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Abstract. Guitar effects are commonly used in popular music to shape
the guitar sound to fit specific genres or to create more variety within
musical compositions. The sound is not only determined by the choice
of the guitar effect, but also heavily depends on the parameter settings
of the effect. Previous research focused on the classification of guitar
effects and extraction of their parameter settings from solo guitar audio
recordings. However, more realistic is the classification and extraction
from instrument mixes. This work investigates the use of convolution
neural networks (CNNs) for classification and extraction of guitar effects
from audio samples containing guitar, bass, keyboard and drums. The
CNN was compared to baseline methods previously proposed like support
vector machines and shallow neural networks together with predesigned
features. The CNN outperformed all baselines, achieving a classification
accuracy of up to 97.4 % and a mean absolute parameter extraction error
of below 0.016 for the distortion, below 0.052 for the tremolo and below
0.038 for the slapback delay effect achieving or surpassing the presumed
human expert error of 0.05.

Keywords: convolutional neural networks, guitar effects, parameter extraction,
music information retrieval

1 Introduction

Audio effects are a wide-spread tool used in the production and creation of music.
They find application in all kinds of music and are applied to virtually all kinds
of instruments such as vocals, guitar, keyboard and so on. In the domain of
guitar-centered music, a prominent and well known effect is the overdrive effect,
closely related to the distortion effect. A multitude of other effects exist such
as phaser, delay, ring-modulator and many more. Several professional guitarists
use guitar effects to create an unique, distinctive sound strongly associated with
the artist. For the production of music and the creative process of writing music,
automatic creation of guitar effects that yield a desired sound can be of interest.
For this purpose, extraction algorithms are required to map audio recordings
to effect classes and associated parameter settings. Early work in this domain
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focused solely on the classification of guitar effects. Stein et al. pioneered this
area of research with their fundamental work [7,8] using a large set of audio
features and a support vector machine to classify eleven guitar effects achieving
a mean accuracy of 97.7 % for solo guitar recordings.

Further work regarding the classification of guitar effects was done by Eichas
et al. [2], and Schmitt et al. [6], the latter investigating the importance of audio
features and comparing the so called bag-of-audio-words approach to the use of
functionals. They found both approaches to achieve similar high performance.
Research regarding the extraction of guitar effect parameter settings is scarce. So
far only two previous works exist: Jiirgens et al. [4] pioneered this task using shal-
low neural networks combined with specifically design selected features for each
guitar effect achieving or surpassing the (presumed) performance of a human ex-
pert. Comunita et al. [1] used convolutional neural networks (CNNs) to extract
the parameter settings of different implementations of distortion, overdrive and
fuzz guitar effect plug-ins from monophonic and polyphonic guitar recordings.
However, none of these research papers [1,4] considered guitar effect parame-
ter setting extraction from instrument mixes, i.e. audio recordings or signals,
in which several instruments play at once. This is the focus of this manuscript:
the classification of guitar effects from instrument mixes with emphasis on the
extraction of the respective effect parameter settings. For this purpose, a custom
dataset was created consisting of instrument mixes of guitar, bass, keyboard and
drums. As baseline approach for classification we used the method of Stein et
al. [8] and for extraction we used the method of Jiirgens et al. [4] and compared
it to the performance of a CNN at different volume levels of the instrument
mix. Four different time-frequency representations were assessed with respect to
the achieved CNN performance. To shorten the phrasing a little, guitar effect
parameter setting extraction will be called effect parameter extraction or just
parameter extraction.

Section 2 describes the datasets used for classification and parameter extrac-
tion, the time-frequency representations used and the training and evaluation of
the CNNs. Section 3 reports the classification, extraction and robustness results.
Section 4 discusses and interpretes these results and the manuscript is concluded
in Section 5.

2 Method and Materials

Two datasets were created specifically for the investigations of this work, one for
guitar effect classification, abbreviated GEC-GIM (for Guitar Effect Classifica-
tion - Guitar Instrument Mix), and one for guitar effect parameter extraction,
abbreviated GEPE-GIM (for Guitar Effect Parameter Extraction - Guitar In-
strument Mix). The motivation to create two separate datasets was the large
number of samples that had to be created if the same amount of parameter set-
tings used for GEPE-GIM had been used for GEC-GIM. The very same effect
plugins of Stein et al. [8] and Jirgens et al. [4] were used in this work. Effect
descriptions and their parameters can be found in [8, 4, 10]. Additionally, to fur-
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Fig. 1: Tablature showing the drum pattern used in all samples. All other instru-
ments played a single note for the duration of two seconds, i.e. one bar.

ther test the capability of the CNN, the IDMT-SMT dataset from Stein et al.
[4] was used for classification.

