
Higher Order Multiple Object Tracking for Crowded Scenes

Andrea Hornakova * † Timo Kaiser * ‡ Bodo Rosenhahn‡ Paul Swoboda†

Roberto Henschel‡

Abstract

The lifted disjoint paths formulation is a natural model
for multiple object tracking. This model is able to obtain
state-of-the-art results but is NP-hard. We present an effi-
cient approximate message passing solver for LDP and in-
tegrate it into a multiple object tracker, which scales to very
large instances that come from long and crowded scenes.
We achieve comparable or better performance than state-
of-the-art methods on MOT15/16/17 benchmarks and com-
parable results on the MOT20 benchmark. This has been
out of reach up to now for known LDP-solvers due to the
problem size and complexity of MOT20.

1. Introduction

In this work, we follow the tracking-by-detection
paradigm. We solve the data association part using re-
cently published Lifted Disjoint Paths (LDP) model [4],
which achieved significant improvement over state-of-the-
art trackers on MOT benchmarks MOT15/16/17.

LDP extends the standard disjoint paths (DP) problem, a
special case of the network flow problem, which is a natu-
ral model for multiple object tracking. DP can be solved in
polynomial time by minimum cost flow solvers. Unfortu-
nately, the integration of long range temporal interactions is
limited, since consistency is ensured only between directly
linked detections. Consequently, this model ignores higher
order consistencies among multiple linked detections.

To fix this, LDP generalizes DP by adding connectivity
priors in terms of lifted edges. Lifted edges enable arbitrary
pairs of detections to contribute to the objective value when-
ever they are connected via a trajectory. This model leads
to more consistent trajectories than DP. However, the better
expressiveness of LDP comes with the cost of making the
problem NP-hard.

Consequently, the tracker based on an optimal LDP

*Equal contribution
†Computer Vision and Machine Learning, Max Planck Institute for In-

formatics, Saarbrücken, Saarland, Germany.
‡Institut for Image Processing, Leibniz University Hanover, Hannover,

Niedersachsen, Germany.

solver presented in [4] is not scalable to the new challenging
dataset MOT20, which contains much more crowded and
longer sequences. We present an approximate LDP solver
and lightweight tracking framework, which achieves on par
performance with the tracker from [4] on MOT15/16/17.
Most importantly, our method extends the applicability of
LDP, solving MOT20 [3] with comparable results to state-
of-the-art.

2. Method
Following the LDP [4] formulation, the MOT problem

is modelled by two directed acyclic graphs, a flow net-
work (base graph) G = (V,E) with start and terminal
nodes s, t ∈ V and lifted graph G′ = (V ′, E′) where
V ′ = V \ {s, t}. Trajectories are modelled by vertex-
disjoint paths in graph G.

Each edge is assigned a cost reflecting the probability
that its endpoints belong to the same trajectory. We denote
the corresponding cost functions by c ∈ RE for the base
graph and c′ ∈ RE′

for the lifted graph.
The goal is to find a 0/1-labeling of all edges that mini-

mizes the objective function in (2). Variables y ∈ {0, 1}E
have value 1 if flow passes through the respective edges.
Feasible y must define node-disjoint flow in graph G. Vari-
ables on the lifted edges E′ are denoted by y′ ∈ {0, 1}E′

.
y′vw = 1 signifies that nodes v and w are connected via the
flow y in G. Formally,

y′vw = 1⇔ ∃P ∈ vw-paths(G) s.t. ∀ij ∈ PE : yij = 1 .
(1)

Here, PE denotes the edges of path P . Given all the above
ingredients, the lifted disjoint paths problem is

min
y∈{0,1}E ,y′∈{0,1}E

′
〈c, y〉+ 〈c′, y′〉

s.t. y node-disjoint s, t-flow in G,
y, y′ feasible according to (1)

.

(2)
Using the LDP formulation, our proposed method con-

sists of (i) defining lightweight pairwise-costs, (ii) pruning
the graphs without losing important information and (iii)
solving the LDP problem with the approximate LDP solver
proposed in this work. The overall framework is shown in
Figure 1.

1



Input 

Detections

Output 

Trajectories

Obtain Costs Create Sparse Graphs

𝑡1 𝑡2 𝑡3 𝑡4 𝑡1 𝑡2 𝑡3 𝑡4

Solve LDP

MLP

Pairwise Cost

Spatial Similarity

Appearance Similarity

× Global Context

Normalization

ApLift

Figure 1. Overview of the ApLift framework. Input detections are used to obtain pairwise costs by an MLP with spatial and appearance
features. Based on the costs, two sparse graphs are constructed and passed to our proposed approximate LDP solver. Dashed arrows
represent lifted edges and solid arrows base edges. In figure Solve LDP equally colored nodes and edges belong to the same trajectory.

