close to your idol. This is one of several
reasons for the widespread publicity in news and media
accompanying the 2018 study of Schepers et al. [21], when
they captured Tennis players at Wimbledon using an Xsens
MVN Link suit. Their tracking system can be further used
for extensive bio-mechanical analyses, i.e. that investigate
how forces propagate through the body of an athlete in a
musculoskeletal model as OpenSIM [6]. This may be used
to design person specific training plans to achieve damage
precaution and consequently, avoid injuries.

Back pain has become a major disease of civilization
that affects large parts of the population. Some causes are
widely known, such as lack of exercise or poor posture, e.g.
when sitting at a desk at the workplace. But lack of back
mobility and incorrect technique in sports might also lead
to back pain. In a spinal kinematics study by Campbell et
al. [5] with the 2014 Tennis Australia National Squad the
authors found a connection between lower back pain and
lumbar flexibility during serve kinematics.



Figure 2. (background): A roll of kinesiology tape (foreground):
Spacial dimensions as the mutual distance are exploited as 3D a
priori knowledge of the structure of the tape. (graph): The two
points pi and pj define the edge eij . All of the black edges are
defined as the neighboring edges of eij and denoted as Ωe.

The vertebral column consists of 24 vertebrae and has
an incredible range of motion [2] with each two vertebrae
capable of lateral flexion, rotations, flexion, and extension
to each other. State-of-the-art methods unfortunately do
not come close to capture these degrees of freedom.
The aforementioned Xsens MVN Link suit consists of
17 inertial measurement units (IMUs), measuring local
orientations from which the pose is derived. Considering
the spine, only 4 IMUs contribute to its pose estimation: one
on each shoulder, one on the chest, and one on the pelvis.
As will be discussed in Section 2, this is not sufficient. To
allow capturing the high degree of freedom of the spine, the
number of measurement points needs to be increased.

Kinesiology tapes are widely used in all sports mainly
for muscle recovery and injury prevention of athletes.
Punched or perforated kinesiology tape, as can be seen in
the background of Fig. 2, is used because of greater stretch
capacity and breath-ability. In this work, we divert this kind
of kinesiology tape from its intended use and instead apply
it in a maker-based motion capture system. As can be seen
in Fig. 1, the tape is fitted to the back of an athlete and
serves as an easy-to-detect pattern with the dots of the tape
used as markers in a multi-view camera system.

The key contributions of this paper are:

• The introduction of highly suitable marker for tracking
in sports, that can be fast and easily attached and do not
restrict movements

• An adopted motion capture framework, that uses
structural a priori knowledge in 3D instead of image-
based feature encoding and matching.

• A high precision tracker that robustly tracks dense
markers and is capable of handling occlusions

2. Related Works
Accurately tracking the human spine in motion is

still an open problem in computer vision. While today
human motion capture is often solved marker-less using
for instance a combination of key point networks, such as
the Convolutional Pose Machines by Wei et al. [25] and
a 2D-to-3D pose-lifting network as Bogo et al. [3], such
a trend cannot be observed for human spine capturing.
This is not surprising, since the back has few cues in
its local environment that can be used to infer internal
motion. To the best of our knowledge, there is currently
no dedicated marker-less spine motion capture system. A
major limitation of general marker-less motion capture
systems is that applied 3D skeletons typically consist of 1
to 3 joints for the complete spine, which cannot accurately
represent its various contortions.

However, there are a number of methods to infer the
motion of the spine using additional technical tools. The
low-cost device of Kam et al. [12] infers the total curvature
of the spine by the outcoupling of light of an optical fiber
attached to the back, but it cannot give a precise 3D path.

Similar to the aforementioned Xsens MVN suit by
Schepers et al. [21], the specialized inertial tracking device
by Hajibozorgi and Arjmand [10] captures the movement of
the spine via a series of four IMUs. Voinea et al. [24] use
5 IMUs and a 7th-grade polynomial is fitted to approximate
the curvature of the spine. Yet, IMU-based systems suffer
from drifting in space, since a two times integration leads to
a quadratic error propagation with time.

