
Fuzzy Multiset Clustering for Metagame Analysis

Alexander Dockhorn, Tony Schwensfeier, and Rudolf Kruse
Computational Intelligence Group, Computer Science Department,

Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg,
{alexander.dockhorn, tony.schwensfeier, rudolf.kruse}@ovgu.de

Abstract

Developing agents for automated game play-
ing is a demanding task in the general game
production cycle. Especially the involvement
of frequent balance changes after the release,
which for example often occur in collectible
card games, require constant updates of the
developed agent. The game’s developers need
to continuously analyze and understand the
current meta-game for adjusting the agent’s
parameters, making balance changes to the
game, and, thereby, sustaining the satisfaction
of its player base. The underlying analysis
largely depends on evaluating players’ play
traces. Necessary adjustments to the agent’s
and the game’s parameters are taken care of
by the game’s developers. This paper pro-
poses a first step in automatically observing
the current state of a collectible card game,
which will assist the developers in their un-
derstanding of established deck archetypes
and, therefore, speed up the update cycle.
Fuzzy multisets are used for modeling decks
and frequently occurring subsets of cards. We
propose the definition of a (fuzzy) multiset
centroid to uniquely represent the cluster and
its contained decks and show that it is better
able to match the deck archetype than the
often reported deck core. The proposed clus-
tering procedure identifies deck archetypes
and keeps track of its common variants in the
current meta-game. We evaluate the approach
by comparing the result of our clustering pro-
cedure with a hand-labeled data set and show
that it is able to reproduce clusters of similar
quality to a labeling provided by experts.

Keywords: Fuzzy multisets, Clustering,
Meta-game analysis, Hearthstone

1 Introduction

Automated game playing poses many interesting chal-
lenges to the development of artificial intelligence
agents. While many studies presented good results
on full information games, the agent’s performance is
often restricted by partial information on the current
game state. The online game Hearthstone: Heroes of
Warcraft (in short Hearthstone) [3] is such a partial in-
formation game, which is currently very popular among
players [18] and motivated many interesting works in
the field of computational intelligence in games.

Hearthstone is a collectible card game in which players
create their own decks to play against each other. Dur-
ing a game, players do not know about their opponent’s
deck and hand cards. While this paper will only dis-
cuss rules and characteristics of the game that influence
the deck building, the interested reader is referred to
some excellent resources on the web [3, 9] which offer
comprehensive reviews of the game’s mechanics.

When building a deck, users often combine cards and
their effects with a certain strategy in mind. Players
of the game often refer to deck archetypes, when they
discuss decks with a common theme and similar card
sets. Such a deck archetype may develop due to the
popularity of a certain strategy and its accompanied
deck. However, many players do not own all the neces-
sary cards of a specific deck they are trying to build,
therefore, many variants of these deck archetypes exist.

In regard to creating an autonomous agent, estimating
the opponent’s upcoming actions is crucial in choosing
their own actions. However, due to the opponent’s
cards being hidden, agents are limited in their capabil-
ity of predicting these moves. Algorithms like Informa-
tion Set Monte Carlo Tree Search (MCTS) [12, 19] try
to handle this problem by randomly sampling the op-
ponent’s hand cards to create a determinization of the
game state. Based on the generated determinization
the search process simulates its own and its opponent’s
actions and chooses the most promising action.

11th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2019)

Copyright © 2019, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Atlantis Studies in Uncertainty Modelling, volume 1

536

Sievers and Helmert [17] developed an extended version
of Information Set MCTS, which does not sample a
single determinization, but multiple determinizations of
the game state. For each of these determinizations, the
algorithm performs a separate run of Information Set
MCTS. The results of each run are later aggregated to
determine the agent’s next action. Sievers and Helmert
evaluated their approach on the game Doppelkopf, in
which player’s need to guess their teammates during
the first turns of every game. This critical guess can
have a high impact on the following actions. Their
approach showed to be valuable in estimating the risk
of the next action and improved the agent’s overall
performance. A study by Dockhorn et al. [6] further
extended this approach by using neural networks for
guiding the simulation, therefore, improving the quality
of simulations during the search process and its result.

