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Abstract—Automatic speech command recognition systems
have become a common technology of the day to day life for many
people. Smart devices usually offer some ability to understand
more or less complex spoken commands. Many such speech
recognition systems use some form of signal transformation as
one of the first steps of the processing chain to obtain a time-
frequency representation.

A common approach is the transformation of the audio wave-
forms into spectrograms with subsequent computation of the mel-
spectrograms or mel-frequency cepstral coefficients. However,
superior time-frequency distributions (TFDs) have been proposed
in the past to improve on the spectrogram.

This work investigates the usefulness of various TFDs for use
in automatic speech recognition algorithms using convolutional
neural networks. On the Google Speech Command Dataset V1,
the best single TFD was found to be the spectrogram with
a window size of 1024 achieving a mean accuracy of 93.1%.
However, a mean accuracy of 95.56% was achieved through TFD
mixing. Mixing of the TFDs thereby increased the mean accuracy
by up to 2.46% with respect to the individual TFDs.

Index Terms—time-frequency distribution, automatic speech
recognition, s-transform, wigner-ville distribution, convolutional
neural networks

I. INTRODUCTION

Automatic speech recognition deals with the problem of
extracting text representations and meaning from recorded
waveforms of human speech [1], [2]. For a long time, hid-
den markov models together with gaussian mixture models
represented the state-of-the-art [2], [3], however, with the
rise of machine learning during the past decade hybrid sys-
tems combining HMM with deep neural networks achieved
better performance [2]. Recent research focused on end-to-
end automatic speech recognition systems, where an input
audio waveform is directly mapped to some text representation
through the use of deep neural networks [4].

This work is concerned with the time-frequency represen-
tation of audio waveforms which forms the first step in many
speech command recognition and audio classification systems
[5]–[7]. Only information contained in this representation can
be used by subsequent signal processing.

The commonly used spectrogram, while easy to use and
computationally inexpensive, has the downside of requiring to

decide for a trade-off between time- and frequency resolution
[8], implemented through the window- and overlap-choice
of the underlying short-time fourier transform. Moreover, no
matter the window, the spectrogram never yields an exact
representation of certain important signal properties like in-
stantanous frequency or group delay [9].

In this sense, time-frequency distributions (TFDs) like the
Wigner-Ville distribution (WVD) are superior to the spectro-
gram. While the WVD does not require the selection of a
window, it also for example correctly yields the instantanous
frequency and group delay [9]. The WVD is regarded as a
TFD with generally optimal time-frequency resolution [10],
at least within Cohen’s class of TFDs.

However, despite these desirable properties, the WVD has
not claimed the position of the spectrogram in the field of
signal analysis due to two main reasons: the acausality and
the occurence of so called cross-terms which generally arise
in multicomponent signals [9], [10].

While the cross-terms might be detrimental to the interpre-
tation by humans, it is not obvious that they have a per se
negative impact on machine learning algorithms [11], which
might be able to extract information or detect patterns where
a human cannot. The WVD and its derivates have been used
succesfully in numerous publications [12]–[14].

In this work, the spectrogram, the Wigner-Ville Distribu-
tion, the Pseudo Wigner-Distribution, the Filtered Wigner-
Distribution as well as the Stockwell Transform are being
investigated for audio classification.

While other authors have investigated the benefit of TFDs
other than the spectrogram for audio classification [15], these
are mostly limited to wavelet or gabor transform or related
TFDs. The ”classical” TFDs related to the WVD have been
mostly neglected for audio classification. Aside from [13],
there appears to be no publication dedicated to audio clas-
sification based on the WVD using machine learning.

Aside from investigating Cohen’s class TFDs for audio clas-
sification, the major idea of this work is the mixing of TFDs.
The intuitive idea why this could be beneficial is that each
TFDs should provide a different view of a processed signal



and thus could deliver novel information to a classification
algorithm.

This idea for audio classification, also called feature stack-
ing or feature mixing, was recently also suggested in other
work [15]–[18]. However, these authors did not investigate Co-
hen’s class TFDs. Furthermore, they do not provide an indepth
analysis of the benefits like our work, where we investigate
the usefulness in three different approaches, individually, in a
post-mix and in a pre-mix. Finally, we performed a thorough
investigation of hyperparameters to guarantee the superiority
of distribution mixing.

In Section II the TFDs investigated in this work are briefly
explained. In Section III the applied speech command recogni-
tion approaches are presented. In Section IV the performance
of the individual TFDs and the mixing approaches are pre-
sented. Finally, the results are discussed in Section V and the
paper concludes in Section VI.