With extensive hardware input, Dynamic FAUST by
Bogo et al. [4] is able to build a high-precision motion and
shape capture system. It uses 22 stereo cameras and 34
speckle projectors to capture 3D body shapes. In addition,
body painted features are captured by 22 RGB cameras.
The high-frequency texture is mapped onto the body scan
and an optical flow-based texture registration provides
dense matches. The occurring per-vertex 3D displacements
can be used to optimize the body shape and track individual
vertices over time. This 4D dynamic scanner creates
sequences of 3D body shapes with consistent vertex IDs.
Its localization precision, which is closer than 1 mm, is due
to the massive amount of data that provides texture matches
of images shot from very similar viewpoints.

The retro-reflective marker-based optical motion capture
(OMC) system by Vicon [1] is often seen as gold-standard.
The study by Merriaux et al. [16] reports a mean 3D
position error of 1.5 mm while Rast et al. [19] reports
a range of 0.1 to 5.3 mm, varying with the size of the
captured volume. In the specific case of 3D trunk movement
capturing with 10 markers along the spine and 12 further
on other trunk landmarks, Rast et al. [19] compare sources
of errors, as the instrumental error of Vicon, different
landmark protocols for the markers and soft tissue artifacts.



However, the study suffers from limitations, as experiments
of the range of motion task for flexion and extension of
the spine could not be recorded since the visibility of the
markers was insufficient. A likely cause is the minimal
number of two cameras needed to track. With the suggested
default number of 3 cameras [1] in a 360-degree studio, this
threshold might not be reached in a lot of frames, so that
trajectories are lost.

The most similar approach to ours is a retro-reflective
mesh suit by Hiroaki et al. [22], in which stripes are
arranged as a grid and intersections serve as markers. The
stripes have a distance of about 30 mm from each other,
resulting in a high marker density of 0.16 markers/cm2.
Similar to our argumentation, the authors suggest that a
high marker density can only be achieved if connectivity
information is present, which they extract directly from the
image. Stripe lines are traced and a 2D mesh is extracted,
which is fused in 3D with information from other views.
This workflow is fundamentally different from ours, as we
use no active light setup and enable a higher marker density
by explicitly omitting to find 2D connectivity information
or any other 2D feature encoding. Instead in 2D we only
detect positions and solve the connectivity problem in 3D
exploiting a priori known structural information.

3. Method
Our marker-based tracker uses perforated kinesiology

tape with a width of 5 cm and dots having a diameter of
roughly 1 cm (see Fig. 2). Attached to the back it does not
limit the movements of an athlete nor will it fall off in any
circumstance. It has a unique pattern of alternating rows
with two or three dots next to each other. As can be seen
in the teaser in Fig. 1, the large difference in brightness
helps in cases of underexposed photos thereby allowing for
short exposure times of the camera. By their nature, circles
are stable 2D markers and a robust center point extraction
is possible even in very noisy or (motion) blurred images.
The kinesiology tape provides a high marker density, with
22 dots on a 20×5 cm stripe resulting in a marker density of
0.22 markers/cm2.

Our hardware setup consists of 6 global shutter RGB
cameras (FLIR ORX-10g-51S5-C) set to a resolution of
2448×1600 and a frame rate of 100 fps. The exposure time
of the camera is set to 1 ms, which is rather short and we
consequently observe very little motion blur when testing
with fast stripe movements. As can be seen in Fig. 3 the
cameras are circularly arranged covering 180 degrees of
the athlete. The cameras are synchronized and calibrated
to each other and to a Vicon infrared marker reference
system (Vicon Motion Systems, Oxford, UK [1]). The
Vicon system uses 8×T010 cameras and Nexus software
in version 1.8.5.