In a recent paper, we introduced an autonomous agent
for Hearthstone [7], which implements a similar ap-
proach to the one presented in [6]. We observed that
the prediction accuracy and the agent’s playing per-
formance is still limited, which seems to be due to the
enormous number of possible game state determiniza-
tions. We reduced the game state’s sample space by
using information of previously played cards to predict
likely cards on the opponent’s hand. Using card co-
occurrences of previously seen cards and the opponent’s
hand cards we were able to create sample’s game state
determinizations with a higher likelihood. We observed
an improvement of the agent’s playing performance in
comparison to a uniform sampling. However, agents
which were given complete information still outper-
formed the proposed agent. From this, we infer that
further increasing the accuracy of the card sampling
may in turn further improve the agent’s performance.

In the pursuit of creating a better agent for Hearthstone,
we want to enhance the agent’s prediction capabilities
by correctly modeling deck archetypes. In Section 2 we
review restrictions of the deck building process and pro-
vide a short overview of the theory of (fuzzy) multisets
and various clustering approaches. In the subsequent
Section 3, these methods will be used to develop a
theoretical model of deck archetypes and how to mine
them from a database of recent games. Especially the
advantages of using fuzzy multisets instead of crisp
multisets are highlighted based on some explanatory
examples. We further present a case study, which is
based on extracting deck archetypes and their centroid
representation from actual playing data of the game
Hearthstone (Section 4). We compare our result with
a hand-labeled data set and show that the developed
approach is able to identify deck archetypes of similar
quality. The paper concludes with a short analysis of
the proposed approach and its possible application to
next card prediction.

2 Preliminaries

We begin this section with a short overview of deck
archetypes and how they are defined in Hearthstone.
We further provide detailed explanations on (fuzzy)
multisets and hierarchical agglomerative clustering al-
gorithms, which will be used to model and mine deck
archetypes in Section 3.

2.1 Deck Building and Deck Archetypes

In Hearthstone a deck is a set of 30 cards, which can
be chosen out of the 1000 cards currently available in
the game. Each card offers certain effects which can be
used to affect the current game state. Some of these
effects create useful synergies that players try to exploit
during the game, e.g. attack with a minion card, which
will get damaged during the fight and follow up by
healing this minion using a spell card. The choice of
cards to be put in the deck is restricted by a small set
of rules:

• players can only include cards they currently own
(are unlocked on their player’s account)

• a deck belongs to one out of 9 hero classes whom
are limited to a subset of about 400 cards each

• a deck can only include cards that are either neu-
tral or specific to the chosen hero class

• depending on its rarity, a card can be included
either once or twice

• a deck can be made for a specific game mode
that adds additional restrictions, e.g. standard, or
arena

While players can create a large number of different
decks not all of them are equally successful. The most
successful decks define the meta and get known as
meta-decks. Often these meta-decks will spawn multi-
ple variants in which players replace just a few cards
without changing the main theme of the deck.

A deck archetype describes the resulting cluster of
decks with common card subsets. In this work, we will
distinguish included cards into two groups, namely core
and variant cards. While the core of a deck archetype
contains cards that are included in all instances of this
archetype, the inclusion of variant cards depends on
the given instance. Core cards often define the main
building block of the archetype and its accompanying
strategy. In contrast, the variant cards are often cho-
sen by the player, reflecting of personal preferences or
restrictions in the deck building process. The following
Subsection will introduce (fuzzy) multisets, which will
later be used to model deck archetypes.

537

2.2 (Fuzzy) Multisets/Bags

Multisets (also called bags) are collections of objects
in which an object can be represented multiple times.
In this paper, we will closely follow the notation intro-
duced by Miyamoto [13] and Yager [20]. We denote a
multiset by:

M = {CM (x)/x : x ∈ X} (1)

in which X is the set of elements that can be included
and CM a function that maps each object xi to its
number of copies ni in M:

CM : X → N CM (xi) = ni (2)

The collection of all possible multisets of a universal
set X is denoted by M(X).

For comparing two multisets L and M inclusion is
defined by

L ⊆M iff CL(x) ≤ CM (x) holds ∀x ∈ X (3)

and (as a consequence) equality is given by:

L = M iff CL(x) = CM (x) holds ∀x ∈ X (4)

Union, intersection, and addition are defined pointwise
for all x ∈ X by:

CL∪M (x) = CL(x) ∨ CM (x) (5)

CL∩M (x) = CL(x) ∧ CM (x) (6)

CL⊕M (x) = CL(x) + CM (x) (7)

where ∨ and ∧ imply the max and min operators.

