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Abstract—Head pose estimation plays a vital role in biometric systems related to facial and human behavior analysis. Typically, neural
networks are trained on head pose datasets. Unfortunately, manual or sensor-based annotation of head pose is impractical. A solution
is synthetic training data generated from 3D face models, which can provide an infinite number of perfect labels. However, computer
generated images only provide an approximation of real-world images, leading to a performance gap between training and application
domain. Therefore, there is a need for strategies that allow simultaneous learning on labeled synthetic data and unlabeled real-world
data to overcome the domain gap. In this work we propose relative pose consistency, a semi-supervised learning strategy for head
pose estimation based on consistency regularization. Consistency regularization enforces consistent network predictions under
random image augmentations, including pose-preserving and pose-altering augmentations. We propose a strategy to exploit the
relative pose introduced by pose-altering augmentations between augmented image pairs, to allow the network to benefit from relative
pose labels during training on unlabeled data. We evaluate our approach in a domain-adaptation scenario and in a commonly used
cross-dataset scenario. Furthermore, we reproduce related works to enforce consistent evaluation protocols and show that for both
scenarios we outperform SOTA.

Index Terms—Head Pose Estimation, Domain Adaptation, Consistency Regularization, Deep Learning
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1 INTRODUCTION

H EAD pose estimation (HPE) describes the problem of
predicting the orientation (head pose) of the human

head. Head pose is a key factor in many biometric systems
related to facial analysis and human behavior analysis.
Accurate estimation of head pose can bring many benefits.

In driver assistance systems [1] HPE can be used for
automatic assessment of the focus of attention. Head pose
is used for visually assessing human-object and human-
human interaction [2]. Further, it is the starting point for
many gaze estimation methods [3]. In facial recognition
systems head pose is important for pre-processing [4] or
during training for data augmentation and to obtain pose-
invariant recognition models [5]. Similar use cases apply
for facial expression recognition [6] as pose-invariance is a
desired property for facial analysis systems.

Motivated by the many possible applications, there has
been a lot of progress in this field of research, most recently
through deep learning methods. Collecting the required
training data is still a challenging task for several reasons.
Manual annotation is a problem, because humans cannot
accurately annotate a 3D head pose from a 2D image.
This has led to the creation of head pose datasets using
devices like depth sensors and 3D head scans [1], [7], or
special tracking equipment attached to the head [8], [9], [10].
However, with these recording setups, it is cumbersome and
costly to reach a high diversity in subjects, environments
and poses. Therefore it is still an open challenge to acquire
suitable training data.

A solution is to use synthetic (rendered, computer gener-
ated) face images to provide inexpensive and virtually un-
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limited quantities of perfectly labeled data. Several methods
train on synthetic [11], [12], [13], [14], [15], [16] or synthet-
ically extended (warped) images (e.g., [17], [18] on 300W-
LP dataset [19]). Unfortunately, learning-based approaches
trained only on synthetic data (source domain) tend to
perform poorly on real-world data (target domain) com-
pared to methods trained on real-world data. This can be
explained by the difference between domains (domain gap).
In [16] we addressed this issue for HPE by introducing a
method for domain adaptation (DA). DA methods typically
use unlabeled data from a target domain during training,
to overcome the domain gap. However, the performance of
methods trained on synthetic head pose data is still inferior
to methods trained on real-world head pose data.

In this work, an extended version of [20], our goal is to
improve the performance of HPE on real-world data using
only labels from a synthetic dataset in combination with an
unlabeled real-world dataset. In [16] an adversarial training
approach based on domain adversarial neural networks
[21] is used to force the extraction of domain-invariant
features. In contrast, we propose to tackle the problem using
consistency regularization and relative pose labels.

Consistency regularization is a semi-supervised learning
(SSL) technique. Semi-supervised learning utilizes labeled
and unlabeled data simultaneously during training. This
property was exploited successfully for domain adaptation
using consistency regularization in [22]. Consistency regu-
larization forces network outputs for the same input under
different perturbations to be consistent. For visual tasks,
these perturbations are typically implemented as various
image augmentations, e.g., spatial transforms. However,
head poses are not invariant to spatial image transforms,
like flipping and rotation. If the ground truth pose is known,
the pose label can be adjusted, however, the ground truth
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Fig. 1. From an image with unknown head pose (picture from [7]) two
different augmented versions A and B are created. Augmentations can
be color distortions, blurring, etc., but also pose-altering transforms like
rotations (rA, rB) and flipping. In addition to a supervised loss, our
method allows to train a network on unlabeled data with relative pose
consistency between A and B. Relative pose consistency provides an
unsupervised loss to enforce consistent predictions under different aug-
mentations, and also to enforce predictions that comply with a relative
pose.

pose is unknown for our target-domain data. In [20] and
this extended work, we therefore propose to take advantage
of relative pose.

The relative pose, which we store in a relative pose label,
is the pose difference between two realizations of the same
input (see Fig. 1 for an example). Recalling that training
with consistency regularization requires different realiza-
tions of the same input, we implement relative pose label
in a consistency training framework (see Figure. 2 for an
overview of our method). This extends the consistency su-
pervision from static augmentations to relative pose labels.
As a consequence, the network is trained not only to make
consistent predictions, but also predictions that comply with
the relative poses. Our consistency-enforcing method does
not require absolute pose information and can therefore
be used with unlabeled data samples in semi-supervised
or domain-adaption scenarios. We show the effectiveness
of our approach on the popular BIWI Kinect Head Pose
estimation benchmark [7].
Our main contributions are as follows:

• We show, for the first time that consistency regular-
ization can be used for pose regression problems.

• We propose relative pose consistency, a novel exten-
sion to consistency regularization.

• We present an improved training framework com-
pared to [20]

• We uncover effects of preprocessing on performance
during reproduction of related work.

• We improve state-of-the-art results for two challeng-
ing HPE scenarios (domain-adaptation and cross-
dataset).

2 RELATED WORK

2.1 Head Pose Estimation
In recent years, traditional approaches based on facial land-
marks and 3D face models are mostly superseded by deep
learning methods. These methods estimate the pose directly

from an image. In addition to images, different modalities
such as depth images [7] or temporal information [14] can
be used. In this review we will focus only on deep-learning
methods for HPE from a single RGB image.

