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Abstract—Strategy games are a challenge for the design of AI
agents due to their complexity and the combinatorial search space
they produce. State abstraction has been applied in different
domains to shrink the search space. Automatic state abstraction
methods have gained much success in the planning domain and
their transfer to strategy games raises a question of scalability.
In this paper, we propose Elastic MCTS, an algorithm that uses
automatic state abstraction to play strategy games. In Elastic
MCTS, tree nodes are clustered dynamically. First, nodes are
grouped by state abstraction for efficient exploration, to later
be separated for refining exploitable action sequences. Such an
elastic tree benefits from efficient information sharing while
avoiding using an imperfect state abstraction during the whole
search process. We provide empirical analyses of the proposed
method in three strategy games of different complexity. Our em-
pirical results show that in all games, Elastic MCTS outperforms
MCTS baselines by a large margin, with a considerable search
tree size reduction at the expense of small computation time.
The code for reproducing the reported results can be found at
https://github.com/GAIGResearch/Stratega.

Index Terms—State Abstraction, MCTS, Strategy Games.

I. INTRODUCTION

Strategy games are challenging for AI players due to their
large and complex search spaces. Human expert players can
quickly learn effective strategies to defeat built-in AI in this
type of games. These agents typically use different methods
for decision-making, such as heuristics or scripts created by
game designers with incorporated domain knowledge. Search-
based AI agents guided by heuristics [1] can identify good
trajectories with a short horizon (or search depth), while agents
combined with scripts scale better in complex games [2].
However, those scripts are usually rigid and limited by the
creator’s ability to capture the complexity of decision-making
(as in most rule-based systems). These static scripts cannot
adapt to game modifications, typical during the game devel-
opment cycle. In this case, these scripts need repeated updates,
requiring extra workload for designers and developers.

While heuristics and scripts are created using expert knowl-
edge, agents can also derive game knowledge using a forward
model. A forward model is a simulator that allows agents
to sample different future playing trajectories, to then model
this knowledge in a data structure such as a tree. A forward
model returns a possible next state given a state-action pair.
By simulating future time steps, the agent finds a strategy that
guides the current move. Monte Carlo Tree Search [3] (MCTS)
is a popular planning method that balances exploration and
exploitation while building a search tree. However, strategy
games with large search spaces, often increasing combinato-
rially with the number of units under control, make search-
based methods struggle to find good strategies in a reduced
time frame. Here, and in most domains, improving sampling
efficiency is crucial for good performance.

Abstraction [4] is technique for reducing the search space.
In strategy games such as StarCraft, existing works on state
abstraction [5], [6] and action abstraction [2], [7], [8] have
shown to outperform non-abstracting methods. The abstrac-
tions used in these works depend on domain knowledge for
specific tasks, hence they fail to be applied to new games. In
the planning domain, more general abstractions that require
no domain knowledge are extensively studied [9]–[15], often
in tasks of relatively low complexity. In our work, we aim to
evaluate whether similar concepts from the planning domain
can be scaled up to strategy games.

In this paper, we propose an algorithm that employs state
abstraction on MCTS to play strategy games. The state ab-
straction aggregates tree nodes by approximate homomor-
phism [16] for Markov Decision Process (MDP), to reduce the
size of the tree. The challenges derived from implementing
this approach are discussed in this paper and solutions are
proposed to address them. In our previous work [17], we
proposed two solutions. First, a modification of MCTS (which
we call MCTSu) is implemented to simplify the action space.
In MCTSu, each node is assigned to a unit, and therefore
it considers actions available for one unit rather than for all
of them. This reduces the number of samples required for
an abstraction. Secondly, an interaction threshold αABS ∈ N
is introduced to indicate a stopping iteration for the use of
abstraction. As the MCTS iterations Nmcts ∈ N reaches αABS,
the state abstraction that aggregated tree nodes in previous
iterations is abandoned and the tree is “expanded” (i.e. abstract
nodes are eliminated), continuing its search as in standard
MCTS. Given that the tree expands and shrinks during the
search, we call our algorithm Elastic MCTS.

This paper extends the previous work [17] by including
three baselines and two more games. Two of these baselines
are Linear Side Information (LSI) [18] and Naive MCTS [19],
which are are canonical methods designed for sequential
decision-making problems with combinatorial action spaces.
The third baseline is RG MCTSu which, instead of using
MDP homomorphism to group nodes in the tree, employs a
random selection of nodes to cluster them. The objective of
this addition is to test if the benefits observed in Elastic MCTS
are due to using any grouping of nodes, or the one suggested
by MDP homomorphism. Additionally, we add two games,
Push them All and Two Kingdoms, to test Elastic MCTS under
different scenarios, dynamics and action space complexities,
in order to evaluate the generality of our approach.

Our contributions are summarized as follows:
• Automatic state abstraction for strategy games with

no domain knowledge: Our method applies a state
abstraction that requires no domain knowledge for com-
plex environments such as strategy games, in contrast
to existing methods which require domain knowledge.
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While this work focuses on strategy games, the method
proposed in this paper may be applicable to other genres,
as it does not require game-specific knowledge.

• An analysis on the effects of state abstraction on
the recommendation policy: Previous works keep the
generated abstraction within the tree of MCTS during all
iterations. This approach is based on the assumption that
the policy resulting from the abstraction is better than the
policy from the original state space, neglecting the risk
of using a bad-quality state abstraction. Our algorithm
sets up an iteration threshold for using the abstractions,
which we tune to analyze the impact of turning back to
the original tree at different times during the search.

• Generality and validation of Elastic MCTS: The algo-
rithm proposed here outperforms all the other compared
methods in two of the three games tested and outperforms
all other methods based on MCTS with unit ordering in
all three games. Importantly, it outperforms the version of
Elastic MCTS that groups nodes at random in all cases,
showing that the reason behind the performance boost
observed is due to the use of MDP homomorphism rather
than any reduction of the search tree size, as achieved by
the random group selection performed by RG MCTSu.

II. BACKGROUND

A. Monte Carlo Tree Search (MCTS)

MCTS [20] [3] generates a search tree to estimate state-
action values. The root node represents the given state,
whereas nodes and branches represent states and actions,
respectively. In tree nodes, the cumulative reward X and the
visit count N are stored and updated while building the tree.
MCTS builds the tree iteratively, each iteration including 4
steps: selection, expansion, simulation, and back-propagation.

The selection phase returns a leaf node by traversing the
tree from the root until a not-fully expanded node is reached.
During this phase, a tree policy is used to select the next node.
A canonical choice for the tree policy is Upper Confidence
Bounds (UCB), among which the UCB1 is widely used. The
UCB1 value for each node is:

UCB1(s, a) =
X(s, a)

N(s, a)
+ C

√
lnNparent

N(s, a)
, (1)

where s is the state represented by the corresponding node, a
the action taken at s, X(s, a) the cumulative reward, N(s, a)
the node’s visit count, and Nparent the parent node’s visit
count. In UCB1, a constant C ∈ R controls the exploration-
exploitation trade-off. The tree node with the highest UCB1
value will be selected to descend the tree until a non-fully
expanded node is reached, when a new child node is generated
in the expansion phase. The simulation phase starts from
the previously expanded node, using a roll-out policy to
sample actions until a fixed depth is reached or until the
game ends. Often, this roll-out policy consists of a uniform
random selection of available actions. The final state visited
in the simulation is then evaluated, and its value (the game’s
outcome) is back-propagated through the nodes visited in this
iteration until the root node. For non-terminal states [21], [22],

a heuristic function is used instead. When the budget runs
out, a recommendation policy is used to pick an action for
execution (e.g. the most visited child of the root node).

