
PENALIZED BOOTSTRAPPING
FOR REINFORCEMENT LEARNING IN ROBOT

CONTROL

Christopher Gebauer and Maren Bennewitz

Humanoid Robots Lab, University of Bonn, Bonn, Germany
{cgebauer,maren}@cs.uni-bonn.de

ABSTRACT

The recent progress in reinforcement learning algorithms enabled more complex tasks and, at the same
time, enforced the need for a careful balance between exploration and exploitation. Enhanced exploration
supersedes the requirement to hardly constrain the agent, e.g., with complex reward functions. This seems
highly promising as it reduces the work for learning new tasks, while improving the agents performance.
In this paper, we address deep exploration in reinforcement learning. Our approach is based on Thompson
sampling and keeps multiple hypotheses of the posterior knowledge. We maintain the distribution over the
hypotheses by a potential field based penalty function. The resulting policy is more performant in terms of
collected reward. Furthermore, is our method faster in application and training than the current state of the
art. We evaluate our approach in low-level robot control tasks to back up our claims of a more performant
policy and faster training procedure.

KEYWORDS

Deep Reinforcement Learning, Deep Exploration, Thompson Sampling, Bootstrapping

1. INTRODUCTION

The outstanding performance of deep reinforcement learning firstly shown by Mnih et al. [1] has
opened a wide range of possibilities. Especially in the field of robot control this is promising,
as it heavily reduces the requirements to implicitly state the desired behavior in more compli-
cated situations. For example, popular non-learning methods are based on the dynamic window
approach for navigation [2] or on differential dynamic programming for low-level control [3].
These approaches solve the task to interact with the environment sufficiently, but need to be care-
fully fine-tuned and are limited to the designed representation of the environment. The lack of
understanding and integration of correlations between events in the interaction with the environ-
ment lead to a very stable reactive behavior but instability when more foresightedness is required.
This is especially given for sequences of actions that rather dependent on high-level decisions as
in human-robot interaction, when social acceptable behavior is addressed.

A reinforcement learning agent with enhanced exploration skills is very promising, especially in
tasks including more elaborated behavior. While classical approaches are able to avoid collision
with humans [4], learning is rather able to solve this task in a socially compliant manner [5]. Even
though the results are promising and lead to good navigation policies, the process of learning is
inert, due to the absence of deep exploration. With lack of deep exploration, the agent favors to
greedily search in the known action space for the optimal solution instead of deeply explore the
unknown capabilities first. As gradient-based methods have been established in recent years, the
greedy behavior is originated in the local convergence given by the basic assumptions of their
derivation. In navigation tasks, the resulting policy of poorly explored local optima rarely results
in the expected behavior. Even though Chen et al. [5] showed the promising opportunities of

Dhinaharan Nagamalai et al. (Eds): CSEIT, WiMoNe, NCS, CIoT, CMLA, DMSE, NLPD - 2020
pp. 155-165, 2020. CS & IT - CSCP 2020 DOI: 10.5121/csit.2020.101114

http://airccse.org/cscp.html
http://airccse.org/csit/V10N11.html
https://doi.org/10.5121/csit.2020.101114

reinforcement learning in socially-aware navigation tasks, more research is required for robust
end-to-end machine learning solutions [6].

While neural networks of great size inherit the potential to map almost any non-linear function,
the major lack is to efficiently force the agent to explore its capabilities as well as the environment
itself. Common methods address this problem by a detailed reward design including preprocess-
ing [7] or guided learning steps with increasing difficulty [8]. Another approach includes network
extensions to learn auxiliary tasks [9] or an internal reward based on reconstruction error of the
current state [10].

In this paper, we introduce a novel boostrapped version of twin delayed deep deterministic policy
gradient (TD3) [11] based on Thompson sampling [12] to increase deep exploration and increase
the performance of the resulting neural network in terms of maximizing the expected return.
Thompson sampling addresses the balance between exploitation and exploration by randomly
sampling the policy parameters from a posterior distribution and acting according to it for one
episode. The uncertainty inherited in the posterior distribution naturally induces exploration due
to the resulting uncertainty in the optimal action. Furthermore, we penalize the similarity of the
hypotheses to maintain the posterior distribution. In comparison to Zheng et al. [13], our novel
bootstrapping method reduces the required computational resources while still improving the per-
formance of the resulting agent. All the claims are backed up with an experimental evaluation.