The first convolutional neural networks (CNN) to di-
rectly regress head pose from an image are presented by
Anh et al. [23] and Patacchiola and Cangelosia [24]. Recent
work proposes variations of loss functions and network
architectures. Ruiz et al. [17] combine a regression loss with
binned pose classification, by assigning continuous pose to
discrete pose categories (bins). Shao et al. [25] use a similar
combined loss but also evaluate the effect of adjusting the
margin around the face image that is fed into a CNN.
Similarly, Lathuilière et al. [26] evaluate various factors of
deep regression like hyperparameter selection or image pre-
processing in the context of head pose estimation. Wang et
al. [15] present a coarse-to-fine approach, where head pose is
coarsely classified in bins and later refined by regression. An
attention based network structure for HPE is proposed by
Yang et al. [18]. Their goal is to extract a set of representative
features by learning a fine-grained structure mapping before
a feature aggregation step. Zhou et al. [27] extend the work
of [17] to full-range HPE by proposing a wrapped loss that
allows training with the full range of yaw angles (-180◦,
180◦]. They further show that a small model, EfficientNet-B0
[28], can reach SOTA HPE performance. Hempel et al. [29]
propose a continuous 6D rotation representation for full-
range HPE and a geodesic distance-based loss. In contrast
Gu et al. [14] present an approach for temporal prediction
of facial features. They propose to use a recurrent neural
network (RNN) on top of a VGG16 network [30] for joint
estimation and tracking of head pose in videos. The above
methods can be seen as orthogonal to our approach, because
we are not trying to improve supervised performance with
new losses or network architectures for HPE. For simplicity
and comparability we focus on Mean Squared Error (MSE)
loss and ResNet [31] network architecture. Nevertheless, our
method can be applied to other loss functions or network
architectures as well.

Another approach to HPE is multi-task learning [32],
[33], [34], [35], [36]. In this setting multiple tasks like HPE,
landmark detection, age estimation, etc., are solved simulta-
neously. A benefit of multiple tasks is that multiple data
sources can be used for training, which considerably in-
creases the amount of training data. In contrast, our method
does not use additional labeled tasks or datasets.

An interesting unsupervised approach is presented by
Mustikovela et al. [37]. In their work, a viewpoint estima-
tion network is trained purely via self-supervision with an
analysis-by-synthesis framework using a network similar
to HoloGAN [38]. Similar to our work, they enforce flip
consistency by applying a flip consistency loss. In contrast,
their loss forces images synthesized from a flipped latent
code to be consistent. Our loss forces the predicted labels
from flipped images to be consistent.

Lastly, it is a common approach to use synthetic face
datasets from 3D models for HPE [11], [12], [13], [14], [15],
[16], [20]. This has the advantage of learning from a high
amount of diverse images with perfect labels. To date, [14]
and [13] are publicly available datasets. These related works
train on synthetic or mixed datasets and evaluate on real-



WILL APPEAR IN IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, 2023 3

world datasets, however, most of them do not explore
any domain adaptation or semi-supervised techniques to
overcome the domain gap. This was only explored in our
previous works [16], [20].

In [16], we improve HPE for an unlabeled target dataset
by enforcing a network to extract domain-invariant features
using a domain discriminator and an adversarial training
loss. To account for an only partially-shared label space,
we apply a weighted resampling of the source domain to
filter out samples with poses that are outside the target
domain. To find poses outside the target domain, a distance
between source and target domain samples is estimated by
a network trained on the source domain. The method has
two drawbacks. First, in addition to the pose estimation net-
work, a domain-discriminator network needs to be trained
simultaneously during training. This leads to additional
computations, hyperparameters and complexity. Second,
the resampling of training data assumes the availability of
a pose distance metric to find suitable training samples.
It is not guaranteed that a network trained only on the
source domain provides an accurate distance metric to select
appropriate training samples.

In [20], we tackle the same problem but choose a
completely different approach to avoid the aforementioned
drawbacks. One goal of [20] is to find a method that does
handle partially-shared label spaces like [16] but does not
need an explicit filtering of training data. As a result, the
approach presented in [20] does not require to resample the
source data. Furthermore, the approach does not need an
additional discriminator network with adversarial training.
These factors and improved performance compared to [16]
make the proposed solution an exciting new solution for
HPE in domain-adaptation scenarios. In this iteration of [20]
we further refine the solution and provide a more detailed
evaluation of the method. We introduce a modification
to the training framework that increases the performance
relative to [20]. In addition, we apply our method to a cross-
dataset task to verify that our method can be applied in
different scenarios. In an attempt to enable meaningful per-
formance comparisons to related work, we also investigate
the reproducibility of head pose estimation experiments in
the context of face detection (see Section 4.5).

2.2 Consistency Regularization
Consistency-enforcing methods provide state-of-the-art per-
formance for semi-supervised learning. During training,
consistent network predictions for unlabeled data under
input and network perturbations are enforced. Although
one can find many terms and variants like self-ensembling,
consistency regularization, self-training, temporal ensem-
bling, or pseudo-labels, the core principle of enforcing con-
sistent outputs is similar. Consistency-enforcing methods
have also been successfully applied to domain-adaption
scenarios, where the unlabeled data is from another do-
main. While first used as semi-supervised methods, these
principles are now popular for unsupervised pre-training of
neural networks and paved the way for modern contrastive
(self-supervised) methods like SimCLR [39], MoCo [40] and
BYOL [41].

Laine and Aila [42] proposed two self-ensembling meth-
ods, Π-Model and temporal ensembling. Both methods

enforce consistent network predictions for the same input
under different stochastic input augmentations and network
perturbations. In this case, dropout was used to provide
network perturbations. The Π-Model randomly augments
the same input twice during an iteration and forces con-
sistent predictions. In contrast to the Π-Model, temporal
ensembling forces network predictions over multiple pre-
vious training epochs to be consistent to the current pre-
diction. Self-training and training with pseudo-labels, e.g.,
[43], [44], can be seen as a variant of temporal-ensembling.
The Mean Teacher method by Tervainen et al. [45] adapted
this idea but instead of reusing previous predictions, they
added a teacher network that is an average of previous
network weights. The teacher network’s predictions and the
current model’s (named student) predictions are forced to
be consistent. French et al. [22] applies the Mean Teacher
method to domain adaptation and proposes modifications
to improve DA performance. As we are the first to introduce
consistency regularization to head pose estimation, we opt
for simplicity and base our work on the Π-Model.

3 METHOD

Semi-supervised learning is typically used to learn from
a large dataset, which is only partially labeled. We take
up this idea for domain adaptation to learn from labeled
synthetic images (source domain) and unlabeled real-world
images (target domain). On the one hand, synthetic data
provides perfect labels for a wide variety of poses. On
the other, it only provides an approximation of real-world
image features. Real data provides real-world features but
lacks annotation quantity and quality. Combining them in
a training scheme, where both datasets can be used simul-
taneously, is a promising way to improve performance on
real-world images.