A fuzzy extension of multisets was first introduced
by Yager (using the term fuzzy bags) [20]. Here, the
sample fuzzy multiset

A = {(x, 0.5), (x, 0.3), (y, 1), (y, 0.5), (y, 0.2)} (8)

denotes the occurrence of each object and its member-
ship degree. For simplicity we group objects of the
same kind and their membership degrees, such as in:

A = {(0.5, 0.3)/x, (1, 0.5, 0.2)/y}

in which the memberships {0.5, 0.3} and {1, 0.5, 0.2}
correspond to the objects x and y, respectively. There-
fore, in fuzzy multisets Ca(x) is a finite multiset of the
unit interval [20].

For each object x we further define the membership
sequence to be the decreasingly-ordered sequence of
elements in CA(x). We will make use of the standard
form introduced by Miyamoto [13] :

(µ1
A(x), . . . , µp

A(x)), µ1
A(x) ≥ · · · ≥ µp

A(x) (9)

Let L(x;A) be the length of the membership sequence
(µ1

A(x), . . . , µp
A(x)) of multiset A be denoted by:

L(x;A) =

{
max{j : µj

A(x) 6= 0} if x ∈ A
0 otherwise

(10)

Any operation between two multisets A and B requires
the membership sequences of each object to be of equal
length. We define the length L(x;A,B) of the resulting
membership sequence to be:

L(x;A,B) = max{L(x;A), L(x;B)} (11)

For the sake of simplicity we assume a membership
degree of:

µi
A(x) = 0; ∀i with L(x;A) < i ≤ L(x;A,B) (12)

in case the object x is included less than L(x;A,B)
times in the multiset A (likewise for B).

Similar to crisp multisets we can define inclusion, equal-
ity, union, and intersection based on the membership
sequences of each element. Let A and B be two fuzzy
multisets.

A ⊆ B iff µj
A(x) ≤ µj

B(x) holds for

j = 1, 2, . . . , L(x;A,B), ∀x ∈ X
(13)

A = B iff µj
A(x) = µj

B(x) holds for

j = 1, 2, . . . , L(x;A,B), ∀x ∈ X
(14)

Similarly, union and intersection are defined pointwise
for all x ∈ X by :

µj
A∪B = µj

A(x) ∨ µj
B(x)

j = 1, 2, . . . , L(x;A,B)
(15)

µj
A∩B = µj

A(x) ∧ µj
B(x)

j = 1, 2, . . . , L(x;A,B)
(16)

To clarify the notation we provide the following short
example. Consider the two fuzzy multisets A and B
over the set of objects {x, y, z}:

A = {(0.5, 0.2)/x, (1.0, 0.5, 0.2)/y}
B = {(1.0)/x, (0.7, 0.6)/y, (0.9, 0.5)/z}

The length per object is:

L(x;A,B) = 2; L(y;A,B) = 3; L(z;A,B) = 2

For simplicity we extend the membership sequences
for both multisets according to the maximal observed
length:

A = {(0.5, 0.2)/x, (1.0, 0.5, 0.2)/y, (0.0, 0.0)/z}
B = {(1.0, 0.0)/x, (0.7, 0.6, 0.0)/y, (0.9, 0.5)/z}

Based on the extended membership sequences we can
determine union and intersection of both multisets:

A∪B = {(1.0, 0.2)/x, (1.0, 0.6, 0.2)/y, (0.9, 0.5)/z}

A ∩B = {(0.5)/x, (0.7, 0.5)/y}

538

2.3 Hierarchical Agglomerative Clustering

In this work, we are going to present the results of our
deck archetype clustering process. Since the cluster-
ing algorithm itself is not the focus of this paper we
only explain the approach that was most successful
in our experiments. The interested reader is referred
to specialized literature on the topics of data mining
and (fuzzy) cluster analysis, which provide a more com-
prehensive review of alternative approaches than this
paper could offer [1, 2, 4, 10, 16].

