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Abstract—Cochlear implants (CIs) are battery-powered, sur-
gically implanted hearing-aids capable of restoring a sense of
hearing in people suffering from moderate to profound hearing
loss. Wireless transmission of audio from or to signal processors
of cochlear implants can be used to improve speech understand-
ing and localization of CI users. Data compression algorithms can
be used to conserve battery power in this wireless transmission.
However, very low latency is a strict requirement, limiting severly
the available source coding algorithms. Previously, instead of
coding the audio, coding of the electrical stimulation patterns
of CIs was proposed to optimize the trade-off between bit-rate,
latency and quality. In this work, a zero-delay deep autoencoder
(DAE) for the coding of the electrical stimulation patters of CIs
is proposed. Combining for the first time bayesian optimization
with numerical approximated gradients of a nondifferential
speech intelligibility measure for CIs, the short-time intelligibility
measure (STOI), an optimized DAE architecture was found and
trained that achieved equal or superior speech understanding at
zero delay, outperforming well-known audio codecs. The DAE
achieved reference vocoder STOI scores at 13.5 kbit/s compared
to 33.6 kbit/s for Opus and 24.5 kbit/s for AMR-WB.

Index Terms—cochlear implants, autoencoder, hyperparameter
optimization, Kiefer-Wolfowitz

I. INTRODUCTION

Cochlear implants (CIs) are surgically implanted hearing-
aids capable of restoring a sense of hearing in people suffering
from moderate to profound hearing loss. While good speech
understanding is achieved in high speech-to-background noise
environments, more challenging environments as encountered
in common social situations like a restaurant setting still pose
a problem [1]. Research focuses mostly on these difficult
environments and attempts to improve speech understanding.
A good review of techniques and algorithms applied can be
found in [2]. Beamformers, remote microphones and binaural
sound coding strategies [2], [3] are among the techniques used
to improve speech understanding and/or localization of CI
users. All of these techniques require a wireless transmission
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of audio to the signal processor of a CI, or between two signal
processors. To save power or bandwidth in this wireless trans-
mission, signal compression or coding is commonly applied to
reduce the bitrate of the audio signal before transmission. This
coding usually introduces an additional delay in the processing
chain and thus has to be kept as small as possible, as hearing
aid users cannot tolerate delays above the range of 5− 10 ms
without affecting their speech perception [4]. Due to this delay
constraint, the selection of source coding algorithms is severly
limited.

For this purpose we proposed [5]–[7] to code and transmit
the electrical stimulation pattern or excitation patterns gener-
ated by the sound coding strategy of the CI. We proposed [5]
a combination of differential pulse-code modulation (DPCM)
and arithmetic coding to code the current magnitudes and the
band selection of the electrical stimulation patterns generated
by the advanced combinational encoder (ACE) sound coding
strategy. Using this approach we achieved [6] lower bitrates
and zero latency at equal or better speech understanding than
state-of-the-art audio codecs. Autoencoders are artificial neural
networks specifically designed to learn compressed representa-
tions of given input data or signals and have found application
in a wide range of tasks [8]–[10]. Habibian et al. [8] proposed
rate-distortion autoencoders for video compression achieving
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Fig. 1. Two methods to wireless transmission of audio for cochlear implants
(CIs). Conventionally, the audio signal would be encoded by an audio codec,
transmitted to the signal processor of the CIs where the audio is decoded by
the same audio codec. In the investigated approach, the audio signal is first
processed by the sound coding strategy of the CI, in our case the advanced
combinational encoder (ACE), and then compressed and decompressed before
and after transmission by a deep autoencoder (DAE).
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Fig. 2. Block diagramm showing the computation of the VSTOI scores.
The clean speech files and the noise are first processed by head-related
transfer functions (HRTF) using individual azimuths ψS , ψN and an identical
environment EV . The processed speech and noise are subsequently combined,
yielding the signal xN+S(n), and processed further. The reference VSTOI
score V SRef is obtained by first applying the advanced combinational
encoder (ACE) and subsequent comparison of the the vocoded signal and
the clean speech signal using STOI. Similar for the VSTOI scores of the
DAE, V SDAE , and the VSTOI scores of the audio codecs, V SAC . Vocoder
settings were identical to [6] to allow comparison to listening test results.

close to state-of-the-art performance. Min et al. [9] used a deep
autoencoder for the compression of speech outperforming the
MELPe speech codec at very low bitrates of below 2.4 kbit/s.
Wand and Saniee [10] used convolutional autoencoders for the
compression of ultrasonic data.