This concept is not limited to scenarios with synthetic
and real-world data. A domain gap can decrease perfor-
mance if the source data distribution is different from the
target data distribution. For image datasets, different record-
ing settings like lighting, camera, or subjects can already
provide enough differences to cause reduced performance
across domains. Our method can be applied in cross-dataset
scenarios as well.

We will first introduce the required notations and base-
line supervised learning. Then, we will describe the con-
sistency regularization framework. Subsequently, we will
describe the concept of relative pose labels and how these
are embedded into the training framework. Finally, we dis-
cuss how we avoid degenerate solutions with consistency
regularization and the effects of batch normalization while
training with two dataset.

In a semi-supervised or domain-adaptation scenario,
data is available from the labeled source domain Ds =
{(xs

i , y
s
i )}

ns
i=1, where ns is the number of data samples

xs
i ∈ Xs and associated labels ysi ∈ Ys. For head pose esti-

mation, x is an image of a head and y is a vector of the three
corresponding Euler angles of the head. We are interested
in utilizing the unlabeled target data Dt = {(xt

i)}
nt
i=1, which

includes only samples but no labels.
A network f can be trained using the source data (Xs

and Ys) and a supervised loss. For head pose estimation the
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Fig. 2. Proposed framework for relative pose consistency regularized head pose estimation. Labeled data (in green) from the source domain
and unlabeled data (in blue) from the target domain can both be used in a semi-supervised fashion. Input images Xs and Xt are perturbed
by stochastic augmentations. The stochastic augmentation module can also change the pose of the input images by rotation and flipping. This
information is stored in the relative pose label. Source data follows the supervised path (green) to train the pose estimator f . Target data is copied
before the stochastic augmentation module which creates two different augmented versions of the target input. Note that even though the ground
truth pose is unknown for Xt the relative pose between the augmented versions Xt

′ and Xt
′′ can differ and is stored in a relative pose label. The

relative pose label and predictions are fed into the consistency loss. The consistency loss provides supervision from consistency and relative pose
labels. f is trained jointly on both losses.

Fig. 3. Illustrations of the studied image augmentations. Each augmen-
tation transforms the input image with random transformation param-
eters. The left images in each square show the inputs and the right
images randomly transformed outputs. For synthetic images, a random
background is added. Top row images from [7] and bottom row images
from [14].

supervised loss is a measure of how similar two poses are
and typically the Mean Squared Error is used as pose loss

ℓmse(ŷ, y) = ∥ŷ − y∥2, (1)

with the predicted Euler angles ŷ = f(x), and the ground
truth angles y.

3.1 Consistency Regularization Framework
Stochastic input perturbations are a central aspect of
consistency-based models. In practice standard image aug-

mentations like blurring, translation and scaling (usually
implemented as random cropping), horizontal flipping, ro-
tation, and color distortions provide appropriate image per-
turbations (see Fig. 3).

Given a sample x we create two randomly perturbed
(augmented) inputs x′ and x′′ which are fed into the net-
work f to produce predictions f(x′) and f(x′′).

A consistency loss Lcons enforces that both predictions
are similar. This consistency loss is typically the Mean
Squared Error or KL divergence [46]. We formulate our total
loss

Ltotal =
∑

(x,y)∈Ds

ℓmse(f(x
′), y)

︸ ︷︷ ︸
Lsuper

+λ
∑
x∈Dt

ℓmse(f(x
′), f(x′′))︸ ︷︷ ︸

Lcons

,

(2)
with λ controlling the relative effect of the consistency term
in the overall loss.

The same stochastic perturbations are applied to both
source and target images. Note that in SSL the consistency
loss is typically applied to samples from both Ds and Dt

[42], [45], [46]. Following [22], who use consistency regular-
ization for domain adaptation, we apply the consistency loss
only to samples from the target domain Dt. Our framework
is shown in Figure 2.

Unfortunately, flipping and rotation will change the ground
truth label of a source-domain sample and produce target-
domain inputs that break the consistency assumption that x′

and x′′ share the same label. We therefore need to dis-
tinguish between pose-preserving and pose-altering aug-
mentations and need to redefine our loss functions for
pose-altering augmentations. As shown in Fig. 3, pose-
preserving augmentations are random color distortion,
blurring, translation, and scaling and pose-altering aug-
mentations are flipping and rotation. The required changes
for pose-altering augmentations will be described in the
next section.
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3.2 Relative Pose Consistency

Pose-altering augmentations change the head pose. Know-
ing the spatial transformation and the true pose, an aug-
mented image can be relabeled. However, this is not possi-
ble if the true pose is unknown. We create a new consistency
loss based on the relative pose between augmented samples
to benefit from pose-altering augmentations on our real-
world unlabeled target data.

We will first give a short recap on pose representation
and then provide the interdependence of image rotation and
flipping to the orientation change of the head pose and re-
quired adaptions to the loss functions. Both augmentations
require1 that the pose is stored in Euler angles (Tait–Bryan
angles) that describe intrinsic rotations around Z-Y’-X”.
These are known as: roll, yaw, and pitch. This means that the
rotation is performed by three successive rotations around
the Z, Y’ and X” axis. Recall that for intrinsic rotations the
first rotation around Z will create a new coordinate system
from which Y’ will be used for the second rotation and so on.
For this representation a rotation around Z can be carried
out independently from Y’ and X” rotations. That means
that any image rotation will result in an additive rotation
term to the roll label.

Augmenting an image with (unknown) rotation r with
two random rotations rA and rB would result in images A
and B with rotations r + rA and r + rB , respectively. One
can easily see that the difference in rotation between the
two augmented images is rB−rA, which is the relative pose
difference between the images. To account for this difference
we can change the consistency loss for the roll angle to:

ℓmse(f(A)roll + (rB − rA), f(B)roll), (3)

where f(A)roll and f(B)roll describe the predicted rotations.
To use rotation augmentations for the source domain, one
can simply replace rB with 0 and f(B) with the true rotation
label r.

Flipping is performed by negating the yaw and roll
angles for a flipped image. In the consistency loss, if we
encounter an image with unknown pose, we can negate
the predictions of the yaw and roll angles. A full example,
showing all the angles, with A being flipped and random
rotations would result in

ℓmse

f(A)pitch
f(A)yaw
f(A)roll

⊙

 1
−1
−1

+

 0
0

rB − rA

 , f(B)

 , (4)

where ⊙ is the element-wise product. This complete exam-
ple is also illustrated in Figure 1. Cases where B, or A and
B are flipped are handled with negating B’s, or A’s and B’s
yaw and roll angles, respectively. Note that the information
provided by a relative pose only influences yaw and roll
angles, as the pitch angle is untouched by rotation and
flipping.