2. RELATED WORK

To address the problem of deepening the exploration, multiple approaches have been developed
in the last few years. The most widely used one is curriculum learning [8], which improves the
final policy by increasing the difficulty of the task over time. For example, Kulhanek et al. [14]
applied this method by increasing the complexity of the environment at given milestones during
training of a vision-based navigation policy. Nevertheless is this approach not addressing the
learning algorithm itself but modifies the information stream of the training samples and therefore
is always usable as an extension.

Another concept is based on outputs from additional heads using the same encoded state as the
policy. The encoded state represents, e.g., the output of a convolutional neural network and is
shared among all consequential networks. A head is the neural network that uses the encoded state
to generate any desired output, e.g., action commands. The purpose of additional heads is to influ-
ence the shared network structure without direct usage of the head’s output. Jaderberg et al. [15]
introduced this idea as auxiliary tasks and optimized the additional heads via self-supervised learn-
ing using available quantities from the environment. Mirowski et al. [9] improved this method
by introducing further auxiliary tasks, especially to predict the depth based on an RGB image.
Both approaches require the agent to receive such quantities from the environment as well as are
strongly bounded to a specific task.

Another method is based on internal usage of auxiliary outputs from the neural network. For
example, Pathak et al. [10], building upon Stadie et al. [16], focused on reconstructing the rele-
vant information of the next state by learning the dynamics of the environment. Exploration is
induced by adding a bonus reward on states that have been reconstructed worse, representing its
novelty. The approach is known as curiosity learning and was applied very effectively to robot
navigation by Zhelo et al. [17]. Variational information maximizing exploration [18] uses cu-
riosity learning and extends it by directly maximizing the expected information gain due to the
corresponding action. All these methods have especially the problem to be unable to differentiate
between stochastic dynamics and uncertainty, as it is not directly approximating latter.

Blundell et al. [19] used Bayesian neural networks, building upon Hinton et al. [20] and Graves et

Computer Science & Information Technology (CS & IT)156

to the resulting distribution over possible actions with respect to the current state and the uncer-
tainty towards the inherited weights. Nevertheless is this method currently limited to applications
where a network is trained to fit a known target value. Henderson et al. [22] applied this concept
to different actor-critic algorithms by training the critic under weight uncertainty. In general, the
critic evaluates the actions, which are mapped directly from states using the actor. This uncer-
tainty, even though not applied to the actor itself, heavily improved training stability, as the actor
depends on the critics performance.

Another class of approaches is based on Thompson sampling, which addresses exploration by
considering multiple hypotheses of the next optimal action conditioned by a given state and the
posterior knowledge. Osband et al. [23] applied this technique to deep reinforcement learning,
which is known as bootstrapped deep Q-learning. The key concept is a shared network and multi-
ple instances that return the action-value function Q, representing the heads. Thompson sampling
is applied by drawing a specific head before each episode and acting according to it. The multi-
head structure ensures an estimation of the posterior knowledge inherited by the neural networks
to introduce uncertainty. Furthermore is each head trained on its own subset of the complete
dataset D. Zheng et al. [13] extended this to the actor-critic method by replicating multiple actor-
critic pairs, known as double bootstrapped deep deterministic policy gradient (DBDDPG). Both
approaches achieve a clear increase in performance compared to non-bootstrapped agents. Our
approach is based on the actor-critic methods as well, but extends DBDDPG by adjusting the
critic structure and penalizing the similarity of each bootstrapped actor. Furthermore, we reduce
the computational cost in context of training and application, while still improving the resulting
performance regarding the expected return.

3. OUR APPROACH

In this section we first describe all preliminaries regarding the reinforcement learning setting and
describe our approach in detail afterwards.