B. State Abstraction and Approximate MDP Homomorphism

A Markov Decision Process (MDP) is defined as
⟨S,A, R, T, γ⟩, where S is the state space, A the action space,
R : S × A 7→ R the reward function, T : S × A × S 7→ [0, 1]
the transition probability function and γ ∈ R, 0 < γ < 1 is a
discount factor. State abstraction of an MDP can be formalized
with a mapping ϕ : S 7→ Sϕ from state space to an abstract
state space Sϕ, preferably of smaller size. Each element of Sϕ
is an abstract state consisting of one or many ground state(s).
Approximate MDP homomorphism [16] defines a similarity
measure between states (s1, s2) by two approximation errors:

ϵR(s1, s2) = max
a∈A

|R(s1, a)−R(s2, a)| (2)

ϵT (s1, s2) = max
a∈A

∑
s′ϕ∈Sϕ

|
∑
s′∈s′ϕ

T (s′|s1, a)−
∑
s′∈s′ϕ

T (s′|s2, a)|.

(3)

The reward function error ϵR(s1, s2) measures the maximum
l1 distance of reward between two states. The transition prob-
ability error ϵT (s1, s2) measures the worst-case total variation
distance between two states conditioned by action and falls
in the range [0, 2]. In MCTS, nodes from the same depth are
aggregated together if the two corresponding states have re-
ward function error and transition probability error both below
the threshold, i.e., ϵR(s1, s2) ≤ ηR and ϵT (s1, s2) ≤ ηT .
The node group is called abstract node and the abstraction
at each depth is a local approximate MDP homomorphism.
We note the reward and visit count of an abstract node is
shared between all its ground nodes (tree nodes generated by
traditional MCTS), denoted by X̂ =

∑
Xi

m and N̂ =
∑

Ni

m ,
where m is the size of this abstract node, i.e., the number
of nodes aggregated. These statistics are updated when a new
ground node is added to an abstract node.

III. RELATED WORK

In strategy games, state abstraction has been widely used
to obtain more efficient agents. [23] proposed to group MCTS
tree nodes that have similar game-specific features for efficient
searching in computer GO. [24] proposed to use a hand-crafted
state abstraction to reduce map complexity by dividing the
game map into tiles. This state abstraction enhanced the Monte
Carlo algorithm in playing the Capture The Flag game. In
[25], state abstraction was applied to encode the Starcraft map
into regions connected by checkpoints, largely simplifying the
state space. This state abstraction was combined with action
space pruning in [5], to play combat scenarios. In their high-
level game state representation, combat-irrelevant units such
as workers and buildings were eliminated to reduce the search
space, resulting in an agent showing a performance close to
script-based agents. [26] decomposed the game state to unit
vectors that contain unit information, eliminating superfluous
information and grouping similar nodes. While these state
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abstractions enhanced the agent’s game-playing performance,
most of them were generated with domain knowledge, limiting
their application to new games.

In the planning domain where the problem is less complex
than in strategy games, state abstractions that require no
domain knowledge were widely studied. Eyck et al. [27]
empirically studied node grouping both with or without prior
knowledge. Their work has shown that random grouping,
grouping according to payoffs, and grouping with prior knowl-
edge have different influences on the searching speed and
final performance, even though all these grouping methods
reduce the branching factor. Progressive Abstraction Refine-
ment for Sparse Sampling (PARSS) [12], [14] proposed to
start with a coarse abstraction, in which all the states are
clustered in the same group. This group is gradually divided
into different groups to refine the state abstraction. On-The-
Go abstraction [13] updates the abstraction more frequently,
avoiding the influence of delayed samples. A recent visit count
is kept for each node and the abstraction mapping for a node
is re-computed once the recent visit count reached a threshold.

Jiang et al. [9] proposed to construct state abstraction for
MCTS with approximate MDP homomorphism. In each depth
of MCTS, tree nodes that have a similar transition probability
function and reward function are grouped. Their similarities
are defined as in Eqs. 2 and 3. After every batch of MCTS iter-
ations, a state abstraction is generated from collected samples.
The proposed method improved the agent’s performance in the
game Othello when combined with further action abstraction
and tree pruning. [11] extended the application of approximate
MDP homomorphism from state abstraction to state-action
abstraction where the state-action pairs are grouped. In our
paper, we adapt approximate MDP homomorphism from [9]
to perform in the more challenging domain of strategy games,
without providing game expert knowledge.

There are methods designed to find solutions for strategy
games where the action space is a composite of unit action
spaces. Previous approaches that adopt Combinatorial Multi-
armed Bandit (CMAB) achieved success in this problem.
Naive MCTS [19] integrated CMAB into the selection phase
to recommend action combinations. Linear Side Information
(LSI) [18] proposed a two-phase algorithm where a set of can-
didate action combinations are generated by evaluating each
action and then the final action combination is recommended
using an MAB. Different from these approaches that search
for an action combination, our method addresses combinatorial
action space by reducing selection space for each unit.

IV. STRATEGA

To evaluate agents in different strategy games, we use the
Stratega [28] framework where new games can be quickly
implemented. The battlefield in Stratega is depicted in an
isometric view, where each tile can hold one or several
elements such as landforms, buildings, resources, and army
units (see Figure 1). One of the key features of Stratega
is that a forward model is provided to support statistical
forward planning methods, such as MCTS or Rolling Horizon
Evolution [29]. We use three games from Stratega – Kill The

Fig. 1: An example of a game in the Stratega framework.

King (KTK), Push Them All (PTA), and Two Kingdoms (TK)
– as evaluation for our proposed method.

In KTK, there are 4 unit types: King, Warrior, Archer and
Healer. King, Warrior and Archer have similar action types:
[Move, Attack, Do-nothing]. The action types for Healer are:
[Move, Heal, Do-nothing]. Action types are parameterized,
which affects action space sizes. For example, the Move Range
parameter for action type Move is set to 2 for the King unit,
resulting in 12 surrounding tiles as possible targets. Its Attack
Range for Attack is set to 2, allowing any opponent unit within
2 tiles to be targeted. In this setting, the maximum size of
its action space is (12 + 1) × (12 + 1) = 169, as units are
allowed to first move (+1 for not moving) and then attack (+1
for not attacking). The whole action space for a player with
many units is a combinatorial space bounded at (max |Au|)n,
where the Au is the size of action space of any unit on the
board. For KTK, we experiment with various numbers of units
between 4 and 11, which constitutes an action space bounded
between 105 and 1014 actions. The combination of different
unit compositions and their diverse parameterization and their
resulting action sets yields many strategies. The attribute set
for this game consists of Health Points, Move Range, Attack
Range, Attack Damage, Heal Strength. Additionally, areas of
mountains and water are used to create various layouts, which
require units to coordinate their actions to be effective.