In this work, a vector-quantized deep autoencoder (VQ-
DAE) is presented for the compression of the electrical stim-
ulation patterns generated by the ACE sound coding strategy.
The VQ-DAE was first optimized using a weighted mean
square error followed by numerically approximated gradient
descent using the nondifferential short-time objective intelli-
gibility (STOI) metric. The entire training sequence as well as
the DAE structure was optimized using bayesian optimization.
In Section II the CI sound coding strategy, the used dataset
as well as the hyperparameter optimization and evaluation
used in this work are described. Afterwards, in Section III,
the proposed DAE is compared to common audio codecs
with respect bitrate and the corresponding intelligibility of
their coded speech. Section IV discusses the results and the
manuscript is concluded in Section V with a summary of this
work.

II. METHODS AND MATERIALS

A. Advanced Combination Encoder

The advanced combinational encoder (ACE) sound coding
strategy is a common sound coding strategy for CIs and de-
scribed in detail in [3]. The audio captured by the microphone
of the CI is split into M subbands using a discrete fourier
transform filterbank. For each subband i ∈ {1, 2, . . . ,M},
the envelope ai(n) ≥ 0 is extracted resulting in the set
ENV := {a1(n), . . . , aM (n)}, where n is discrete time or the
frame number. Then the band-selection is performed: N < M
subbands ai(n) with the largest envelopes are selected, re-
sulting in the set A := {ai1(n), . . . , aiN (n)} ⊂ ENV. For
future reference we define the set of selected bands Sel :=
{i1, . . . , iN} and its complement Selc = {1, . . . ,M} \ Sel
whose dependency of n was left out for clarity. Then, the
loudness growth function (LGF) is applied to each a ∈ A.

TABLE I
SPEECH AND NOISE AZIMUTHS, SIGNAL-TO-NOISE RATIOS (SNRS), NOISE

TYPES AND ACOUSTIC SCENARIOS CONSIDERED IN THIS WORK. A:B:C
DENOTES THE SET {A,A+B,A+ 2B, . . . , C}. BFR, SAMPLE 187511

FROM FREESOUND.COM, IS RESTAURANT NOISE, CCITT IS
SPEECH-SHAPED NOISE.

Label Speech Azi. [◦] Noise Azi. [◦] SNR [dB] Noise Scenario

Train -90:15:90 -90:15:90 -5:5:20 30 50 BFR, Bus, CCITT, Office Anechoic, Office
Test -90:5:90 -90:5:90 -2.5:2.5:10 20 40 BFR, Bus, CCITT, Office Anechoic, Office, Cafeteria

The LGF is the logarithmic mapping between the acoustic
and the electric domain with pi := p(ai) := LGF(ai) ∈ [0, 1]
for ai ≥ sbase and no output is generated for a < sbase.
sbase is the so called base level which represents the threshold
of hearing. It is individually determined for each CI user by
an audiologist. In this manuscript, the default settings of the
research implementation of the ACE sound coding strategy
were used which set N = 8, M = 22 and sbase = 4/255.
The channel stimulation rate was set to 900 pulses per second
(pps). The input signal of the proposed DAE, called a frame,
was (p(a1(n)), p(a2(n)), . . . , p(aM (n)))T , i.e. a M×1 vector.
Thus the DAE compresses across frequency without lookahead
and achieves zero delay. The number of bits per frame multi-
plied by the channel stimulation rate yields the bitrate of the
DAE.

B. Datasets

To create realistic noisy speech signals, the TIMIT speech
corpus [11] was processed by the behind-the-ear head related
transfer functions (HRTF) from [12]. These HRTFs allow to
simulate speech in noise scenarios, where the azimuth of each
source can be independently varied with respect to its incident
azimuth in the range of ±90◦ in steps of 5◦ except for certain
acoustic environments. An azimuth of −90◦ corresponds to a
source located to the left of the listener and +90◦ corresponds
to a source located to the right of the listener, 0◦ corresponding
to the front of the listener.