An overview of our signal processing pipeline is

Figure 3. As motivated in [20], an athlete is performing a
handstand in a studio setup with 6 cameras in an u-shape
arrangement covering 180 degrees. The kinesiology tape attached
to the back can be seen in 4 views. In addition a reference Vicon
[1] camera setup tracks infrared makers attached to the rest of the
body.

illustrated as a block diagram in Fig. 4. As a first step, the
stripe and its dots are detected in each camera individually.
A Mask R-CNN as proposed by He et al. [11] is used as
a stripe detector. The network is pre-trained on the MS
COCO [13] dataset and we refine the network on a dataset
consisting of 1988 training samples and 631 validation
samples. Each sample is a tuple of an RGB image acquired
in our studio and the corresponding mask. A detected mask
m (see Fig. 4 a)), is used as a region of interest (ROI)
for a blob detector (Fig. 4 b)), detecting the dots in the
stripe. For our purpose, the blob analysis of the MATLAB
Computer Vision Toolbox [23] is sufficient to provide blob
center points b ∈ B.

The points b are mutually triangulated using blobs of
another view and the resulting 3D point is considered as
a 3D candidate point p ∈ P , if its back projection error
is below a threshold th1. The resulting point cloud P
consists of points that can be seen by two cameras. Each
point pi has a set of attributes: the identifiers ai of cameras
used for triangulation, the blobs bi used for triangulation
and a normal ni derived as the negative normalized view
directions of participating cameras. Next, two points
p1, p2 ∈ P are merged into a new point p3 = (p1 +
p2)/2, if the Euclidean distance towards each other is below
threshold th2 and if the back projection error of the merged



Figure 4. The proposed tracking pipeline: a) a Mask R-CNN [11] detects the kinesiology tape in N camera images. The corresponding
mask is used as a region of interest (ROI) in which b) a blob detector finds the dots of the tape. c) dot marker points of all cameras are
mutually triangulated which gives the 3D point candidate cloud X , in which edges of appropriate lengths are found E . d) a linear program
selects most likely edges and gives a feasible edge set F . A 3D-based alignment Markov Random Field (MRF) model is iteratively
registered to F given the a priori known structure of the dots inside of the tape. e) finally a second MRF optimized by particle belief
propagation refines the model to all camera views and outputs the estimated 3D marker coordinates xsol.

point in all views a1 and a2 is below the threshold th1. If p1
and p2 are merged, they are removed from P and p3 is added
to P with the attribute a3 = a1∪a2 and b3, n3 respectively.
This process is repeated as long as points can be merged.
As the next step, the point cloud P is transformed into an
edge cloud E with {e ∈ E | le > th3 and le < th4}, where
le is the length of an edge connecting two points in P . The
thresholds th3 and th4 are the lower and upper boundaries
of the a priori known distances of dots (see Fig. 2). In this
way, we allow variations in distance between the dots of the
tape if the skin at the back is stretched or contracted. The
described sets can be seen in Fig. 4 c) with p ∈ P printed
in Red and e ∈ E in Blue.

3.1. Linear Program

The task of the linear program is to select a subset from
the set of edges E as an approximation of the stripe (see Fig.
4 c) and d)). For this task, we define a graph G = (P, E , C)
on the stripe, where C is a set of costs associated to the
points. As can be seen in Fig. 2, points p ∈ V are the
dots of the stripe, and e ∈ E are edges connecting points.
Given, that each stripe starts and ends with a two dots row,
the number of target edges can be calculated by

ne = ⌊nrow/2⌋ · 2 + ⌈nrow/2⌉+ (nrow − 1) · 6, (1)

with ⌊.⌋ and ⌈.⌉ the floor and ceiling function. We assign
individual edge costs ce ∈ C as the inverse of the number of
neighboring edges Ωe connected to the current edge. In Fig.
2 the black edges of the graph are neighboring edges of the
red edge eij , which is defined by the two points pi and pj .
Consequently, Ωe is defined as all edges connected to pi or
pj except eij .