3.3 Avoiding Degenerate Solutions

Several works report difficulties when training with con-
sistency regularization. In contrast to previous works, we

1. For simplicity we describe our method for Z-Y’-X” rotations, but
other representations such as Z-X’-Y” will also work.

apply consistency regularization to a regression problem
and therefore use a different loss combination. For this rea-
son, instead of class logits, we regularize the predicted pose
angles. In the following we will address these difficulties
and how we dealt with them.

The first difficulty is the selection of λ. [42] found that
the network can get easily stuck in a degenerate solution
if the unsupervised loss component (Lcons) is too high in
the beginning of the training. As a solution, they ramp-
up λ from 0 to 1 during training. The same procedure was
also adopted in [45]. In contrast, French et al. [22] replaced
the ramp-up with a confidence threshold. They utilized the
predicted class activations as probabilities and the loss of all
samples with activations below the threshold is set to 0.

In our case we found that high λ values usually yield
degenerate solutions, regardless of ramp-up or not. Our
explanation is that in order to minimize the consistency loss
the network can learn to output only a constant. However,
we found a good indication on how to set λ comes from
the supervised loss. As a simple rule, the regularization
feedback should not be stronger than the supervised loss.
Preliminary experiments showed that consistency training
is quite robust and λ values in the range [0.1, 0.4] converge
to similar performing networks. For λ > 0.5 the consistency
loss became larger than the supervised loss and the overall
performance decreased for both, source and target data.

Another issue with consistency regularization arises if
the labels of the source and target domain do not come from
the same underlying distribution [47]. This is ignored in
many works, because it is assumed that the unlabeled data
contains the same class distribution as the labeled data. As
described in [16], this assumption usually does not hold for
regression tasks like HPE. For classification, [22] introduced
a class balance loss term that forces the network’s mean
class predictions to be uniform. This helped to avoid a
degeneration to the most dominant class.

Following this approach, we introduce a weighted rela-
tive consistency regularization for HPE. To enforce a more
evenly distributed feedback of the consistency loss, we re-
weight the consistency loss based on the pose predictions.
Poses that are found often in a batch should be weighted
down, whereas rarely appearing poses should be weighted
up. In most natural image collections of faces, the poses
are usually distributed around the pose that is facing the
camera. The same holds true for most head pose datasets.
Therefore, assuming a normal distribution of poses in a
batch, we formulate our weighting:

wp = 1− e

(
p−µP
σP

)2

, (5)

where wp is the weight given to a pose angle p (pitch, yaw,
roll) and µP and σP are the mean and standard deviation of
all p ∈ P in a batch. In particular, we apply this weight
to all angles independently. To keep λ constant between
experiments, we rescale wp with

Batchsize∑
wp

, (6)

so that the overall weight in a batch sums to one. We com-
pare the results for weighted and unweighted predictions in
our experiments in Section 4.
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Both λ and re-weighting are associated with the same
underlying problem: an effective setting of the regulariza-
tion strength. Although we have made two proposals, we
think that uncertainty or curriculum approaches like [48]
are paths worth looking into for future improvements.

3.4 Batch Normalization During Cross-Domain Training

Batch normalization (BN) [49], among other normalization
methods, is a popular technique for training deep neural
networks. BN normalizes activations in a network across
the mini batch. Each feature is normalized by mean and
standard deviation of the feature in the mini batch dur-
ing training. For inference/evaluation typically a running
estimate of the features mean and standard deviation is
used. When working with multiple datasets (possibly from
different domains) it is not realistic to assume that features
in these datasets share the same statistics. Adapting feature
statistics using batch normalization to adapt to different
domains has been investigated, e.g., [50], [51]. Regardless,
here we will discuss the effects of BN in our framework.

Using BN on the target domain implicitly affects training
and evaluation performance. Similar to previous works like
[16], [20], [22], we process mini batches of source and target
data sequentially. The other possible method is to combine
the data in every batch, e.g., half and half. We found
that sequential processing provides stable training. With
sequential processing, BN uses domain-dependent statis-
tics during training but mixed (running) statistics during
evaluation. However, this implicit mixing of domain feature
statistics can have beneficial or detrimental effects on the
evaluation performance for each domain. Assuming that
domain statistics are very different, the mean statistics of
two domains, which are typically used during evaluation,
might not provide good results. Aside from mixed statistics,
it is possible to use only target-domain statistics [51] during
target evaluation. In our experiments, we found that mixed
or target-only statistics decrease performance on the target
dataset. The effect gets worse the more the distribution of
the label space, and thus the distribution of features, differs
between source and target.

We therefore propose to use BN in a way that does not
use target-domain statistics during training or evaluation at
all. If data from the target domain is fed trough the net-
work, the running statistics of the source domain are used.
The same applies for evaluation. This way, computation of
BN statistics is completely independent of target-domain
data. The advantage of this method is that we avoid any
deteriorating effects from BN. The only drawback of this
method is decreased training stability. In our experiments
this is alleviated by using gradient clipping during training.
We evaluate the performance of using ”no target BN” in our
experiments in Section 4.4.

4 EXPERIMENTS

In the following, we will analyze the performance of our
method. First, we will give a description of the used
datasets and the implementation details. We then compare
our results with related work. In the following section, our
ablation study, we show the effects of different components

TABLE 1
Augmentation parameters. Translation parameters are given relative to
the image size and are applied independently for x and y translation.

Values in ranges are sampled uniformly.

Augmentation Parameter Probability

C Color distortion
brightness=0.4, contrast=0.4
saturation=0.4, hue=0.1

0.8

B Gaussian blur σ ∈ [0.2, 2] 0.5
S Scale [0.9, 1.1] 1.0
T Translation [-0.1, 0.1] 1.0
R Rotation [-20◦, 20◦] 1.0
F Flip 0.5

of our method. Finally, we conduct a series of experiments
to reproduce related work. In doing so, we gain insight into
some factors that influence the reproducibility of results and
also obtain results with which we can compare our work
more fairly.

4.1 Data

To validate our method we use revised datasets SynHead++
and Biwi+ proposed by [16]. These datasets are extensions
of the popular face pose datasets Biwi Kinect Head Pose
Database (Biwi) [7] and NVIDIA Synthetic Head Dataset
(SynHead) [14]. For both datasets, [16] provides labels in Z-
Y’-X”-angle representation and face bounding boxes. Syn-
Head was artificially extended to include more poses, so
that SynHead++ is a superset of Biwi+ in regard to pose
labels. Here, we give a brief overview of the datasets.