In PTA, there is only 1 unit type: Pusher, who can push
one adjacent unit in different directions. To win this game,
the player controls units to push all opponent units into holes
distributed across the map. In our configuration, each player
has 3 pushers. With the size of action space for each unit as
(4 + 1) × (4) × 4 = 80 (move to 4 neighbor positions or
not moving, push a neighbor unit, and push the target unit in
4 different directions). The size of the resulting action space
is 803 = 512, 000. PTA differs from KTK in its dynamics
(units can change their positions as well as the opponents’)
and challenges (e.g. positioning coordination between units).

TK is designed for evaluating whether the Elastic MCTS
can scale to more complex strategy games. TK is a combat
game with researching, unit spawning, resource collection,
and resource management. This game shares the same goal as
KTK, killing the opponent King. However, units are required
to be spawned and their cost and conditions vary. There are
two types of cost, including gold (to be collected from gold
veins), and production, which increases in every turn. Specific
technologies must be researched to spawn units. e.g. Mining
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(a) Tree growth (b) Node grouping (c) More tree growth (d) Split groups

Fig. 2: Overview of dynamic changes of tree nodes in Elastic MCTS. Ground nodes are black while abstract nodes are yellow.
After a number of iterations (a), ground nodes are grouped by using Approximate MDP Homomorphism (b). Search continues
adding more ground nodes (c), repeating state aggregation after every B iterations. When the abstraction iteration threshold is
reached, abstract nodes are split (d) and the search continues to explore the original game without using the state abstraction.

must be researched to spawn a worker. In this game, the unit
types are defined as: King, Castle, Worker, Warrior, Knight,
Wizard and Healer. At the beginning of the game, each player
has only a castle and a king. The player spawns workers to
collect gold from gold veins and use it to spawn armies to
protect its King and attack the opponent.

The action space for TK varies largely since units can
be spawned. There is a minimum action space size (at the
beginning of the game) that is 169 + 1, including the action
space for the King and whether to spawn a worker. The
maximum action space size depends on how many units
are there on the map. See for example a game where one
worker and two warriors were spawned. The action space for
a king or a warrior is a composition of move and attack:
(12+1)× (12+1) = 169. For a worker, the action space is a
composition of movement and mining: (12+ 1)× (12+ 1) =
169. There are also spawning unit actions (at the 8 tiles
surrounding the Castle) for each unit: 5× 8 = 40. There is a
choice of whether to research Mining, resulting in 2 actions.
The resulting action space is 1694 × 40× 2 ≈ 6× 1010.

All these games have a maximum round limit. When this
limit is reached and no player has achieved the condition to
win, the game results in a draw. The maximum round limits
for KTK, TK and PTA are 100, 100, and 200, respectively. We
choose these three games to evaluate our proposed algorithm
for their different characteristics. KTK and TK share many
challenges with Starcraft even though their battles are not as
complex. Firstly, KTK, TK, and Starcraft all have combina-
torial state and action spaces, which is a common feature in
most strategy games. KTK focuses on how to optimize the
strategy for a given unit set and TK requires the agent to
control units for different goals (e.g. collecting resources or
attack) and decide which units to be included in its army. PTA
aims at evaluating state abstractions in more tactical scenarios.

V. ELASTIC MCTS

We propose Elastic MCTS for strategy games, which con-
structs state abstractions for MCTS with approximate MDP
homomorphism. First, we introduce two modifications that
are needed to adapt the principles of MDP homomorphism
to the combinatorial search spaces present in strategy games:
MCTS with unit ordering (units move sequentially) to reduce

the action space (Section V-A) and introducing an iteration
threshold to revert to the original state space (V-B). We assume
a multi-unit setting, but our method can be used also for
single-unit games. In the single-unit setting, our method differs
from [9] by the node un-grouping step. Our final method is
described in detail in Section V-C and depicted in Fig. 2.

A. Approximate Homomorphism in Strategy Games

Our method is based on the state abstraction proposed
by Nan Jiang [9], where a local approximate MDP homo-
morphism (see Section II-B for details) is constructed and
constantly updated from trajectories sampled by MCTS. As
this method is originally designed for the planning domain,
two issues occur when it is applied to complex search spaces
such as those from strategy games.

First, the size of samples required to generate a good-quality
approximate homomorphism depends on the sizes of the state
and action spaces. This requirement becomes infeasible in
strategy games, where the state space grows exponentially and
the action space is highly variable. Secondly, the calculation of
reward and transition approximation errors ϵR and ϵT (Eqs. 2
and 3) requires the execution of all possible actions available
in two states. For two states that have different action spaces
(common in strategy games), the original definition of ϵR
and ϵT can not apply. While using only the small set of
common actions would possibly resolve the approximation
errors, the resulting approximate errors would not represent
the true similarities of both states in terms of rewards and
transitions. Moreover, this solution will lose the performance
guarantees provided by approximate MDP homomorphism [9].

We alleviate these two issues by developing a variant of
MCTS called MCTSu (MCTS with unit ordering). In MCTSu,
each node corresponds to a game state in which a single
unit is being controlled. This is similar to the hierarchical
expansion of action in [30]. Thus, the action space for each
node is much smaller than the original combinatorial one.
Additionally, nodes in MCTSu have a large proportion of
common available actions in states where the same unit acts.
To implement MCTSu, we can fix the units’ move order. Inside
MCTSu, the move order is set randomly at the beginning
of the game and kept fixed. When a new unit is spawned,
it moves after all other units move. While, theoretically, the
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guarantee of MCTS that converges to minimax does not hold
anymore, agents under this setting are empirically found as
strong players with advantages obtained by the reduced action
space. The results and discussion on this are in Section VI-B
and are in line with previous results from the literature [31].

B. Elastic State Grouping and Un-grouping

We construct a state abstraction from samples collected by
MCTS to group tree nodes. The state abstraction is generated
in a batch manner: for every consecutive B iterations of
MCTS, an approximate homomorphism is constructed from
the sampled trajectories to aggregate similar nodes into groups,
according to the states represented by these nodes. In MCTS,
each tree node stores statistics including cumulative reward
and visit count. For a node group, its statistics are drawn by
averaging statistics from its ground nodes: the UCT value of
one node belonging to a node group is calculated based on
its group statistics, and the group node statistics are updated
during the back-propagation step.

Existing methods [9], [11], [13] assume the generated state
abstraction to be of high quality so they keep using the
state abstraction until the search is finished. However, it
is well known that approximate MDP homomorphism is a
lossy abstraction, i.e., introduces imperfections in the search
space [13]. With a lossy abstraction, the optimal policy
obtained from abstraction performs worse than the optimal
policy derived from the original search space. For strategy
games, MCTSu reduces the size of action space and helps
construct a better abstraction, but these imperfections remain.
Additionally, states belonging to the same group have common
statistics, forcing the action selection for the recommendation
policy to choose effectively at random among actions that lead
to a child node (but a different ground node).

We propose a novel approach of using state abstraction to
tackle both problems mentioned above. We set up an iteration
threshold αABS for using state abstraction, i.e, the MCTS
runs with state abstraction for αABS iterations. After that,
MCTS assigns the statistics of node groups to their member
ground nodes, and the state abstraction is abandoned (breaking
the node groups into ground tree nodes). For the remaining
budget, the algorithm runs as traditional MCTS. After αABS

iterations, MCTS does not search in an imperfect space,
and nodes that belonged to the same group might now be
independently visited. This allows MCTS’s recommendation
policy to distinguish better among the available actions.