The linear program solves an edge selection task, with
selection hypothesis H and indicator variables xe, which
take value 1 if H is selected, and 0 otherwise. The stripe
detection task is to select hypotheses that minimize the
total costs. This can be cast into the following binary
optimization problem:

argmin
x∈F

∑
e∈E

cexe (2)

where the feasibility set F is subject to∑
e∈E

xe ≤ ne, (3)

∀e ∈ E :
∑

ωe∈Ωe

ωexe ≤ 12, (4)

∀e ∈ E :
∑

ωe∈Ωe

ωexe ≥ 6, (5)



The objective function in Eq. 2 minimizes the costs and
thereby maximizes the number of neighboring edges. Eq. 3
limits the total number of selected edges to ne. Eq. 4 and
Eq. 5 constrain the number of neighboring edges to a range
of 6 to 12, which as can be seen in Fig. 2 reflects the pattern
of the dots.

In addition to Eq. 3 - 5, the following condition has to
be satisfied: For all edge pairs eij , ekl ∈ E that are non-
identical (i ̸= k, j ̸= l) and are triangulated using the same
blobs in one camera, i.e. bi = bk, bj = bl, one indicator xij
or xkl must be zero.

If the binary linear program is infeasible, which it may
be in case of occlusions or missing blob detections, we
iteratively decrease the number of target edges ne until a
feasible solution can be found. The resulting problem can
be solved to optimality using BLP solvers like Gurobi [8].

3.2. Alignment Markov Random Fields (MRF1)

In the following, two Markov random fields MRF1 and
MRF2 are sequentially applied (see Fig. 4). In MRF1 a
model is optimized to match the edges of the feasibility set
F and in MRF2 the model is further refined to match the
camera images.

The first Markov random field is a set of random
variables called nodes x = (x, y, z, d) ∈ V , with x, y, z
the 3D location of the node and a local distance d. Each
node has a neighborhood N , defining connections to other
nodes, which consists of the solid and dashed edges drawn
in Fig. 2. Since we expect a different amount of stretching
of the stripe in longitudinal and transverse direction, we
distinguish between longitudinal N1,s and transverse N2,s

edges. Transverse edges connect points within a row, while
longitudinal edges connect different rows. The random
variables x are optimized by minimizing the energy of the
MRF model:

E(x) =
∑
s∈V

ψs(xs) +
∑
s∈V

∑
t∈Ns

ψs,t(xs,xt), (6)

where ψs(xs) is the unary potential and ψs,t(xs,xt) the
binary potential. The unary potential is defined as the
shortest distance to a point p of the feasibility set F :

ψs(xs) = min(xs,p),∀p ∈ F (7)

The minimal energy in Eq. 6 is consequently close to the
linear programs solution. The binary potential is defined as

ψs,t(xs,xt) = Θ1 (∥pst∥2 − d)
2
+Θ2 ∥⟨pst,ns,t⟩∥22

+Θ3exp(dmin − ∥pst∥2)
2J∥pst∥ < dminK

+Θ4(∥pst∥2 − dtarget)
2

(8)

where pst = ps − pt and J·K is the Iverson bracket,
which is 1 if its argument is true and zero otherwise. The

parameters Θ1 − Θ4 weigh individual terms. In the first
term, Θ1 balances the random variable d to match the node
distance between ps and pt. The second term pushes the
orientation of the connection ps to pt to be orthogonal to
nearby normal ns,t ∈ Nf , where the set Nf is a smooth
field of normals derived from the point attributes ni. In Nf

each camera is equally weighted, yet, individual weights for
each camera would be beneficial, as could be derived from
an advanced clustering of the corresponding cameras as in
Dockhorn et al. [7]. The third term encourages xs and xt

to keep a minimal distance dmin from each other and the
fourth term constrains the distance pst to match the target
length dtarget, which are measured tape distances that can
be estimated from Fig. 2.