Biwi+ is used as real-world, target-domain dataset. It
contains 24 sequences of 20 different subjects recorded with
a kinect sensor. SynHead++ is used as synthetic, source-
domain dataset. It contains images of 10 different rendered
3D head models. The total number of images is 15678 for
Biwi+ and 653910 for SynHead++. All images are cropped
to the given bounding boxes and scaled to 224 x 224 pix-
els. Exemplary images and illustrative augmentations are
shown in Figure 3.
To make our work more comparable with previous works,
we also perform experiments on the popular 300W-LP
[19] dataset. 300W-LP uses the images from 300W [52], a
dataset that combined multiple datasets containing faces
in unconstrained, ”in-the-wild” conditions. These images
have been re-annotated with facial landmarks. Landmarks
and image features are used by [19] to fit a 3D morphable
model (3DMM) to the face images. With the image and
fitted 3DMM they synthesize (render) face images with new
head poses. 300W-LP includes 5488 real images and 55737
synthesized images. In addition all images are flipped to
create a dataset with 122450 images. We processed the data
the same way as Biwi+ in [16].

4.2 Implementation Details

For all our experiments, the pose estimator f is ResNet18
as provided by PyTorch [24] with last linear layer being
replaced by a new linear layer with 512 inputs and 3 outputs
for Euler angle estimation. This is consistent to previous
work [16], [20].
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We use different combinations of augmentations
throughout the experiments with parameters provided in
Table 1. If an augmentation would produce a roll angle
> ±89◦, the rotation is performed in the opposite direction.
We used the code2 and parameters from [40] for color dis-
tortions and Gaussian blur. Similar to [22], we process mini
batches of source and target data sequentially. Depending
on the experiment, batch normalization is turned on or off
during training on target domain batches. If it is turned off,
we apply the running statistics that are computed during
training on source domain batches to the target domain
batches and enable gradient clipping of the complete net-
work with maximum L2 norm of 5. For all experiments
trained on SynHead++, we use stochastic gradient descent
with momentum 0.9, Nesterov, a batch size of 84, and a
learning rate set to 10−3. For all experiments trained on
300W-LP, we use Adam [53], a batch size of 84, and a
learning rate set to 10−4.

For our ”supervised only” baselines f is initialized with
the default PyTorch pretrained ResNet18. The learning rate
is ramped-up to warm start the optimization. During base-
line training λ is set to 0. The baselines are trained for 35000
iterations which is equivalent to ≈5 epochs for SynHead++
or ≈24 epochs for 300W-LP.

For all consistency regularization experiments we fine
tune a baseline model. To make the comparisons fair for all
runs, we select one (supervised only) baseline model that is
trained with all augmentations (full). From the 10 runs, the
baseline model that performs most similar to the average
performance is selected. For the consistency regularization
experiments, all models are fine-tuned for 16000 iterations.
λ is ramped-up to 0.2, to avoid deterioration from too
strong regularization. For all experiments the performance
at the end of training is reported, i.e. no early stopping is
used. The performance for Biwi+ is reported without any
augmentations.

We timed the execution of our approach and found that
for one image it takes less than 3 ms on a consumer GPU
(NVIDIA GTX 1080 TI). For the methods we reproduced (see
Section 4.5) we found similar or slightly higher times but all
of them would be suitable for real-time processing at 30 fps.

4.3 Head Pose Estimation Results
In this section, we compare our results to groups of similar
experimental settings that we clustered from the related
work. In Table 2 we measure the mean absolute error for
every angle and the overall MAE (mean absolute error) of
them. We report the mean and standard deviation of these
values over 10 runs using different random seeds. Please
note that this is not the standard deviation of the pose errors,
but the standard deviation of the mean errors over all runs.

In the upper part of Table 2 we collected the results of
related work. The lower part shows the results of repro-
duced related work (Section 2.1) and our work, all using
Biwi+ as a common test set. Most work trains with real-
world images and typically focuses on improving head pose
estimation by improved network structures or supervised
loss functions. In contrast, our main goal is to learn from
synthetic images and unlabeled real-world images using a

2. https://github.com/facebookresearch/moco

semi-supervised method. In addition to the differences in
models and learning strategies, it is not always straightfor-
ward to compare head pose estimation results, even if the
results are reported for the same dataset. For example, the
evaluation protocol and processing of the Biwi dataset is not
universally the same for all works. A deeper analysis of a
factor that makes the comparability of results problematic is
given later in Section 4.5. However, even though not always
directly comparable, we think it can be valuable to discuss
our results in a broader context of related work.

Cross-Validation. This section of Table 2 shows the per-
formance for methods trained and evaluated on different
splits of the same dataset. Compared to our results and
other experimental settings, higher performance is likely
explained by having no domain gap between training and
test set. Both sets are from the relatively homogeneous Biwi
dataset, which is recorded under lab conditions. The perfor-
mance in this section is also dependent on the training/test
split. Non surprisingly, a random split offers the best results,
as splitting by persons introduces a small domain gap.

Self-Supervised shows that learning head pose can even
be accomplished self-supervised. No pose labels are used
during training. To gain pose predictions, a linear regressor
is trained on 100 random test set samples to map network
outputs to pose labels. While results are not on par with
our or recent work, it shows the potential of self-supervised
pose estimation. Training with our proposed relative pose
labels can be seen as a self-supervised approach.

Cross-Dataset. Sometimes called inter-domain or cross-
domain evaluation, these sections show results where the
training set and test set are taken from different datasets.
Most commonly, 300W-LP [19], a dataset created from real-
world images is used for training. As 300W-LP uses real-
images, the domain gap to Biwi should be small, compared
to using fully synthetic images from SynHead++. However,
the distribution of poses in 300W-LP does not match the
one found in Biwi, which makes it challenging to gain high
performance when training on 300W-LP only.

The section in the upper part of Table 2 shows results
from related work. Similar to us, [15] uses rendered syn-
thetic images but also a part of the Biwi dataset to train
a HPE model, which makes a fair comparison difficult.
Only [27] (WHENet and WHENet-V) publish better results
than ours. WHENet-V, uses additional data from the (real-
world) Panoptic Studio dataset [54] to better match the pose
distribution of Biwi.

In an effort to create comparable results, we reproduced
related work on Biwi+ in the section provided in the lower
part of Table 2. More details can be found in Section 4.5.
Using the proposed batch processing scheme, our method
weighted relative consistency regularization (RCRw) trained
on 300W-LP outperforms all reproduced work evaluated on
Biwi+.

