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Abstract— To accurately predict future positions of different
agents in traffic scenarios is crucial for safely deploying
intelligent autonomous systems in the real-world environment.
However, it remains a challenge due to the behavior of a target
agent being affected by other agents dynamically and there
being more than one socially possible paths the agent could take.
In this paper, we propose a novel framework, named Dynamic
Context Encoder Network (DCENet). In our framework, first,
the spatial context between agents is explored by using self-
attention architectures. Then, the two-stream encoders are
trained to learn temporal context between steps by taking
the respective observed trajectories and the extracted dynamic
spatial context as input. The spatial-temporal context is encoded
into a latent space using a Conditional Variational Auto-
Encoder (CVAE) module. Finally, a set of future trajectories
for each agent is predicted conditioned on the learned spatial-
temporal context by sampling from the latent space, repeatedly.
DCENet is evaluated on one of the most popular challenging
benchmarks for trajectory forecasting Trajnet and reports a
new state-of-the-art performance. It also demonstrates superior
performance evaluated on the benchmark inD for mixed traffic
at intersections. A series of ablation studies is conducted to
validate the effectiveness of each proposed module. Our code
is available at https://github.com/wtliao/DCENet.

I. INTRODUCTION

Intelligent autonomous systems, such as robots and au-
tonomous vehicles, have a high demand for the ability
to accurately perceive, understand and predict the future
behavior of humans for effective and safe deployments in
our real-world environment. For example, an autonomous
agent will adjust its moving path according to the possible
locations of other agents to prevent obstructions or collisions.
However, it is challenging to predict the future location of an
agent because it is not deterministic: (1) an agent may change
its mind during the movement, (2) other agents’ behaviors
will affect its next step (e.g., to avoid collisions), and (3) the
influence from other agents is dynamic. Therefore, it is more
beneficial to predict a set of potential trajectories adaptive
to the dynamic interactions between agents than to predict
a deterministic one. In this work, we seek to explore the
dynamic context between agents in traffic scenarios to predict
multiple possible trajectories for each agent in the short
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Fig. 1: Predicting multiple future trajectories (the most-likely
one indicated by dash line over multiple ones indicated
by shadow area) of a target agent (in red) conditioned on
its observed movement (solid line) with the consideration
of its interactions between neighboring agents (in blue) in
mixed traffic. Interaction is learned through a sequence of
dynamic maps at each step over the time axis and three layers
are dedicated to capturing position, orientation and speed
information (indicated by color-coded rectangles) using the
self-attention structure.

future (12 steps) by observing their trajectories (8 steps),
as showcased in Fig 1.

Specifically, the main contributions of this work are
as follows: (1) It provides a novel framework to predict
trajectories of heterogeneous agents (pedestrians, bicycles,
vehicles, etc.) in various traffic situations, i.e., 20 different
shared spaces and four intersections with mixed traffic. (2)
Self-attention modules are integrated into our framework to
explore the dynamic context among agents. (3) A set of
possible trajectories for each agent is predicted conditioned
on its observed trajectory and the learned dynamic context
using a CVAE [1, 2] module. Extensive experiments are
conducted on two of the most popular benchmarks Trajnet
challenge [3] and the new large-scale benchmark inD [4] to
validate the effectiveness of DCENet for trajectory forecast-
ing. To judge the effectiveness of each proposed module,
we conduct additional ablation studies. An overview of our
framework is depicted in Fig. 2.

II. RELATED WORK

Trajectory Prediction. Forecasting human trajectory has
been researched for decades. In the early stages, many classic
approaches are widely applied such as linear regression
and Kalman filter [5], Gaussian processes [6] and Markov
decision processing [7, 8]. These traditional methods heavily
rely on the quality of manually designed features, which
cannot work reliably in a real-world environment of complex
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Fig. 2: The pipeline for the proposed method. The Encoder Y and Encoder X are identical in structure.