The right ear signal of the HRTF-processed speech files
was used in all cases and source distance was 80 cm. Each
speech recording of the training and test data of TIMIT was
processed using signal-to-noise ratios (SNRs), speech and
noise azimuths, acoustic environments and noise type from
a list of values given in Tab. III. For each category (SNR,

TABLE II
BOUNDS AND DEFAULT VALUES USED IN THE HYPERPARAMETER

OPTIMIZATION TOGETHER WITH THE OPTIMIZED VALUES. LOG DENOTES
LOGARITHMIC SAMPLING. OPTIMIZED WERE THE NUMBER OF NEURONS

PER LAYER OF THE DAE ENCODER (DECODER WAS SYMMETRIC), α AS IN
IN EQ. 1, THE LEARNING RATE lr AND THE PARAMETERS A AND c

EXPLAINED IN SEC. II-F.

Parameter Default Lower Bound Upper Bound Log Optimized

#Neurons (L1) 16 16 30 X 30
#Neurons (L2) 8 6 16 X 14

α 0.5 0.1 0.9 X 0.46834
lr 0.001 0.0001 0.1 ✓ 0.0016
A 100000 10000 200000 ✓ 11337
c 0.001 0.0001 0.1 ✓ 0.0129
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Fig. 3. Optimization loop of the deep autoencoder (DAE) structure. The
hyperparameters ci are used to construct the DAE which is subsequently
trained using regular gradient descent and numerically approximated VSTOI
(NA-VSTOI) gradient descent. Then, the stimluation pattern x(n) of a single
speech signal is compressed and decompressed, reconstructed using a vocoder
yielding the waveform ŷ(n) and compared to the reference, noise-free audio
waveform ref(n) by STOI. The resulting speech intelligibility score (SI) is
then returned to SMAC to assess the quality of the hyperparameters ci.

noise type, . . . ) and each speech files, values were selected
and applied randomly. While combinations of conditions like
bus noise in a cafeteria environment are certainly less realistic
than others, these still give important information about the
robustness and generalization capabilities of the DAE. The
range of values for the SNR and other categories for the test
set was chosen such that it allowed to assess the impact of
out-of-group values, e.g. the impact of a speech azimuth not
used in training like 5◦. As noise, we used Comité Consultatif
International Téléphonique et Télégraphique (CCITT) noise,
bus noise, office noise and restaurant noise. CCITT noise is
speech-shaped noise often used in clinical research. Random
segments of the noise signals were taken as they were consid-
erably longer than the speech signals to avoid repeating the
same segment and thus biasing the training and test data.

For each noise recording, which were considerably longer
than the speech recordings, random segments were used to
avoid reusing the same segment for every speech file. After
HRTF-processing, each audio file was peak normalized. The
DAE, after hyperparameter optimization, was trained using
a hand-selected subset of the HRTF-processed train data of
TIMIT to reduce the training duration. This subset, refered to
as the train set, consisted of 100 files covering 50 male and 50
female speakers, all SNR, azimuths, environments and noise
types considered in the HRTF-processed training data.

C. Short-Time Objective Intelligibility Measure

The short-time objective intelligibility measure (STOI) [13]
is a common algorithm to assess the intelligibility of speech
signals which has found application in CI research [14]. There
it is used to assess the intelligibility of speech in noise signals
processed by the sound coding strategy of a CI [6].

For its application the electrical stimulation pattern cor-
responding to a given speech signal are resynthesized to
waveforms using a vocoder and compared to the unprocessed,
speech signal without noise using STOI yielding a value/score
in the range of 0 to 1, with 1 being the best and 0 being the
worst intelligibility score. In the context of CIs, STOI is also
called vocoder STOI (VSTOI). While a precise mapping from
VSTOI scores to word recognition scores is data dependent,
speech understanding generally increases monotonically with
increasing VSTOI scores allowing to compare algorithms
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Fig. 4. VSTOI scores across bitrate for the vector quantized deep autoencoder
as well as the scalar quantized deep autoencoder on the test set. Latent di-
mension was five. Multiple codebooks scalar quantization refers to separately
optimized quantizers for each dimension in contrast to single codebook scalar
quantization which used the same quantizer in each dimension. The latter was
introduced as a proxy for the differences in statistics of the latent dimensions.

relatively. Computation of the reference VSTOI score as well
as the VSTOI scores of the DAE and the audio codecs is
depicted in Fig. 2.