2.1. Pairwise Costs

Pairwise costs are obtained by an efficient multi layer
perceptron (MLP). We decompose the temporal distances
up to 2 seconds into 20 intervals and train an MLP for each,
to incorporate temporal dependencies.

The MLP input is composed of a spatial and an ap-
pearance similarity feature and multiple normalization fea-
tures. The appearance feature sij,App is derived from a re-
identification network [8] by measuring similarity between
detections in the embedding space, and then projecting it to
a non-negative value so that the subsequent normalization
is applicable. The spatial feature sij,Spa reflects height and
width similarity of two detections bi and bj . A translation
is performed such that bi and bj have the same box center
position. Then, the intersection over union between bi and
bj is computed. To incorporate global context, we append
several normalized versions of the two features (w.r.t. to all
other edges) to the edge feature vector, similarly as in [4].
Both features sij,∗ of edge ij undergo a five-way normal-
ization. In each case, the maximum feature value from a set
of edges is selected as the normalization value. The first set
contains all edges going from node i to the frame of node
j. The second set contains all edges starting in i. The third
set contains edges between all detections within a certain
interval of video frames that comprise i and j. The fourth
set contains all edges ending in j from the time frame of i.
The fifth set contains all edges going to j. The normaliza-
tion is done by dividing the two features sij,∗ by each of
their five normalization values. This yields 10 feature val-
ues. Another set of 10 feature values for edge ij is obtained
by dividing s2ij,∗ by each of the five normalization values.
This yields another 10 feature values. Together with the
two unnormalized features sij,∗, we obtain feature vectors
of length 22 for each edge. These 22 features are passed as

input to the MLP, which consists of a fully connected layer
containing 22 neurons, followed by a rectified linear activa-
tion function and a final fully connected layer with a single
neuron. The output is the cost value.

The network is iteratively trained with sampled edges
using a weighted focal loss and the Adam optimizer. The
lightweight topology of the classifier needs only short train-
ing time and enables the training directly on a CPU.

2.2. Graph Definition

All nodes of the base graph G = (V,E) are connected
to start and terminal s and t with edge costs set to zero. We
create base and lifted edges between nodes up to temporal
distance 2 seconds. We obtain costs c and c′ by the classifier
described in Section 2.1. Edges with negative costs connect
detections that probably belong to the same trajectory, while
edges with positive costs connect those that do not.

To tackle decreasing prediction accuracy for edges with
longer temporal distances, we add a weight decay on the
cost values. Additionally, we use simple heuristics based
on optical flow and spatial distance to determine obvi-
ously matching or not matching detection pairs. We set
them to high positive resp. negative values to induce soft-
constraints.

The initial costs for lifted and base edges are obtained
from the same method. We further decide which detec-
tions should be connected by a base and/or a lifted edge
and change some cost values as described below. For the
base graph, we just keep the 3 nearest neighbours of each
vertex in terms of lowest costs from every subsequent time
frame. For time distances greater than 6 frames we keep
only edges with cost lower than 3. To avoid double count-
ing of costs, all base edge costs are finally set to zero if the
detections are more than one time frame apart. Costs of
these connections are assigned to overlapping lifted edges.

2



For the lifted graph, we remove all edges with costs close to
zero unless they overlap with some base edge. The reason
is that these lifted edges are not discriminative. This sparsi-
fication reduces the complexity dramatically without losing
expressiveness.

2.3. Lagrange Decomposition

We solve Problem (2) in a Lagrange decomposition
framework. That is, we propose a decomposition of the
overall LDP problem into smaller but tractable subprob-
lems. We use a simplified version of the framework de-
veloped in [7]. This decomposition is a dual task to an LP-
relaxation of the LDP problem (2). So, it provides a lower
bound that is iteratively increased by message passing (cost
reparametrization). The dual costs from the subproblems
are also used in our heuristic for obtaining primal solutions.

Lagrange decomposition. We have an optimization
problem minx∈X 〈c, x〉 where X ⊆ {0, 1}n is a feasible
set and c ∈ Rn is the objective vector. Its Lagrange de-
composition is given by a set of subproblems S with as-
sociated feasible sets X s ⊆ {0, 1}ds . Each coordinate i
of X s corresponds to one coordinate of X via an injec-
tion πs : [ds] → [n] alternatively represented by a matrix
As ∈ {0, 1}ds,n where (As)ij = 1 ⇔ πs(i) = j. For
each pair of subproblems s, s′ ∈ S that contain a pair of co-
ordinates i, j such that πs(i) = πs′(j), we have coupling
constraint xsi = xs

′

j for each xs ∈ X s, xs
′ ∈ X s′ .