C. Elastic MCTS

We present Elastic MCTS in three separate parts, with
pseudocode in Algorithms 1, 2 and 3. Algorithm 1 shows
the general framework of Elastic MCTS that runs MCTS
iterations (line 3) and controls the state abstraction until the
forward model calls budget (Nfm) is exhausted (line 2). Each
rollout step uses one unit of this budget, where a state and an
action are provided to the forward model to retrieve the next
state. The abstraction is initialized to map states to themselves
(line 1). When the number of iterations surpasses the threshold
αABS (line 4), the state abstraction is abandoned to return to

Algorithm 1 Elastic MCTS. Nfm ∈ N: forward model calls
budget. αABS ∈ N: MCTS iteration threshold. Nmcts ∈ N:
current MCTS iteration. B ∈ N: batch size. ϕ(s) = ŝ: state
abstraction mapping a ground node s to a node group ŝ.
ηR, ηT ∈ R are reward and transition error thresholds, resp.

Require: Nfm, αABS, ηR, ηT
1: ϕ := s → ŝ, ŝ = {s} # Initialize the abstraction
2: while nfm < Nfm do
3: MCTSIteration(ϕ)
4: if Nmcts > αABS then
5: ϕ := s → ŝ, ŝ = {s} # Fig.2 (d)
6: else if Nmcts%B == 0 then
7: ϕ = ConstructAbstraction(ϕ, ηR, ηT ) # Fig.2 (b)
8: Nmcts = Nmcts + 1

Algorithm 2 MCTSIteration(ϕ)

1: while true do
2: Select a child K that maximizes Vuct =

X(ϕ(s), a)/N(ϕ(s), a) + C
√
lnNparent/N(ϕ(s), a).

3: if Node K is not fully-expanded then
4: Expand this node by generating a new child node P .
5: Rollout for P and obtain reward R.
6: break
7: else if Node K represents the end of the game then
8: Obtain reward R from sate evaluation function.
9: break

10: Backpropagate R, updating X(s, a) and N(s, a) for node
group ϕ(s) in selection path.

the original group search space (line 5), by splitting all node
groups to ground nodes and assigning group statistics to each
member node. This procedure is also depicted in Figure 2.

Algorithm 2 shows the 4 phases of MCTS, but differing
from normal MCTS in that it uses cumulative reward and visit
count from the node group rather than the ground tree nodes,
in the selection (line 2) and back-propagation (line 10) steps.
Nodes within the same node group have similar probabilities to
be selected as they share statistics. New nodes added to the tree
in the expansion phase are added as ground nodes, merging
into groups after B iterations, as shown in Algorithm 1.

Algorithm 3 shows the update of the state abstraction: from
the deepest layer to the root (line 1), for every ground tree node
that is not a member node of a node group (line 2), a similarity
check is performed against all sibling node groups. This
similarity is measured by computing two approximate errors
ϵR and ϵT of approximate MDP homomorphism. The samples
collected by MCTS are triplets and each of them contains a
state, an action, and a return: < s, a,R >. To compute the ϵR
error between two states s1 and s2, |R(s1, a) − R(s2, a)| is
calculated for each action a that is available for both s1 and
s2, with R(si, a) = 0 if a is invalid for any si. ϵR takes the
value of the maximum difference found among actions (line 7).
The computation of ϵT also requires iterating all actions. The
approximate error |T (s′|s1, a) − T (s′|s2, a)| equals 1 only
when both s1 and s2 have action a as their valid action, and
this action leads to the same next state s′. In this work, we
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Algorithm 3 ConstructAbstraction(ϕ, ηR, ηT ), l is the tree
depth and L is the maximum depth of the current tree.

1: for l = L to 1 do
2: for all state s1 in depth l that is not grouped do
3: s1 grouped = false
4: for all abstract state ŝ in ϕl of depth l do
5: s1 in ŝ = true
6: for all state s2 in ŝ do
7: ϵR = maxa |R(s1, a)−R(s2, a)|
8: ϵT =

∑
s′ |T (s′|s1, a)− T (s′|s2, a)|

9: if ϵR > ηR or ϵT > ηT then
10: s1 in ŝ = false, break
11: if s1 in ŝ == true then
12: Add s1 in abstraction node
13: s1 grouped = true, break
14: if s1 grouped = false then
15: Create a new abstract node

only consider clustering nodes that represent the same unit,
their next state s′1 and s′2 are recognized as identical when the
unit-related attributes have the same values. If an existing node
group is found where ϵR ≤ ηR and ϵT ≤ ηT for a candidate
ground node, we add the ground node to its member nodes
(lines 11-13). If this ground node is found no group fulfills
this condition, a new group is created where the only member
node is this ground node (line 15).

VI. EXPERIMENTAL WORK

Our experimental setup spans through three games (de-
scribed in Section IV) and five agents1:

1) Rule-based Agents: based on built-in rule-based agents
from Stratega [28]. The strategy for KTK rule-based
agent is to concentrate attacks on a single isolated enemy
unit and assign healers to heal the strongest ally units.
For PTA, each pusher moves to the nearest enemy and
pushes the enemy towards the nearest hole. In TK,
the strategy is spawning one worker that moves to the
nearest gold vein for collecting gold, to then spawn
Warriors that follow the same strategy as in KTK.

2) MCTS: the default MCTS algorithm.
3) MCTSu: MCTS with unit ordering, no state abstraction.
4) Naive MCTS: an MCTS algorithm that applies Naive

Sampling [19] to the selection and expansion stages.
5) LSI: LSI algorithm [18] evaluates unit actions to gen-

erate a set of action combinations, then recommend the
final action combination by solving an MAB problem.

6) Elastic MCTSu: Elastic MCTS with fixed unit order.
7) RG MCTSu : Elastic MCTS with fixed unit order, where

same-depth nodes from the same depth are grouped
uniformly at random (joining one of the available groups
or creating a new one), rather than using MDP homo-
morphism.

For each game, we employ different state evaluation func-
tions, used by non-rule-based algorithms. All these functions

1Framework and all agents available at github.com/GAIGResearch/Stratega

give a reward of 0.0 ≤ R ≤ 1.0 to a state after normaliza-
tion. The rewards for win, loss, and draw are 1,−1, and 0,
respectively. If the given state is not terminal, the value of
the state is assigned with a task-specific heuristic. In KTK,
the value of the state is R = 1 − d·h

D·H , where d is the
average distance between all player’s units and the opponent’s
king (D: maximum possible distance) and h the health point
of opponent’s king (H: the maximum health). This function
encourages getting close to the opponent’s king and attack it.

In PTA, The rewards for win, loss are 1, and 0, respectively.
For a non terminal state or a draw state, a score in [0, 1] is
computed in three parts: Firstly, 0.2×

∑
u minu′ dis(u,u′)

D , where
u is a player’s unit, u′ is an opponent’s unit, dis(·, ·) is the
euclidean distance, and D is the largest distance in a map.
Secondly, 0.4 × |Ut|

|U0| , where |Ut| is the number of player’s
units and |U0| is the number of player’s units at the start.
Finally, 0.4 × |U ′

0|−|U ′
t|

|U ′
0|

, where |U ′
t |, |U ′

0| are the numbers of
opponent units at the current step and at the start, respectively.

