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Abstract

In industrial manufacturing processes, errors frequently
occur at unpredictable times and in unknown manifesta-
tions. We tackle the problem of automatic defect detection
without requiring any image samples of defective parts. Re-
cent works model the distribution of defect-free image data,
using either strong statistical priors or overly simplified
data representations. In contrast, our approach handles
fine-grained representations incorporating the global and
local image context while flexibly estimating the density. To
this end, we propose a novel fully convolutional cross-scale
normalizing flow (CS-Flow) that jointly processes multiple
feature maps of different scales. Using normalizing flows to
assign meaningful likelihoods to input samples allows for
efficient defect detection on image-level. Moreover, due to
the preserved spatial arrangement the latent space of the
normalizing flow is interpretable which enables to localize
defective regions in the image. Our work sets a new state-
of-the-art in image-level defect detection on the benchmark
datasets Magnetic Tile Defects and MVT1ec AD showing a
100% AUROC on 4 out of 15 classes.

1. Introduction

During the industrial production of components, defects
occur over time. They must be detected to ensure safety
standards and product quality. Since manual inspection by
humans is very costly and error-prone, reliable and efficient
automatic defect detection is highly demanded. In most
real-world scenarios, however, there exist no examples of
such defects. Moreover, even if a small set of known de-
fects is available, new and formerly unseen types of de-
fects occur at unpredictable times which makes it impos-
sible to apply standard classification approaches. Instead,
it is inevitable to let the defect detector learn only from
non-defective examples. This problem is commonly called
semi-supervised anomaly detection (AD), novelty detection
or one-class classification.

These terms describe the objective of deciding whether
a data sample belongs to the class of the given set X of
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Figure 1. Our method detects and localizes defects based on the
density estimation of feature maps from the differently sized in-
put images. We process the multi-scale feature maps jointly, using
a fully convolutional normalizing flow with cross-connections be-
tween scales.

normal (in our case non-defective) data. The problem is in-
terpreted in terms of whether a data sample lies out of the
distribution px of the set of normal images X, also named
out-of-distribution (OOD) detection. It is assumed that de-
fects X are out-of-distribution, i.e. have a small likelihood
given px . We propose a method that models the distribution
on feature level with a normalizing flow.

Most research [14, 37, 32] in the AD field focuses on
image datasets with high intra-class and high inter-class-
variance. The setting in defect detection is different: Since
the non-defective components are similar to themselves and
to the defects, there is a small intra-class and a small inter-
class-variance. Hence, most AD approaches are not suitable
for defect detection. Common approaches based on autoen-
coders [42, 12, 6, 15] or generative adversarial networks
(GANs) [34, 1, 7] perform poorly in this setting, which is
described in detail in Section 2. Thus, recent works rely on
density estimation of image features obtained from models
pretrained on ImageNet [9], e.g. ResNet [17] or Efficient-
Net [38]. However, either information is lost due to the
averaging of feature maps [31] or strong statistical priors
are required limiting their flexibility in density estimation
[29, 8]. To alleviate these issues, we propose a normal-
izing flow (NF) that is able to process multi-scale feature
maps to estimate their density, as shown in Figure 1. NFs
are generative models that transform the training set distri-



bution px to a latent space with a predefined distribution
pz via maximum-likelihood-optimization. In contrast to
other generative models, for instance VAEs [21] and GANs
[16, 4], the likelihoods of latent space vectors in NFs are
directly interpreted as likelihoods of the input data, since
the network maps bijectively. Thus, the regions in the latent
space with high likelihood represent the normal examples
while defective examples are projected to latent variables
outside of the learned distribution. Conversely, the injective
mapping of autoencoders potentially results in projecting
untrained anomalies to indeterminate latent space regions,
which may overlap with the regions of the normal samples.

However, applying NFs to images for OOD detection
is not straightforward as shown by Kirichenko et al. [22].
With RGB data, the network fails to learn a useful distri-
bution, focusing on local pixel correlations instead of se-
mantics. For this reason, we perform the density estima-
tion on feature maps obtained by pretrained feature ex-
tractors which provide compressed semantic information.
Our cross-scale flow (CS-Flow) simultaneously processes
the features of the image at different scales by propagating
them in parallel through the NF while interacting with each
other. Keeping in mind that the discriminability regarding
defectiveness is unknown during training, our model uti-
lizes the full potential of the information and correlations in
both local and global contexts to learn the distribution pre-
cisely to identify defective examples. In addition to identi-
fication, the fully convolutional architecture also preserves
spatial arrangement which allows for a visualization of the
defective regions on the image. In contrast to models using
densely connected layers and thus many parameters [31],
our approach still achieves good performance even with a
low number of training samples.