We require that every feasible solution x ∈ X is feasible
in the subproblems, i.e. ∀x ∈ X ,∀s ∈ S : Asx ∈ X s.

For every subproblem an objective is given by θs ∈ Rds .
We require that the objectives of subproblems are equivalent
to the original objective, i.e. 〈c, x〉 =

∑
s∈S〈θs, Asx〉 ∀x ∈

X . The lower bound of the Lagrange decomposition given
the costs θs for each s ∈ S is∑

s∈S
min
xs∈X s

〈θs, xs〉 . (3)

A sequence of operations of the form θsi += γ, θs
′

j −= γ

for coupling constraint xsi = xs
′

j and γ ∈ R is called
a reparametrization. Instead of optimizing the primal prob-
lem (2), we will optimize its dual problem, i.e. the lower
bound (3) w.r.t. a decomposition described below.

Optimization. Any feasible primal solution is invariant
under reparametrizations but the dual lower bound (3) is
not. We apply a sequence of reparametrization updates that
are monotonically non-decreasing in the lower bound. For
that purpose, updates are realised via min marginals. That
is, θsi += ωms

i, θ
s′

j −= ωms
i, where ω ∈ [0, 1] is a damp-

ing factor and

ms
i = min

xs∈X s:xs
i=1
〈θs, xs〉 − min

xs∈X s:xs
i=0
〈θs, xs〉 . (4)

So, the key components of the method are efficient compu-
tations of (i) optima of each subproblem for obtaining (3)
and (ii) constrained optima for obtaining (4).

Inflow and outflow subproblems contain all incoming
resp. all outgoing edges of a node v. We use them for each
node v ∈ V . A feasible solution of an outflow subproblem
of v either assignes value zero to all variables or it can be
represented by a path P = (v0 = v, . . . , vn = t) in G such
that (i) yvw = 1 ⇔ w = v1 and (ii) y′vw′ = 1 ⇔ w′ ∈ P .
Analogically for the inflow.

Path subproblems. The subproblem contains a lifted
edge vw and a path P from v to w consisting of both base
and lifted edges. They reflect that (i) lifted edge vw must
be labelled 1 if there exists an active path between v and
w, and (ii) there cannot be exactly one inactive lifted edge
within path P if the vw is active. The reason is that the in-
active lifted edge divides P into two segments that must be
disconnected. This is contradicting to activating lifted edge
vw because it indicates connection of v and w.

Cut subproblems reflect that a lifted edge uv must be
labelled 0 if there exists a cut in the base graph that separate
u and v where all its edges all labelled 0. A cut subproblem
consists of a lifted edge uv and a uv-cut C = {ij ∈ E|i ∈
A, j ∈ B} where A,B ⊂ V with A ∩B = ∅.

Primal solutions are obtained by solving a minimum cost
flow problem. Here, cost of each base edge vw ∈ E is
obtained from the inflow subproblem of w and the outflow
subproblem of v using their minima where edge vw is active

cvw = min
x∈X i(w):xvw=1

〈θi(w), x〉+ min
x∈Xo(v):xvw=1

〈θo(v), x〉 .

The obtained solutions are further improved by a local
search heuristic.

3. Experiments
We evaluate our method on four standard MOT bench-

marks. The MOT15/16/17 benchmarks [5, 6] are composed
of semi-crowded videos sequences filmed from a static or
moving camera. MOT20 [3] comprises crowded scenes
with considerably higher number of frames and detections
per frame, see Table 1.

Consequently, MOT20 is more challenging, as crowded
scenes frequently lead to full or partial occlusions which
disturb detectors and diminish the significance of appear-
ance features for re-identification. Incorporating higher or-
der information into the graph model is therefore crucial to
tackle this problem. The number of edges grows quadrati-
cally with the number of detections per frame.

3



Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓ Frames Density
M

O
T

20 ApLift (ours) 58.9 56.5 41.3 21.3 17739 192736 2241 2112
1119.8 170.9MPNTrack [2] 57.6 59.1 38.2 22.5 16953 201384 1210 1420

Tracktor++v2 [1] 52.6 52.7 29.4 26.7 6930 236680 1648 4374

M
O

T
17 CTTrackPub [9] 61.5 59.6 26.4 31.9 14076 200672 2583 4965

845.6 31.8ApLift (ours) 60.5 65.6 33.9 30.9 30609 190670 1709 2672
Lif T [4] 60.5 65.6 27.0 33.6 14966 206619 1189 3476