The MRF is an iterative algorithm that needs an
initialization of a template, which is a complete structure
of the stripe including the target number of points with
corresponding edges. In order to position the structure in
3D we fit a third degree polynomial to the feasibility set
F . Together with the normal field Nf we can create a
tape template along the run of the polynomial. The long
connections in Fig. 2 that span across two rows or columns
are included to avoid a folding of the structure of the stripe.

In order to efficiently minimize the MRF energy (Eq.
6), we approximate the maximum a posteriori (MAP)
probability using max-product particle belief propagation
as Pacheco et al. [18] and Hachmann et al. [9]. Particles
are estimated using slice sampling as in Müller et al. [17].
In order to improve convergence, the slice sampling particle
set Pt = {x(1)

t , · · · ,x(p)
t } of node t is augmented:

Pt,aug = Pt ∪ Pmobility ∪ Pknn. (9)

The set Pmobility adds the position of neighboring nodes
which increase stripe movements and thus convergence and
Pknn adds the k-nearest points from the feasibility set F as
these are likely candidates for a good position.

3.3. Refinement Markov Random Field (MRF2)

The second MRF uses the same energy formulation as
Eq. 6 and is initialized by the resulting positions of MRF1.
MRF2 is computationally much more demanding, as it
tends to need more iterations to convert. That is why we
decrease the search space and reduce the random variable
x to the 3D positions of the nodes. For the same reason,
the number of edges is reduced to only include the solid
connections in Fig. 2. The unary potential of MRF2 is
image-based:

ψs(xs) =
∑
c∈C

Ic(Φc(xs)) (10)

Here, Φc(·) is the back projection of 3D points into image
coordinates of camera c ∈ C. The 2D image Ic, which can



be seen in the background of Fig. 4 e), contains the inverse
image acquired by camera c inside of the Mask R-CNN
maskm and is filled with increasing values on the outside of
m, which are calculated by a distance transformation. The
binary potential of MRF2 is similar to Eq. 8:

ψs,t(xs,xt) = Θ5(Ic(Φc(xs) + Ic(Φc(xt)− 2Ic(Φc(xst))

+ Θ6 ∥⟨pst,ns,t⟩∥22 +Θ7 ∥⟨pst, αs,t⟩∥22
+Θ8(∥pst∥2 − dtarget)

2

(11)

with xst the arithmetic mean of xs and xt. Different
to Eq. 8 the first term calculates a relation between the
nodes positions and an intermediate point xst: Given that
the appearance of the stripe dots are bright and regions
in between are dark. Furthermore, the third term aligns
the model to the currently estimated direction αs,t, that is
either longitudinal or transversal. The corresponding dot
product between the edge pst and the identified direction
αs,t is penalized. The directions in αs,t are derived from
the normal field Nf and the fitted polynomial. The same
particle set Pt,aug as in Eq. 9 is used and the back projection
Φc(Pt,aug) it is illustrated in the foreground of Fig. 4 e) as
colorful markers. The parameters as Θ1, ...,Θ8 and dmin

are estimated empirically.
After convergence of MRF2 the final positions of the

nodes xsol can be fitted to a musculoskeletal model like
OpenSIM [6] for bio-mechanical analysis. We share
software examples of our tracking framework on GitHub1.

4. Experiments and Results
We conduct a series of experiments on artificial and

studio sequences to prove the effectiveness of our method.
While the overall framework remains unchanged, each
domain has different empirically estimated parameters.
The Artificial dataset is the 548 frames long sequence
50009 hips of the Dynamic FAUST dataset by Bogo et al.
[4], which shows the largest amount of spine movements
among them. The coordinate system suggests that the
height of the body shape is 1.75, which we set to 1.75 meters
in order to calculate reasonable errors in millimeters.

Experiment 1: Using the artificial sequence we
compare our method to an arbitrary keypoint-based
approach that is able to robustly track 4 to 8 keypoints
positioned left and right next to the spine. These points are
used to fit 1 to 3 planes that approximate the back, which
can be seen in Fig. 5. The shortest distance of the planes to
the tape dot ground truth is measured, which is a one-sided
Hausdorff distance. The errors of planes and our approach
can be seen in the time series in Fig. 6 and mean values can
be found in the top row of Table 1.