Domain Adaptation shows results for synthetic-to-real
(SynHead++ to Biwi+) domain adaptation. Our proposed
method RCRw, outperforms the partial domain adaptation
method proposed in [16]. Although we get worse pitch per-
formance, we achieve better yaw, roll, and average perfor-
mance. For roll error, the improvement to [16] is nearly one
degree. We also report our results from [20]. In comparison
to [20], improved handling of batch normalization boosted
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TABLE 2
Head pose estimation results for experiments tested on variants of the Biwi dataset [7]. Variants: * random split (86%/14%1, 80%/20%2), †

sequence split (16/81,21/32), × no split, processed by the respective authors, + no split, processed by [16]. Experimental results are grouped in
blocks describing the use of data during training and testing. We report mean and standard deviation of the average absolute angular errors in

degree and mean absolute error (MAE) over all angles for 10 training runs. RCRw = Weighted Relative Pose Consistency Regularization.

Experiment Method Network Training Set Test Set MAE Pitch Yaw Roll

Cross-Validation

Gu [14] VGG16 Biwi†1 Biwi†1 3.66 4.03 3.91 3.03
Lathuilière [12] VGG16 Biwi†2 Biwi†2 3.62 4.68 3.12 3.07
Yang (FSA) [18] Custom Biwi†1 Biwi†1 3.60 4.29 2.89 3.60
Ruiz (Hopenet) [17] ResNet50 Biwi†1 Biwi†1 3.23 3.39 3.29 3.00
Anh [23] Custom Biwi*1 Biwi*1 2.93 3.4 2.8 2.6

Self-Supervised Mustikovela (SSV) [37] Custom 300W-LP Biwi†1 6.8 9.4 6.9 4.2
Mustikovela (SSV) [37] 300W-LP&Biwi†1 Biwi†1 5.8 8.5 4.9 4.2

Cross-Dataset

Shao [25] ResNet50 300W-LP Biwi× 5.99 7.25 4.59 6.15
Ruiz (Hopenet) [17] ResNet50 300W-LP Biwi× 4.90 6.61 4.81 3.27
Wang [15] Custom [15]&Biwi*2 Biwi*2 4.84 5.48 4.76 4.29
Yang (FSA) [18] Custom 300W-LP Biwi× 4.00 4.96 4.27 2.76
Zhou (WHENet) [27] Eff.Net-B0 300W-LP Biwi× 3.81 4.39 3.99 3.06
Zhou (WHENet-V) [27] Eff.Net-B0 300W-LP& [54] Biwi× 3.48 4.10 3.60 2.73

Cross-Dataset
Zhou (WHENet) reproduced Eff.Net-B0 300W-LP Biwi+ 6.42 7.26 7.74 4.26
Yang (FSA) reproduced Custom 300W-LP Biwi+ 5.15 6.10 6.20 3.15
Ruiz (Hopenet) reproduced ResNet50 300W-LP Biwi+ 4.83 6.50 4.89 3.13

with Consist. Reg. RCRw [20] ResNet18 300W-LP Biwi+ 5.58±.08 9.25±.21 4.52±.06 2.97±.03
RCRw (proposed) ResNet18 300W-LP Biwi+ 4.54±.06 6.42±.12 4.44±.09 2.75±.03

Domain Adaptation
Kuhnke (PADACO) [16] ResNet18 SynHead++ Biwi+ 4.13 4.51 4.11 3.78
RCRw [20] ResNet18 SynHead++ Biwi+ 4.01±.03 5.54±.13 3.78±.10 2.71±.03
RCRw (proposed) ResNet18 SynHead++ Biwi+ 3.85±.02 4.79±.07 3.92±.02 2.85±.04

our average and pitch performance but also slightly deteri-
orated pitch and roll accuracy. Nevertheless, the additional
gain is so significant that this deterioration can be accepted.
A detailed analysis of the effects of different components of
our method can be found in Section 4.4.

Looking at Table 2, pitch error is higher than roll or yaw
for all reported results. We suspect that pitch estimation
seems to be a harder problem. For our experiments, pitch es-
timation has gained the least from our method. Presumably,
pitch estimation can not benefit from the relative pose labels,
as the pitch angle is constant for all our augmentations. In
contrast, roll benefits the most from our relative pose labels.
Probably for this reason, we outperform almost all other
work in terms of roll error.

4.4 Ablation Studies
In this section we analyze the different components of our
framework in relation to head pose estimation performance.
Even though, we are mainly interested in the synthetic-to-
real scenario, we include experiments with 300W-LP, as this
database is highly used in the HPE community.

We first establish a number of baselines in the first
section, ”Supervised Only”, of Table 3. These experiments
are trained only with the supervised loss on a source dataset
and evaluated on the Biwi+ dataset. The experiments only
differ in the use of different augmentation combinations and
the selected source dataset.

Experiments trained on SynHead++ reveal the effects
of augmentations during training on synthetic data. It is
clearly visible that augmentations help to improve target
performance. Interestingly, rotation and flipping augmen-
tations only give small or no performance boost. This can
be explained by the structure of the datasets. SynHead++

already covers all poses found in the test set Biwi+. Any
additional pose augmentations to SynHead++ will likely
make the training set more different to the test set. Color,
scale, translation and blur augmentations create images that
might look more similar to the real-world test set. However,
augmentations are not sufficient to reach the performance of
related work on the Biwi dataset, which suggests that addi-
tional methods might increase performance. These findings
demonstrate two of our key assumptions. First, training on
a synthetic image dataset does not provide automatically
good results for a real-world image dataset. Secondly, the
tested augmentations improve the performance but are not
sufficient to force the network to learn features that general-
ize well to real-world images.

Experiments trained on 300W-LP show that augmenta-
tion also increase the performance if an ”in-the-wild” train-
ing set such as 300W-LP is used. The performance gain from
augmentation is smaller than for SynHead++. We think this
is explained by a smaller domain gap between 300W-LP and
Biwi+, because both contain real-world images. Comparing
the absolute performance on Biwi+, training with 300W-LP
and full augmentations is inferior to training on SynHead++
with full augmentations. This again can be explained by the
structure of the datasets. 300W-LP does not include all poses
of Biwi+. So even if we have very similar (real-world) image
features, some poses can simply not be learned from 300W-
LP as they can only be found in Biwi+ or SynHead++.