2.1 Dataset for Guitar Effect Parameter Extraction

The dataset used in this work to investigate guitar effect parameter extraction
consisted of instrument mixes of guitar, keyboard, bass and drums. It was specif-
ically created for the investigations described in this manuscript. All instruments
were virtual instruments and created using the following plugins: Sonivox Bright
Electric Guitar and Ample Guitar LP (guitar), Bitsonic Keyzone Classic (key-
board), Ample Bass P Lite (bass) and Manda Audio MT POWER DrumKit
2 (drums). All plugins were sample-based and thus could be expected to cre-
ate realistic waveforms/sounds. While guitar, keyboard and bass played a single
note in each sample, starting at the exact same time lasting for two seconds, the
drums played the pattern depicted in Figure 1. The guitar and keyboard played
the notes E2 and E3, bass played the notes E1 and E2. The guitar note was in-
dependently varied from keyboard and bass, while keyboard and bass notes were
always moved together by an octave to reduce the amount of data. Keyboard,
bass and drums were mixed at different volume levels with the guitar according
to

premiz(t) = b(t) + k(t) + d(¢) (1)

and
miz(t) = g(t) + « - premiz(t), (2)

where b(t), k(t), d(t) and g(t) are the bass, keyboard, drum and guitar sig-
nals, respectively. The parameter « controlled the mixing volume and was set
such that the ratio %W corresponded to the desired mixing volume.
The volume mixes used were -36 dB, -24 dB, -12 dB, -6 dB, -3 dB, 0 dB and +3
dB with respect to the peak amplitude of the guitar waveform, i.e. at +3 dB, the
peak amplitude of the premix after scaling was 3 dB larger than the peak am-
plitude of the guitar. Subjectively, the mix was considered realistic in the sense
that keyboard and bass were clearly and loudly audible, not overshadowing each
other, and the guitar clearly moved towards the background with increasing mix-
ing volume. An example waveform of an audio sample with tremolo on the guitar
showing the lowest and highest mixing volume after normalization is depicted in
Figure 2. In total, three guitar effects - distortion, tremolo and slapback delay -
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Fig.2: Audio sample with tremolo on the guitar at (left) lowest (-36 dB) and
(right) highest (+3 dB) mixing volume after peak normalization. The waveforms
were peak normalized before applying the respective time-frequency representa-
tion. The two large peaks in the right figure are due to the snare hits. The depth
parameter was set to 1.0 and the frequency parameter set to 0.1.

were considered and each guitar effect was applied at every mixing level. These
guitar effects were chosen to allow a direct comparison to Jiirgens et al. [4]. Each
of these guitar effects had two parameters. These parameters were varied in steps
of 0.05, starting at 0.05 and ending at 1, creating a grid of parameter values. In
total 67,200 audio samples, 22,400 per effect, were created. The audio waveforms
were sampled at 44.1 kHz and had a duration of two seconds each corresponding
to four quarter notes or one bar at 120 beats per minute and quarter time.

2.2 Dataset for Guitar Effect Classification

The dataset for guitar effect classification from instrument mixes used exactly
one fixed volume mix of 0 dB, where the mix was created as described in Section
3.1. However, in contrast, a total of eleven guitar effects were used, each using
random parameter settings. Furthermore, the dataset consisted of all possible
instrument mixes of the guitar and the other instruments, e.g. guitar and key-
board, guitar and bass, guitar and bass and keyboard and so on. Also solo guitar
and guitar together with individual drum parts were included, e.g. guitar and
snare, guitar and crash cymbal etc. This way, twelve instrument combinations
were included yielding a total of 15,840 audio samples. For each combination of
guitar effect, guitar plugin and instrument mix, 60 samples using random guitar
effect parameter settings were generated.
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2.3 Time-Frequency Representations