1https://github.com/hendrik-hachmann/spinemocap

Figure 5. (left) We perform experiments with one (blue) to
three (magenta) planes fitted to markers left and right next to the
spine. (center) Qualitative renderings for a 3-plane approximation
with the clearly visible plane-to-body shape intersections. (right)
Hausdorff distance color encoding with red values being a close
approximation to green values indicating a large distance to the
planes. This sparse marker-based spine approximation is evaluated
on the artificial test sequence and the closest distance of the plane
to the 3D ground truth is plotted in the time series in Fig. 6.

Experiment 2: We added skin-colored balls falling from
the sky to simulate arbitrary occlusions. As illustrated
on top of Fig. 7, in a rendered scene the red and green
marked ground truth positions and occlusions can be easily
calculated. The occlusions are mapped to an artificial stripe
pattern in the middle showing the number of views that
can see a marker. Occlusions typically occur as burst

Figure 6. Comparison of the 1 to 3 planes approximation to the
ground truth with our marker point to ground truth point error on
the 0 balls artificial sequence. Even though a point to point error
is more restrictive than a plane to point error, our method shows
that it is more accurate.

https://github.com/hendrik-hachmann/spinemocap


Figure 7. Occlusion experiment: (top rows) 4 views of the
Artificial sequence with 5000 particle system balls falling from
the sky and creating occlusions. Green or red markers on the stripe
symbolize whether the particular dot can be seen by the particular
view. The schematic in the middle shows the number of cameras
that can see the markers with dark Blue meaning that all cameras
can see the dot and yellow meaning that only one camera can
see the dot. (bottom row) Corresponding spine tracker result. It
can be observed that the tracker can estimate the position of stripe
markers quite well even though this is a case with a heavy amount
of occlusions. While in this case, occlusions are caused by balls,
self-occlusions are very common, as in a 180 degrees studio setup
the total stripe can never be seen by all cameras at once.

Dataset 1-plane 2-planes 3-planes MoSh [14] ours
Artificial ↓ 37.67 21.89 10.29 - 5.55
Studio ↓ - - - 24.75 4.12

Table 1. Quantitative tracking results: The dataset Artificial is a
4D sequence of the Dynamic FAUST dataset [4] with kinesiology
tape texture (see Fig. 7). The 1-3 plane(s) results are Hausdorff
distance errors of the planes illustrated in Fig. 5 to the ground truth
markers. Error-values in [mm] are calculated with the virtual body
size set to 1.75 meters. The Studio dataset is a studio sequence
which can be seen in Fig. 11. MoSh [14] denotes a motion and
shape fitting to a sparse Vicon [1] marker trajectory. Individual
marker positions are inferred from the texture fitting as illustrated
in Fig. 8.

occlusions, meaning that several dots close to each other
are occluded at the same time. A qualitative result can be
seen at the bottom of Fig. 7. Even with the high number
of occlusions in this frame, the marker position estimation
stays robust. Quantitative results can be found in Table 2.

Experiment 3: We captured a studio sequence with
major spine movement, which we call Studio using our
RGB cameras and Vicon. For every 50th frame, we create

Artificial dataset 0 balls 5000 balls 10000 balls
4 cameras 17536 11197 6846
3 cameras 0 5328 6812
2 cameras 0 825 2764
1 camera 0 83 607
0 cameras 0 103 507

error [mm] ↓ 5.55 6.17 7.89

Table 2. Occlusion experiment results corresponding to Fig. 7:
(top) Visibility of markers in the Artificial sequence with 0, 5000,
and 10000 balls as occluders. 4 cameras mean no occlusions, as 4
cameras can see the markers. 0 cameras mean that a marker is not
visible in any view. (bottom) Marker point-to-ground truth point
tracking the error in [mm].

