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Abstract: The accuracy of automatic speech processing systems for children’s
speech lags heavily behind the accuracy of systems for adult speech. One of the
reasons is a high pronunciation variability in children’s speech. Modeling this vari-
ability can be effective to increase performance. We investigate whether MAUS, a
system developed for phonemic segmentation and trained on adult speech, which
explicitly models deviations from canonical pronunciations, can be applied to chil-
dren’s speech. We compare it to a recently presented system trained on children’s
speech. We evaluate whether the systems can capture pronunciation variability as
well as the performance on phonemic segmentation.

1 Introduction

As all machine learning applications, automatic speech processing systems depend on similarity
of the processed data to the data used during training. When applying speech processing sys-
tems designed for adult speech to children’s speech, the dissimilarity is often too high, leading
to high error rates [1]. One of the properties of children’s speech, making it difficult to apply
systems designed for adult speech, is the high pronunciation variability. Explicitly consider-
ing pronunciation variability might therefore increase performance of systems trained on adult
speech. MAUS [2], a system developed for phonemic segmentation of adult speech, explicitly
models variations for a given canonical pronunciation. We investigate whether MAUS can be
successfully applied to model pronunciation variability of children’s speech. We compare it
with a recently proposed approach especially trained for children’s speech [3].

Both approaches use an available canonical pronunciation of the processed utterance and
an acoustic model as well as a pronunciation model to capture deviations of that canonical
pronunciation. While MAUS is based on hidden Markov models (HMMs), the system of [3]
relies on a deep learning acoustic model trained end-to-end using the connectionist temporal
classification (CTC) criterion [4]. The comparison is done on the kidsTALC corpus [5], a
recently published corpus of typically developing, monolingual German speaking children. We
evaluate the performance in capturing the pronunciation variability as well as on phone-level
segmentation.

2 Method

In this section we will describe the systems compared in our work. The main goal is to inves-
tigate, whether the default German acoustic and pronunciation model of MAUS [2] is suitable
to correct deviations of a canonical pronunciation. We will compare MAUS with a CTC-based
system proposed in [3] that is trained on children’s speech and models deviation given a canon-
ical pronunciation in a similar way as MAUS.
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2.1 MAUS

MAUS [2] targets phonemic segmentation and labeling using a data-driven Markov process.
Given an audio signal x, a label l, and the corresponding sequence of label s, the conditioned
probability can be rewritten as follows:

P(l|x) ∝ P(x|l)P(l). (1)

The acoustic model P(x|l) is determined using a HMM, whereas the key contribution of MAUS
is the modeling of the language model P(l). As the system focuses on segmentation and not
automatic speech recognition (ASR), it is assumed that an approximated label sequence s′ for
the input signal based on a canonical pronunciation is known. Usually this is obtained by an
orthographic transcription coupled with a pronunciation dictionary, which usually leads to a
slight deviation between the two sequences s and s′.

MAUS represents the approximated label sequence by a linear weighted finite state trans-
ducer (WFST), which is further extended by data-driven patterns, building the full decoding
graph D . This extension allows to recover the target sequence s from the decoding graph D , if
the extension patterns are chosen correctly. Each of these patterns consists of a left and right
context (cl,cr), and the original label as well as the replacement (la, lb)∈T . To allow for inser-
tions and deletions the label set T is extended by an empty label. The patterns are constructed
by aligning manual target sequences s from a given dataset with the approximated sequence s′

based on a canonical pronunciation from a dictionary and the manual orthographic transcrip-
tion. To further increase the available extension patterns, the left and right context is nullified,
i. e., assuming the replacement pattern given (cl,cr, la, lb) is also common when either the left
or the right context is omitted.

While the state probabilities in the Markov process are directly given from the acoustic
model, the transition probabilities need to be weighted based on the resulting decoding graph
D . This is necessary to ensure that each decoding path is assigned the correct probability
depending on the contained extension patterns. MAUS has a weighted and an unweighted
method to compute the resulting transition probabilities. For simplicity we will describe the
unweighted method, i. e., assuming that all paths have an equal probability, and refer for the
weighted approach to Kipp [6]. The assumption of equal weights for all paths in the decoding
graph simplifies the computation of the transition probabilities to a path counting problem.
MAUS computes in a forward pass the sum Ni of all paths leading to Node i. Setting the
probability of the final Node of being part in the most probable decoding path to one, the
probability of all other Nodes is computed in a backward pass

Pi = ∑
j

Pj
Ni

N j
, (2)

where ∑ j represents the sum over all subsequent nodes. Combining the results of the forward
and backward pass leads to the transition probability of two adjacent nodes, given by

Pi→ j =
PjNi

PiN j
with i < j. (3)

2.2 CTC Decoding

We compare the results of MAUS to those of a recent approach constraining the decoding of
an end-to-end speech recognition system [3]. Its general idea is comparable to MAUS. Using
canonical pronunciations from a pronunciation dictionary and data-driven pronunciation rules,
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a graph is build, which describes different possible realizations of an orthographic transcript.
However, instead of using a traditional Hidden Markov model based system, it uses an end-to-
end deep neural network acoustic model trained with the CTC criterion [4] in an end-to-end
fashion.