For TK, the rewards for win, loss are 1, and 0, respectively.
For non-terminal states including draw states, scores are cal-
culated as a weighted sum of different state attributes: 0.2×
whether Mining is researched, 0.1× whether the player has
workers, 0.1× whether the player has a unit that can attack,
0.1 × (maxdw −dw), with dw being the distance between
workers to the nearest gold vein, 0.2× the gold possessed
by the player, and 0.3× (maxd −d), with d being the distance
between the player’s units and the opponent’s units. All values
are normalized to ensure the final scores land in [0, 1].

A. Parameter Optimization for Agents with NTBEA

All our experiments evaluate agents that are pitched against
each other in 1vs1 games. For fair comparison, we use the N-
Tuple Bandit Evolutionary Algorithm (NTBEA) [32] to tune
the parameters of each MCTS agent independently. NTBEA
utilizes a combinatorial multi-armed bandit to navigate the
parameter space while building a landscape model for noisy
evaluation functions. NTBEA also has its own parameters: we
set the exploration factor for the multi-armed bandit to 2, we
use 50 neighbors, and 50 iterations. When tuning parameters
for all agents, we used the win rate of the agent playing
against Rule-based Agent as fitness. For the agents MCTS,
MCTSu, Elastic MCTSu, and RG MCTSu , the budget is set
as the number of forward model calls. For KTK, PTA and
TK, their corresponding budget is set as 10, 000; 10, 000, and
5, 000 respectively, with which the MCTS is able to perform
competitively against the different rule-based agents.

MCTS and MCTSu have the same parameter spaces for NT-
BEA: we evaluate the exploration factor C ∈ {0.1, 1, 10, 100}
and rollout length L ∈ {10, 20, 40}. Elastic MCTSu adds to
these two parameters (C and L) the reward function error ηR ∈
{0.0, 0.05, 0.1, 0.3, 0.5, 1.0}, the transition probability error
ηT ∈ {0.0, 0.5, 1.0, 1.5, 2.0} and the iteration threshold to stop
using abstractions αABS ∈ {4×B, 8×B, 10×B, 12×B}, where
B is the batch size set to 20 for all experiments. RG MCTSu

adds to C and L the αABS ∈ {4×B, 8×B, 10×B, 12×B}
controlling when to split node groups. The resulting tuned
parameters for all agents and games are listed in Table I.
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TABLE I: Hyper-parameters for agents tuned by NTBEA

Game Agents C L αABS ηR ηT

KTK

MCTS 0.1 10 / / /
MCTSu 1.0 10 / / /

Elastic MCTSu 0.1 10 10B 0.05 1.0
RG MCTSu 0.1 10 8B / /

PTA

MCTS 10 10 / / /
MCTSu 10 20 / / /

Elastic MCTSu 10 10 8B 1.0 1.0
RG MCTSu 0.1 10 4B / /

TK

MCTS 0.1 20 / / /
MCTSu 1.0 20 / / /

Elastic MCTSu 1.0 20 6B 0.05 1.0
RG MCTSu 0.1 10 8B / /

The LSI agent has two parameters to tune: Ng and Ne,
which are the budgets for the generation and evaluation stages
in LSI, respectively. To set the same budget as the other
methods, 6 combinations of {Ng, Ne} with the same cost are
generated per game. Linear search is applied to recommend
one parameter combination, resulting in the usage of the fol-
lowing LSI parameters (Ng, Ne) in our experiments: (40, 150),
(120, 80) and (30, 80) for KTK, PTA and TK, respectively.

For Naive MCTS, the tunable parameters space are defined
as ϵg = {0.7, 0.9}, ϵl = {0.3, 0.5, 0.7} and rollout length
L ∈ {10, 20, 40}. We use NTBEA to optimize one parameter
combination for each game, resulting in the usage of the fol-
lowing parameters (ϵg, ϵl, L) in our experiments: (0.9, 0.7, 20)
for KTK, (0.9, 0.7, 10) for PTA and (0.7, 0.7, 20) for TK.

B. Algorithmic Performance

This section describes the results of our experimental work.
We report win rates for each player in a match (draw rates can
be inferred). Each win rate is shown with its standard error
among 5 game runs with 5 different random seeds. With each
seed, the game is run 100 games (50×2 due to side switching).
This resulted in total 500 games for each pair of agents. Units
of both players are placed symmetrically in all maps.

Performance in Kill The King: we first evaluate the
proposed method, by testing agents playing against each other
in different variants of KTK. We designed two groups of
experiments. The first group evaluates the presented agents
across scenarios with different amounts of units to observe
the effect of different action space sizes. The second group
investigates the performances in different game maps.

For the first group evaluations, we generate 50 instances
with the same asymmetric map (“lak110d” from https://
movingai.com/ [33]) with different random initial unit posi-
tions. As the goal for this evaluation is to explore unit numbers,
we generate 3 army compositions: (1 King, 1 Warrior, 1
Archer, 1 Healer), (1 King, 2 Warriors, 2 Archers, 2 Healers)
and (1 King, 3 Warriors, 3 Archers, 3 Healers). Tables II, III
and IV show the experimental results for these 3 settings.
As shown, in all army compositions Naive MCTS, MCTSu,
Elastic MCTSu and RG MCTSu clearly outperform the Rule-
based Agent while the performance of MCTS varies among
different army compositions. LSI fails to beat the Rule-based
Agent in all settings of the game. When playing against MCTS,

TABLE II: Win rates with standard errors for the game Kill
The King with 1 King, 1 Archer, 1 Warrior and 1 Healer.

Agent 1 Agent 2 Agent 1 Agent 2

LSI Rule-based 45.0%(1.6) 55.0%(1.6)
Naive MCTS Rule-based 56.8%(1.4) 43.2%(1.4)

MCTS Rule-based 51.8%(1.6) 48.2%(1.6)
MCTSu Rule-based 61.0%(1.0) 39.0%(1.0)

Elastic MCTSu Rule-based 57.8%(0.9) 42.2%(0.8)
RG MCTSu Rule-based 60.4%(0.9) 39.6%(0.9)

LSI MCTS 49.2%(1.1) 50.8%(1.1)
Naive MCTS MCTS 55.0%(2.1) 45.0%(2.1)

MCTSu MCTS 58.6%(1.6) 41.4%(1.6)
Elastic MCTSu MCTS 61.8%(1.6) 38.2%(1.6)

RG MCTSu MCTS 60.0%(1.9) 40.0%(1.9)

LSI MCTSu 41.2%(1.6) 58.8%(1.6)
Naive MCTS MCTSu 47.6%(2.2) 52.4%(2.2)

Elastic MCTSu MCTSu 52.2%(1.9) 46.4%(1.8)
RG MCTSu MCTSu 47.4%(2.5) 52.6%(2.5)

LSI RG MCTSu 39.2%(1.5) 60.8%(1.5)
Naive MCTS RG MCTSu 48.0%(2.4) 52.0%(2.4)

Elastic MCTSu RG MCTSu 52.2%(1.9) 46.4%(1.8)

LSI Elastic MCTSu 36.0%(1.6) 64.0%(1.6)
Naive MCTS Elastic MCTSu 41.0%(1.0) 59.0%(1.0)

Naive MCTS LSI 61.0%(1.4) 39.0%(1.4)

Naive MCTS, MCTSu, Elastic MCTSu and RG MCTSu all
outperform MCTS by large margins. Among these agents,
Elastic MCTSu shows the highest win rates. These results
confirm that unit ordering helps gain much performance boost
even though these unit orders are randomly picked.