D. Baseline Audio Codecs

To compare our approach to conventional audio coding,
three well-known audio codecs were used as baseline. These
were the Adaptive Multi-Rate Wideband (AMR-WB), the
Opus and the G.722 audio codecs. AMR-WB uses algebraic
code excited linear prediction to compress speech and has an
algorithmic latency of 25 ms. It can code at several bitrates
ranging from 6.6 kbit/s to 23.85 kbit/s. Opus can code at
almost any bitrate between 6 kbit/s and 520 kbit/s and at al-
gorithmic latencies between 5 ms and 60 ms. Opus’ constraint
variable bitrate flag had to be set to achieve the bitrates at the
latencies investigated. G.722 is a low delay speech codec using
predictive subband coding operating at an algorithmic latency
of 1.3 ms. Finally, the Electrocodec [5], [6] was also used as a
reference, labeled EC2 and EC3, each number indicating the
number of bits per subband DPCM. Unlike the audio codecs
it does not code the audio signals directly but compresses
the electrical stimulation patterns generated from it by ACE.
It has an algorithmic latency of 0 ms. The AMR-WB was
selected to investigate the performance state-of-the-art codec
without considering the latency constraint. Opus was included
as a widely used state-of-the-art codec that satisfies the latency
constraint. The G.722 was included as it is actually used in
wireless streaming for cochlear implants and because it was
expected to yield reference speech understanding allowing to
validate VSTOI further. FFMPEG was used to apply the audio
codecs except for Opus for which the opus-tools 1.3 were used.
For a correct evaluation using STOI, the algorithmic latency
of the audio codecs has to be known. While for Opus the
official coding software automatically removes any delay, this
is not the case for FFMPEG. Therefore, for the G.722 and
AMR-WB, the lag maximizing the crosscorrelation between
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Fig. 5. VSTOI scores of all investigated codecs as well as the reference
condition across the entire test set. Mean bitrates across the entire test set are
given in parenthesis. Opus’ latency is given in milliseconds as subscript. MSQ
denotes multicodebook scalar quantization. VQ denotes vector quantization.

the uncoded and the coded audio was chosen as algorithmic
latency.

E. Loss Function and Pre- and Postprocessing

Due to the N of M band-selection performed by ACE,
the distortion of the excitation pattern is split into two parts:
the distortion of the subband envelopes and the distortion of
the band-selection. This was taken into account through a
weighted mean-square error defined as

1

M
((1− α)

∑
i∈Sel

(pi − p̂i)
2

︸ ︷︷ ︸
Envelopes

+α
∑

i∈Selc

σ(p̂i))︸ ︷︷ ︸
Band−Selection

, (1)

where pi is the target value in subband i, p̂i is the re-
constructed value in subband i, M and Sel are as given in
II-A. α ∈ (0, 1) is the weighting factor. σ(x) is the rectified
linear unit (Relu). The Relu function was motivated by the
pre- and postprocessing applied. In the pre-processing, any
subband not selected at a time n was set to a negative value
to distinguishing it from the output range of the LGF, i.e.
we have pi(n) < 0 if subband i is not selected. Therefore, a
subband i at time n after reconstruction was considered not
selected in the post-processing if p̂i(n) < 0. If pi(n) < 0,
then no error occurs and the band-selection is not distorted
and as such the distortion should be zero independent of the
precise value of p̂i(n). However, for p̂i(n) ≥ 0 the subband
is incorrectly considered selected and a distortion value needs
to be assignd.

F. Numerical Approximation of the Gradient of STOI

While the loss according to Eq. 1 allowed to improve speech
intelligibility as measured by STOI, it still did not allow to
achieve reference speech intelligibility. Numerical approxima-
tion techniques were employed to allow direct optimization of
the DAE using STOI. For this purpose, the Kiefer-Wolfowitz
algorithm with two-sided randomized differences (KW) [15]
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Fig. 6. VSTOI scores of all investigated codecs as well as the reference
condition across the subset of the test set with a signal-to-noise ratio ≤ 5 dB.
Median performance of the vector quantized deep autoencoder (VQ-DAE)
was found to be slightly superior to the reference condition.

was applied to approximate the gradient of STOI. The update
equation of the algorithm for the weights ω of the DAE was

ωk+1 = ωk + ak
(y+k+1 − y−k+1)

ck
∆k, (2)

where y±k+1 = f(ωk ± ck∆k), ∆k ∈ {−1, 1}N a vector of
iid noise, ak, ck > 0 with ak, ck → 0. N is the total number
of weights. In our work we used ak = a

(A+k+1)γ with a = 1

and γ = 0.602 as well as ck = c
(k+1)β

with β = 0.101. f(ω)
returns the VSTOI score achieved using the DAE with the
weights ω. The parameters A and c were obtained through
hyperparameter optimization.