M
O

T
16 ApLift (ours) 61.7 66.1 34.3 31.2 9168 60180 495 802

845.6 30.8Lif T [4] 61.3 64.7 27.0 34.0 4844 65401 389 1034
MPNTrack [2] 58.6 61.7 27.3 34.0 4949 70252 354 684

M
O

T
15 Lif T [4] 52.5 60.0 33.8 25.8 6837 21610 730 1047

525.7 10.8MPNTrack [2] 51.5 58.6 31.2 25.9 7260 21780 375 872
ApLift (ours) 51.1 59.0 39.4 22.6 10070 19288 677 1022

Table 1. Comparison of ApLift with the best performing solvers w.r.t. MOT metrics on the MOT challenge. ↑ higher is better, ↓ lower is
better. Rightmost columns: average number of frames per sequence and the average number of bounding boxes per frame for given dataset.

n Measure Lift [4] Our6 Our11 Our31 Our51

50
IDF1 80.6 83.3 83.3 81.5 81.5
time [s] 272 2 4 16 35

100
IDF1 80.4 82.5 82.5 81.6 81.6
time [s] 484 14 24 97 218

150
IDF1 78.1 81.0 81.0 79.8 79.8
time [s] 1058 25 46 192 431

200
IDF1 73.2 75.4 75.4 74.6 74.6
time [s] 2807 36 66 277 616

Table 2. Runtime and IDF1 comparison between our solver with
6, 11, 31 and 51 iterations against globally optimal Lif T[4] solver
on first n frames of sequence MOT20-01 from MOT20.

We train our tracker with the training data provided by
the respective benchmarks. During inference, the provided
public detections are used. For fair comparison to state-of-
the-art, we filter and refine the detections as in [4] before
applying our method. To reduce memory consumption and
runtime, we divide the sequences of MOT20 into intervals.
First, we solve the problem on non-overlapping adjacent in-
tervals and fix the trajectories in interval centers. Second,
we solve the problem on a new set of intervals where each
of them covers unassigned detections in two initial neigh-
boring intervals and enables connections to the fixed trajec-
tory fragments. This way, the solver has sufficient context
for making each decision.

Finally, we use simple heuristics to split trajectories that
represent implausible motions and we recover missing de-
tections within a trajectory using linear interpolation.

Table 1 compares our tracker with the top peer-reviewed
methods w.r.t. MOTA, including a method using an op-
timal LDP solver [4]. We achieve similar results on
MOT15/16/17 as [4] and comparable results on MOT20 to
current state-of-the-art [2].

Further experiments comparing runtime and IDF1 of the
optimal LDP-based solver [4] are given in Table 2. We see
that our approximative solver outperforms [4] w.r.t. track-

ing metrics after few iterations. Counter-intuitively, as we
progress towards increasingly better optimization objective
values, the tracking metrics can slightly decrease due to im-
perfect edge costs.

4. Conclusion
This work extends the applicability of the LDP model to

massive sequences as MOT20 using efficiently computable
edge costs, an approximate solver and a subdivision of the
data providing sufficient context for each decision, resulting
in state-of-the-art performance.

References
[1] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixé.

Tracking without bells and whistles. In CVPR, 2019. 4
[2] Guillem Brasó and Laura Leal-Taixé. Learning a neural solver

for multiple object tracking. In CVPR, 2020. 4
[3] Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen

Shi, Daniel Cremers, Ian Reid, Stephan Roth, Kon-
rad Schindler, and Laura Leal-Taixé. Mot20: A
benchmark for multi object tracking in crowded scenes.
arXiv:2003.09003[cs], Mar. 2020. 1, 3

[4] Andrea Hornakova, Roberto Henschel, Bodo Rosenhahn, and
Paul Swoboda. Lifted disjoint paths with application in mul-
tiple object tracking. In ICML, July 2020. 1, 2, 4

[5] Laura Leal-Taixé, Anton Milan, Ian Reid, Stephan Roth, and
Konrad Schindler. MOTChallenge 2015: Towards a bench-
mark for multi-target tracking. arXiv:1504.01942 [cs], Apr.
2015. 3

[6] Anton Milan, Laura Leal-Taixé, Ian Reid, Stephan Roth, and
Konrad Schindler. MOT16: A benchmark for multi-object
tracking. arXiv:1603.00831 [cs], Mar. 2016. 3

[7] Paul Swoboda, Jan Kuske, and Bogdan Savchynskyy. A dual
ascent framework for lagrangean decomposition of combina-
torial problems. In CVPR, July 2017. 3

[8] Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng,
Yi Yang, and Jan Kautz. Joint discriminative and generative
learning for person re-identification. In CVPR, 2019. 2

[9] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Track-
ing objects as points. In ECCV. Springer, 2020. 4

4