Consistency regularization uses our proposed consis-
tency framework. Again different augmentations are eval-
uated. Using only pose-preserving augmentations for con-
sistency regularization (CR), already improves the results to
baselines. Adding rotation and flipping further increases the
performance. Best performance for yaw and roll is gained
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TABLE 3
Ablation on different baseline and consistency regularization settings for our method. Head pose estimation results are for experiments tested on
the Biwi+ dataset [16]. Experimental results are grouped in blocks describing the training method. We report mean and standard deviation of the

average absolute angular errors in degree and mean absolute error (MAE) over all angles for 10 training runs. Best results in bold.
Augmentations for experiments: rotation (R), flip (F), color distortion (C), scaling (S), translation (T), Gaussian blur (B).

CR = Consistency Regularization, RCR = Relative Pose Consistency Regularization, w = Weighted loss.

Experiment Method Training Set Target BN MAE Pitch Yaw Roll

Supervised
Only

Baseline (no aug.)

SynHead++

5.36±.28 5.99±.35 5.60±.60 4.42±.35
Baseline C·S·T·B 4.72±.11 5.71±.18 4.70±.15 3.75±.08
Baseline C·S·T·B·F 4.65±.09 5.65±.16 4.64±.17 3.65±.09
Baseline C·S·T·B·R 4.78±.13 5.71±.20 4.81±.24 3.81±.13
Baseline C·S·T·B·R·F 4.65±.08 5.68±.16 4.69±.16 3.59±.06
Baseline (no aug.) 300W-LP 5.26±.08 7.23±.18 4.95±.15 3.58±.10
Baseline C·S·T·B·R·F 4.90±.13 6.26±.20 5.00±.22 3.45±.12

Consistency
Regularization

CR C·S·T·B (no rot/flip) SynHead++ Yes 4.27±.04 5.67±.06 4.00±.05 3.13±.03
CR C·S·T·B (no rot/flip) No 4.31±.04 5.50±.08 4.13±.04 3.31±.02
RCR C·S·T·B·R (no flip) SynHead++ Yes 4.14±.04 5.47±.09 4.13±.05 2.84±.03
RCR C·S·T·B·R (no flip) No 3.90±.02 4.90±.04 3.96±.03 2.84±.02
RCR C·S·T·B·R·F (full) SynHead++ Yes 4.15±.03 5.87±.07 3.80±.04 2.78±.02
RCR C·S·T·B·R·F (full) No 3.98±.03 5.04±.06 4.12±.04 2.79±.03

Weighted
Consistency
Regularization

CRw C·S·T·B (no rot/flip) SynHead++ Yes 4.11±.03 5.24±.07 4.00±.05 3.08±.02
CRw C·S·T·B (no rot/flip) No 4.12±.02 5.13±.07 4.04±.04 3.20±.03
RCRw C·S·T·B·R (no flip) SynHead++ Yes 4.03±.04 5.22±.07 4.06±.04 2.80±.03
RCRw C·S·T·B·R (no flip) No 3.85±.02 4.79±.07 3.92±.02 2.85±.04
RCRw C·S·T·B·R·F (full) SynHead++ Yes 4.01±.03 5.54±.13 3.78±.10 2.71±.03
RCRw C·S·T·B·R·F (full) No 3.89±.02 4.81±.05 4.10±.03 2.76±.02
RCRw C·S·T·B·R·F (full) 300W-LP Yes 5.58±.08 9.25±.21 4.52±.06 2.97±.03
RCRw C·S·T·B·R·F (full) No 4.54±.06 6.42±.12 4.44±.09 2.75±.03

when using the full augmentation scheme with relative
pose (RCR). However, best overall performance is gained
when using all augmentations without flipping. In the RCR
setting, using ”no target BN” boosts the overall performance
and is beneficial for pitch estimation. Although a general
increase in performance can be observed, yaw and roll esti-
mation is slightly deteriorated by using ”no target BN”. We
theorize that this is caused by the distribution differences
between Biwi+ and SynHead++. Compared to pitch, the
yaw and roll distributions are more similar between the
datasets, and therefore the estimation might even benefit
from an implicit alignment by a shared batch norm.

Weighted consistency regularization includes the pro-
posed weighting of angles during training.

Compared to CR and RCR, regardless of augmentation
scheme, weighting gives a slight performance boost. The
observations for applying ”no target BN” are the same as for
RCR. Again, best overall performance is gained when using
all augmentations without flipping and ”no target BN”.

We also applied the RCRw with full augmentations to
300W-LP. Interestingly, the gain for ”no target BN” is very
high. We conjecture that this effect is created by a high
difference in pose labels between 300W-LP and Biwi+. The
different poses also create very different feature distribu-
tions, which causes detrimental effects if batch normaliza-
tion statistics are averaged from source and target dataset.
Possibly for the same reason, the overall gain of using con-
sistency regularization is lower compared to the SynHead++
experiments.

4.5 Influence of Face Detection on Performance
A phenomenon evident from the upper part of Table 2
is that the community has not settled on a standardized

evaluation protocol for head pose estimation. Even though
all of these works report results on the same dataset, the
dataset preprocessing and splitting is often different. In
an attempt to improve comparability of results, we try to
recreate results on Biwi+ for related work. Luckily, code
and models for the works of Ruiz [17], Yang [18] and Zhou
[27] are available online. However, we can not simply feed
the Biwi+ data to the models, because every method uses
different image preprocessing. As suggested in previous
work [25], [26], how the face is cropped before pose esti-
mation is a crucial factor for performance. Furthermore, the
models are trained to recognize poses that come from crops
similar to those used during training, which might depend
on the used face detector. We therefore conduct a small
study on preprocessing and ask two questions. What role
plays face detection for HPE performance? How important
is a predictor-specific bounding box, i.e., is a bounding box
of one detector replaceable by another? While there are
certainly more differences (see 3 for more), here we focus
on face detection and transferability of detections (bounding
boxes), two steps that have not been analyzed before.

In Figure 4 we visualize the bounding boxes that are
used for cropping in different methods. Note that our meth-
ods use the crops from Biwi+ [16], which use a CNN based
face detector from Dlib [56] and manual labeling. Hopenet
[17] uses Dockerface [55] a Faster R-CNN based detector
inspired by [59]. FSA [18] uses MTCNN [57] and WHENet
[27] utilizes a YOLOv3 [58] model trained to detect faces.
Using the aforementioned detectors on the Biwi dataset, we
found that face detection provides three sources of errors:
finding the wrong person in the image; finding no person
in the image; finding a bad crop of the face, e.g., not all
parts of the face are visible. All of these cases happen on
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TABLE 4
Reproduction of head pose estimation results for methods trained on 300W-LP [19] evaluated on differently processed versions of Biwi [7]. The

differences are the number of used images and the bounding boxes used for cropping the images. We report the average absolute angular errors
in degree and mean absolute error (MAE). Results selected for comparison in Table 2 are in bold. cleaned = In case of multiple detections, correct

face is selected. transformed = Box scale and translation is changed to be similar to the associated work. unchanged = Boxes are used directly.