II. TIME-FREQUENCY DISTRIBUTIONS

In this section the time-frequency distributions used in this
work are discussed. All integrals are improper integrals from
−∞ to ∞. s(t) denotes a given signal.

The spectrogram Ph(t,Ω) is defined as [9]

Ph(t,Ω) = |Sh(t,Ω)|2 = | 1√
2π

∫
e−jΩτs(τ)h(t− τ)dτ |2,

(1)
where Sh(t,Ω) is the short-time fourier transform (STFT)
with window (function) h(t). Ω is the circular-frequency.
The dependency on h(t) was made explicit to highlight
the spectrogram technically being a class of time-frequency
distributions. The window function determines the time and
frequency resolution of the spectrogram. The Wigner-Ville
distribution W (t,Ω) is defined [9] as

W (t,Ω) =
1

2π

∫
s(t− 1

2
τ)s(t− 1

2
τ)e−jτΩdτ, (2)

where s(t) denotes the complex-conjugate of s(t). While
W (t,Ω) satisfies many desireable properties [10], the exis-
tence of cross-terms due to its nonlinearity usually is consid-
ered a large drawback. Closely related is the Pseudo Wigner-
Ville distribution WPS(t,Ω), which is defined as

WPS(t,Ω) =

∫
h(τ)s(t− 1

2
τ)s(t− 1

2
τ)e−jτΩdτ, (3)

where the window function h(t) was introduced with the aim
of surpressing the detrimental cross-terms of the Wigner-Ville
distribution.

Many distributions including all of this work except for
the Stockwell transform, are special cases of Cohen’s class
of TFDs [9], which is given by

1

4π2

∫
e−j−jτΩ+jθuφ(θ, τ)s(u− 1

2
τ)s(u− 1

2
τ)dudτdφ, (4)

Fig. 1: Depiction of the signal processing applied to obtain
the mel-frequency cepstral coefficients (MFCC). The audio
waveforms were first transformed using a time-frequency
distribution and then by applying first a mel-transform and
then a logarithm followed by a discrete cosine transform
yielding the mel-frequency cepstral coefficients.

where the kernel φ(θ, τ) determines the precise TFD. Setting
e.g. φ(θ, τ) = 1 yields the Wigner-Ville distribution. Kernels
for several TFDs can be found in [9].

The Stockwell- or S-transform ST (t, f) is not a representant
of Cohen’s class and is defined [19] as

ST (t, f) =

∫
s(τ)

|f |√
2π
e

−(τ−t)2f2
2 e−j2πfτdτ. (5)

It is related to the wavelet transform and can also be shown
to be a special case of the short-time fourier transform.

These TFDs were implemented using several commonly
available toolboxes for Python and Matlab, e.g. [20]. The
filtered Wigner-Ville distribution, implemented in [20], is
obtained by multiplying the Wigner-Ville distribution with the
STFT, thereby removing some of the cross-terms.

A. Application of the Time-Frequency Distributions

The general signal flow from the input waveform to the
Mel-Frequency Cepstrum Coefficients (MFCC) is depicted in
Figure 1. The audio waveforms were first transformed into
the time-frequency domain by the respective TFD. Then, by
applying the mel–transform and librosa’s MFCC algorithm,
60 MFCC per frame were obtained. These MFCCs were then
used as the input to the convolutional neural networks (CNNs).
Except for the spectrogram, all TFDs were scaled down from
a dimension of 22, 050× 22, 050 to a dimension of 220× 220
to reduce the computational load and required ressources to a
managable level.

III. AUDIO CLASSIFICATION MODEL

We investigated three different classification approaches:
i) A baseline approach, where individual classifiers were
trained separately using only one of the TFDs. This served
as reference for the two mixing approaches.

ii) A so called ”post-mix”, where the baseline classifiers
were combined or mixed by a subsequent neural network to
yield a final classification. A sufficiently large neural network
should never achieve a lower accuracy than the best baseline
classifier.

iii) A so called ”pre-mix”, where a CNN was provided
a mix of the TFDs at once. The MFCCs derived from the
respective TFDs each were filtered by separate, independent
convolutional layers. The output of these convolutional layers



were then combined in subsequent dense layers such that the
CNN should be able to learn optimal convolution kernels.