Hierarchical agglomerative clustering is a class of
bottom-up clustering algorithms, in which each data
point is assigned to a unique cluster during initializa-
tion. These clusters are iteratively merged according
to a linkage criterion. The merge process is repeated
until a minimum number of clusters is reached or all
data points belong to a common cluster.

In this work we will make use of the following linkage
criteria, which both determine the distance of two
clusters based on the distances of points contained in
differing clusters:

• single linkage reports the minimal distance be-
tween two points of different clusters

dsingle(Ci, Cj) = min
a∈Ci, b∈Cj

d(a, b) (17)

• complete linkage reports the maximal distance
between two points of different clusters

dcomplete(Ci, Cj) = max
a∈Ci, b∈Cj

d(a, b) (18)

3 (Fuzzy) Multiset Analysis of Deck
Archetypes

In the previous section, we discussed various building
components for the deck archetype mining algorithm
we are proposing in this section. We will first define how
a deck archetype can be represented in terms of fuzzy
multisets and further describe a mining routine based
on the hierarchical agglomerative clustering algorithm.

A natural representation of a deck is a multiset of cards.

D = {CD(x)/x | x ∈ X} (19)

where CD(x) ∈ N is the number of inclusions of card
x in deck D. Due to the restrictions of Hearthstone’s
deck building process, any card can be included twice
or less CD(x) ≤ 2. It is also known that each deck has
exactly 30 cards, which is equal to the sum of object
counts or membership degrees in the deck.

3.1 Modelling Deck Archetypes

The Hearthstone community defines a deck archetype
to be a collection of decks with a common set of cards.
In the following, we are going to model a deck archetype
to be the representative of a cluster of decks.

Lets consider two crisp decks D1 and D2 over the set
of elements X = {a, b, c, d, e, f} of the form:

D1 = {1/a, 1/b, 2/c, 1/d, 0/e, 2/f}
D2 = {1/a, 1/b, 2/c, 0/d, 2/e, 1/f}

The intersection MD1∩D2
of these two decks is the

multiset:

MD1∩D2 = {1/a, 1/b, 2/c, 0/d, 0/e, 1/f}

While the resulting set describes the core of these two
decks, the information of possible variants is lost dur-
ing the generation of the common subset. A similar
problem occurs if we generate the union MD1∪D2

of
both decks:

MD1∪D2
= {1/a, 1/b, 2/c, 1/d, 2/e, 2/f}

While the union operator preserves information on the
inclusion of d and e we misleadingly represent these
variants, i.e. based on its count in MD1∪D2

variant ob-
ject d is indistinguishable from the core objects a and
b (similar observations can be made for the objects c
and e). Hence, objects with different inclusion patterns
in D1 and D2 are equally represented in the merged
multiset. Replacing the union with the addition oper-
ation would yield similar problems and also increase
the cardinality of the resulting multiset.

For the crisp multiset we define the average multiset
M〈L,M〉 of two multisets L and M to include the aver-
age number of occurrences per object in these multisets
and denote it by:

C〈L,M〉(x) =
CL(x) + CM (x)

2
, ∀x ∈ X (20)

Hence, the average of clusters D1 and D2 is:

M〈D1,D2〉 = {1/a, 1/b, 2/c, 0.5/d, 1/e, 1.5/f}

While the average operator already clearly distinguishes
the inclusion patterns for a, b and d, we can still ob-
serve problems with varying numbers of inclusion, e.g.
a and e. However, extending the representation to
fuzzy multisets can help to solve this problem.

For this purpose, we transfer the average operator for
crisp multisets to fuzzy multisets by calculating the
average of every element of an object’s grade sequence.