Figure 8. Vicon marker-based SMPL fitting with stripe texture
mapping. (left) T-pose reference frame (right) SMPL fit with
texture and red balls as 3D ground truth.

a 3D ground truth by triangulation of manually annotated
images of the six cameras. Then we optimize a body shape
to the sparse Vicon marker set similar to MoSh by Loper
et al. [14]. As can be seen in Fig. 8, on a t-pose frame
an artificial stripe texture is registered to the ground truth
rendered as red balls. As SMPL [15] body shapes have
consistent vertex IDs along the sequence, from the texture
we can calculate a 3D estimate of the tape dots. Ground
truth marker-to-marker estimates of this method and our
tracker can be found in Table 1.

Qualitative results: In Fig. 7, 9,10 and 11 some samples
of our tracker on various studio sequences are visualized.
Fig. 10 shows an artificial occlusion by a jogging bra, which
occludes dots in all views. Even though the Mask R-CNN
results are incomplete or include a second faulty detection,
the tracking result is precise.

Discussion: The proposed tracking pipeline in Fig. 4
is different from many other trackers, as it has no image-
based feature encoding and matching, such as the optical
flow texture matching in Dynamic FAUST [4] or the image-
based connectivity extraction in the mesh suit approach by
Hiroaki et al. [22]. We claim that since we have only a
detector, we can increase the marker density to a higher



Figure 9. (left) Studio sequence image with the result of our
method (center) Comparison of results of MoSh printed in Blue,
our method in Red to the ground truth in Black (right) Vicon
marker-based SMPL fitting with tracking result in Blue.

Figure 10. The proposed spine tracker also works with jogging
bras. Even though some dots in the stripe are occluded and the
Mask R-CNN detections have a second faulty detection (right
side), the overall stripe fitting is accurate.

Properties 4D [4] IMU [24] Vicon [1] OF [12] MS [22] ours
model preparations (−−) (o) (−) (o) (++) (++)

precision (++) (o) (+) (−−) (+) (+)
comfort (++) (−) (−) (−) (++) (++)

occlusion handling (++) (++) (−−) (++) (−−) (+)
outdoor (−−) (++) (−−) (++) (−) (+)

Table 3. Qualitative comparison of various motion capture systems
(estimated by the authors): 4D denotes body painting in Dynamic
FAUST [4], IMU denotes inertial measurement units [24], OF
denotes optical fibers [12] and MS denotes a mesh suit [22].

level. In comparison to Hiroaki et al. [22], who report a
marker density of 0.16 marker/cm2, using a similar studio
setup we achieve a density of 0.22 marker/cm2.

We would like to conclude this section with a
comparison of different spine motion capture systems.
In Table 3 strengths and weaknesses regarding certain
properties are listed. While some comparisons are difficult
to assess, the following can be probably agreed upon:
Dynamic FAUST is rather precise, and active lightning
systems may run into problems if used outdoors. Focussing
on our approach we claim that a model preparation of a
few seconds is rather short. The precision is in the upper
mid-range. The term comfort refers to whether natural

Figure 11. Tracker results on studio samples.

movements are possible and includes if a device stands
out, falls off, or is heavy. We showed that our framework
is capable of occlusion handling with interpolated marker
estimation even if multiple markers are occluded in all
cameras. Finally, given that cameras come with automatic
exposure, the combination with a high contrast marker
allows for outdoor use. We want to stress that our tracker
uses intra-frame prediction only and no initial pose is given.

5. Conclusion

We introduced a kinesiology tape-based tracking system
that is able to capture the human spine in 3D over time. The
tape is highly flexible and can follow any spine movements.
Several experiments on artificial and studio sequences show
that our tracking framework can reliably track markers with
high density and is robust in case of occlusions. The
method is not limited to the application of spine motion
capture and can be adopted to all other sorts of surface
tracking. We assume that the tracking performance can be
further improved by temporal context, which we intend to
investigate in future work.
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