The main difference of the pre-mix to the post-mix was
that, during the training the CNN classifier should be able
to learn optimal feature extraction convolutional kernels for
one TFD with respect to all other TFDs. Two approaches for
the pre-mix were tested: random initialization and baseline
initialization. In the baseline initialization the post-training
weights of the respective baseline CNNs were used to initialize
the convolutional layers. Because the baseline initizalization
performed consistently better, improving the accuracy by about
0.5%, only the baseline initialization is presented. All three
approaches are depicted in Fig. 2. The structure of the pre-
mix CNN is shown in Fig. 3. The number of convolution
kernels and convolution kernel sizes were varied to guarantee
optimal settings to avoid suboptimal hyperparameters. Up to
four convolutional layers were tested and the number of filters
per layer was swept between eight to 64 using powers of two.
The filter dimension was varied between three and seven.

Because of the large number of TFDs, hyperparameter
settings and classification approaches, we conciously selected
a simple CNN structure with around 300k parameters to allow
for faster training.

A. Training

The CNNs were trained using Monte Carlo cross validation
using the adam optimizer with a learning rate of 0.001, 30
epochs, a batchsize of 128 and the categorical crossentropy
loss. A 80% / 20% training/validation split of the entire dataset
was used. It was confirmed by samply survey of the loss curves
that the CNNs had converged after 30 epochs.

For the Monte Carlo cross validation, five repetitions for the
baseline and ten for the post- and pre-mix were used.

B. Dataset

The Google Speech Command Dataset V1 [21] was used
in all experiments. It consists of 30 single word commands
like ”yes”, ”on” or ”stop”, each with a duration of exactly
one second and a total of 65,000 samples. While most other
work uses the V2 version [21], due to the large number of
TFDs evaluated in this work, a thorough investigation was
considered too time consuming on the considerably larger V2
version.

IV. RESULTS

All reported results were achieved on the validation data.
The average accuracies across five repetitions of the baseline
classifiers are given in Table I. Shown are only the results for
three convolutional layers as CNNs with two and four layers
consistently achieved lower accuracies. The best configuration
is shown in bold font. The spectrograms (SG) were computed
with a hann-window, 50 % overlap and window sizes, denoted
as indices, between 256 and 4096, where a window size of
1024 proved to be optimal. The 95 % confidence interval
of the SG1024 was 93.1% ± 0.29 %. Except for SG256,
the spectrogram always outperformed all other TFDs of the

baseline approach. The 95 % confidence intervals of the ac-
curacies across ten repetitions of selected pre-mix and post-
mix classifiers are given in Table II. The post-mix consistently
achieved higher accuracies by about 0.2 % − 1.5 % than the
pre-mix with very few exceptions.

Mixing spectrograms with window sizes of 512, 1024 and
2048 yielded a post-mix mean accuracy of 95.1 %. Adding all
other TFDs except for the Pseudo Wigner-Distribution allowed
to achieve the highest accuracy of all combinations with a post-
mix mean accuracy of 95.56 %. Several combinations achieved
very similar mean accuracies, both in the pre-mix and the post-
mix. A Wilcoxon sign-rank test found no significant difference
(p > 0.05) between the top five post-mixes as given in Table
II, however, a significant difference (p < 0.02) was found
between e.g. post-mixing the three spectrograms and the best
post-mix listed in Table II. The pre-mix achieved its highest
mean accuracy of 94.46 % (not shown in Tab II) when all
TFDs except for the filtered Wigner-Ville distribution (n = 512)
and the Pseudo Wigner-Ville distribution were used. However,
the difference in accuracy of the pre-mix when using the best
TFD mix of the post-mix was found to be not significant
(p > 0.05). While for the best performing post- and pre-
mixes the accuracy increase due to mixing the TFDs was
always below 2.5 %, for the Wigner-Ville distribution and the
Pseudo Wigner-Ville distribution a considerably increase by
about 6 %− 8 % was observed, both in the post- and pre-mix.
This seemed to be a general trend, where TFDs with poorly
performing baseline classifiers benefited the most from mixing
the TFDs.

V. DISCUSSION

This work investigated the benefits of mixing several time-
frequency distributions for audio classification on the Google
Speech Command Dataset. The aim was to investigate the ben-
efits of improved signal representation for audio classification
instead of more sophisticated neural network structures. The
aim was not to achieve the absolute best accuracy, but rather
to investigate by how much the accuracy achieved of a given
classifier can be raised using other TFDs than the spectrogram,
or by mixing of TFDs.