spatial-temporal dynamics and are poor at scaling up for
dealing with a large amount of data. In recent years, many
artificial intelligent (AI) technologies have been boosted by
the cutting-edge deep learning technologies [9], including
human trajectory prediction [10]–[16]. The deep learning
models, especially Recurrent Neural Networks (RNNs) with
Long Short-Term Memories (LSTMs), show great power
in modeling complex social interactions between agents for
collision avoidance and exploiting the time dependency for
predicting futures [17]. The Social LSTM network [10]
explores the interactions between pedestrians by connecting
neighboring LSTMs in the social pooling layer and predicts
trajectories for multiple pedestrians. Zhang et al. [13] pro-
pose the States Refinement LSTM (SR-LSTM) model that
aligns all the agents together and refines the state of each
agent through a message-passing framework. Chandra et
al. [18] combine LSTM and Convolutional Neural Network
(CNN) to model the interactions between heterogeneous
road agents. However, many works have figured out the
limited capability of LSTMs in modeling human-human
interactions [19, 20]. Hence, the attention module [21] is
incorporated in LSTMs to learn the spatial-temporal context
of trajectories between pedestrians in [12, 22, 23]. Recently,
the Transformer structure [24] has shown its power in context
learning and sequential prediction [25, 26]. In this paper, we
will adopt the self-attention module to encode the dynamic
interactions between agents. The recent work [27] seeks to
utilize the Transformer structure to predict trajectory instead
of LSTMs. Our work is different from it essentially: (1) we
use the generic self-attention module rather than the Deep
Bidirectional Transformers (BERT) [25], which is a heavy
stacked Transformer structure and is pre-trained on large-
scale datasets, and (2) our framework is a generative model.

Multi-path Trajectory Prediction. Many approaches
have been proposed to predict a socially compliant set of
possible trajectories for an agent [11, 28]–[33]. Generative
Adversarial Nets (GAN) [34] and CVAE [1, 2] are the
most popular generative models used for this task. In [11]
a trajectory sampler named Social GAN is proposed that
considers the social effects of all agents. The generator is
trained to predict a set of trajectories for each agent against
a recurrent discriminator. In [12] social and physical attention
mechanisms are implemented in the GAN sampler to predict
paths for each agent. In [28], multiple plausible prediction
samples are generated by a CVAE-based RNN encoder-

decoder conditioned on observations. Katyal et al. [33] pro-
pose to predict the intent of the target agent using a Bayesian
approach as a condition of their CVAE-based LSTM encoder-
decoder to help generate multiple paths. Meanwhile, they in-
troduce an LSTM discriminator to train the framework in an
adversarial way. Salzmann et al. [35] propose a CVAE-based
model using spatial-temporal graphs to predict pedestrian and
car trajectories. In [36], scene context and the interactions
between individual and group agents are accounted as a
condition in a CVAE-based framework to sample multiple
trajectories. [37] applies a determinantal point process to
increase the diversity sampling of a CVAE-based model for
2D and 3D motion prediction using synthetic data. Some
other works treat the multi-path trajectory prediction problem
as the estimation of a multimodal distribution. Cui et al. [32]
propose to model the multimodality of vehicle movement
prediction with Deep Convolutional Networks. In [30], first,
the multimodal distributions are predicted with an evolving
strategy by combining the Winner-Takes-ALL loss [38].
Then, the samples from the first stage fit a distribution for
trajectory prediction. Cheng et al. [39] propose AMENet that
only employs the self-attention mechanism [24] for learning
agent-to-agent interaction. In comparison, DCENet adopts a
two-stream architecture [40, 41] of attention modules, with
respective streams dedicated to learning the spatial and
temporal contexts explicitly.

III. METHOD

A. Problem Formulation

Trajectory prediction is defined as to sequentially predict
the future positions Ŷi = {ŷT+1

i , · · · , ŷT ′
i } of target agent i by

observing its trajectory Xi = {x1
i , · · · ,xT

i }, where xt
i = (xt

i ,y
t
i)

is the coordinates at the t-th step and 1 ≤ t ≤ T . Similarly,
ŷt ′

i = (xt ′
i ,y

t ′
i ) is the coordinates at the t ′-th step and T < t ′ ≤

T ′. T is the length of observed trajectory and T ′ is the total
length of being observed and predicted trajectory in discrete
time steps. Ŷi should be as close to the corresponding ground
truth Yi as possible. The problem of multi-path trajectory
prediction can be formulated as predicting a set of trajectories
Ŷi = {Ŷi,1, · · · , Ŷi,N} by observing Xi for agent i, where N
is the total number of predicted trajectories.