539

Thus, the average operator for two fuzzy multisets A
and B can be denoted by:

µi
〈A,B〉(x) =

µi
A(x) + µi

B(x)

2
, i = 1, . . . , p, ∀x ∈ X

(21)

Representing both decks as fuzzy multisets results in
the following centroid:

D1 = {(1)/a, (1)/b, (1, 1)/c, (1)/d, (0)/e, (1, 1)/f}
D2 = {(1)/a, (1)/b, (1, 1)/c, (0)/d, (1, 1)/e, (1)/f}

M〈D1,D2〉 = {(1)/a, (1)/b, (1, 1)/c, (0.5)/d,

(0.5, 0.5)/e, (1.0, 0.5)/f}

To ensure a stable clustering process we want to adjust
the definition of the (fuzzy) multiset centroid to fulfill
the associative property, since the result of merging
multiple multisets should be independent of their merg-
ing order, specifically we want the following properties
to be fulfilled:

C〈〈D1,D2〉,D3〉(x) = C〈D1,〈D2,D3〉〉(x), ∀x ∈ X
M〈〈D1,D2〉,D3〉 = M〈D1,〈D2,D3〉〉

(22)

Let a cluster C be a multiset over the set {M1, . . . ,Mn}
of multisets over the set of objects X. The centroid
〈C〉 of cluster C, which is itself a multiset over the set
of objects X, should be independent of the order of
inclusion of said multisets, thus fulfilling the associative
property of the order of merges. For this purpose,
we generalize the average operator of two multisets
(Equation 20) to take the number of inclusions per
multiset into account:

C〈C〉(x) =

∑
Mi∈C CMi(x) · CC(Mi)∑

j CC(Mj)
, ∀x ∈ X (23)

The same can be done for a cluster of fuzzy multisets

µk
〈C〉(x) =

∑
Mi∈C µ

k
Mi

(x) · CC(Mi)∑
j CC(Mj)

,

k = 1, . . . , p, ∀x ∈ X

(24)

We will use the cluster centroid to represent the cluster
and all its contained decks in a single (fuzzy) multiset.

3.2 Clustering of (Fuzzy) Multisets

For mining deck archetypes we are going to apply
the hierarchical clustering algorithm using single and
complete linkage to a data set of recently played decks.
Both linkage methods need a suitable distance measure
to group data points into clusters of similar objects.

To measure the distance of two multisets L and M we
define their Euclidean distance by:

deuclid(L,M) =

(∑
x∈X

(
CL(x)− CM (x)

)2) 1
2

(25)

and transfer the definition to be applied to fuzzy mul-
tisets A and B:

deuclid(A,B) =

∑
x∈X

L(x;A,B)∑
i

(
µi
A(x)− µi

B(x)
)2 1

2

(26)

In our work, we will compare results based on the
Euclidean distance with results obtained from applying
the Jaccard distance measure. Here we use the general
Jaccard distance [11]:

djaccard(x, y) = 1− |x ∩ y|
|x ∪ y|

= 1−
∑

i min(xi, yi)∑
i max(xi, yi)

(27)

and apply it to two multisets L and M :

djaccard(L,M) = 1−
∑

x∈X min(CL(x), CM (x))∑
x∈X max(CL(x), CM (x))

(28)

Similar to the Euclidean distance we transfer the equa-
tion to measure the distance of two fuzzy multisets A
and B:

djaccard(A,B) = 1−
∑

x∈X
∑L(x;A,B)

j=1 µj
A∩B∑

x∈X
∑L(x;A,B)

j=1 µj
A∪B

(29)

The clustering process is stopped in case only one clus-
ter remains or the Jaccard distance of all cluster pairs
is 1.0 during a single merge step. In the latter, none of
the current clusters have any object in common.

4 Evaluation

All project files for the following evaluation are avail-
able at [5]. We evaluated our clustering approach using
deck data of the HSReplay website [8]. The website
offers easy access to a large collection of recently played
games. Players can choose to use the Hearthstone Deck
Tracker plugin, which automatically records played
games and uploads them to the HSReplay servers. In
return, players can access information on the probabil-
ity of their opponent’s cards while playing the game.

We have extracted a deck data set which contains data
from February 5th to 20th 2019. Each deck entry stores
the deck’s cards, the total amount of games recorded
during the two weeks, its average win-rate, average
game-length, and average turn count. Additionally,
each deck entry provides information on the suggested
deck archetype, which was labeled by expert players.

540

We will compare the result of our clustering method
with the labeling provided in the data set. For this
purpose, we use the external validation measures ho-
mogeneity, completeness, and v-measure [15]. While
homogeneity is satisfied in case the clusters contain
only data points which are members of a single class (as
labeled in the ground truth), completeness is satisfied
if all the data points that are members of a given class
are elements of the same cluster. The v-measure is
the harmonic mean of homogeneity and completeness.
All three measures provide values between 0.0 and 1.0,
where larger values are desirable.