3.1. Preliminaries
We model the problem as a Markov Decision Process (MDP), where an agent interacts with the
environment. Based on the current state st ∈ S the agent applies action at ∈ A, according
to the policy π(θ) : S → A defined by its parameters θ. At the end of timestep t, the agent
receives the reward rt ∈ R and the next state st+1 according to the state-transition probability
distribution P : S × S × A → [0, 1]. The discounted return is defined by Rt =

∑T
i=0 γ

irt+i,
where t+ T represents the final time step and γ ∈ [0, 1] is the discount factor.

In general the objective of reinforcement learning is to maximize the expected return J(π) =
E[R0|π], where the gradient ∇θJ(π) is used to update the policy. For deterministic policy gradi-
ent (DPG) [24] the gradient is not defined to directly depend on the policy, but rather points in the
direction of the action-value function’s gradient ∇Q at the current sample point

∇θJ(π) = E[∇aQ(s, a)|a=π(st)∇θπ(s)]. (1)

The action-value function Q is defined by Q(st, at) = E[Rt|st, at] with its parameters θQ and
updated using temporal difference:

L(Q) = E
[
(Q(s, a)− yt)2

]
with yt = rt + γQ(st+1, π(st+1))

(2)

The target yt and therefore the loss function L depend on the policy and the action-value function
itself. For deep deterministic policy gradient (DDPG) [25], the neural network based extension

al. [21], to introduce uncertainty into the current weights. This naturally induces exploration due

Computer Science & Information Technology (CS & IT) 157

of DPG, this introduces an instability towards the update as the numerous number of network pa-
rameters are adjusted concurrently. To overcome this, Mnih et al. [1] introduced a target network
that is updated less frequently by partially copying the network parameters. The target network is
denoted by a quotation sign, as, e.g., Q′, and applied to all trained models.

Another problem is the overestimation bias of the action-value function excessively increasing
over training. As the policy update depends on the stability of the action-value function, the
overestimation leads to a general instability of the training. Twin delayed deep deterministic
policy gradient (TD3) [11] countermeasures this effect by adding another critic and taking the
minimal action-value estimate as target. Both of the action-value functions are trained separately
with identical, but modified target action-value:

yt = rt + γ min
i=1,2

Q′i(st+1, π
′(st+1) + εt) (3)

This improves stability by almost eliminating the overestimation bias during training. To further
improve generalization, as deterministic policies usually tend to naturally overfit, the smoothing
target noise term εt is added to the action estimation of the target policy in the target function [11].
It is drawn from a clipped Gaussian distribution. TD3 is the underlying algorithm used for our
novel boostrapping approach based on Thompson sampling.

3.2. Bootstrapped Actor
The benefit of Thompson sampling is originated in the optimization of multiple correlated hy-
potheses based on the given dataset D. Each hypothesis corresponds to its own set of function
parameters θi ∈ θ and trains on a subset Di to ensure the maintenance of the distribution over the
posterior knowledge P̂ (θ|D). The hat denotes the approximation of the true posterior distribu-
tion, as we do not know the true distribution, but rather draw multiple hypotheses assuming to be
distributed according to P . Before each interaction with the environment, a hypothesis is chosen
and acted upon on. This introduces an uncertainty and, therefore, a more elaborated exploration
compared to greedy policies.

Our core contribution is a boostrapped version of TD3 based on Thompson sampling, in the
following referred to as Multi-TD3. We instantiate a number N ∈ N of actors with a random set
of parameters θi, where i ∈ N , drawn from the prior distribution P (θ). These actors represent
our hypotheses and are forming the distribution P̂ (θ|D), which then is dependent on the prior
distribution P (θ). To maintain the distribution P̂ (θ|D) we update each actor separately based on
its subset Di defined by the mask mt drawn from a Bernoulli distribution [23]. The Bernoulli
distribution is defined by the masking probability p, a new hyperparameter. The mask mt has the
size of N and indicates for each actor whether the specific sample is part of its subset or not. In
our case, this results in a datasetD defined by the collection of tuples {st, at, st+1, rt,mt}. While
each actor only depends on its subset Di, we combine the loss of all actors to update the shared
network and therefore consider the whole dataset D. The shared network is hindrance for clear
separation of the different hypotheses, however, it is usually intractable to train complete copies
of the same network in parallel.