We summarize our contributions as follows:

* Our novel cross-scale normalizing flow (CS-Flow) de-
tects defects by jointly estimating likelihoods on multi-
scale feature maps.

* Our method maintains the image structure to obtain an
interpretable latent space, which enables precise defect
detection.

* We set a new state-of-the-art in image-level defect de-
tection on the MVTec AD and Magnetic Tile Defects
dataset.

 Code is available on GitHub'.

2. Related Work

In the following, we review previous work in the field of
anomaly detection and normalizing flows as the basis of our
methodology.

lhttps://qithub.Com/marcofrudolph/csfflow
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Figure 2. Histogram of different features from MVTec AD im-
ages extracted with EfficientNet [38]. Each histogram contains
the values from the same position of one feature map. The blue
line shows the best fitting normal distribution. Assuming a nor-
mal distribution of the features, as done by [29, &], appears to be
insufficient to capture the feature distribution.

2.1. Anomaly Detection

State-of-the-art work can be roughly divided into ap-
proaches that are based on generative models or pretrained
networks. Alternative methods that do not fall into one of
these categories are described separately.

2.1.1 Generative Models

Many anomaly detection methods are based on generative
models, such as autoencoders [24, 21, 30] and GANs [16],
which are optimized to generate the normal data. These ap-
proaches detect anomalies by the inability of the generative
model to reconstruct them. In the simplest case, the input
and the reconstruction of an autoencoder is compared [42].
In this context, a high reconstruction error is interpreted as
an indicator of an anomaly. Bergmann ez al. [6] replace the
common [y error with SSIM to have a better metric for vi-
sual similarity. Gong et al. [15] use memory modules in the
latent space to prevent the autoencoder from generalizing
to anomalous data. Zhai et al. [41] combine energy-based
models and regularized autoencoders to model the data dis-
tribution. Denoising autoencoders are used by Huang et
al. [12] by letting autoencoders learn to restore transformed
images.

Similar to the decoding part of autoencoders, genera-
tors of GANs are utilized for anomaly detection. Schlegl
et al. [34] propose to learn an inverse generator after train-
ing a GAN, utilizing both together for reconstruction and
the error consideration. A combination of autoencoders and
GANSs is proposed by Akcay et al. [1]. They apply the
autoencoder directly as the GAN’s generator to ensure the
generation of normal data only.

As shown in Section 4.3, autoencoders and GANs per-
form poorly on defect detection tasks.Since different types
of anomalies with individual size, shape and structure have
inconsistent characteristics regarding reconstruction errors,


https://github.com/marco-rudolph/cs-flow
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Figure 3. Architecture of one block inside the normalizing flow: After a fixed random permutation, every input tensor is split into two parts
across the channel dimension where each ensemble is used to estimate scale and shift parameters that transform the respective counterpart.
Symbols ® and & denote element-wise multiplication and addition, respectively.

they are not widely applicable. For example, structures with
high frequency cannot be represented and reconstructed ac-
curately in general and small defect areas cause smaller er-
rors.

2.1.2 Methods Based on Pretrained Networks

Instead of working on the image directly, many methods
perform defect detection on features of pretrained networks.
Pretraining on a large-scale database, such as ImageNet, en-
sures the extraction of universal features that are expected
to differ in the presence of defects. In this way, discrimi-
nant features are considered which cannot be learned from
non-defective data, since they do not necessarily occur in
it. Detecting defects in the feature space commonly is done
using traditional statistical approaches.