B. Dynamic Maps

To model the interactions among agents, we first create
dynamic maps for each agent that consist of the orientation,



speed and position layers of its intermediate environment.
These dynamic maps are different from the ones in [41]
that are designed for modeling map rasterization and traffic
lights. Centralized on the target agent, a map is defined as a
rectangular area of size W ×H and divided into grid cells.
First, referring to the target agent i, the neighboring agents
N(i) are mapped into the closest grid cellst

w×h according to
their relative position as well as the cells reached by their
anticipated relative offset (speed) in the x and y directions:

cellst
w = xt

j− xt
i +(∆xt

j−∆xt
i),

cellst
h = yt

j− yt
i +(∆yt

j−∆yt
i),

(1)

where w ≤W, h ≤ H, j ∈ N(i) and j 6= i. The orientation
layer O stores the heading direction that is defined as the
angle ϑ j in the Euclidean plane and calculated in the given
radians by ϑ j = arctan2(∆yt

j, ∆xt
j). (∆yt

j, ∆xt
j) is the offset of

the position from t-th step to the next one for neighboring
agent j. The angle is shifted into degree [0, 360). Similarly,
the speed layer S stores the travel speed and the position
layer P stores the position using a binary flag in the cells
mapped above. Last, layer-wise, a Min-Max normalization
scheme is applied for normalization, see Fig. 1. The map
should cover a large vicinity area. Empirically we found 32×
32m2 a proper setting considering both the coverage and
the computational cost. The cell size is set to 1×1m2 as a
balance to avoid the overlap of multiple agents in one cell
based on the distribution of the experimental data, which is
also supported by the preservation of personal space [42].

C. Encoder Network

The spatial-temporal context from both the observation
time and prediction time are encoded by Encoder X and
Y, respectively. Both encoders have the same two-stream
structure: both streams consist of stacked self-attention lay-
ers; as illustrated in Fig. 2 one stream is followed by a
global average pooling (GApool), while the other one is
followed by an LSTM module. The upper stream is trained to
learn motion information from the observed trajectory, whose
input is the locations vector of the observed trajectory of the
target agent Xi = {x1

i , · · · ,xT
i } ∈ RT×2. The lower stream is

trained to explore dynamic interactions among agents from
the dynamic maps noted as DM = {O,S,P} ∈ RT×H×W×3

(discussed in Sec. III-B). For simplicity, we take the upper
stream for illustration. To get a sparse high dimensional
representation, Xi is first passed to a 1D convolution layer
(Conv1D) and a fully connected (FC) layer. Each of them
is followed by a ReLU non-linear activation. We denote this
operation as π(Xi). A self-attention layer takes as input the
Query (Q), Key (K) and Value (V ) and outputs a weighted
sum of the value vectors. The weight assigned to each
value is calculated as the dot-product of the query with the
corresponding key:

Attention(Q,K,V ) = softmax(
QKT
√

dk
)V, (2)

where
√

dk is the scaling factor, dk is the dimension of the
vector K and T is the transpose operation. This operation is

also called scaled dot-product attention [24]. The Q, K and
V are obtained by three separated linear transformations:

Q = π(X)WQ, K = π(X)WK , V = π(X)WV , (3)

where WQ,WK ,WV ∈Rdπ×dk are the trainable parameters and
dπ is the dimension of π(X).

Because the self-attention module takes all inputs at the
same time, position encodings are added to the Q, K and
V at the bottom of each self-attention layer to encode the
temporal information. The sine and cosine functions of
different frequencies (varying in time here) are the most
widely used:

pt = {pt,d}D
d=1, pt,d =

{
sin( t

10000d/D ), for d even;
cos( t

10000d/D ), for d odd, (4)

where D = dk ensures position encodings to have the same
dimension as the vectors of Q, K and V .

To attend to different information from different repre-
sentation subspaces jointly, the multi-head attention [24]
strategy is applied as a conventional operation, where a head
is an independent scaled dot-product attention module:

MultiHead(Q,K,V ) = ConCat(head1, ...,headh)WO,

headi = Attention(QWQi,KWKi,VWVi),
(5)

where WQi, WKi, WVi ∈ RD×dki are the linear transformation
parameters same as in Eq. (3) and WO are the linear transfor-
mation parameters for aggregating the extracted information
from different heads. Note that dki =

dk
h and dki must be an

aliquot part of dk. h is the total number of the attention heads
and we use two heads in the implementation.