We note that RG MCTSu shows competitive results com-
pared to MCTSu. While it might be the smaller tree size
that helps, another possible reason is that nodes randomly
grouped are from the same depth, where most of the nodes
are controlling the same unit at the same horizon. Grouping
these nodes benefits from their similar state-action distribution
at an early stage (also note that αABS is also used for RG
MCTSu). In the results of games playing against MCTSu,
Elastic MCTSu shows higher win rates than its opponent while
RG MCTSu shows similar or lower win rates. LSI shows
lower win rates than MCTSuwhile the performance of Naive
MCTS is competitive to MCTSu. In all army compositions,
the Elastic MCTSu agent shows a consistently higher win
rate than all its opponents, which shows the performance
improvement brought by our proposed method. The usefulness
of approximate MDP homomorphism can be verified by results
of Elastic MCTSu playing against RG MCTSu, where Elastic
MCTSu outperforms RG MCTSu in all army compositions.

When the search complexity increases as the number of
units grows from 4 units to 7 units and 10 units, the pro-
posed method shows its consistency in outperforming all other
agents. It is worth noting that the Elastic MCTSu performs
better with more units (see results of Elastic MCTSu playing
against the MCTS agent), which suggests a strong ability for
our method to scale appropriately when using more units.

To evaluate the performance with different layouts and
army compositions, we select the smallest 30 maps from [33],
where we test 5 army compositions (see Table V) for each
map. We evaluate the performance of Elastic MCTSu playing
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TABLE III: Win rates with standard errors for the game Kill
The King with 1 King, 2 Archers, 2 Warriors and 2 Healers.

Agent 1 Agent 2 Agent 1 Agent 2

LSI Rule-based 49.6%(1.2) 50.4%(1.2)
Naive MCTS Rule-based 71.8%(1.7) 28.2%(1.7)

MCTS Rule-based 54.4%(2.2) 45.6%(2.2)
MCTSu Rule-based 61.0%(1.0) 39.0%(1.0)

Elastic MCTSu Rule-based 74.0%(0.5) 26.0%(0.5)
RG MCTSu Rule-based 73.0%(0.8) 27.0%(0.8)

LSI MCTS 45.8%(2.0) 54.2%(2.0)
Naive MCTS MCTS 57.2%(0.7) 42.8%(0.7)

MCTSu MCTS 62.2%(0.8) 37.4%(0.8)
Elastic MCTSu MCTS 65.6%(1.6) 34.2%(1.7)

RG MCTSu MCTS 62.6%(1.4) 37.4%(1.4)

LSI MCTSu 37.4%(0.6) 62.6%(0.6)
Naive MCTS MCTSu 51.6%(2.1) 48.2%(2.1)

Elastic MCTSu MCTSu 52.4%(2.0) 44.2%(1.8)
RG MCTSu MCTSu 50.8%(1.4) 48.6%(1.5)

LSI RG MCTSu 32.2%(0.9) 67.8%(0.9)
Naive MCTS RG MCTSu 42.8%(1.7) 57.2%(1.7)

Elastic MCTSu RG MCTSu 52.4%(2.0) 44.2%(1.8)

LSI Elastic MCTSu 35.4%(1.4) 64.6%(1.4)
Naive MCTS Elastic MCTSu 47.4%(1.8) 52.2%(1.7)

Naive MCTS LSI 63.2%(1.5) 36.8%(1.5)

TABLE IV: Win rates with standard errors for the game Kill
The King with 1 King, 3 Archers, 3 Warriors and 3 Healers.

Agent 1 Agent 2 Agent 1 Agent 2

LSI Rule-based 43.6%(1.3) 56.4%(1.3)
Naive MCTS Rule-based 68.4%(1.0) 31.6%(1.0)

MCTS Rule-based 45.8%(1.6) 54.2%(1.6)
MCTSu Rule-based 65.6%(2.6) 34.4%(2.6)

Elastic MCTSu Rule-based 70.2%(0.7) 29.6%(0.7)
RG MCTSu Rule-based 68.6%(0.5) 31.4%(0.5)

LSI MCTS 51.2%(2.1) 48.8%(2.1)
Naive MCTS MCTS 65.0%(0.5) 34.8%(0.5)

MCTSu MCTS 62.8%(0.6) 35.2%(1.0)
Elastic MCTSu MCTS 70.0%(1.7) 27.8%(1.2)

RG MCTSu MCTS 65.6%(1.2) 34.4%(1.2)

LSI MCTSu 34.6%(1.9) 65.4%(1.9)
Naive MCTS MCTSu 49.2%(1.7) 50.0%(1.5)

Elastic MCTSu MCTSu 50.2%(1.3) 41.6%(1.7)
RG MCTSu MCTSu 49.6%(1.1) 50.2%(1.1)

LSI RG MCTSu 32.0%(1.3) 68.0%(1.3)
Naive MCTS RG MCTSu 47.2%(1.1) 52.6%(1.0)

Elastic MCTSu RG MCTSu 50.2%(1.3) 41.6%(1.7)

LSI Elastic MCTSu 31.4%(1.1) 68.6%(1.1)
Naive MCTS Elastic MCTSu 44.0%(2.1) 55.0%(2.0)

Naive MCTS LSI 63.4%(1.5) 36.6%(1.5)

against MCTSu. Table V shows the average win rates for
both agents with their corresponding standard error between
5 random seeds. In 4 of the 5 army compositions, Elastic
MCTSu outperforms MCTSu by large margins (between 7.7%
and 14.4%). These results show that the proposed method
improves the agent performance with state abstraction and its
improvements are consistent in different army compositions
and game maps. Specifically, in 4 of the 5 army compositions
where Elastic MCTSu performs better are of large unit sizes.
Similarly, results show that Elastic MCTSu obtains win rate
improvements in K2W2A2H and K3W3A3H in comparison

TABLE V: Win rates with standard errors for games from 30
different layouts. The army composition indicates the number
of warriors (XW), archers (XA), healers (XH) and 1 king (K).

Army Composition Elastic MCTSu MCTSu

K3H 41.0%(1.1) 43.6%(1.4)
K3W3A3H 41.7%(3.2) 34.0%(1.7)

K10A 44.7%(2.4) 30.3%(0.9)
K10W 42.7%(1.2) 29.0%(2.0)

K5W5A 41.3%(1.7) 31.7%(1.1)

with K1W1A1H (see Tables III, IV and II, respectively).
Performance in Push Them All: The results for PTA are

shown in Table VI. When playing against the rule-based agent,
the MCTS agent shows a similar win rate as the rule-based
ones, while the remaining agents outperform rule-based agents
by large margins. Notably, LSI and Naive MCTS have higher
win rates than agents with unit ordering, among which Elastic
MCTSu shows the highest (9.4 higher than RG MCTSu) win
rate. When playing against MCTS, all gents based on MCTSu,
LSI and Naive MCTS outperform their opponents. Among
these agents, LSI reaches the highest win rate (96.2%). RG
MCTSu also shows a higher win rate than the MCTSu by
a large margin. Next, by comparing Elastic MCTSu and RG
MCTSu directly against MCTSu, we observe a consistently
high win rate of Elastic MCTSu (80.4%) while RG MCTSu

has a lower win rate (66.8%). In the comparison between
Elastic MCTSu and RG MCTSu, Elastic MCTSu shows a
higher win rate with a large difference of 20.6.