We apply Thompson sampling by drawing randomly from the pool of actors before each episode,
representing a hypothesis based on the posterior knowledge. In contrast to pure Thompson sam-
pling, we choose during the entire episode the action according to the drawn policy πi, neglecting
its optimality, instead of redrawing before each interaction as suggested by Osband et al. [23].
While the randomness due to neglection of the argmax operator in the deterministic action infer-
ence is desired for data collection during training, the policy shall be greedy during evaluation.
Therefore, we search greedily in each timestep for the optimal parameter

θ∗ = argmax
θi

Q1(st, π(st, θi)). (4)

Computer Science & Information Technology (CS & IT)158

state

Actor

action

Critic

greedy action
for evaluation

sampled action
for training

Figure 1: General information
flow in Multi-TD3, illustrating
the action generation in evaluation
and during training.

Algorithm 1: Multi-TD3
Input: Number of heads N , replay buffer D, masking

probability p, exploration noise ε, smoothing
target noise εt

Initialize parameter θQj=1,2
, θi∈N from P (θ)

for each iteration do
if new episode then

Pick actor n ∼ uniform{N}
Apply at ∼ πn(st) + ε
Receive rt and st+1

Sample mask mt ∼ Bernoulli{p}
Store {st, at, st+1, rt,mt} in D

Sample minibatch B from D
for i ∈ N do âi ∼ π′i(B) + εt
y ← maxi∈N{minj=1,2 Q

′
j(B, âi)}

Update each critic according to Eq. (2)
Update each actor according to Eq. (6) using
Eq. (1)

Update the target networks

Q1 refers to one of the two critics used in TD3, where either are usable. Eq. (4) satisfies the
assumption on greedy maximization using argmax regarding the action in DPG. In Fig. 1 we
illustrate the comparison of the information flow for action generation in training and evaluation.
The additional loop, marked in red, for the greedy search of optimality brings in an overhead due
to the linear cost in N . The greatest speedup in comparison to DBDDPG [13] is achieved by
uniformly sampling an action during data collection for training instead of searching greedily for
it. Additionally we are speeding up the greedy network inference by not increasing the number
of critics to N , which results in a reduction of the runtime complexity from quadratic with N to
linear.

As mentioned, the critic structure is not modified and stays identical to TD3. However, we modify
the target function in Eq. (3) to still minimize over both critics and additionally to maximize over
all predicted next actions according to each actor

yt = rt + γmax
i∈N

[
min
j=1,2

Q′i(st+1, π
′
i(st+1) + εt)

]
. (5)

The resulting complete optimization problem is given by

min
θi,θQj

−
N∑
i=1

E [Q1(s, π(s, θi))] +
∑
j=1,2

E
[
(Qj(s, a, θQj

)− yt)2
]

+β

N∑
i=1

N∑
j=1,i 6=j

1

||πi − πj ||22
,

(6)

and summarized in Alg. 1 as well as visualized in Fig. 1. The last term is a penalty to further
support the maintenance of the distribution P̂ (θ|D). It is inspired by the entropy cost used in,
e.g., Schulman et al. [26]. It forces the distribution of the possible actions, given the current state,
towards a uniform distribution. Since we apply deterministic policies, entropy is not applicable,

Computer Science & Information Technology (CS & IT)

Type your text

159

as no distributions over actions is available. However, we reformulated this to minimize the
repellent force between the deterministic policies induced by their potential field, known from
identically charged point particles in the field of electrostatic [27]. This equals minimizing the
inverted Euclidean norm and results in a uniform spread of the policies across the action space.
Therefore, maximizing the potential of the actions according to the deterministic policies is similar
to maximizing the entropy of the policy’s distribution. To prevent a division by zero, a lower
bound is set for the Euclidean norm. The parameter β scales the cost and is a newly introduced
hyperparameter.