We first calculated the distance matrix of decks of the
same hero class. Figure 1a shows the heat map plot
of the Jaccard distance of all Druid decks contained in
the data set encoded as fuzzy multisets. Clusters of
similar groups are clearly distinguishable. Euclidean
distance looks similar but is not limited to a range of
0.0 to 1.0, which makes it harder to define a cutoff
threshold for stopping the clustering process.

For this reason, we decided to compare level-wise ex-
traction of cluster labels and report the evaluation
measures grouped by the number of clusters and the
applied linkage method in Figure 2a-c. Changing the
distance to Euclidean distance yielded similar results.
The plots show that the best clustering result in re-
gard to the v-measure of the true archetype labels was
achieved by complete linkage and reporting a total of
13 clusters. The other methods performed worse in
regard to homogeneity and completeness for a small
number of reported clusters. Single linkage performed
better in regard to the reported measures for a high
number of clusters. However, reporting higher num-
bers of clusters reduces the usefulness of defining a
deck archetype by being overly specific in regard to the
player’s strategy with this deck. Even when the card
sets vary a bit more than in the larger deck archetypes
the main theme of the deck still stays the same.

We plotted the clustering result of the best perform-
ing algorithm in Figure 1b using multi-dimensional
scaling for projecting the multisets into 2-dimensional
space [14]. We also added cluster centroids and cluster
cores to the scaling process to compare their suitability
for describing a deck archetype. While small clusters
can be satisfyingly represented using both methods,
decks of larger clusters seem to have a higher average
distance to their cluster core than to their cluster cen-
troid (compare dark blue and bright green clusters).
We also calculated the sum of squared errors (SSE) of
all points to their respective cluster centroids and cores
and show the result in Figure 1c. Centroids are on
average much closer to the decks contained in the same
cluster than cores are, which highlights their suitability
in encoding deck archetypes.

5 Conclusion

In this work, we proposed an automatic clustering pro-
cess for deck archetypes and evaluated it in the context
of the online collectible card game Hearthstone: Heroes
of World of Warcraft. We chose to represent decks in
the form of (fuzzy) multisets and define a centroid
of clusters of such multisets. A clustering on player
data was done using the hierarchical agglomerative
clustering algorithm. We applied complete as well as
single linkage and compared their results when using
Euclidean distance or Jaccard distance. The evaluation
of the clustering result shows that the outcome is com-
parable to a labeling by expert players. Experiments
on the average distance to cluster representatives show
that the cluster centroid performs best in describing
the deck archetype, while not losing expressiveness on
the deck archetype’s core and its variants.

We plan on extending this work by using found deck
archetypes to predict the opponent’s deck at run-time
and use this to better sample a likely determinization
of the game state. We further want to explore the
applicability of the proposed clustering approach in
a stream mining context. From a developers point
of view, it could be interesting to quickly recognize
changes in the meta-game.

References

[1] C. C. Aggarwal, C. K. Reddy, Data clustering:
algorithms and applications, CRC Press, Boca
Raton, FL, 2013.

[2] M. R. Berthold, C. Borgelt, F. Höppner, F. Kla-
wonn, Guide to Intelligent Data Analysis, Texts
in Computer Science, Springer London, London,
2010.

[3] Blizzard Entertainment, Hearthstone webpage, ac-
cessed on 13.04.2019.
URL https://playhearthstone.com

[4] C. Borgelt, R. Kruse, Agglomerative fuzzy cluster-
ing, in: International Conference on Soft Methods
in Probability and Statistics, Springer, 2016, pp.
69–77.

[5] A. Dockhorn, Project files and supporting
material, accessed on 16.05.2019.
URL https://github.com/ADockhorn/

FuzzyDeckClustering

[6] A. Dockhorn, C. Doell, M. Hewelt, R. Kruse, A
decision heuristic for Monte Carlo tree search dop-
pelkopf agents, in: 2017 IEEE Symposium Series
on Computational Intelligence (SSCI), IEEE, 2017,
pp. 1–8.