Andrews et al. [2] fit a one-class Support Vector Ma-
chine to the feature distribution. Rippel er al. [29] model
the features as an unimodal Gaussian distribution and uti-
lizes the Mahalanobis distance as scoring function. This
approach was further refined by Defard et al. [8] by apply-
ing it to image patches utilizing feature maps at different
semantic levels. However, these approaches are limited to
normal distributions which are inappropriate in many cases
as shown in Figure 2. In contrast, we do not assume any
predefined feature distribution, but learn the true distribu-
tion via maximum likelihood estimation (MLE). Assuming
that distances within the feature space are semantically ex-
pressive, the distance to the nearest neighbour is used as an
anomaly score in [27]. The only deep-learning-based image
feature density estimation method by Rudolph ef al. [31],
which is the most comparable to our work, is also based
on normalizing flows. However, they do not process full-
sized feature maps, but rather vectors after applying aver-
age pooling. As a result, important contextual and posi-
tional information is lost. The authors partially compensate

this weakness by passing 64 different rotations of each im-
age through the network, which, however, significantly in-
creases computational complexity. In contrast, our method
utilizes the fine-grained information of the full-sized feature
maps while requiring only a single pass and outperforms
DifferNet [31] in almost all experiments by a large margin.

2.1.3 Other Approaches

Besides generative and pretrained models, there are alter-
native approaches to perform anomaly detection. Lizner-
ski et al. [26] propose a learnable hypersphere classifier us-
ing exemplar outlier exposures as anomaly substitute. Con-
trastive learning on augmentations of the same image is
used by Tack et al. [37] by defining in-distribution and out-
of-distribution transformations. In contrast, Golan and El-
Yaniv [14] augment images to classify the specific trans-
formation, assuming that this does not work as clearly on
anomalies as it does on normal data.

2.2. Normalizing Flows

A normalizing flow (NF) [28] is a generative model that
transforms data into tractable distributions. Unlike conven-
tional neural networks, their mapping is bijective, which
allows them to train and evaluate in both directions [39].
The forward pass projects data into a latent space to calcu-
late exact likelihoods for the data given the predefined latent
distribution. Conversely, data sampled from the predefined
distribution can be mapped back into the original space to
generate data. Bijectivity and bidirectional execution are
ensured by using invertible affine transformations. There
are different types of normalizing flows, which differ in the
architecture of the affine transformations in order to effi-
ciently enable the forward or backward direction. The affine
blocks are realized either by learning fixed or autoregressive
transformations. A popular type of autoregressive flows is
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Figure 4. Architecture of the internal networks 7 inside the coupling blocks. Convolutions are performed at two levels, with cross-
connections between scales at the second level. Feature map resizing is implemented by upsampling and strided convolutions. Aggregation
is implemented by summation. The output is split across the channel dimension to obtain the scale and shift parameters.

MADE (Germain et al. [13]). The density calculation based
on the Bayesian chain rule is efficient in this case. How-
ever, sampling is costly. In contrast, inverse autoregressive
flows (Kingma et al. [20]) are usually efficient at sampling,
but not at computing likelihoods. Real-NVP [ 1], a vari-
ant of inverse autoregressive flows, simplifies both passes to
be efficient in both directions. We enhanced Real-NVP to
operate on multiple scales that can interact with each other.
This leverages NFs for defect detection by introducing fully
convolutional cross-scale flows, whose architecture is ex-
plained in detail in Section 3.1.

Normalizing flows are successfully used for anomaly de-
tection on non-image data [33, 35, 10]. With image data,
the problem arises that the network mainly focuses on local
pixel correlation without taking semantics into account. Re-
cent works [31, 22] found that semantic information is bet-
ter captured when working on image features instead of full
images. In contrast to [22], we use features from multiple
scales and refrain from the usage of fully connected layers
and squeeze layers’. In this way, our latent space preserves
the spatial arrangement and therefore enables precise defect
localization. Furthermore, we lower the number of param-
eters which enables us to process high dimensional feature
maps and train with few data samples.

3. Method

To detect defects in images, we first learn a statistical
model of features y € Y of defect-free images x € X sim-
ilar to DifferNet[31]. During inference, we assign a likeli-
hood to the input image x by using a density estimation on
image features y, assuming a low likelihood is an indicator
for a defect. The density estimation is learned via a bijec-
tive mapping of the unknown distribution py- of the feature
space Y to a latent space Z with a Gaussian distribution
pz. Thus, as shown in Figure 1, our method is divided into
the steps feature extraction X — Y and density estimation
Y - Z.