Both LSI and Naive MCTS show consistently higher win
rates than other agents in this game, where LSI agent shows
superior performance. These two agents benefit from evalu-
ating action combinations rather than unit actions in all our
MCTS agents which is important for concurrent movement.
In all agents based on MCTSu, Elastic MCTSuhas the highest
win rates. RG MCTSu with abstraction threshold also shows
improvements but is much weaker than Elastic MCTSu. The
results of these two agents confirm that grouping nodes
controlling same-type units can benefit the performance where
the automatic abstraction outperforms the random grouping.

Performance in Two Kingdoms: Table VII shows win
rates for the game TK. When playing against the rule-based
agent, MCTS gains a low win rate of 11.8%, while LSI
obtains a win rate of 68.6%. All Naive MCTS, MCTSu,
Elastic MCTSu and RG MCTSu agents show a much stronger
performance, with win rates of at least 85%. MCTSu shows
the highest win rate of 91.0%. Elastic MCTSu has a win rate
90.2% comparable to MCTSu and higher than that of RG
MCTSu (85.6%). All agents (except rule-based) outperform
MCTS by large margins. When playing against MCTSu,
Elastic MCTSu outperforms MCTSuwith a win rate of 54.8%,
while LSI, Naive MCTS, and RG MCTSu perform weaker
than MCTSu with win rates 21.2%, 34.6% and 41.4% in win
rates, respectively. When Elastic MCTSu plays against RG
MCTSu, Elastic MCTSu outperforms the latter with a win rate
of 58.2, while LSI and Naive MCTS obtain low win rates in
playing against both RG MCTSu and Elastic MCTSu. Elastic
MCTSu outperforms all our baseline algorithms.



TRANSACTIONS ON GAMES, HTTPS://IEEEXPLORE.IEEE.ORG/DOCUMENT/10143265 9

TABLE VI: Win rates and standard errors for Push Them All

Agent 1 Agent 2 Agent 1 Agent 2

LSI Rule-based 97.6%(0.4) 2.4%(0.4)
Naive MCTS Rule-based 85.8%(1.3) 14.2%(1.3)

MCTS Rule-based 48.6%(3.2) 51.2%(3.2)
MCTSu Rule-based 65.8%(2.0) 34.0%(2.1)

Elastic MCTSu Rule-based 80.2%(1.3) 19.8%(1.3)
RG MCTSu Rule-based 70.8%(2.0) 29.2%(2.0)

LSI MCTS 96.2%(1.0) 3.8%(1.0)
Naive MCTS MCTS 86.0%(1.4) 12.2%(1.3)

MCTSu MCTS 60.2%(2.4) 37.0%(2.0)
Elastic MCTSu MCTS 87.2%(1.0) 12.4%(0.8)

RG MCTSu MCTS 82.6%(1.5) 16.4%(1.8)

LSI MCTSu 93.8%(0.6) 5.6%(0.7)
Naive MCTS MCTSu 86.0%(0.9) 13.2%(1.1)

Elastic MCTSu MCTSu 80.4%(1.1) 18.8%(1.2)
RG MCTSu MCTSu 66.8%(2.2) 32.2%(2.2)

LSI RG MCTSu 87.4%(1.6) 12.0%(1.8)
Naive MCTS RG MCTSu 67.0%(2.4) 31.6%(2.2)

Elastic MCTSu RG MCTSu 59.8%(1.7) 39.2%(1.8)

LSI Elastic MCTSu 71.4%(1.4) 27.8%(1.3)
Naive MCTS Elastic MCTSu 55.2%(1.1) 43.4%(1.2)

Naive MCTS LSI 36.4%(1.8) 63.6%(1.8)

TABLE VII: Win rates and standard errors for Two Kingdoms

Agent 1 Agent 2 Agent 1 Agent 2

LSI Rule-based 68.6%(1.4) 31.4%(1.4)
Naive MCTS Rule-based 85.0%(1.0) 14.4%(1.3)

MCTS Rule-based 11.8%(1.7) 83.4%(1.6)
MCTSu Rule-based 91.0%(1.5) 6.0%(1.2)

Elastic MCTSu Rule-based 90.2%(2.0) 8.6%(1.7)
RG MCTSu Rule-based 85.6%(1.6) 14.4%(1.6)

LSI MCTS 82.4%(1.3) 17.6%(1.3)
Naive MCTS MCTS 90.8%(1.0) 9.2%(1.0)

MCTSu MCTS 97.2%(0.3) 2.8%(0.3)
Elastic MCTSu MCTS 95.2%(1.3) 4.8%(1.3)

RG MCTSu MCTS 92.0%(0.6) 8.0%(0.6)

LSI MCTSu 21.2%(0.8) 78.8%(0.8)
Naive MCTS MCTSu 34.6%(1.9) 65.4%(1.9)

Elastic MCTSu MCTSu 54.8%(2.8) 45.0%(2.8)
RG MCTSu MCTSu 41.4%(1.7) 58.6%(1.7)

LSI RG MCTSu 22.6%(2.1) 77.4%(0.5)
Naive MCTS RG MCTSu 39.0%(0.7) 61.0%(0.7)

Elastic MCTSu RG MCTSu 58.2%(1.5) 41.6%(1.6)

LSI Elastic MCTSu 16.6%(1.4) 83.4%(1.4)
Naive MCTS Elastic MCTSu 30.8%(0.5) 69.2%(0.5)

Naive MCTS LSI 66.6%(2.9) 33.4%(2.9)

We evaluate Elastic MCTSu in a strategy game with more
unit types and more complex tasks. This method shows a con-
sistent win rate improvement. However, RG MCTSu, which
randomly groups nodes in the same depth, performs badly
in this game because different units are spawned in different
branches: there is a low probability for grouping nodes that
control the same type of units.

C. Influence of Abstraction Threshold

To investigate the influence of the iteration threshold αABS,
we pitch Elastic MCTSu against MCTSu, with similar settings
as in the KTK experiments (Table II, III and IV), but different
values of the αABS are explored. This experiment explores the

TABLE VIII: Win rates with standard errors of Elastic
MCTSu vs MCTSu. The proportion column indicates at which
% of the search the state abstraction is abandoned.

Composition Prop. Elastic MCTSu MCTSu Diff.

KWAH

0% 47.0%(2.3) 52.8%(2.3) −5.8
25% 48.6%(1.1) 51.4%(1.1) −2.8
50% 53.2%(1.7) 46.2%(1.7) 7.0
75% 51.4%(0.7) 46.6%(0.5) 4.8

100% 49.8%(1.9) 46.6%(1.6) 3.2

K2W2A2H

0% 52.4%(2.6) 46.8%(2.6) 5.6
25% 49.8%(1.5) 48.6%(1.7) 1.2
50% 51.0%(1.3) 45.6%(1.4) 5.4
75% 51.8%(1.4) 43.4%(1.3) 8.4

100% 47.4%(1.2) 45.1%(1.2) 2.3

K3W3A3H

0% 48.8%(1.6) 48.6%(1.7) 0.2
25% 53.4%(1.5) 44.0%(1.1) 9.4
50% 48.4%(0.8) 45.2%(1.2) 3.2
75% 44.6%(1.6) 46.6%(1.9) −2.0

100% 48.6%(0.8) 40.6%(1.0) 8.0

values of this parameter to observe the effect of using state
abstraction during different proportions of MCTS iterations.
We evaluate the average win rates of these two agents with
different proportions αABS ∈ {0%, 25%, 50%, 75%, 100%}
are set for Elastic MCTSu. The αABS set to 0% makes the
Elastic MCTSu behave like MCTSu. When it is 100%, all
MCTS iterations are run under the state abstraction, where the
recommendation policy picks actions based on group statistics.
This is similar to its usage in previous work [9], [11], [13].