541

(a) distance matrix of Druid decks

(b) 2d-projection of druid decks () their archetypes (color),
and their cores (N) and centroids (�)

(c) comparison of the sum of squared errors of decks to their
related deck archetype’s centroid and core

Figure 1: analysis of internal cluster metrics, arche-
types, and their cores and centroids

(a) homogeneity

(b) completeness

(c) v-measure

Figure 2: comparison of clustering results using exter-
nal validation measures on druid deck archetypes

542

[7] A. Dockhorn, M. Frick, Ü. Akkaya, R. Kruse, Pre-
dicting Opponent Moves for Improving Hearth-
stone AI, in: J. Medina, M. Ojeda-Aciego, J. L.
Verdegay, D. A. Pelta, I. P. Cabrera, B. Bouchon-
Meunier, R. R. Yager (Eds.), 17th International
Conference on Information Processing and Man-
agement of Uncertainty in Knowledge-Based Sys-
tems, IPMU 2018, Springer International Publish-
ing, 2018, pp. 621–632.

[8] HearthSim, HSReplay.net, accessed on 13.04.2019.
URL https://hsreplay.net/decks/

[9] Hearthstone Top Decks, Hearthstone beginners
guide 2018 guides, tips, and tricks for new
players!, accessed on 13.04.2019.
URL https://www.hearthstonetopdecks.com/

hearthstone-beginners-guide-2017-guides-

tips-tricks-new-players/

[10] R. Kruse, C. Borgelt, C. Braune, S. Mostaghim,
M. Steinbrecher, Computational Intelligence, 2nd
Edition, Texts in Computer Science, Springer
London, London, 2016.
URL http://link.springer.com/10.1007/

978-1-4471-5013-8

[11] M. Levandowsky, D. Winter, Distance between
sets, Nature 234 (5323) (1971) 34–35.

[12] J. Long, N. Sturtevant, M. Buro, T. Furtak, Under-
standing the success of perfect information monte
carlo sampling in game tree search, AAAI Confer-
ence on Artificial Intelligence (2010) 134–140.

[13] S. Miyamoto, Fuzzy multisets and their general-
izations, in: C. Calude, G. Puaun, G. Rozenberg,
A. Salomaa (Eds.), Multiset Processing, Mathe-
matical, Computer Science, and Molecular Com-
puting Points of View [Workshop on Multiset Pro-
cessing, WMP 2000, Curtea de Arges, Romania,
August 21-25, 2000], Vol. 2235 of Lecture Notes in
Computer Science, Springer, 2000, pp. 225–236.

[14] A. A. O’Connell, I. Borg, P. Groenen, Modern
Multidimensional Scaling, Vol. 94 of Springer Se-
ries in Statistics, Springer New York, New York,
NY, 2005.

[15] A. Rosenberg, J. Hirschberg, V-measure: A condi-
tional entropy-based external cluster evaluation
measure, Computational Linguistics 1 (June)
(2007) 410–420.
URL http://acl.ldc.upenn.edu/D/D07/D07-

1043.pdf

[16] K. H. a. Sadaaki Miyamoto, Hidetomo Ichihashi,
Algorithms for Fuzzy Clustering: Methods
in C-Means Clustering with Applications, 1st
Edition, Studies in Fuzziness and Soft Computing
229, Springer-Verlag Berlin Heidelberg, 2008.
URL http://gen.lib.rus.ec/book/index.

php?md5=9EA3A9597668B70D3AE134FEBFA94B1F

[17] S. Sievers, M. Helmert, A doppelkopf player based
on UCT, in: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
Vol. 9324, 2015, pp. 151–165.

[18] Statista, Inc., Number of Hearthstone: Heroes of
Warcraft players worldwide as of November 2018
(in millions), accessed on 13.04.2019.
URL https://www.statista.com/statistics/

323239/number-gamers-hearthstone-heroes-

warcraft-worldwide/

[19] D. Whitehouse, E. Powley, P. Cowling, Deter-
minization and information set monte carlo tree
search for the card game dou di zhu, in: Proceed-
ings of the 2011 IEEE Conference on Computa-
tional Intelligence and Games (CIG’11), IEEE,
2011, pp. 87–94.

[20] R. R. Yager, On the Theory of Bags, International
Journal of General Systems 13 (1) (1986) 23–37.

543