Then the GApool is used to extract the temporal depen-
dencies between steps by taking as input the output of the
self-attention module and output an encoded representation.

The lower stream that exploits the dynamic interactions
among agents works in the same way but the spatial de-
pendencies among agents are encoded by the hidden states
of an LSTM. Finally, the outputs of these two streams are
connected and passed to a FC layer for fusion. The fused
information includes dynamic spatial-temporal context.

D. Multiple Trajectories Prediction

Our method is CVAE-based and predicts multiple trajec-
tories by repeatedly sampling from a learned latent space
conditioned on the encoded information. The CVAE is
an extension of the VAE [43] by introducing a condi-
tion to control the output [2]. Given a set of samples
(X,Y)= ((X1,Y1), · · · ,(Xm,Ym)), it jointly learns a recogni-
tion model qφ (z|Y, X) of a variational approximation of the
true posterior pθ (z|Y, X) and a generation model pθ (Y|X, z)
for predicting the output Y conditioned on the input X. z
are the stochastic latent variables, φ and θ are the respec-
tive recognition and generative parameters. The goal is to
maximize the Conditional Log-Likelihood: log pθ (Y|X) =

log∑z pθ (Y,z|X) = log(∑z qφ (z|X,Y) pθ (Y|X,z)pθ (z|X)
qφ (z|X,Y) ). Ac-

cording to Jensen’s inequality [44], the evidence lower bound



can be obtained:

log pθ (Y|X)≥−DKL(qφ (z|X, Y)||pθ (z))+
Eqφ (z|X,Y)[log pθ (Y|X, z)],

(6)

where pθ (z) is made statistically independent from
pθ (z|X) [1, 2]. Here both the approximated posterior
qφ (z|X, Y) and the prior pθ (z) are assumed to be Gaussian
distribution for an analytical solution [43]. During training,
the Kullback-Leibler divergence DKL(·) acts as a regularizer
and pushes the approximated posterior to the prior distri-
bution pθ (z). The generation error Eqφ (z|X,Y)(·) measures
the distance between the generated output and the ground
truth. During inference, for a given observation Xi, one latent
variable zi is drawn from the prior distribution pθ (z), and one
of the possible output Ŷi is generated from the distribution
pθ (Yi|Xi,zi). The latent variables z allow for the one-to-
many mapping from the condition to the output via multiple
sampling. In this work, we model a conditional distribution
pθ (Yn|X), where X is the observed trajectory information
and Yn is one of its possible future trajectories.

Training: As shown in Fig. 2, during the training, both
the observed trajectory Xi and its future trajectory Yi are
encoded by Encoder X and Y (see Sec. III-C), respectively.
Then, their encodings are concatenated and passed through
two FC layers (each is followed by a ReLU activation) for
fusion. Then, two side-by-side FC layers are used to estimate
the mean µzi and the standard deviation σzi of the latent
variables zi. A trajectory Ŷi is reconstructed by an LSTM
decoder step by step by taking zi and the encodings of
observation as input. Because the random sampling process
of zi can not be back propagated during training, the standard
reparameterization trick [43] is adopted to make it differen-
tiable. To minimize the error between the predicted trajectory
Ŷi and the ground truth Yi, the reconstruction loss is defined
as the L2 loss (Euclidean distance). Thus, the whole network
is trained by minimizing the loss function using the stochastic
gradient descent method:

L = ‖Ŷ−Y‖2 +DKL(qφ (z|X, Y)||N (0, I)). (7)

Test: In the test phase, the ground truth of future trajectory
is no more available and its pathway is removed (color
coded in green in Fig. 2). A latent variable z is sampled
from the prior distribution N (0, I) and concatenated with
the observation encodings that serve as the condition for the
following trained decoder, so that the decoder can predict
a trajectory. To predict multiple trajectories, this process
(sampling and decoding) is repeated multiple times.

E. Trajectory Ranking

We propose a ranking strategy to select the most-likely
predicted trajectory out of the multiple predictions in order
to adjust the Trajnet challenge setting. We apply bivari-
ate Gaussian distribution to rank the predicted trajectories
(Ŷi,1, · · · , Ŷi,N) for each agent. At step t ′, all the predicted
positions for agent i are stored in |X̂i, Ŷi|t

′
. We follow [45]

to fit the positions into the probability density function:

f (x̂i, ŷi)
t ′ =

1

2πσX̂i
σŶi

√
1−ρ2

exp
−Z

2(1−ρ2)
,

Z =
(x̂i−µX̂i

)2

σX̂i
2 +

(ŷi−µŶi
)2

σŶi
2 −

2ρ(x̂i−µX̂i
)(ŷi−µŶi

)

σX̂i
σŶi

.