4. EXPERIMENTAL EVALUATION

The main focus of this work is to increase deep exploration in the application of robot control
tasks. In Sec. 4.1. we introduce the neural network structure and its hyperparameters we used
in our experiments. The complete network structure, as well as the optimization algorithm is
implemented using Tensorflow [28]. In Sec. 4.2. we compare our novel bootstrapping approach
to the state-of-the-art bootstrapping method for deterministic actor-critic methods [13], as well
as common unbootstrapped deterministic policies [25], [11]. We evaluated the performance in
different low-level control tasks simulated in PyBullet [29] and wrapped with OpenAI gym [30].
In Sec. 4.3. we evaluate the reduced runtime complexity and especially the reduced training time
in comparison to DBDDPG [13] as well as the overhead towards the unbootstrapped TD3 [11].

4.1. Deep Network Architecture
For DDPG and TD3 two different sets of hyperparameters turned out to be superior in our exper-
iments. The one applied to DDPG and DBDDPG is similar to Lillicrap et al. [25]. We apply two
dense layers with {512,256}, while the bold number represents the shared layer for DBDDPG.
The structure for the actor and critic is identical. The hyperparameters are given by the discount
factor γ = 0.95, actor learning rate lr,π = 10−4, critic learning rate lr,Q = 3 × 10−4, the explo-
ration noise ε = 0.2, the target update factor τ = 0.01 and the size of the minibatch B with 128.
We apply kernel and bias regularization via L2-regularization with l2 = 10−4. The replay buffer
has a size of 106 for all approaches. For DBDDPG the degree of bootstrapping is given byN = 5,
as suggested in the original paper [13], and the masking probability by p = 0.5.

For TD3 and our approach we choose slightly different hyperparameters, which have been tuned
during hyperparameter validation. In general, the modified hyperparameters increase the perfor-
mance with the cost of more unstable training. Instability refers to higher variance over the course
of training or even the absence of any progress. DDPG and DBDDPG did not train with the mod-
ified hyperparameters. TD3 did train with the basic hyperparameter setting, but performed much
better with our hyperparameters. The hyperparameters have been tuned for the unbootstrapped
algorithms and remain unchanged when boostrapping is applied.

The network still consists of two dense layer, but with {256,256} nodes. Again the bold number
represents the shared layer for our approach. The modified hyperparameters are the discount
factor γ = 0.99, critic learning rate lr,Q = 8 × 10−4, the exploration noise ε = 0.1, the target
update factor τ = 0.005 and the size of the minibatch B with 256. The smoothing target noise is
given by εt = 0.2 and εt,clip = 0.5. We train our agent with a bootstrapping degree of N = 10
and a masking probability of p = 0.3. The potential penalization factor β varies across the
environments and needs to carefully tuned. However, mostly a value of β = 10−6 is a good start
for hyperparameter search.

Computer Science & Information Technology (CS & IT)160

0.0 0.2 0.4 0.6 0.8 1.0
Iterations (1e6)

0

500

1000

1500

2000

2500

3000

3500

Av
g.

 R
ew

ar
d

R

HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
Iterations (1e6)

0
500

1000
1500
2000
2500
3000
3500
4000

Ant

0.0 0.2 0.4 0.6 0.8 1.0
Iterations (1e6)

0

500

1000

1500

2000

2500

3000
Walker2D

DDPG DBDDPG TD3 MTD3 (Our)

Figure 2: Averaged return over the course of training for a variety of low-level control tasks from
the OpenAI gym [30] simulated with PyBullet [29]. As can be seen, enhanced exploration due to
our approach clearly improves the performance of the agent.