As is shown in Table VIII, the performance of the Elastic
MCTSu agent differs in different abstraction threshold values.
We highlight win rates that have the largest difference from the
opponents’ win rates. Note that the different hyper-parameters
(tuned by NTBEA) used by these two agents result in their
different win rates with αABS = 0%, where both agents do
not use state abstraction. In each army composition, there
seems to be a sweet spot on the value of abstraction threshold:
performance is best when using the state abstraction during
the first 25% and 75% iterations of Elastic MCTSu, obtaining
lower winning rates when closer to 100%. We note that,
although the highest win rate of K2W2A2H shows up with
αABS = 0%, the difference in winning rate makes αABS = 75%
the better choice as it reduces games lost.

The best values found for αABS vary with the environment
settings. In all cases, the best performance is obtained using
an abstraction threshold < 100%. Our interpretation of this
phenomenon is that nodes grouped together sharing the same
statistics until the end of the decision process leads to a sub-
optimal recommendation policy, as the optimal action might be
grouped together with other sub-optimal actions which makes
it indistinguishable. However, abandoning the abstraction at
an intermediate iteration during the search lands better results
in all army compositions. This is likely because it allows the
search to further explore nodes within the same group and
refine the final action sequence.

D. Compression Rate

To visualize the difference between the original and the
abstracted search space, we define a compression rate for an
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abstracted MCTS tree as Ntree/Nabs tree, where Ntree is the
number of grounds nodes generated by MCTS and Nabs tree is
the number of node groups generated by the abstraction. The
compression ratio compares the size of the same tree with and
without abstraction. Note that a lower group number for the
same tree means the tree size is reduced further. We evaluate
compression rates for all games used in this paper. For each
game, we run Elastic MCTSu in 10 games with αABS = 100%
and record the compression rates in different MCTS iterations
, which are visualized in Fig. 3 The vertical line in each figure
shows the αABS resultant from the tuning done by NTBEA.

For KTK, we evaluate the compression rates in three army
compositions from 4 to 10 units. As shown in Fig. 3a, all
the compression rates show a moderate increase over time
but at different increasing rates. The 1K2W2A2H composition
has the highest increasing rate, followed by the 1K3W3A3H.
1K1W1A1H composition grows close to 1K3W3A3H but
shows a slightly slower increasing after 220 iterations. With
the tuned αABS, the sizes of trees under abstraction (with
αABS × B = 10× 20) are 5-7 times smaller than the original
tree size. If the abstraction is used until the end of MCTS,
we observe the tree sizes are reduced with factors from 7 to
10, while the performances are competitive to MCTSu (See
Table VIII with 100% iterations using abstraction). The highest
compression rate is around 10 for K3W3A3H.

In PTA, we observe a lower compression rate compared
to KTK. In the performance evaluation for PTA, the αABS is
set as 8 and the compression rate is around 1.7. The lower
compression rate is possibly related to the smaller action space
and fewer unit types in this game. Combined with the results in
Table VI, it suggests that this degree of compression correlates
with a performance improvement. Our visualization for RG
MCTSu agent shows a smaller tree size than the tree under
approximate MDP homomorphism.

For TK, the overall compression rate of Elastic MCTSu is
around 3, and the compression rate in the performance eval-
uation is 3.0 (Table VII). In TK, it has a complex heuristic
function considering different tasks, making it challenging to
select approximate thresholds (see Eq. 2) for state abstraction.
This also trades off node grouping between different units. For
the RG MCTSu agent, the compression rate is overall smaller.

We have shown that state abstraction reduces the tree size,
but another question to answer is: Is the proposed method
computationally efficient compared to MCTSu? We found that
even though the Elastic MCTSu requires more computation
– computing the approximate errors and grouping nodes, the
total computation time is close to the MCTSu agent. With a
large budget of 30, 000 forward model calls for KTK game,
the average decision times are 667± 13 and 685± 13 ms for
MCTSu and Elastic MCTSu, respectively.

In conclusion, we analyzed the tree size of MCTSu, Elas-
tic MCTSu, and RG MCTSu. We observe an increasing
compression rate over time, with Elastic MCTSu and RG
MCTSu reduced the tree size. The proposed method, Elastic
MCTSu reaches the best performance with compression rates
among 1.6 − 7 in different games. With a smaller tree size,
we found the difference in computation time between Elastic
MCTSu and MCTSu is within 20ms with a large budget.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a new algorithm, Elastic MCTS,
which is a variant of MCTS that groups tree nodes using
state abstraction based on MDP Homomorphism. This work
aims to develop automatic state abstraction methods for gen-
eral strategy game playing. Our work is inspired by state
abstractions studied in planning domains, but it is adapted for
complex search and action spaces. The proposed ungrouping
mechanism that splits the state abstraction back to the ground
states has been shown essential for search performance. We
extend our previous work [17] from one game to three games
to evaluate the scalability of the proposed method. A new
baseline, the random-grouping agent, has been used to verify
the usefulness of MDP homomorphism.

Our experiments show that the proposed method outper-
forms MCTS and a rule-based agent in all three turn-based
strategy games. By observing that a random grouping agent
fails to bring stable improvement in performance (sometimes
harming it), MDP homomorphism is confirmed to be essential
for performance improvement. By analyzing the tree size
with/without state abstraction, we also observe a reduction of
the tree size by a factor of 10 and a considerable performance
improvement when using state abstraction during a proportion
of the search, as long as we expand the search tree to its ground
state before the recommendation policy selects an action.

The results shown in this paper have been obtained in
three turn-based games, but we hypothesize that the proposed
methods may also benefit other real-time or turn-based strategy
games. Due to the increased number of units controlled in
games such as Starcraft, the search problem becomes more
challenging. Nevertheless, we believe that the observed effi-
ciency improvements may transfer well. This is an immediate
case for future work, where the applicability and scalability of
Elastic MCTS will be investigated in more complex games.

Having observed the performance improvement in game-
playing, a natural question to ask is: what else can state
abstraction do?. This question leads to several research direc-
tions. For example, whether different gameplay styles be ob-
tained by using state abstractions or if, on the contrary, the re-
duced tree prevents the agent from that goal. Recent works on
quality-diversity methods applied to strategy games [34] could
be explored in conjunction with Elastic MCTS. Additionally,
action space reduction can be applied on Elastic MCTS to
see the potential synergies, e.g., with portfolio methods [2].
Finally, automatic state abstraction applying to strategy games
is still a new direction and different mechanisms for state
abstraction (e.g. [12]) could be an alternative to approximate
MDP homomorphism. In fact, considering the long horizon
in complex strategy games, it’s possible to divide the game
into different stages. Each stage may require different state
abstractions, which lies an interesting line of research ahead
to discover context-aware versions of Elastic MCTS.
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Fig. 3: Compression rates for each tested game including standard errors from 10 game plays.
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