As expected, mixing several TFDs proved to be beneficial
and superior to any single TFD, with a maximum improvement
of 2.85 % of the post-mix compared to the best baseline
when using all TFDs except for the Pseudo Wigner-Ville
distribution. However, this mix is not special in the sense
that several TFD mixes achieved accuracies without significant
difference. The pre-mix achieved its maximum accuracy with
a slightly different TFD mix, however the difference to the
best post-mix TFDs is not significant. Therefore one can
conclude that generally the pre-mix and post-mix achieve
their best performance with the same mixes of TFDs. Mixing
three spectrograms with different window sizes yielded a
considerable improvement, both in the pre-mix and the post-
mix. The reason has to be the higher and lower frequency
resolution and lower and higher time resolution. Different
window functions could potentially improve the spectrograms
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Fig. 2: Sketch of the three tested approaches to implementing the different time-frequency distributions (TFDs). In (a) separate
audio classifiers are trained independently using only one of the TFDs yielding independent classifications Ci. This approach
was supposed to investigate the individual performance serving as baseline. (b) is a straight-forward stacked classifier approach,
where the individual audio classifiers are individually trained, and in a second step another neural network is trained to find
an optimal mix of the individual classifications Ci, resulting in the final classification Ctotal. In approach (c), the TFDs are
fed to the same audio classifier allowing to learn an optimal feature extraction based on all of the TFDs.

Fig. 3: Example structure of the convolutional neural network (CNN) as used in the pre-mix. The number of filter kernels etc. in
the figure are exemplary only. The optimal choice depended on the respective time-frequency distribution. The pre-mix CNNs
consisted of separate convolutional layers for the mel-frequency cepstrum coefficients (MFCC) derived from the respective
time-frequency distributions. It proved to be beneficial to use the weights obtained from the baseline models for initializing
the weights of the convolutional layers. The features extracted by the convolutional layers were then concatenated and fully
connected layers yielded the classification of the overall pre-mix model.

TABLE I: Selection of baseline mean accuracies of all investigated time-frequency distributions as achieved using convolutional
neural networks (CNN) with the specified convolution kernels. While two and four convolutional layers were also tested, the
best performance was achieved using three layers only. Shown are the results for the spectrogram (SG) where the indices
denote the window size, the filtered Wigner-Ville Distribution (WVDF), the Wigner-Ville Distribution (WVD), the Pseudo
Wigner-Ville Distribution (PWVD) and the Stockwell-Transform.

Convolutional Kernels ([number, dimension])/ Time-Frequency Distribution SG256 SG512 SG1024 SG2048 SG4096 Stockwell WVDF256 WVDF512 WVDF1024 WVDF2048 WVDF4096 WVD PWVD
[16, 3], [32, 7], [32, 7] 89.14 91.92 92.99 92.79 91.85 85.28 90.28 90.74 89.38 88.07 85.02 75.61 73.22
[16, 5], [32, 7], [32, 7] 89.53 92.12 93.03 92.83 91.99 86.57 90.95 91.18 89.84 88.85 85.77 76.42 74.7
[32, 3], [32, 7], [32, 7] 88.73 91.91 93.1 92.97 91.99 84.63 90.04 90.72 89.88 88.85 85.47 75.38 73.89
[32, 5], [32, 7], [32, 7] 89.48 92.17 92.97 93.05 91.97 86.43 90.89 90.8 90.13 88.43 85.36 76.42 74.93



TABLE II: A selection of accuracies of the mixed time-frequency distributions. Both, pre- and post-mix accuracies are given.
Specified are the 95 % confidence intervals (assuming a gaussian distribution) of the accuracies across ten repetitions.

Time-Frequency Distribution Mix
Spectrogram (n = 1024) x x x x x x
Spectrogram (n = 2048) x x x x x x x
Spectrogram (n = 512) x x x x x

Stockwell x x x x x x x
Wigner-Ville Distribution x x x x

Wigner-Ville Filtered (n = 1024) x x x x x x
Wigner-Ville Filtered (n = 256) x x x x x x x
Wigner-Ville Filtered (n = 512) x x x x x x x

Pseudo Wigner-Ville x
Accuracy (Pre-Mix) [%] 94.4± 0.36 94.21± 0.27 94.29± 0.19 94.15± 0.25 93.96± 0.36 94.15± 0.26 94.29± 0.15
Accuracy (Post-Mix) [%] 95.56± 0.04 95.55± 0.04 95.55± 0.07 95.52± 0.05 95.51± 0.05 95.25± 0.06 95.48± 0.04

Time-Frequency Distribution Mix
Spectrogram (n = 1024) x x x
Spectrogram (n = 2048) x x x
Spectrogram (n = 512) x x x

Stockwell x x
Wigner-Ville Distribution x x

Wigner-Ville Filtered (n = 1024)
Wigner-Ville Filtered (n = 256) x
Wigner-Ville Filtered (n = 512)