4.2. Bootstrapped Performance
In this section, we evaluate the improved exploration by comparing the evolution of the received
reward during the course of training. Each environment represents a low-level control task of a
simplified robot. The received observation consists of the joint angles and joint velocities. The
actions correspond to the applied torques, one for each joint. The reward is calculated based on the
forward traveling speed and a fix alive bonus to consider the length of the episode. Additionally,
a penalty for higher effort is applied, which consists of the torque magnitude and the impact
forces on the ground. The episode ends and the environment is reset, when the policy leads the
robot into an absorbing state or a maximum length of 1000 timesteps is reached. An absorbing
state is defined as a state that the robot is unable to leave within the given action space. These
robot environments first appeared in Schulmann et al. [31]. The underlying engine to simulate
the kinematics of the robot and the contacts with the groundplane is PyBullet [29], while the
environment is wrapped and accessed by the agent using Gym [30].

The baselines are represented by DDPG and TD3, while TD3 clearly outperforms DDPG. This
is originated in the superior target function and stabilized critic optimization. Due to DBDDPG
being based on DDPG, not only the absolute difference to our approach regarding the received
reward is of interest, but also the difference in relative improvement towards unbootstrapped
methods. Where absolute refers to the direct comparison and relative to the comparison of the
improvement towards the unbootstrapped base. To reduce statistical drawbacks due to random-
ness in initialization regarding the comparability of all algorithms, each experiment is conducted
four times for each algorithm under identical conditions and the best trials are compared in Fig. 2.
The data is generated by evaluating the agent during the course of training and averaging the final
return over multiple episodes.

Our approach achieves a clear increase in performance regarding the expected return. We are
outperforming all of the other approach due to a more elaborated exploration. However, when
no beneficial effect due to bootstrapping is noticeable, the overhead produced by our approach
does not decrease the final performance and achieves the same results as TD3. This especially
can be seen in the Walker2D environment, when compared to the effect of DBDDPG. In direct
comparison DBDDPG, or DDPG in general, suffers from greater instability and therefore high
variance over the course of training. Furthermore does DBDDPG not manage to increase the per-
formance in comparison to DDPG, when the hyperparameters from DDPG are applied as shown
in our experiments. Therefore, our approach not only outperforms DBDDPG in absolute measure

Computer Science & Information Technology (CS & IT) 161

0.0 0.2 0.4 0.6 0.8 1.0
Iterations (1e6)

0

500

1000

1500

2000

2500

3000

3500

4000
Av

g.
 R

ew
ar

d
R

Ant
N = 5 N = 10 N = 20 DBDDPG

10 10 10 8 10 6 10 4 10 2 100

Beta

3000

3200

3400

3600

3800

4000

Av
g.

 R
ew

ar
d

R

Ant

Figure 3: Illustration of the effect of the degree of bootstrapping (left) and the influence of the
potential based penalty (right) for the environment Ant. As can be seen, with increasing N the
beneficial effect due to enhanced exploration increases. The potential based penalty coefficient
improves the expected return until it constraints the training to heavily.

but also in relative measure compared to the unbootstrapped methods. We are still improving
the performance of the agent compared to TD3 even though the hyperparameters are optimized
explicitly for TD3.

The exploration is especially supported by the potential-based penalty as it ensures a greater main-
tenance of the posterior distribution. This effect is visible in Fig. 3 on the right for N = 5. Each
data point represents the mean reward over the last five evaluations given a certain beta. While
only the penalty coefficient beta is varying, the average reward starts to increase and decrease
after an optimal value of beta. While first being supportive towards the posterior distribution the
penalty prevents optimization if too great. Another essential parameter is the degree of bootstrap-
ping N , which increases the number of hypotheses and therefore increases the possible diversity.
As Fig. 3 on the left shows, increasing the degree of bootstrapping further enhances the beneficial
effect on the resulting performance. However, this effect saturates as can be seen by comparing
the curves for N = 10 and N = 20. All values of N are superior over DBDDPG with N = 5.

A major limitation is the source of improvement itself. While exploration is heavily enhanced by
uncertainty, at the same time there is no guarantee that each trial under identical condition will
benefit from it. The potential-based penalty supports this effect, as it prevents a greater similarity
between each hypotheses and emphasizes generality. Furthermore, is it unclear with the current
state of the art, how a conjunction of the trained hypothesis, each represented by a neural network,
could be possible. Since the local optima usually lay far apart, no strategy for weight combination
is commonly known. Even if the optima lay close by each other, a naive combination of the
weights will most likely result in a major decrease in performance. Therefore, we evaluate each
actor greedily, as explained above, using the critic and act upon the expected to be most beneficial
hypothesis, while the conjunction is put to future work.