Method Processing Face Detector Used Biwi Images MAE Pitch Yaw Roll

Ruiz (Hopenet) [17] Reported results Dockerface [55] 4.89 6.61 4.81 3.27
Ruiz (Hopenet) Dockerface boxes, cleaned Dockerface 15666 4.83 6.53 4.72 3.22
Ruiz (Hopenet) Biwi+ boxes, transformed Dlib [56], manual 15678 (14739, 939) 4.83 6.49 4.89 3.13
Ruiz (Hopenet) Biwi+ boxes, unchanged Dlib, manual 15678 5.47 6.36 6.39 3.66
Yang (FSA) [18] Reported results MTCNN [57] 4.00 4.96 4.27 2.76
Yang (FSA) MTCNN boxes, cleaned like [18] MTCNN 13219 4.00 4.96 4.26 2.76
Yang (FSA) Biwi+ boxes, transformed, MTCNN subset Dlib, manual 13219 4.07 5.00 4.39 2.82
Yang (FSA) Biwi+ boxes, unchanged, MTCNN subset Dlib, manual 13218 3.91 4.78 4.29 2.66
Yang (FSA) Biwi+ boxes, transformed Dlib, manual 15678 5.50 6.64 6.37 3.48
Yang (FSA) Biwi+ boxes, unchanged Dlib, manual 15678 5.15 6.10 6.20 3.15
Zhou (WHENet) [27] Reported results YOLOv3 [58] 3.81 4.39 3.99 3.06
Zhou (WHENet) YOLOv3 boxes, cleaned YOLOv3 15636 7.62 8.77 9.80 4.30
Zhou (WHENet) Biwi+ boxes, transformed, YOLOv3 subset Dlib, manual 15636 7.22 8.14 9.38 4.14
Zhou (WHENet) Biwi+ boxes, unchanged Dlib, manual 15678 6.41 7.21 8.16 3.84

Fig. 4. Visualization of different bounding boxes used for cropping
images of the Biwi dataset [7] before pose estimation. Depending on
method and image, no face crop is found (pictures in left column),
possibly resulting in skipping these images during evaluation.

Biwi and the latter two cases can be seen in Figure 4. To
avoid detecting the wrong person, detections are usually
selected by size or by distance to image center. We did
this in our reproduction experiments for all evaluated face
detectors except for MTCNN, where the selection procedure
is provided by the authors code [18].

In Table 4 we show our results of recreating related
work. ”Used Biwi Images” reports the number of images
with face detections for each face detector, which is also
the the number of images used for our evaluation. One
can see that this number ranges from 13219 (MTCNN) to
15678 (Dlib and manual detections). From our experiments
it seems likely that only images with detected faces are used
for evaluation in related work. This makes reported results
on Biwi variants highly incomparable. Not only the number
of compared images differ, e.g., ≈16% of images omitted
for FSA, but especially faces with large head rotations and
therefore difficult samples are usually the ones not found

by face detectors. Similar results3 can be found for methods
like [29] that utilize FSA’s data processing code.

As a consequence, we tried to use the boxes provided by
Biwi+ for all methods, to gain equally sized test sets. As it
would be unfair to use a crop that is dissimilar from the one
a network is trained on, we calculated a transformation from
Biwi+ box to the box associated with the method in ques-
tion. The transformation minimizes the mean difference in
box translation and box scale between the intersection of de-
tections found by two detectors. Although straightforward,
this transformation works very well for FSA and Hopenet,
as performance is nearly identical to the original boxes. This
shows evidence that the predicted face position from a face
detector has only small influence on the final performance.
That is, we can interchange face detectors and get similar
results. Surprisingly, Biwi+ boxes work even better than
the ones created by MTCNN for FSA. Unfortunately, we
could not recreate the results reported for WHENet. Another
conclusion of Table 4 is the fact that changing the face
detection method can change the evaluation dataset and
therefore the performance from state of the art to irrelevant.

In summary, the role of face detector seems less impor-
tant as long as the same subset of images is used during
evaluation. Furthermore, this section showed that a much
stricter evaluation protocol should be used to compare head
pose estimation results. There are even additional differ-
ences to the Biwi+ evaluation protocol, which we neglected
here, a full analysis is available on 3. Even though, dis-
cussed in literature [16], [25], [26] as an important factor, by
using a non-standardized preprocessing, many works indi-
rectly assume preprocessing to have negligible influence for
performance comparison. On the contrary, we believe the
contribution of preprocessing might even conceal the effects
of novel methods on observed performances. This calls for
a more unified evaluation protocol. We make the code to
recreate the results of Table 4 publicly available3. There we
also investigate additional factors, such as different rotation
representations, and their effects on performance.

3. https://github.com/kuhnkeF/headposeplus

https://github.com/kuhnkeF/headposeplus
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5 CONCLUSIONS AND FUTURE WORK

We propose relative pose consistency, a new approach to
improve deep head pose estimation performance with semi-
supervised learning. Our method allows pose-altering aug-
mentations, like rotation, to be incorporated into a consis-
tency regularization framework. In addition, we introduce
two extensions, a weighting scheme and a batch processing
scheme, to improve performance. We evaluate our method
in two scenarios: domain-adaptation and cross-dataset eval-
uation. For domain-adaptation, our method outperforms
previous work by 7%. To enable direct comparisons for the
cross-dataset evaluation, we reproduced results from related
work. Thereby, we uncover that inconsistent preprocessing
seems to prevent comparability of head pose estimation
results and suspect that the effects of data preprocessing can
conceal methodological contributions. This raises the ques-
tion of whether stricter evaluation protocols are needed.
In this context, our method improves the state of the art
for the cross-dataset evaluation by 6%. Furthermore, our
approach trained only on labels from synthetic data outper-
forms previous work trained on real-world images (300W-
LP) by 20%. We thereby demonstrate that state-of-the-art
performance on real-world images can be achieved when
using only labels from synthetic training data. Ultimately,
however, there is still a gap to methods trained with real-
world datasets that are very similar to the target domain.

In future work, our framework could also be combined
with other methods. Among the many consistency regu-
larization frameworks we based our work on the simple
Π-Model [42]. Therefore, another direction could be to ex-
tend our framework to consistency frameworks like self-
ensembling with teacher student models [45]. Lastly, the
concept of relative pose consistency could be applied to
other pose estimation tasks such as hand or body pose
estimation, or scale and translation estimation methods like
[60]. An example of another pose estimation application has
been proposed for gaze estimation in [61].
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