G. Hyperparameter Optimization of the DAE

Bayesian optimization, implemented through sequential
model-based algorithm configuration (SMAC) [16], was used
to find optimal hyperparameters for the DAE and the KW.
A single noisy speech file was coded for a given DAE
configuration and evaluated with respect to its VSTOI score.
The steps involved in the hyperparameter optimization are
depicted in Fig. 3. The hyperparameters ci tested by SMAC
were used to construct the DAE which was then trained with
the adam solver on a single speech file for 500 epochs using
the loss function according to Eq. 1 yielding approximately op-
timal weights. Then, 100 epochs of numerically approximated
VSTOI (NA-VSTOI) gradient descent was performed. The
VSTOI score achieved on the speech file was then returned
to SMAC. The optimized hyperparameters are summarized in
Table II. Total number of layers including the latent space was
five, encoder and decoder using the same number of neurons
per layer. Swish was always used as activation functions.

H. Training of the DAE

Using the optimized hyperparameters, the DAE was trained
using the train set. Again, the DAE was first trained for
500 epochs witha batchsize of 128 to achieve a reasonable
starting point for the NA-VSTOI gradient descent. Then, NA-
VSTOI gradient descent was performed for 7000 iterations.
After about 3600 iterations the DAE with five dimensions
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Fig. 7. Out-of-group VSTOI scores for the VQ-DAE (13.5 kbit/s). From left
to right: Speech azimuth, noise azimuth, environment (ENV), signal-to-noise
ratio (SNR), ENV´+ SNR.

achieved the reference mean VSTOI score on the train set,
even reaching superior mean VSTOI scores in successive
iterations. In contrast, the DAE with four latent dimensions
required more than twice the number of iterations to approach
the reference. Subsequently, only a latent space dimension of
five was considered.

III. RESULTS

VSTOI score across bitrate for the vector quantized (VQ)
and scalar quantized (SQ) DAE on the test set are given in
Fig. 4. Single codebook SQ used the same quantizer in each
latent dimension while multi codebook SQ used individually
trained quantizers in each dimension. While the VQ-DAE
achieved the approximate reference mean VSTOI score at 13.5
kbit/s, both the multi codebook and the single codebook SQ-
DAE required about 22.5 kbit/s. However, at lower bitrates
the multi codebook SQ-DAE performed considerably better.
Fig. 5 shows boxplots of the VSTOI scores across the entire
test set of the reference condition and the VSTOI scores of
the investigated codecs. A dashed line indicating the median
of the reference condition was included as orientation. Fig.
6 presents boxplots of the VSTOI scores across the subset
files with an SNR ≤ 5 dB. The top whiskers of the reference
and the VQ-DAE condition at 13.5 kbit/s differed by 0.035
for the entire test set and 0.013 when considering only SNRs
≤ 5 dB. Median VSTOI scores are summarized in Table III.
The performance of the VQ-DAE on the out-of-group files of
the test set is shown in Fig. 7. From left to right the columns
show the VSTOI scores when only the files of the test set
are considered which use speech azimuths, noise azimuths,
an environment, SNR and SNR + environment not used in
the train set. No significant difference was observed and the
VQ-DAE generalizes well to unseen conditions. The largest
difference in the medians of about 0.003 was observed when
considering only cafeteria samples.

IV. DISCUSSION

The DAE was found, in either configuration, to generalize
well from the train to the test set and appeared to be robust to
changes of the acoustic scenario. The VQ-DAE at 13.5 kbit/s
achieved higher VSTOI scores at lower latency than all tested