4.3. Training- and Runtime Analysis
Another major contribution of our bootstrapping approach is the much faster training time in
comparison to the current state of the art due to random policy sampling instead of greedy data
collection. To evaluate this, we conducted a shortened training including 10,000 iterations and
average the time per iteration. No evaluation takes place, therefore the averaged time includes
one interaction with the environment and one optimization step of the neural networks. For the
averaged inference time during evaluation the network generates 10,000 actions based on random

Computer Science & Information Technology (CS & IT)162

Table 1: Runtime (average and std. dev.), normalized by our approach for N = 5

Application OUR, N = 5 OUR, N = 10 TD3 DBDDPG
Training 1.0± 0.129 2.31± 0.139 0.609± 0.105 2.817± 0.682

Evaluation 1.0± 0.063 1.982± 0.128 0.144± 0.014 3.9603± 0.189

states, while the interaction with the environment is neglected. The averaged time only includes
the inference, not the sampling of the random states. All data is summarized in Tab. 1 and nor-
malized by our approach with a degree of bootstrapping N = 5, represented by bold digits, to be
easily comparable.

As expected, is TD3 in comparison the fastest in training, as least networks have to be optimized.
Nevertheless is ours only slightly slower due to the efficient data collection, while the overhead
is given by the increased number of actor heads that need to be optimized. In evaluation the
overhead becomes more obvious, as we are searching greedily for the optimal action and quantify
the performance of each actor using the critic. Our approach is still applicable in real time, since
one inference for N = 10 takes on average less than 9 ms.

In comparison to DBDDPG, our approach is much faster in training and application. The quadratic
cost in evaluation is already for N = 5 noticeable and especially the greedy collection of the data
heavily slows down the training process in DBDDPG. Already for this degree of bootstrapping
our approach is more performant regarding the expected return, while being faster in training and
evaluation. Even for an increasing degree of bootstrapping our approach is faster, as is shown for
N = 10.

5. CONCLUSION

In this paper, we presented a novel bootstrapping approach based on Thompson sampling applied
to twin delayed deep deterministic policy gradient (TD3). Our approach trains and infers much
faster than the current state of the art, which is DBDDPG [13], and still achieves a seriously im-
proved performance. This especially results from applying the critic structure from TD3 instead
of bootstrapping the entire actor-critic structure. Another speedup is achieved by sampling the ac-
tions during training based on Thompson sampling and not by greedily searching for the optimal
action. To benefit from Thompson sampling, it is important to maintain the posterior knowledge
inherited in our actor structure. We address this by adding a potential field based penalty, which
induces high cost when the hypotheses agree on the same optimality. A well maintained distribu-
tion, given the posterior knowledge, naturally induces deep exploration when acted according to
it during data collection.

We evaluated our approach in a variety of low-level control tasks, which strongly back up our
claims. The experiments show that we outperform DBDDPG in all of the trained environments
with a major decrease in computational cost regarding training and evaluation. Furthermore, we
add a clear improvement in comparison to TD3 with the drawback of minor computational cost
increase. This benefit is mainly caused by the improved exploration during data collection induced
by sampling the current policy based on Thompson sampling, especially in combination with our
potential field penalty constraint.

ACKNOWLEDGEMENTS

This work has partly been supported by the German Research Foundation under Germany’s Ex-
cellence Strategy, EXC-2070 - 390732324 (PhenoRob).

Computer Science & Information Technology (CS & IT) 163

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level
control through deep reinforcement learning,” Nature, 2015.

[2] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,”
IEEE Robotics and Automation Magazine (RAM), 1997.

[3] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dynamic programming,”
in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2014.

[4] G. Ferrer, A. G. Zulueta, F. Cotarelo, and A. Sanfeliu, “Robot social-aware navigation frame-
work to accompany people walking side-by-side,” Autonomous Robots, 2017.