(8)

where µ denotes the mean and σ the standard deviation, and
ρ is the correlation between X̂i and Ŷi. A predicted trajectory
is scored as the sum of the relative likelihood of all its
steps: S(Ŷi,n) = ∑

T ′
t ′=T+1 f (x̂i, ŷi)

t ′ . All predicted trajectories
are ranked by this score and the one with the highest score
stands out for the single-path prediction.

IV. EXPERIMENTS

To evaluate the performance of our proposed method,
we compare DCENet with the most influential and recent
nine state-of-the-art models from the Trajnet [3] challenge
leader-board for a fair comparison: (1) Linear (off): a sim-
ple temporal linear regressor; (2) Social Force [46]: the
very high impact rule-based model that implements social
force to avoid collisions; (3) S-LSTM [10]: the highly cited
LSTM-based model that introduces social pooling layer
for modeling interactions; (4) S-GAN [11]: a GAN-based
trajectory predictor; (5) MX-LSTM [47]: an LSTM trajectory
predictor that utilizes the head direction of agent; (6) SR-
LSTM [13]: an LSTM-based model that refines the hidden
states by message passing; (7) RED [19]: an RNN encoder-
decoder model predicts trajectory only using observations;
(8) Ind-TF [27]: a Transformer-based trajectory predictor; (9)
AMENet [39]: the most recent state-of-the-art on the Trajnet
leader-board. We further design a series of ablation studies
to analyze the impact of each proposed module, i.e., dynamic
maps, transformer and LSTM encoder/decoder: (1) Baseline:
an LSTM encoder-decoder only using the observed trajectory
as input; (2) DCENet w/o DMs: the stream of encoding
dynamic maps is removed from our final model; (3) Trans.
En&De: the LSTM encoder-decoder is substituted by the
Transformer encoder/decoder [24] in our framework.

A. Datasets

Trajnet [3] is one of the most popular forecasting bench-
marks. In Trajnet, 8 consecutive ground-truth locations (3.2
seconds) of each trajectory are for observation and the
following 12 steps (4.8 seconds) are required to forecast.
Trajnet is a superset of diverse popular benchmark datasets:
ETH [48], UCY [49], Stanford Drone Dataset [50], BIWI
Hotel [48], and MOT PETS [51]. There is a total of 11448
trajectories from these four subsets covering 38 scenes for
training. The test data is from the diverse partitions of them
(besides MOT PETS) of the other 20 scenes without ground
truth. The Trajnet challenge provides a specific server for
online evaluation. It is worth noting that many existing works
are evaluated on a subset of Trajnet using their own train/test
splits. For the sake of fairness, we only compare DCENet to
the works which have shown their performance on the Trajnet
challenge leader-board.



TABLE I: Results of different methods on the Trajnet
challenge [3]. Models are categorized into deterministic
(determ.) and stochastic (stoch.) depending on whether they
incorporate a generative module.

Model Category Avg. [m]↓ FDE [m]↓ ADE [m]↓

S-LSTM [10] determ. 1.3865 3.098 0.675
S-GAN [11] stoch. 1.3340 2.107 0.561
MX-LSTM [47] determ. 0.8865 1.374 0.399
Linear (off) determ. 0.8185 1.266 0.371
Social Force [46] determ. 0.8185 1.266 0.371
SR-LSTM [13] determ. 0.8155 1.261 0.370
RED [19] determ. 0.7800 1.201 0.359
Ind-TF [27] determ. 0.7765 1.197 0.356
AMENet [39] stoch. 0.7695 1.183 0.356

Baseline stoch. 0.8045 1.239 0.370
DCENet w/o DMs stoch. 0.7760 1.195 0.357
Trans. En&De stoch. 0.7780 1.196 0.360
DCENet stoch. 0.7660 1.179 0.353

inD was acquired by Bock et al. [4] using drones at
four busy intersections in Germany in 2019. The traffic is
dominated by vehicles and they interact with pedestrians
heavily. The speed difference and confrontation makes the
trajectory prediction challenging. The data was processed to
obtain the same format as Trajnet: 8 steps for observation
and the following 12 steps for prediction.