From the input image x we extract the features y by us-

2Squeeze layers reshape the tensor, e.g. by aggregating the channels of
4 neighboring pixels to one pixel with fourfold channel number.

ing a pretrained neural network fi.(x) = y which will re-
main unchanged during training. To have a more descrip-
tive representation of x, feature maps of different scales are
included in y via extracting features from s different reso-
lutions of the image. In contrast to [31], our proposed NF-
architecture is able to perform density estimation on differ-
ent scaled full-sized feature maps in parallel instead of on
concatenated feature vectors. Thus, important fine-grained
positional and contextual information is maintained. We de-
fine y = [y, ..., y*)] with ?) as the 3D feature tensor of
the image z(¥) at scale i € {1, ..., s}. Our proposed cross-
scale-flow f.s; transforms the feature tensors bijectively and
in parallel to

fest (@Y, oy =2V, 20 =2€2 (1)
with the same dimensionality® as 4. The likelihood pz(z)
is measured according to the target distribution which in our
case is a multivariate standard normal distribution A/(0, T).

We use the likelihood of pz(z) to decide whether x is
anomalous according to a threshold 6:

1 forpz(z) <0
0 else '

Alz) = 2)

3.1. Cross-Scale Flow

We extend the traditional normalizing flows with our
novel cross-scale flow to allow for effective defect detec-
tion on images. It processes feature maps of different sizes
which interact with each other. In this way, information be-
tween the scales is shared to obtain a likelihood for the com-
pound of y = [yV), ..., y(*)]. Moreover, we design it fully
convolutional and preserve the spatial dimensions. This al-
lows to determine the positions of the anomalies in Z as
shown in Section 3.3. An additional benefit of our approach
compared to [31] is a practicable handling of very high-
dimensional input spaces while having few training samples
as shown in Section 4.

3For better readability, in the following z without any index represents
a vector which is the concatenation of the flattened tensors [z(1>7 e z(s)].



The cross-scale flow is a chain of so-called coupling
blocks, each performing affine transformations. As basis for
the frame architecture of the coupling block we chose Real-
NVP [11]. The detailed structure of one block(v;/ith s=23is

shown in Figure 3. Inside, each input tensor y;,’ is first ran-

domly permuted and evenly split across its channel dimen-
sion into the two parts yi(:l?l and yl(fl)Q These parts manip-
ulate each other by regressing element-wise scale and shift

parameters which are successively applied to their respec-
tive counterparts to obtain the output [y((fu)m, y(lu)m]. The

[¢]
scale and shift parameters are estimated by coupling block-
individual subnetworks r; and ro whose output is split into

[s1,t1] and [sa, t2] and is then used as follows:

Yout,2 = Yin,2 O] en s1(¥in.1) + Y1 tl(yin,l)

onl ) ©)
Yout,1 = Yin,1 © €71 52Wout2) o 45 (Yout,2),

with ® as the element-wise product. To initialize the model
in a stable way, we introduce the learnable block-individual
scalar coefficients v; and 2. They are initialized to 0 and
thus cause Youy = ¥Yin. The affinity property is preserved
by having non-zero scaling coefficients with the exponen-
tiation in Equation 3. The internal networks r; and ro do
not need to be invertible and can be any differentiable func-
tion, which in our case is implemented as a fully convolu-
tional network that regresses both components by splitting
the output (see Figure 4 for details of the architecture). Fea-
tures are processed with one hidden layer per scale on which
the number of channels is increased. Motivated by HRNet
[36], we adjust the size of individual feature maps of dif-
ferent scales by bilinear upsampling or strided convolutions
before aggregation by summation.

We apply soft-clamping to the scale components s, as
proposed by Ardizzone et al. [3], to preserve model stability
in spite of the exponentiation. This clamping is applied as
the last layer to the outputs s; and sy by the activation

2« h
oo(h) = — arctan —. 4)
™ o
This prevents extreme scaling components by restricting the
values to the interval (—a, «v).