Four different time-frequency representations were investigated as input of the
CNNs. These were the (magnitude) spectrogram, the chromagram, mel-frequency
cepstral coefficients (MFCCs) and gammatone frequency cepstral coefficients
(GFCCs). The chromagram is a mapping of an audio waveform to the twelve
semitones of the western music that yields the energy in the respective semi-
tones. See [5] for a description of the chromagram and the spectrogram and [3]
for a description of the MFCCs and GFCCs. For the MFCCs and GFCCs, 40
coefficients were used. The spectrogram, chromagramm and the MFCCs were
computed using the python framework librosa and the GFCCs using the python
framework Spafe. In all cases default settings were used. For the computation
of the GFCCs the sampling rate had to be reduced to 16 kHz. An example
of the four time-frequency representations applied to the same audio sample is
shown in Figure 3. The audio sample was an audio mix at maximum mixing
volume with distortion applied to the guitar. The hi-hat is clearly visible in the
spectrogram and the snare hits are apparent in the Chromagram. The input
dimensions of the images obtained by applying the time-frequency representa-
tions to the audio samples were 256 x 173 (spectrogram), 40 x 173 (MFCCs),
12 x 173 (chromagram) and 40 x 193 (GFCCs). Before being fed to the CNN,
the data obtained by applying the respective time-frequency representations to
the audio samples was normalized to have zero mean and unit variance using
sklearn’s standardscaler class.

Spectogram MFCC
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Fig.3: Example of all four investigated time-frequency representations of one
sample of the GEPE-GIT dataset with distortion effect on the guitar and gain
set to 0.7 and tone set to 0.85. The snare hits are clearly visible in the chro-
magram and the hi-hat is apparent in the spectrogram. Mel-Frequency cepstral
coefficients (MFCCs) and gammatone frequency cepstral coefficents (GFCCs)
are less obvious. Except for the spectrogram, all plots use linear scale.
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Table 1: Structure of the convolutional neural networks (CNNs) used for effect
classification. For parameter extraction, only the number of filters, the dropout
probability and number of outputs changed.

Layer Kernel Filter Activation Dropout
Convolutional 3 x 3 32 ReLU -

Batch Norm. - - - -

Max Pooling 2x2 - - -
Convolutional 3 x 3 64 ReLU 0.3
Batch Norm. - - - -

Max Pooling 2 x 2 - - -

Flatten - - - -
Dense - 64 ReLU 0.3
Batch Norm. - - - -
Dense - 64 ReLU 0.3
Batch Norm. - - - -
Dense (Output) - 11 Softmax -

2.4 Convolutional Neural Networks

Two slightly different CNNs were used, one for classification of the guitar effects
and one for the parameter extraction. The CNN structure used for classification
is given in Table 1. For guitar effect parameter extraction, the same structure
was used except with six and twelve filters in the convolutional layers as well as a
dropout probability of 0.2. The total number of weights of the CNN used for clas-
sification ranged from 192,587 (Chromagram) to 10,436,683 (Spectrogram) with
1,368,139 for MFCCs and 1,597,515 for GFCCs. The total number of weights
of the CNN used for parameter extraction ranged from 37,146 (Chromagram)
to 1,957,914 (Spectrogram) with 257,562 for MFCCs and 300,570 for GFCCs.
In the case of effect classification, the output dimension was eleven, matching
the number of effects. In the case of effect parameter extraction, the output
dimension was two, matching the number of parameters per effect.

2.5 Training and Evaluation

The CNNs were trained for 70 epochs with a learning rate of 0.001 using the
adam solver. It was confirmed by selected visual inspection that the training
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had converged after 70 epochs. A 80%/20% training/validation split of the en-
tire dataset was used where the validation set was only used for evaluating the
CNNs performance and did not influence the training process in anyway. Five
repetitions, i.e. five random initializations with subsequent training of the CNNs
were performed, and the results reported are an average of the results of these
individual CNNs. Each training used a new training/validation split resulting
in 5-fold cross validation. The batch size was set to 64 for classification and 128
for parameter extraction. Training time for the CNN was about 15 hours per
repetition compared to about half an hour for the SVM.

2.6 Baseline

For effect classification, the support vector machine (SVM) classifer as described
in [8] and as implemented by [4] was used, albeit the onset detection was removed
as the onset was always the same due to the usage of virtual instruments in this
work. Using the features and functionals proposed in [8], a total of 649 functionals
were used. For effect parameter extraction, the method proposed by Jiirgens et
al. [4] served as baseline.