CTC is a method for training of sequence labeling models without need for a known align-
ment between input and output sequences. For each (time-)frame in the input sequence, CTC
models compute a probability distribution over the label set T extended by a special blank
token. The blank token allows for repetitions in the finale output sequence, i. e., the output
sequence is given by selecting one token at each frame, then collapsing consecutive identical
tokens and finally removing the blank token. Each uncollapsed path through the output defines
one alignment between the input and output sequences. The probability of a path is computed by
multiplying the probabilities of the selected tokens at each frame. Summing up the probability
of all paths which lead to the same output sequence after collapsing, results in the probability
of that output sequence. CTC thus defines the probability of an output sequence by the sum
of the probabilities of all possible alignments between input and output sequences. Since the
derivative of the probability of a given target sequence with respect to the model output can
be efficiently computed using a forward-backward algorithm, CTC models can be trained in an
end-to-end fashion.

Greedy CTC decoding can be described using WFST as finding the shortest path in the
decoding graph G

G = C ◦H . (4)

H is a dense emission graph of the acoustic model. It has one node for each time-frame in the
input audio and one transition for each token in the label set T between each node. The weight
of each transition is given by the models output probability for the corresponding token at that
time-frame. C is a graph modeling the collapsing and blank-removal of CTC by transducing
repetitions and emissions of the blank label to no output. G accepts all possible sequences given
the label set, limited by the length of the input.

In [3] CTC decoding is constrained by introducing a graph S and computing its composi-
tion with C before computing the composition with H :

D = (C ◦S )◦H . (5)

The decoding graph D now only accepts those sequences which are accepted by S . S is con-
structed such that it accepts all expected phonetic realizations given an orthographic transcript
of the utterance.

First, it accepts multiple pronunciations for each word. In the present work the pronuncia-
tions are given by a pronunciation dictionary containing all pronunciations seen in the manual
phonetic transcription of the training set of kidsTALC [5]. In S , the different pronunciations
are weighted according to their relative frequency in the training set. For words not seen in the
training set, an external pronunciation dictionary is used. Only using the pronunciations from
the training data and the external dictionary limits the system to seen pronunciations. A data-
driven approach to model sub-word pronunciation pattern is added. This approach is similar to
the extension patterns MAUS uses. Substitutions, deletions and insertions between the manual
phonetic transcription and the canonical pronunciation given the orthographic transcription are
counted. Transitions are added to S , weighted by the frequency of these deviations. [3] also
investigates the effect of allowing deviations based on phonological error patterns. Since this
does not lead to improved results, we do not use this approach in the present work.
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2.3 Phone Alignment

MAUS can intuitively obtain the alignment by back-tracing the Viterbi path of the decoding
graph. The decoding graph can include the pronunciation variants as described in Sec. 2.1
or can be a linear graph representing the manual phonetic transcription for forced alignment.
While MAUS is trained on a frame-wise alignment yielding to a good approximation using the
Viterbi path, CTC is trained end-to-end. As mentioned in Sec. 2.2, CTC learns only an implicit
alignment. The outputs of CTC are usually prone to spike [7], i. e., each token often only has one
time-frame with a high probability with the remaining time-frames having a high probability for
the blank token. When back-tracing the Viterbi path of the CTC decoding graph, therefore only
this one time-frame can be clearly assigned to the token. Boundaries between tokens can not be
identified intuitively. For frame-wise classification the frames emitting a blank token need to be
assigned to the neighboring non-blank tokens. In this work we test a central split, i. e., splitting
the frames assigned to a blank token equally between the neighboring valid token.

Another approach was recently introduced by Kürzinger et al. [8]. The authors present
a method based on a model trained with CTC to align large German corpora. However, it is
important to notice that this method was introduced to align utterances within large German
corpora and does not directly target phone-level segmentation. In a forward pass, the decoding
is carried out by suppressing any repetitions of non-blank token, i. e., only allowing each label
in the target sequence s to spike once. In a backward pass the most probable path is back-traced
similarly to the Viterbi path. During the backward-pass every frame, after the last valid token
was consumed, is assigned to this token. As soon as the next token is consumed, the frame is
assigned to the new token, which leads to a non-central assignment.