audio codecs except for the G.722. As speech intelligibility
presumably increases monotonically with increasing VSTOI
scores, it can be concluded that the VQ-DAE matches or
surpasses the intelligibilty of Opus at half or less its bitrate
and at zero latency. For Opus, we found [6] VSTOI scores
to correspond well to the measured speech understanding,
but no such investigation exists for the AMR-WB, which
was considerably outperformed regarding VSTOI scores and
bitrate. It is possible, that VSTOI somewhat misjudges the
true intelligibility to CI users for the AMR-WB or that
the FFMPEG implementation is suboptimal. Subjectively, the
AMR-WB coded files at the highest bitrates sounded like the
reference. For the G.722 results were as expected, further sup-
porting the usefulness of VSTOI for algorithm development.
In [6] the EC2 achieved reference speech intelligibility, while
its VSTOI score was at least 0.01 lower than the reference
VSTOI score. While the mapping from VSTOI scores to word
recognition scores is certainly data dependent, this should
suggests that the VQ-DAE, with a VSTOI score difference of
0.007 to the reference, yields reference speech intelligibility.
It is interesting to compare the Electrocodec to the VQ-
DAE, as the Electrcodec utilizes time-dependencies for its
compression scheme, whereas the VQ-DAE solely relies on
frequency-dependencies. While the Electrocodec could still
be somewhat improved, a gap of about 7-9 kbit/s is unlikely
to be closed in the future. These result might suggest that
frequency-dependencies are of greater importance for the
coding of the electrical stimulation patterns. In contrast to
conventional audio coding, with sampling rates of 16 kHz
or more, the stimulation patterns are usually generated at a
channel stimulation rate of 500 - 1200 pulses per second. This
considerably decreases the autocorrelation in the stimulation
patterns, and thus makes predictive coding less effective. The
observed improvement in VSTOI scores of the VQ-DAE,
when considering SNRs of 5 dB or less, can be explained by
learned denoising. While the train set was fairly balanced with
respect to SNR, 50% of its files having an SNR ≥ 15 dB, it is
reasonable that the NA-VSTOI gradient descent made the DAE
learn a denoising algorithm to improve speech understanding,
as less noisy excitation patterns cannot be improved in the
same manner. From Fig. 5 a slightly poorer performance of
the DAE can be observed for speech files with higher VSTOI
scores. These generally correspond to higher SNR files agree-
ing with the hypothesis put forward. However, CI research
is more concerned to improve speech understanding in lower
SNR situations, and thus a somewhat poorer performance
at higher SNRs is not necessarily a downside. Additionally,
training the VQ-DAE on a larger train set of 200 files allowed
to considerably improve performance at higher SNRs as well.
Interestingly, every time for four and five latent dimensions,
hyperparameter optimization yielded a first hidden layer that
was wider than the input layer. This might suggest that an
additional preprocessing step is necessary before compression
can efficiently performed. Initially, 16 and 8 neurons were
tested in the encoder and decoder per layer, which did not
allow to achieve reference VSTOI scores. In [17] STOI was



TABLE III
MEDIAN VSTOI SCORES OF THE VECTOR-QUANTIZED (VQ) AND SCALAR QUANTIZED (MSQ) DEEP AUTOENCODER (DAE) AND THE OTHER

INVESTIGATED CODECS AND THE REFERENCE CONDITION (REF) ACROSS THE ENTIRE TESTSET AND THE SUBSET OF CONDITIONS WITH A SIGNAL TO
NOISE RATIO ≤ 5 DB. VALUES IN PARENTHESES ARE THE RESPECTIVE BITRATE IN KBIT/S.

Dataset\Condition Ref VQ-DAE (12.6) VQ-DAE (13.5) DAE MSQ (18) DAE MSQ (22.5) EC2 (20.1) EC3 (24.3) Opus5ms (19.2) Opus5ms (35.18) Opus7.5ms (17.61) Opus7.5ms (33.62) G.722 (64) AMR-WB (9.62) AMR-WB (24.48)

Test Set 0.648 0.641 0.642 0.636 0.644 0.644 0.647 0.581 0.641 0.633 0.642 0.648 0.619 0.633
Test Set (≤ 5dB) 0.578 0.579 0.583 0.576 0.584 0.573 0.577 0.529 0.569 0.566 0.571 0.578 0.555 0.567

used to optimize a neural network as well. However, there
STOI was not combined with hyperparameter optimization and
had to be approximated, which was not applicable for our work
due to the additional CI processing involved. Instead, we used
an approximation of the gradient of STOI for training.

V. CONCLUSION

This work investigated vector-quantized deep autoencoders
(VQ-DAE) for the compression of the excitation patterns of
cochlear implants. At a bitrate of 13.5 kbit/s and zero delay,
the VQ-DAE achieved equal or superior speech intelligibility
measured through an objective intelligibility measure while
reducing the bitrate by up to 50% compared to state-of-the-
art audio codecs. The VQ-DAE was found to generalize well
to unseen acoustic scenarios and was able to slightly improve
speech intelligibility in low signal-to-noise ratio conditions.
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