2.7 Robustness Analysis

As artificial neural networks are prone to overfitting or to fit to unexpected
patterns in the data, in the most extreme case relying on isolated pixels [9], the
robustness or sensitivity of the CNN for parameter extraction was analyzed. For
this purpose, zero mean white gaussian noise was added to the time-frequency
representations with a standard deviation o, set according to

s = a-max{|Cy(t, [}, 3)

with a € {0,0.001,0.01,0.05} and the respective time-frequency representa-
tions Cs(¢, f) and its impact on the parameter extraction error was observed.
The maximum was taken across the entirety of the dataset but separately for
each frequency bin. An « value of zero corresponded to the original, noise-free
samples and was included as reference. The index s denotes the respective time-
frequency representation. Additionally, the CNN was tested with novel tones of
keyboard and bass which now were moved, together, in semitone steps from E2
(keyboard) and E1 (bass) to the next octave and the impact on the parameter
extraction error was assessed. An example of the impact of the noise on the
spectrogram for ae = 0.01 is depicted in Figure 4. Through spectrogram inver-
sion with the ground truth phase and the noise corrupted amplitude spectrum
the corresponding audio data was subjectively judged for the spectrogram. It
was found that even at the smallest noise level investigated the noise was clearly
audible.



(0]

Reemt Hinrichs, Kevin Gerkens et al.

=
=N B0
FNUIOCOOHW
OANUIFN OO0

-20 dB
-40 dB
-60 dB

-80 dB
+0 dB

-20 dB
-40 dB
-60 dB
-80 dB

Frequency in Hz

1638
819
409
2048+
1024
512
256
128
64
0

Frequency in Hz

Timeins

Fig. 4: Spectrogram of an audio sample at 0 dB mixing volume using distortion
with gain set to 0.15 and tone set to 0.8 after normalization of the dataset
as explained in Sec. 2.3 without (top) additional noise, i.e. « = 0, and with
(bottom) additional noise with @ = 0.001 and « as explained in Sec. 2.7. The
noise is noticeable mostly at low magnitudes.

3 Results

The results are presented in three steps: First, the effect classification is pre-
sented. Secondly, the effect parameter extraction is presented. Finally, results
regarding the robustness of the CNN are presented.

3.1 Effect Classification

The confusion matrices of the SVM and CNN classifiers on the IDMT-SMT and
GEC-GIM dataset are depicted in Fig. 5. For the CNN, the depicted confu-
sion matrices were achieved using GFCCs (IDMT-SMT) and the spectrogram
(GEC-GIM). The accuracies for the other time-frequency representations were
similar except for the GFCCs on the GEC-GIM dataset where the CNN failed
to converge. While no obvious reason was found, inspection of the loss curves
suggested an insufficient learning rate. However, because the GFCCs otherwise
performed very well, this issue was not investigated further. Table 2 summarizes
the accuracies of the CNN and SVM classifier for both datasets with respect to
the time-frequency representation. On the GEC-GIM, both classifiers tended to
confuse slapback and feedback delay which greatly impacted the overall accu-
racies. However, it was later realized that the feedback delay plugin at least up
to a setting of 0.3 of the feedback parameter was very hard to distinguish from
the slapback delay. Due to the random settings used, about 30 % of all feedback
delay samples used a value of 0.3 or less making feedback and slapback delay
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Table 2: 95 % confidence intervals for the classification accuracy of the convo-
lutional neural network (CNN) using the listed time-frequency representations
as well as the accuracy of the baseline support vector machine (SVM) using the
method by Stein et al. [8]. In all cases the CNN outperformed the SVM where
the highest accuracy is highlighted using bold font. As subsequent parameter
extraction is not necessarily compromised by a confusion of slapback delay (SD)
and feedback delay (FD), the respective accuracies, when SD and FD are treated
as the same effect, are given as well.