3.2. Learning Objective

During training, we want the cross-scale flow f.ss to
maximize the likelihoods of feature tensors py (y) which
we obtain by mapping them to the latent space Z where
we model a well-defined density pz. Using the change-of-
variables formula Eq. 5 and z = fxr(y), this likelihood is
defined by
det —

e ay
We optimize the log-likelihood, since it is equivalent and
more convenient for a density pz of a Gaussian distribution.

py(y) = pz(z) : (5)

Thus, we formulate our objective as the minimization of the
negative log-likelihood — log py (2):

0
log py (y) = logpz(z) + log |det 8;‘
112 oz ©
— _1 = 2 _1 — .
L(y) ogpy (y) 5 og’det 3y’

with ‘det g—;‘ denoting the absolute determinant of the Ja-

cobian. The logarithm of this term simplifies in our case to
the sum of all values of s since the Jacobian of the element-
wise product operator in Equation 3 is a diagonal matrix.
The training is conducted over a fixed number of epochs.
To stabilize it further, we limit the /5-norm of the gradients
to 1. Section 4.2 describes the training in more detail.

3.3. Localization

In previous work [3 1], the latent space of the normalizing
flow has only been used such that all entries of z are consid-
ered to produce a score at the image level. Since our method
processes feature maps fully-convolutional, positional in-
formation is preserved. This allows for the interpretation
of the output in terms of the likelihood of individual image
regions, which in our application is the localization of the
defect.

Analogous to the definition of the anomaly score of the
entire image, we define an anomaly score for each local po-
sition (i, 7) of the feature map y* by aggregating the values

. . . 2
along the channel dimension with Hzf . H2 Thus, we can lo-

calize the defect by marking image regions with high norm
in the output feature tensors z°.

4. Experiments
4.1. Datasets

We evaluate our method on a wide range of realistic de-
fect detection scenarios to demonstrate the advantage of our
contributions and the superiority over previous approaches.
For this purpose, we measure the performance on the chal-
lenging and diverse MVTec AD [5] and Magnetic Tile De-
fects (MTD) [ 18] datasets.

MVTec AD comprises 10 object and 5 texture classes
with overall 3629 defect-free training and 1725 testing im-
ages. Each class contains 60 to 320 high-resolution images
with a range from 700 x 700 to 1024 x 1024 pixels. The
test set includes defects of different sizes, shapes and types
such as cracks, scratches and displacements, with up to 8
different defect types per class and 70 defect types in total.
To the best of our knowledge, MVTec AD acts currently as
the only dataset with multi-object and multi-defect-data for
anomaly detection.

As a common choice, we also evaluate on the MTD
dataset, which includes gray-scale images of magnetic tiles



Category ARNet | Geom. | GAN | DSEBM | Mahal. | I-NN | DifferNet | PaDiM | CS-Flow (ours)
[12] [14] [ [41] [29] [27] (311 (81 (16 shots/full set)
Grid 88.3 61.9 70.8 71.7 93.7 81.8 84.0 - 933  99.0
. | Leather 86.2 84.1 84.2 41.6 100 100 97.1 - 100 100
g Tile 73.5 41.7 79.4 69.0 100 100 99.4 - 99.9 100
% | Carpet 70.6 43.7 69.9 41.3 99.6 98.5 92.9 - 100 100
& | Wood 92.3 61.1 83.4 95.2 99.3 95.8 99.8 - 99.5 100
Avg. Text. 82.2 59.6 71.5 63.8 98.5 96.1 94.6 99.0 98.5 99.8
Bottle 94.1 74.4 89.2 81.8 99.0 99.6 99.0 - 100 99.8
Capsule 68.1 67.0 73.2 59.4 96.3 89.4 86.9 - 83.1 971
Pill 78.6 63.0 74.3 80.6 91.4 79.9 88.8 - 909 98.6
Transistor 84.3 86.9 79.2 74.1 98.2 95.4 91.1 - 98.0 99.3
§ Zipper 87.6 82.0 74.5 58.4 98.8 97.1 95.1 - 953 99.7
= | Cable 83.2 78.3 75.7 68.5 99.1 95.1 95.9 - 9.4  99.1
O | Hazelnut 85.5 359 78.5 76.2 100 98.2 99.3 - 97.9 99.6
Metal Nut 66.7 81.3 70.0 67.9 97.4 91.1 96.1 - 99.1 99.1
Screw 100 50.0 74.6 99.9 94.5 91.4 96.3 - 652 97.6
Toothbrush 100 97.2 65.3 78.1 94.1 94.7 98.6 - 85.6 91.9
Avg. Obj. 84.8 71.6 75.5 74.5 96.9 93.2 94.7 97.2 91.0 98.2
Average 83.9 67.2 76.2 70.9 97.5 93.9 94.7 97.9 935 98.7

Table 1. Area under ROC in % for detecting defects of all categories of MVTec AD [5] on image-level grouped into textures and objects.
Best results are in bold. 16 shots denotes that a subset of only 16 random images per category was used in training. Beside the average
value, detailed results of PaDiM [&] were not provided by the authors.