Pseudo Wigner-Ville x x x
Accuracy (Pre-Mix) [%] 94.18± 0.21 93.8± 0.24 94.13± 0.24 94.22± 0.13 89.39± 0.2 92.33± 0.33 82.18± 0.23
Accuracy (Post-Mix) [%] 95.1± 0.07 94.28± 0.04 94.37± 0.05 94.57± 0.04 89.1± 0.05 93.18± 0.07 82.19± 0.07

performance further. For practical applications it could be
viable to mix the several spectrograms as they are inexpensive
to compute. However, the further increase in accuracy by
adding further TFDs like the Wigner-Ville distribution does
not appear to justify the computational load coming with
them. Interestingly, the highest accuracy was not achieved
using the pre-mix but rather the post-mix classifiers. Although
several different configurations and hyperparameter settings
were tested, most likely the cause were suboptimal training or
hyperparameter settings, as the pre-mix should be able to at
least achieve the same accuracy as the post-mix. More research
is required to understand the exact cause of this observation.
The input images obtained from the TFDs had to be scaled
down as explained in Section II-A. This in general should lead
to a loss of information and might partially explain the poor
performance of some of the TFDs like the filtered Wigner-Ville
distribution, which in preliminary tests appeared to somewhat
outperform the spectrogram.

A. Comparison to other Work

TFD-mixing has been mostly used in environmental sound
classification and has not been tested on the Google Speech
Command Dataset. Chi et al. [18] concatenated spectrograms
in a CNN audio classifier similiar to our pre-mix classifier
and observed an improvement of about 2.3 % − 2.8 % to the
best individual TFD. This is a somewhat larger benefit than
observed by us for the pre-mix, however, Chi et al. used
a considerably larger CNN with a few million parameters,
compared to about 300k as in our work. Sharma et al.
[15] combined MFCC with Gammatone Frequency Cepstral
Coefficients and other features and observed an increase of
about 12 % in accuracy when combining all TFDs investigated

by them. This is a significantly larger improvement than what
was observed in our work and was observed on two separate
datasets. While they used a considerably larger CNN than
the one used in this work, and different TFDs, such a large
benefit is still surprising. An explanation could be that their
results were obtained on enviromental sound datasets. There,
the audio to be classified certainly will be more diverse than
that of the Google Speech Command Dataset and adding TFDs
could indeed allow a CNN novel insight into the audio. Su et
al. [22], whose approach is the closest to our own, observed
an improvement in accuracy of about 2 % through mixing of
TFDs, close to the results of this work, in the manner of the
presented post-mix with respect to a similar approach as our
pre-mix. However, they do not present baseline results so that
the benefit of TFD-mixing did not become apparent.

B. Cause of Improvement

Excerpts of the confusion matrices of two baseline clas-
sifiers based on the spectrogram (n = 1024), the Stockwell
distribution as well as their post-mix are depicted in Fig. 4.
The baseline using the spectrogram consistently achieved a
greater accuracy than the corresponding Stockwell baseline
with very few exceptions. Despite this, the combined accuracy,
represented by the post-mix classifier, improved the accuracy
by about 1%. The cause most likely is both baselines returning
a different, incorrect class as the most likely prediction,
however, both also returning the correct class with lower, e.g.
second best, probability. In these cases, deciding for the second
best class appears to be reasonable and could be implemented
by the neural network that mixes the baseline predictions in
the post-mix.



(a) Baseline spectrogram (n = 1024) (b) Baseline Stockwell (c) Post-mix

Fig. 4: Excerpts of dimension 8 x 8 of the 30 x 30 confusion matrices of the respective baseline classifiers using the (a)
spectrogram (n = 1024) and (b) Stockwell and the (c) respective post-mix classifier of the two distributions. Shown are the
first eight classes (according to alphabetic order) and the achieved accuracy in percent. While the baseline classifier based on
the Stockwell distribution achieved almost consistently worse accuracy, their post-mix is considerably better.

VI. CONCLUSION

This work compared time-frequency distributions (TFDs)
for audio classification using convolutional neural networks
(CNN). Using the Google Speech Command Dataset V1,
several TFDs including the Wigner-Ville distribution and its
derivates as well as the Stockwell-transform were evaluated.
Hereby, mixing of the TFDs was implemented and synergetic
effects investigated. The TFDs were applied invidivually as
well as in pre- and post-mix implementations.

It was found that a mixture of eight TFDs achieved the
best mean accuracy 95.56 % which represented a considerable
improvement of 2.46 % over the best, single TFD, that was
found to be the spectrogram with a window size of 2048 and
that achieved a mean accuracy of 93.1 %.

Our results show that CNN-based audio classification can
be improved using mixing of time-frequency representation,
allowing the CNN to learn better feature extraction, thus
improving classification accuracy.
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