Method GEC-GIM GEC-GIM (SD = FD) IDMT-SMT
SVM 85.0 % £ 0.44 % 89.7 % + 0.44 96.1 % £ 0.3 %
CNN + Spectrogram 90.0 % + 0.57 % 95.7 % + 0.57 % 97.4 % + 0.7 %
CNN + MFCCs 87.7% £ 0.52 % 93.0 % + 0.52 % 96.5 % + 0.13 %
CNN + GFCCs 24.7 % £ 273 % 28.6 % £ 27.3 % 97.4 % £ 03 %
CNN + Chromagram 87.0 % + 0.64 % 92.8 % £ 0.64 % 86.2 % £ 0.2 %

virtually indistinguishable for at least these samples as confirmed by selected
manual inspection. This issue did not arise on the IDMT-SMT, where rather
distinct settings for slapback and feedback delay were used. On both datasets,
the CNN outperformed the SVM classifier with an accuracy of up to 90.02 % for
the CNN on the GEC-GIM and 85.01 % for the SVM. On the IDMT-SMT, the
CNN achieved up to 97.38 % accuracy in contrast to 96.16 % accuracy for the
SVM classifier. As the slapback delay is identical to the feedback delay when the
feedback parameter is set to zero, confusing these two effects is not necessarily
a problem for subsequent parameter extraction. Due to this, the classification
accuracy when these two are considered as the same effect was specified as well
increasing the accuracies by about 4-5% in all cases.

3.2 Effect Parameter Extraction

Boxplots of the absolute error of the parameter extraction across all volumes for
the CNN and the four different input representations as described in Section 2.3
as well as the method by Jirgens et al. [4] are shown for the distortion effect
and its gain parameter in Figure 6a, for the tremolo effect and its frequency
parameter in Fig. 6b and the slapback delay effect and its time parameter in Fig.
6¢. The horizontal lines inside of the boxes denotes the median. Additionally, the
presumed human expert error of 0.05 was included as a reference, see also Jiirgens
et al. [4]. From our own experience of creating guitar sounds, we estimated that
a guitar player can be sufficiently accurate by only setting effect parameters
in steps of 0.1, which would result in a minimum absolute error of 0.05. The
mean absolute parameter extraction error across all volumes is summarized in
Table 3. No single time-frequency representation was optimal irrespective of the
considered guitar effect. The CNN using MFCCs achieved the minimum error
for the distortion effect of below 0.017 for either parameter, the GFCCs worked
best for the slapback delay yielding a mean error below 0.04 for either parameter.
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the (a) IDMT-SMT and (b) GEC-GIC dataset as well as the convolutional neu-
ral network (CNN) classifier on the (c¢) IDMT-SMT and (d) GEC-GIC dataset.
On the GEC-GIC both classifiers tended to confuse slapback and feedback de-
lay which was due to unfortunate random settings of the feedback parameter
which always was set to rather low values making these effects very difficult
to distinguish which was confirmed through selected manual inspection. On the
IDMT-SMT, which used very distinct parameter settings no confusion occured

for either classifier.
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The outliers occured mostly for effects and their parameter settings that were
very difficult to hear, e.g. any tone setting of the distortion effect when the gain
was very small. Then the tone parameter has almost no impact on the sound.
For the slapback delay and its time parameter the maximum of the absolute
error across the five training repetitions is depicted across the true parameter
settings in Fig. 7. There, the maximum errors tended to occur for the smallest
value of the mix parameter where the delay is almost inaudible.

The mean absolute extraction error across mixing volume for the slapback
delay is shown in Fig. 6d. The other effects qualitatively showed similiar de-
pendency on the mixing volume. Usually a two or three fold increase from the
lowest to the highest mixing volume was observed albeit even at the highest mix-
ing volume of +3 dB the mean performance was, on average, at or below human
expert level. The method by Jiirgens et al. was found to be less affected by the
mixing volume showing only a minor increase of the mean absolute error with
increasing mixing volume but still performed considerably worse than the CNN
even at the highest mixing volume. Sample files showcasing the effect parameter
extraction can be found under https://bit.ly /3nIEv8U.

3.3 Robustness to Noise and Pitch Shifts

The mean absolute error across noise levels of the effect parameter extraction for
all time-frequency representations is shown in Figure 8a for the time parameter
of the slapback delay. The mixing volume in this investigation was always 0 dB.
For the MFCCs, GFCCs and the Chromagram, the mean absolute error was
found to be relatively robust to additive gaussian noise with an approximate
increase of the mean absolute error by around 0.01-0.03 depending on the guitar
effect and time-frequency representation considered. The spectrogram proved to
be rather sensitive showing a considerable increase of about 0.05-0.15 depending
on the guitar effect. Qualitively, the noise impact was similiar for the other
parameters and effects as well.