3 Experimental Setting

In this section we will explain the used dataset and the trained CTC-models. Furthermore, we
give details to the different pronunciation dictionaries.

3.1 kidsTALC

We utilize kidsTALC [5], which is a corpus of typically developing, monolingual standard
German speakers in the age range of 3½ to 11 years. It provides a manual orthographic and
phonetic transcription, as well as utterance level segmentation. The transcription relies on a
reduced token set of IPA symbols, which can be directly mapped to the X-SAMPA Symbols
used by MAUS. The token set of kidsTALC does not differentiate between diphthongs and
separate vowel pairs. Furthermore, the glottal stop is not part of the reduced token set.

All evaluations are based on the validation split of the kidsTALC corpus. Within this set 8
children, one female and one male child from each of the four age groups, are present and not
part of the training data. We neglect hard- and unintelligible utterances, which contain words
that are semantically meaningless or not transcribable at all by a speech language therapist. In
total this results in 50 min of children’s speech for evaluation and about 6 h of training data.

3.2 CTC model

The CTC-model is trained on the kidsTALC corpus, enlarged using Mozilla Common Voice [9].
For training we use SpeechBrain [10], whereas the training script is closely related to the TIMIT
recipes provided by the SpeechBrain community. For the alignment on TIMIT [11], we used
a pretrained CTC-model provided by the SpeechBrain community, as well. The constrained
decoding is efficiently implemented using k2 [12].
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3.3 Grapheme-to-Phoneme

In the our evaluation we rely on two different canonical pronunciations. First, we use the
Grapheme-to-Phoneme (G2P) of the BAS web services [13], which we refer to as a baseline. We
do not have access to the system and cannot outline further details, but assume it focuses on adult
speech. Secondly, we use a domain specific dictionary, which is based on the most common
pronunciations existing in the kidsTALC train set. For words not existing in the train set we use
pronunciations from the BAS repository[14] extended by a trained seqitur-G2P model [15] for
out-of-vocabulary (OOV) words.

4 Results

In this section we will present the results from our experiments. First, we compare the perfor-
mance in pronunciation modeling. Furthermore, we show the alignment capabilities of MAUS
and a CTC-based system. This is done only qualitatively on the kidsTALC corpus, since it un-
fortunately does not provide time alignments on phone-level. To also provide some quantitative
comparisons, we additionally evaluate on the TIMIT-dataset [11].

4.1 Pronunciation Modeling

In this section we evaluate the pronunciation modeling capabilities. We compare the canonical
pronunciations provided by the different G2P approaches, as well as the adjustments made by
the different pronunciation modeling systems. We also evaluate the end-to-end acoustic model
performance of the CTC-based system. For all, we compute the phone error rate (PER) to the
manual phonetic transcription given in the kidsTALC dataset. All numbers in Tab. 1 are based
on the validation set, since the manual transcriptions for the test set of the kidsTALC corpus are
not publicly available. For a fair comparison we allowed MAUS to output diphthongs if desired
and split the diphthongs before aligning to the ground truth. The same applies to glottal stops,
which are removed before comparison. Furthermore, we noticed inconsistency for the pauses,
which we neglected in the PER as well.

Table 1 – Phone error rate (PER) with respect to the manual phonetic transcript on the validation set of
the kidsTALC corpus[5].

Method PER

End-to-end 32.43 %
G2P (BAS Webservices) 21.67 %
G2P (BAS Webservices) + MAUS 21.03 %
Domain Specific Dictionary 10.07 %
Domain Specific Dictionary + MAUS 12.36 %
Domain Specific Dictionary + End-to-end 9.50 %

When the CTC-model is greedily decoded, i. e., without any constraining based on the
manual orthographic transcription, a performance in terms of PER of 32.43 % is achieved. To
naively utilize the manual orthographic transcription, we apply two different pronunciation dic-
tionaries: A G2P from the BAS Webservice and a domain specific dictionary based on the train
set of the kidsTALC dataset. We refer to this automatically translated transcript as pseudo pho-
netic. The pseudo phonetic transcript using the G2P of the BAS web services achieves a PER of
21.67 %. Using the domain specific dictionary generated from the kidsTALC train set reduces
the PER to 10.07 %, showing that using a domain specific dictionary is important for children’s
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speech. While one common reason is the presence of uncommon words, we also noticed that
the most prominent pronunciations of the children often contain pronunciation mistakes and
deviate from the canonical pronunciation. A good example is the German word und, where the
most prominent pronunciation does not contain the /t/ at the end.