B. Evaluation Metrics

We adopt the most popular evaluation metrics: the mean
average displacement error (ADE) and the final displacement
error (FDE) to measure the trajectory prediction perfor-
mance. ADE measures the aligned Euclidean distance from
the prediction to its corresponding ground truth trajectory
averaged over all steps. The mean value across all the
trajectories is reported. FDE measures the Euclidean distance
between the last position from the prediction to the corre-
sponding ground truth position. In addition, the most-likely
prediction is decided by the ranking method as described
in Sec III-E. Compared with the ground truth (only if it is
available), @top10 is the one out of ten predicted trajectories
that has the smallest ADE and FDE.

The implementation details of training and testing our
methods can be found in our code repository.

C. Results

The experimental results from different methods including
our ablative models reported on the Trajnet leader-board
are listed in Table I. Without ground truth trajectories, the
single-path trajectory prediction was selected by the ranking
mechanism. We can see that DCENet reported new state-
of-the-art performance and the ablative models also had
comparable performances compared to the previous works.

First, by comparing to the Baseline, both DCENet w/o
DMs and Ind-TF had much better results, and DCENet w/o
DMs was slightly better in the average score and FDE but a
little inferior in ADE than Ind-TF. Considering both models
only use observed trajectories as input, it indicates that our
method (self-attention + LSTM encoder/decoder) explored

TABLE II: Quantitative results of our model and the compar-
ative models on the inD benchmark measured by ADE/FDE.

Model S-LSTM S-GAN AMENet DCENet

inD @top 10
Intersection-(A) 2.04/4.61 2.84/4.91 0.95/1.94 0.72/1.50
Intersection-(B) 1.21/2.99 1.47/3.04 0.59/1.29 0.50/1.07
Intersection-(C) 1.66/3.89 2.05/4.04 0.74/1.64 0.66/1.40
Intersection-(D) 2.04/4.80 2.52/5.15 0.28/0.60 0.20/0.45
Avg. 1.74/4.07 2.22/4.29 0.64/1.37 0.52/1.23

inD Most-likely
Intersection-(A) 2.29/5.33 3.02/5.30 1.07/2.22 0.96/2.12
Intersection-(B) 1.28/3.19 1.55/3.23 0.65/1.46 0.64/1.41
Intersection-(C) 1.78/4.24 2.22/4.45 0.83/1.87 0.86/1.93
Intersection-(D) 2.17/5.11 2.71/5.64 0.37/0.80 0.28/0.62
Avg. 1.88/4.47 2.38/4.66 0.73/1.59 0.69/1.52

a better spatial-temporal context than Transformer. Further-
more, Ind-TF utilizes BERT, a heavily stacked Transformer
structure and must be pre-trained on an external large-scale
dataset, while DCENet does not require it. The results of
DCENet w/o DMs indicates that its superior performance is
not because we used more information (dynamic maps).

Second, by the comparison between the Baseline and S-
LSTM, our Baseline model was significantly better. The
difference between them is that our Baseline is CVAE-based
and generates multiple trajectories. It indicates that the future
motion of humans is of high uncertainty, and predicting a set
of possible trajectories is better than only predicting a single
one. It also demonstrates the effectiveness of the trajectory
ranking methods (Sec. III-E), which was used to select
the most-likely trajectory from the multiple predictions.
Our Baseline outperformed S-GAN significantly, which is
a generative model for multiple trajectories prediction.

Third, interestingly, Trans. En&De that adopts the Trans-
former encoder and decoder in our framework did not
achieve improved performance compared to DCENet. This
phenomenon indicates that our self-attention + LSTM en-
coder/decoder structure explored better dynamic context be-
tween agents than Transformer encoder/decoder in terms of
trajectory prediction. The superior performance of DCENet
w/o DMs against Ind-TF has also confirmed that.

Lastly, DCENet outperformed DCENet w/o DMs. It indi-
cates that the dynamic maps helped model the interactions
between agents and were useful for trajectory prediction.