The mean absolute error across pitch is depicted in Fig. 8b at a mixing
volume of -12 dB. None of the pitches between the outer two notes was part
of the training data. GFCCs allowed to achieve a mean absolute error of about

Table 3: 95% confidence interval of the mean absolute error across the five
repetitions of the parameter extraction across all volumes of the CNN and the
respective time-frequency representations as well as the method by Jiirgens et
al. [4]. The lowest errors are highlighted using bold font.

Distortion Tremolo Slapback Delay

Gain Tone Depth Freq. Time Mix
Chromagram 0.032 + 0.0015 0.051 £ 0.0048 0.063 £ 0.0017 0.061 £ 0.0038 0.062 £+ 0.0025 0.054 £+ 0.003
GFCC 0.016 £ 0.0025 0.017 £ 0.0015 0.034 =+ 0.002 0.063 £ 0.0033 0.038 £ 0.0007 0.027 £ 0.0014
MFCC 0.014 £ 0.0009 0.016 =+ 0.0009 0.049 + 0.0045 0.065 £+ 0.0015 0.039 £+ 0.001 0.031 £ 0.0022

Spectrogram 0.021 4 0.0063 0.023 4 0.0018 0.039 £ 0.0025 0.052 £ 0.0059 0.049 + 0.0009 0.037 + 0.0047
Jiirgens et al. 0.048 £ 0.0082 0.071 £ 0.024 0.129 £ 0.034 0.118 & 0.0208 0.228 &+ 0.076 0.207 & 0.0061
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Fig.6: Boxplots of the absolute parameter extraction error for the (a) distor-
tion gain, (b) tremolo frequency and (c) slapback delay time parameter for all
investigated methods across all volumes. The outliers occured most frequently
for parameter settings where the respective parameter had little to no effect due
to interference of the second effect parameter. (d) shows the mean parameter
extraction error across volume for the slapback delay.

0.1 or less for all pitches at -12 dB, performance was considerably worse, often
above 0.15 or 0.2, when the spectrogram or the chromagram was used. At a
mixing volume of -3 dB, the general performance decreased even further and,
at +3 dB, parameter extraction failed almost entirely for any pitch between the
two E notes, except for the gain parameter of the distortion effect, where errors
below 0.1 were still achieved for the GFCCs and MFCCs. For all other effects
and parameters, the mean error rose up to about 0.4 or higher at +3 dB mixing
volume.

4 Discussion

Generally, the CNN was found to be superior to the investigated baselines in
both effect classification and effect parameter extraction. All time-frequency
representations allowed to achieve an accuracy around or better than human
expert level in parameter extraction with the chromagram performing the worst
out of the four. MFCCs and GFCCs were found to perform approximately the
same, neither having a clear edge over the other.
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Fig. 7: Maximum extraction error for the time parameter across all five rep-
etitions of the absolute parameter extraction error across true mix and time
settings of the slapback delay. Most of the large errors occured at the smallest
mix setting where the effect is very difficult (or potentially impossible) to hear
and furthermore occurs also where the time parameter is very small or very large
which adds to the extraction difficulty.

4.1 Guitar Effect Classification

The CNN outperformed the SVM classifier on both datasets except when the
chromagram was used. The chromagram contains the most coarse information
about the audio out of all investigated time-frequency representations as it maps
different octaves to the same pitch value therefore it performing the worst was
not surprising. The CNN achieved in its best configuration an accuracy of 97.4 %
on the IDMT-SMT which is very close to the 97.7 % reported by Stein et al. [8]
in their SVM implementation.

As the CNN achieved good results for both datasets, one of them using
virtual instruments, albeit sample based, with all kinds of instrument mixes and
the other real recordings and a large variety of solo guitar pitches, it can be
assumed that the CNN is suitable for a wide range of audio data. The confusion
of slapback and feedback delay on the GEC-GIT is not surprising as mostly
very small parameter settings for the feedback parameter of the feedback delay
were randomly selected making it very hard or impossible to distinguish it from
the slapback delay. The CNN and the SVM both failing to distinguish the two
effects on the GEC-GIT and not failing on the IDMT-SMT is a strong indicator
that the issue lies in the data and not the classifiers. Another approach to the
effect classification and extraction problem from instrument mixes could be the
application of source separation algorithms followed by some classifiers. However,
initital tests for our research [4] did not yield promising results and thus this
approach was not pursuit further.
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Fig.8: Mean absolute parameter extraction error of the time parameter of the
slapback delay across (a) noise levels and (b) pitch of keyboard and guitar and all
four time-frequency representations. The impact of the noise was investigated at
a mixing volume of 0 dB, the error across pitch is depicted for a mixing volume
of -12 dB.