Applying the MAUS pipeline on both transcripts with canonical pronunciations was only
successful when using the G2P of the BAS web services, improving the PER to 21.03 %. MAUS
is not able to further improve the transcript generated using the domain specific dictionary, but
increases the PER to 12.36 %. This can most likely be explained by the domain gap between
the training data for the acoustic models and the pronunciation rules, and the children’s speech
it is applied to. However, the constrained CTC-based decoding is capable of improving over the
pseudo phonetic transcript from the domain specific dictionary. It is important to notice that the
utilized model is trained end-to-end on children’s speech. This enables the system to achieve a
relative improvement of 5.66 %, i. e., an overall PER of 9.5 %.

4.2 Phone Alignment

In this section we evaluate the segmentation capabilities of MAUS and CTC-based systems
using the frame accuracy (FA). The FA refers to the proportion of correctly assigned frames,
given a phone-level manual segmentation.

Table 2 – Frame accuracy (FA) with respect to the manual phone-level segmentation on the test set of
the TIMIT corpus [11].

Method FA

Kürzinger [8] 59.54 %
CTC + Viterbi 77.90 % (96.73 %)
MAUS 87.15 %

We start by evaluating the performance on the TIMIT speech corpus, since it provides
manual phone-level segmentation, in Tab. 2. The method based on Kürzinger et al. [8] described
in Sec. 2.3 only achieves a FA of 59.54 %. We argue the reason lays in the design itself, which
targets the segmentation on utterance-level for large audio files. In comparison, when aligning
based on the Viterbi path and splitting the blank token centered between the neighboring tokens,
the performance in terms of FA is improved to 77.90 %. Since CTC only implicitly learns an
alignment, and due to the bi-directional LSTM, the CTC-based model is in theory capable of
outputting the entire sequence s in the first N = |s| frames. To demonstrate the capabilities
of the model to still correctly place the tokens, and only requiring a more elaborated division
of the blank-token to accurately identify boundaries between tokens, we double assigned the
frames with blank tokens to both neighboring tokens. The double assignment leads to a score
of 96.73 %, which is not comparable to the other models but gives a reasonable intuition of
the alignment done by CTC-based models. MAUS outperforms all other systems leading to a
performance in terms of FA 87.15 %.

On the kidsTALC corpus, we qualitatively compare MAUS with a CTC-based model trained
on children’s speech. First, we compute the agreement for the constrained decoding and forced
alignment. The agreement refers to the percentage of frames, where MAUS and the CTC-based
system agree after aligning both resulting transcripts. For forced alignment the alignment of
both transcripts is not necessary as the transcripts are identical. We do not split up diphthongs
or remove pauses as done in Sec. 4.1, because only the agreement was of interest and no metric
with respect to a ground truth was applied. For the constrained decoding we reach an overlap
of 51.63 %, while for forced alignment this value drops to 40.92 %. We argue, that this can be
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explained by the models giving the target sequence an even lower probability, i. e., if a target
token is highly improbable given the model, the alignment will most likely be wrong as well.

We further qualitatively analyze the two alignments of the constrained decoding for one
specific child. We notice that MAUS results in more accurate alignments as long as the acous-
tic model was capable of recognizing the correct token. The CTC-based system has a special
problem with the token boundaries, while being accurate on the token placement. The inaccu-
rate boundaries are originated in the re-assignment of the blank token, as described in Sec. 2.3.
However, whenever the audio gets less intelligible, the acoustic model of the CTC-based system
is more robust in terms of phone recognition, also leading to a more accurate segmentation.

5 Conclusion

In this work we evaluate MAUS [2] on German children’s speech and compare it to a similar
system using an end-to-end speech recognition acoustic model [3]. Both apply constraining
towards a canonical pronunciation based on an orthographic transcript in a similar fashion.
However, the MAUS system is incapable of correctly modeling deviations from the canonical
pronunciations given by a domain specific pronunciation dictionary. In contrast, the CTC-based
model trained on children’s speech improves upon the transcript given by the domain specific
pronunciation dictionary by relatively 5.66 %. For phone-level segmentation we first compare
both systems on the TIMIT corpus [11], where MAUS outperforms all CTC-based systems.
However, for the kidsTALC corpus [5] only a qualitative analysis was possible. While MAUS
is more accurate in general for phone-level segmentation, the CTC-based system is more robust,
when the acoustic model of MAUS fails due to domain mismatch. An interesting further step
is fine-tuning MAUS on children’s speech and evaluating the segmentation capabilities of both
systems using a children’s speech corpus manually segmented on phone-level.
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