Method AUROC [%] T
Geom. [14] 75.5
GANomaly [1] 76.6
DSEBM [41] 57.2
Mahalanobis [29] 98.0
1-NN [27] 97.8
DifferNet [31] 97.7
PaDiM [8] 98.7
CS-Flow (ours) 99.3

Table 2. Area under ROC in % for detecting anomalies on MTD.

with and without defects. The contained defects, e.g. breaks
and blowholes, can cause problems in engines due to an
unequal magnetic potential. It is notable that this dataset
shows a large variance within the defect-free examples due
to the differences in illumination and other non-defect char-
acteristics. Following [31], we use all 392 defect images
and one fifth of the 952 defect-free images for testing and
train on the remaining defect-free data.

4.2. Implementation Details

We utilize the output of layer 36 of EfficientNet-B5 [38]
as the feature extractor for all experiments as it provides
feature maps having a good balance between level of fea-
ture semantic and spatial resolution. The feature extrac-
tor remains fixed during training after being pretrained on
ImageNet [9]. For MVTec AD, we use features at s = 3
scales with input image sizes of 768 x 768, 384 x 384 and
192 x 192 pixels - resulting in feature maps with spatial di-
mensions 24 x 24, 12 x 12 and 6 x 6 and each 304 channels.
Due to the smaller original image size of MTD samples, we
resized the images to 384 x 384, 192 x 192 and 96 x 96
pixels. We use npjocks = 4 coupling blocks inside CS-Flow
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Figure 5. Distribution of negative log-likelihood for test images of
MTD as a normalized histogram. By this criterion, the defective
samples are almost completely separable from the non-defective
samples. Note that for clarity, the rightmost bar summarizes all
scores above 3.

using 3 x 3 convolutional kernels in internal networks for
the first 3 blocks and 5 x 5 kernels for the last block. The
clamping parameter is set to a = 3 and the negative slope
of the leaky ReLU is set to 0.1. For optimization, we use
Adam [19] with a learning rate of 2 - 10~%, a weight decay
of 10~° and momentum values $; = 0.5 and 85 = 0.9. We
train our models with a batch size of 16 for a fixed num-
ber of 240 epochs for MVTec AD and 60 epochs for MTD,
respectively, since there is no validation set to define a stop-
ping criterion. A training run of one class of MVTec AD
takes about 45 minutes on average using a NVIDIA RTX
2080 Ti.
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4.3. Detection

In order to measure and compare the defect detection
performance of our models, we follow [31] and calculate
the area under ROC (AUROC) at image-level on the re-
spective test sets. The ROC (Receiver Operating Char-
acteristics) curve relates the true positive rate to the false
positive rate with respect to a parameter (in our case the
threshold ). Thus, it is invariant to the ratio of anoma-
lies in the set and is therefore representative for realistic
settings. Table 1 shows the defect detection performance
of our method and other state-of-the-art works on the in-
dividual categories of MVTec AD. For a fair comparison,
we evaluated [27] and [29] on the same multi-scale fea-
tures as our method which improved their performance in
every case. Here, we averaged the feature maps of differ-
ent scales individually, resulting in a feature vector with
3-304 = 912 dimensions. Note that PaDiM [&] is originally
based on EfficientNet-B5 [38]. Since the results of [31]
dropped heavily with this backbone, we report the paper-
given results with AlexNet [23]. We outperform or match
the competitors on 12 of 15 categories with an average AU-
ROC of 98.7%, which considerably closes the gap to the op-
timum of 100% compared to competitors. CS-Flow works
reliably on a wide range of defects having an AUROC over
97% in 14 of 15 categories. Our method remains compet-
itive when training on only 16 samples per category, with
even showing roughly the same performance on the texture
categories.