4.2 Guitar Effect Parameter Extraction

The impact of the mixing volume on the parameter extraction error qualita-
tively was as expected, with the error increasing generally with increasing mix-
ing volume. The spectrogram was found to perform the best, albeit MFCCs and
the chromagramm achieved similar accuracies. Only the chromagram showed a
clearly inferior performance compared to the other time-frequency representa-
tions. For all effects and volumes the CNN outperformed the approach of Jiirgens
et al. [4] albeit the CNN showed a greater sensitivity towards the mixing volume.
While the boxplots revealed considerable outliers, usually about 75 % or more of
the extraction errors were below the error of a human expert. Outliers, as sug-
gested by Fig. 7, usually occured at the highest mixing volume and at settings
that were very difficult to distinguish, because some parameters have an impact
on each other and render the other virtually useless at certain settings. Nonthe-
less, some isolated large errors occur at apparently random parameter settings.
These large errors could indicate an insufficient amount of data or suboptimal
data creation.

4.3 Robustness

As the CNN showed only a minor decrease in accuracy when small amounts
of noise (a = 0.001) were added to the input time-frequency representations,
over-fitting at least to the individual pixels seems unlikely which some deep
networks are susceptible to [9]. Because at lower mixing volumes (< —12dB)
robustness was also observed across pitch, it is very probable that the CNN
indeed extracted meaningful features. Albeit at the largest noise level the noise
was considerable, it was subjectively estimated, without performing a rigorous
experiment, that at all noise levels a human expert would not see as large of an
increase in parameter extraction error as the CNN. Here, the CNN potentially
performed suboptimally and could be improved in the future. The chromagram
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generally yielding the least robust CNN is not surprising because the energy for
the chromagram in the training data was almost solely contained in the E note.
This will have made the CNN focus mostly on this particular pitch. Once the
other instruments changed their pitch and therefore the energy distribution this
approach was prone to fail.

The extraction error for the gain parameter of the distortion effect was found
to be very robust with respect to the pitch of keyboard and bass and the CNN
achieved around and below 0.1 mean absolute error even at +3 dB mixing volume
unlike all other effects and parameters. The reason was probably the distortion
effect being the only nonlinear effect introducing novel frequencies into the audio
signals. These samples were then the only ones in the training data where novel
frequencies could convey information about the parameter settings. Therefore it
appears reasonable that for the distortion effect the CNN learned a more diverse
look at the time-frequency representations which in return allowed to be more
robust when the pitch of the other instruments changed. Although the number
of weights of the CNN, especially when the spectrogram was used as input, was
rather large in comparison to the amount of training data, the results of the
robustness analysis and the use of dropout layers make it seem unlikely that
relevant overfitting occured.

4.4 Limitations

One limitation of our investigation is the simplicity of the music played by the
instruments. More complex musical pieces, including polyphon guitar melodies,
likely will be more challenging to extract guitar effects from. Furthermore, addi-
tional audio effects on the other instruments could interfere with the parameter
extraction of the guitar effects. Also a second guitar could have a considerable
impact on the classification and extraction performance.

5 Conclusion

In this work guitar effect classification and guitar effect parameter extraction
with convolutional neural networks (CNNs) from instrument mixes was inves-
tigated and compared to two baselines. On two datasets, the CNN achieved
classification accuracies 1 — 5% above the baseline accuracy achieving up to
97.4% accuracy. Mean parameter extraction errors of below 0.016 for the distor-
tion, below 0.052 for the tremolo and below 0.038 for the slapback delay effect
were achieved matching or surpassing the presumed human expert error of 0.05.
The CNN was found to be moderately robust to noise and pitch changes of
the background instrumentation suggesting that the CNN extracted meaningful
features.
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