Discussion According to the comparison above, the results
indicate: (1) DCENet is effective for predicting accurate
trajectories for heterogeneous agents in various real-world
traffic scenes, even without modeling interactions explicitly
(the Baseline model). (2) The ranking method correctly
estimates the multiple predictions and recommends a reliable
candidate for the single-path trajectory prediction task. (3)
Compared to the Baseline model, DCENet learns interaction
via the dynamic maps with the self-attention structure ef-
fectively and shows improved performance. (4) Both LSTM
and Transformer networks are capable of learning complex
sequential patterns but their combination further enhances
the performance in terms of trajectory prediction.

https://github.com/wtliao/DCENet
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Fig. 3: Multi-path trajectory predictions in shared spaces in Trajnet (1st row) and at different intersections in inD (2nd row).

Furthermore, we have tested DCENet on inD [4] to justify
its performance and generalization ability. We compare our
model with the three most relevant models: S-LSTM for
comparing with its occupancy grid mapping for agent-to-
agent interaction, S-GAN for its generative module, and
AMENet for its CVAE module and LSTM sequential mod-
eling. To guarantee a fair comparison, all the models were
trained and tested using the same data. S-LSTM predicts the
distributions of the positions [10]. During inference, multiple
positions were generated by sampling. Table II lists the
performance measured by ADE/FDE. Our model achieved
the best performance for the @top10 prediction across all
the intersections and reduced the errors by a big margin. Our
model also outperformed the other models for the most-likely
prediction at three out of four intersections. It only slightly
fell behind the AMENet model on the intersection-(C). We
anticipate that the most-likely prediction fell behind the
@top10 prediction. However, the ranking method was still
effective in recommending a reliable candidate in comparison
to the other models. The results indicate: (1) Our model is
able to generalize on different datasets and maintain superior
performance. (2) Predicting multiple paths is more beneficial
than predicting a single one for an agent. On the one hand,
multiple predictions increase the chances to narrow down the
errors. On the other hand, a single prediction may lead to
a wrong conclusion especially if the initial steps predicted
are deviating from the ground truth and the errors will
accumulate significantly with time. The multiple predictions
form into an area indicating the potential intent of an agent
and the area size reflects the uncertainty of an agent’s intent.

The qualitative results are shown in Fig. 3. The first row
showcases the scenarios in the Trajnet dataset. Note that
the qualitative analysis on Trajnet was carried out on the
validation set (an independent subset of the training set)
for comparing with the ground truth. Our model accurately
predicted two pedestrians walking towards each other at
bookstore-3. The shadow areas indicate multiple possible
trajectories. It also correctly predicted the static pedestrians

in coupa-3, as well as the pedestrians walking in parallel. In
deathCircle-0, our model predicted different possible turning
angles for the cyclist in the roundabout. In hyang-6, two
pedestrians walking closely to each other were predicted
correctly. The second row showcases the scenarios in the
inD dataset. Our model predicted a fast driving vehicle
with a slightly different predicted speed at the Intersection-
(A). It predicted that a left-turning vehicle may turn at the
intersection-(B) with varying tuning angle and speed. The
model also correctly predicted the interaction at the zebra
crossing at the intersection-(C), where the vehicle stops to
yield the way to the pedestrian. Similar predictions can
be seen for the walking and static pedestrians, as well as
the vehicle waiting at the entrance of the intersection-(D).
Overall, we can also see that the recommended single path is
very close to the corresponding ground truth for each agent.

V. CONCLUSION

In this paper, we proposed a novel framework DCENet for
multi-path trajectory prediction for heterogeneous agents in
various real-world traffic scenarios. We decompose the learn-
ing of dynamic spatial-temporal context into exploiting the
dynamic spatial context between agents using self-attention
and the LSTM encoder and learning temporal context be-
tween steps with the following self-attention and global
average pooling. The spatial-temporal context is encoded
into a latent space using a CVAE module. Finally, a set of
future trajectories for each agent is predicted conditioned on
the spatial-temporal context using the trained CVAE module.
DCENet was evaluated on the Trajnet challenge benchmark
and achieved the new state-of-the-art performance on the
leader-board. Its superior performance on the inD bench-
mark further validated its efficacy and generalization ability.
The ablation studies justified the impact of each module
in DCENet. In the future, we are interested in extending
the method for learning the impact from environment/static
context, e.g., space layout and scene deployment, to further
enhance the performance of trajectory prediction.
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