[5] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-Robot Interaction: Crowd-Aware
Robot Navigation With Attention-Based Deep Reinforcement Learning,” Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2018.

[6] V. Dhiman, S. Banerjee, B. Griffin, J. M. Siskind, and J. J. Corso, “A Critical Investigation
of Deep Reinforcement Learning for Navigation,” CoRR, 2018.

[7] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning: Continuous con-
trol of mobile robots for mapless navigation,” in Proc. of the IEEE/RSJ Intl. Conf. on Intel-
ligent Robots and Systems (IROS), 2017.

[8] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum Learning,” in Proc. of the
Intl. Conf. on Machine Learning (ICML), 2009.

[9] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil, R. Goroshin,
L. Sifre, K. Kavukcuoglu, D. Kumaran, and R. Hadsell, “Learning to Navigate in Complex
Environments,” CoRR, 2016.

[10] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven Exploration by Self-
supervised Prediction,” in Proc. of the Intl. Conf. on Machine Learning (ICML), 2017.

[11] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function Approximation Error in
Actor-Critic Methods,” in Proc. of the Intl. Conf. on Machine Learning (ICML), 2018.

[12] W. R. Thompson, “On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples,” Biometrika, 1933.

[13] Z. Zheng, C. Yuan, Z. Lin, Y. Cheng, and H. Wu, “Self-Adaptive Double Bootstrapped
DDPG,” in Proc. of the Intl. Jt. Conf. on Artificial Intelligence (IJCAI), 2018.

[14] J. Kulhánek, E. Derner, T. de Bruin, and R. Babuška, “Vision-based Navigation Using Deep
Reinforcement Learning,” in Proc. of the Europ. Conf. on Mobile Robotics (ECMR), 2019.

[15] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu, “Reinforcement Learning with Unsupervised Auxiliary Tasks,” CoRR,
2016.

[16] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing Exploration In Reinforcement Learn-
ing With Deep Predictive Models,” arXiv preprint, 2015.

[17] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-driven Exploration for Map-
less Navigation with Deep Reinforcement Learning,” CoRR, 2018.

[18] R. Houthooft, X. D. Chen, Y. M. Duan, J. Schulman, F. D. Turck, and P. Abbeel, “Varia-
tional Information Maximizing Exploration,” in Proc. of the Conf. on Neural Information

 Computer Science & Information Technology (CS & IT)164

Processing Systems (NIPS), 2016.

[19] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neural
networks,” in Proc. of the Intl. Conf. on Machine Learning (ICML), 2015.

[20] G. E. Hinton and D. van Camp, “Keeping the neural networks simple by minimizing the
description length of the weights,” in Proceedings of the Sixth Annual Conference on Com-
putational Learning Theory, 1993.

[21] A. Graves, “Practical variational inference for neural networks,” in Advances in Neural In-
formation Processing Systems 24, 2011.

[22] P. Henderson, T. Doan, R. Islam, and D. Meger, “Bayesian policy gradients via alpha diver-
gence dropout inference,” CoRR, 2017.

[23] I. Osband, C. Blundell, A. Pritzel, and B. V. Roy, “Deep Exploration via Bootstrapped
DQN,” CoRR, 2016.

[24] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic
Policy Gradient Algorithms,” in Proc. of the Intl. Conf. on Machine Learning (ICML), 2014.

[25] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning.” in Intl. Conf. on Learning Repre-
sentations (ICLR), 2016.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-
mization algorithms.” CoRR, 2017.

[27] E. Shech and E. Hatleback, “The material intricacies of coulomb’s 1785 electric torsion
balance experiment,” July 2014.

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[29] E. Coumans and Y. Bai, “PyBullet, a Python module for physics simulation for games,
robotics and machine learning,” http://pybullet.org, 2016–2019.

[30] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“OpenAI Gym,” 2016.

[31] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional contin-
uous control using generalized advantage estimation,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2016.

Computer Science & Information Technology (CS & IT) 165

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org/