We also set a new state of the art of 99.3% AUROC on
MTD as shown in Table 2. As shown in Figure 5, the like-
lihood assigned by our model clearly distinguishes the de-
fective from the non-defective parts, with only a few excep-
tions. Being just 0.7% AUROC close to an optimal ROC,
we want to emphasize that in this metric a margin of a few
percents compared to competitors is a relatively strong in-
crease in performance as visualized in Figure 6.

Method AUROC [%] 1
single scale NF (768 x 768) 97.8
single scale NF (384 x 384) 96.8
single scale NF (192 x 192) 96.1
separate multi-scale 98.2
concat multiscale 98.0
CS-Flow (ours) 98.7

Table 3. Ablation study on MVTec AD with varying strategies re-
garding the usage of scales.

Nplocks 1 2 3 4 5 6
AUROC [%] 1 | 946 | 97.8 | 985 | 98.7 | 98.7 | 98.6

Table 4. Ablation study on MVTec AD for a different number of
coupling blocks.

4.4. Localization

Although the objective of our approach is to detect de-
fects on image level, it can also be used to localize defec-
tive regions in images, due to its global and local feature
preserving nature. In this section we study the localization,
as described in Section 3.3. Our goal is to give a quick vi-
sual feedback to an operator. Figure 7 shows the visualiza-
tion of the highest scale outputs z(!). These were scaled up
with a bilinear interpolation after summing up the squared
values along the channel dimension. It can be seen that the
magnitude of the output values is directly related to the oc-
currence of anomalous regions at the respective position.
Therefore, our method localizes anomalies of various sizes
with respect to color, pattern and shape. Except for dilations
due to the convolutional receptive field, defective regions
are determined properly. We do not aim to provide pixel-
precise segmentations as the method is not optimized for it
and processes small-resolution feature maps. Nevertheless,
this visualization helps in the interpretation of the output in
practice to quickly find or assess the potential error. We re-
fer to the supplemental material for more detailed analysis
of the localization.

4.5. Ablation Studies

To quantify the influence of the individual design deci-
sions of our model, we report results obtained when varying
the hyperparameters of our method. Table 3 shows the re-
sults of these experiments. We measure the impact of the
multi-scale approach on the defect detection performance.
To this end, we train models on feature maps from one of
the three scales at a time (denoted as single scale NF). The
results confirm that the features of a single scale are weaker
with respect to the discriminability between defective and
non-defective samples. Furthermore, we set another base-
line by adding the log likelihoods provided by the networks
from every scale (denoted as separate multi-scale). The in-
crease in AUROC compared to the individual performance
for the single scale models demonstrates that the features
of different scales complement each other well to obtain a
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Figure 7. Defect localization of one defective example per category of MVTec AD and MTD. The rows each show the original image,
the localization and the overlay of both images, from top to bottom. The localization maps show the sum of squares along the channel

dimension of the networks output at the highest scale.

more robust score. Nevertheless, this method is 0.5% AU-
ROC below the performance of our joint training of the indi-
vidual scales with CS-Flow. To test our architecture against
a naive approach of joint training, we feed a single-scale NF
the concatenation of differently sized feature maps along
the channel dimension after upscaling each of them to the
highest feature map size with bilinear interpolation, com-
parable to [8]. This setup (denoted as concat mutiscale)
results in a performance drop of 0.7%, which justifies our
cross-convolutional multi-scale procedure.

In another experiment, we studied the influence of the
number of coupling blocks. The results in Table 4 show
that the performance improves with increasing number of
coupling blocks up to np;0cks = 4 and then saturates.

To test our model on a setting with more intra-class vari-
ance in the normal data, we additional experiment training
simultaneously with all 15 classes of MVTec AD as normal
data. The average detection AUROC is 98.2% which shows
that our model can handle multi-modal distributions.

5. Conclusion

We presented a semi-supervised method to effectively

detect and localize defects on feature tensors of different
scales using normalizing flows. We utilize the context
within and between multi-scale feature maps by integrat-
ing cross-convolution blocks inside the normalizing flow to
assign likelihoods and detect unlikely samples as defects.
This addresses weaknesses of previous methods that strug-
gle either due to restrictions of overly simplified data rep-
resentations or limited distribution models and enables our
method to set state-of-the-art performance on MVTec AD
and MTD. In the future, the concept could be refined for
video anomaly detection [40, 25].
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