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Abstract—In this paper, we propose an enhanced machine
learning-based inter coding algorithm for VVC. Conceptually,
the reference pictures from the decoded picture buffer are
processed using a recurrent neural network to generate an
artificial reference picture at the time instance of the currently
coded picture. The network is trained using a SATD cost function
to minimize the bit rate cost for the prediction error rather than
the pixel-wise difference. By this we achieved average weighted
BD-rate gains of 0.94%. The coding time increased about 5%
for the encoder and 300% for the decoder due to the use of a
neural network.

Index Terms—VVC, inter coding, video coding, machine learn-
ing, recurrent neural networks

I. INTRODUCTION

During the past decades, a tremendous improvement of
video coding algorithms was observed. In January 2013, the
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T
VCEG and ISO/IEC MPEG finished the technical work for the
latest video coding standard, High Efficiency Video Coding
(HEVC), which is also referred to as H.265 by ITU-T and as
MPEG-H Part 2 by ISO/IEC. After the finalization of HEVC,
ISO/IEC and ITU-T established the Joint Video Experts Team
(JVET) to develop the HEVC successor. The new standard
is referred to as Versatile Video Coding (VVC) and was
finalized in 2020. Depending on the application and encoder
configurations, VVC achieves a bit rate reduction of around
30% at similar quality compared to HEVC [1].

All modern video codecs share the same fundamental
working principle: block-based hybrid video coding. It is the
combination of motion-compensated prediction with transform
coding for the prediction error. The prediction methods can be
distinguished into intra and inter coding. Intra coding relies
on previously coded parts of the current picture to predict
a new block within this picture. Inter coding additionally
utilizes temporal redundancy between consecutive pictures to
improve the prediction. Conceptually, previously reconstructed
pictures are stored in a reference picture buffer and are used
to make a prediction for the currently coded block via motion-
compensated prediction. The quality of motion compensated
prediction highly depends on the available reference pictures.
Furthermore, the better motion-compensation performs, the
lower the bit rate for the prediction error becomes.

It is worth noting that due to the motion compensation, the
quality of the reference pictures does not necessarily correlate
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Fig. 1: Codec integration of the proposed method. Conven-
tional reference pictures are stored in a ring buffer.

with the pixel-wise fidelity between the current picture and the
reference pictures. For example, a reference picture which is
a translationally shifted version of the current picture would
be a good prediction reference despite the low pixel-wise
fidelity between these pictures. More problematic are complex
motions or occlusions which cannot be handled by the motion
model of the video codec.

In [2], Laude et al. approached the problem in the context
of HEVC by generating artificial reference pictures using a
recurrent neural network (RNN). They processed the reference
pictures in the decoded picture buffer, which they refer to as
conventional reference pictures, to generate a new reference
picture at the time instance of the currently coded picture.
This way, they coped with the motion which the translational
motion model of this video codec was not able to compensate.

In contrast to HEVC, VVC includes a more advanced
affine motion model. Hence, it is of interest, whether Laude’s
approach is still beneficial or whether the VVC motion model
can compensate enough motion to deprecate their method. In
this work, we demonstrate the usefulness of the method of
Laude et al. in the context of VVC. Furthermore, we propose
enhancements to their method. In their work, the training of



their network was focused on a high pixel-wise fidelity of
the predicted signal. However, considering that the predicted
signal is never displayed to the viewer, this is not of uttermost
importance. Instead, the reconstructed signal as sum of the
predicted signal and the transmitted prediction error is dis-
played. The fidelity of the reconstructed signal is not available
during training due to the lack of the transform coding scheme.
Therefore, we use the sum of absolute transformed differences
(SATD) as an approximation for the bit rate of the prediction
error as optimization criterion for the training. The SATD is
also used as an optimization criterion in the VVC reference
software VTM.

Our main contributions in this paper are: 1.) Generation of
an extrapolated reference picture using a recurrent neural net-
work with SATD cost function. 2.) Complete coding pipeline
with the neural network integrated in the video codec VVC.

The remainder of the paper is organized as follows: In
Section II, we discuss related works from the literature. The
proposed method is presented in Section III and experimental
results are discussed in Section IV. In Section V, we conclude
the paper.

II. RELATED WORK

During recent years, machine learning-based approaches
were introduced to video codecs, e.g. for faster rate-distortion
optimization [3] or for higher coding efficiency [4], [5].

Similar to our approach, Lee et al. [4], Liu et al. [5]
and Laude et al. [2] use neural networks for improving
motion-compensated prediction. While Lee et al. and Liu
et al. interpolate between one forward and one backward
reference picture, we solely extrapolate from backward ref-
erence pictures into the future without knowing how the
future reference pictures look like. Our extrapolation approach
is more challenging, but enables our method to be used
in low-delay settings. Like our approach, Liu et al. [5] is
using a SATD based cost function. While they measure a
massive complexity increase with an average of more than
doubled complexity for the encoder, our complexity increase
is much more moderate with 5% for the encoder. Laude et al.
extrapolate from backward reference pictures like we do with
our method. Unlike our approach, they trained their network
using a pixel-wise cost function, which we found to be less
suited for video coding.

III. NEURAL NETWORK-BASED INTER CODING

As in [2], we use the recurrent neural network architecture
from the PredNet model proposed by Lotter et al. [6] to predict
the picture to be coded from the previously coded pictures.
This network consists of four stacked modules, each trying
to make predictions for its input. The prediction is generated
by a convolutional layer from a recurrent representation. The
difference between prediction and actual input (prediction
error) is then passed through a convolutional layer and given
as input to the next layer. In opposite order, the recurrent
representation of each module is generated using a Long Short-
term Memory (LSTM) layer with the prediction error of the
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Fig. 2: Exemplary pictures predicted by the neural networks
trained optimizing the SATD and PredNet cost function for a
curvy sequence (a) and a straight sequence (b). The difference
images between the predicted and original pictures show the
corresponding prediction error. The predictions for both neural
networks are generally less sharp than the original picture, but
look similar to each other. It can be observed that the position
of the bike driver on the right side of the picture in (a) was
predicted wrongly by the neural network trained to optimize
the PredNet cost function.

last time step, the recurrent representation of the last layer and
the recurrent representation of the last time step as input. This
process is repeated with the next picture of a sequence in each
time step. After the last time step, the unknown next picture in
the sequence is obtained by inputting an arbitrary input (e.g.
a blank picture) into the first module.

The selection of the cost function determines for which
criterion the network configuration is optimized during the
training. Only if the cost function is suitable for the problem
to be solved, the training can lead to meaningful results. In
[6] and [2], PredNet is trained with the pixel-wise sum of the
prediction errors as cost function. From a coding point of view,
it is desirable to take into account that the prediction leads to
a prediction error that can be transmitted at a low bit rate.
The error is coded in the frequency domain. The probability
density function pcoeff(C) of the coefficients C calculated by
the transformation are approximately mean-free and Laplace-
distributed [7]:

pcoeff(C) = ΦeΨ|C| (1)

with constants Φ and Ψ. The data rate r required for coding
a coefficient can be approximated by the information content



I and is proportional to the absolute value of the coefficient:

r ∼ I (pcoeff (C)) = − log2

(
ΦeΨ|C|

)
∼ Ξ|C| (2)

with a constant Ξ. The entropy of the prediction error, i.e.
the average information content and an approximation of the
data rate required for the transmission of the same under
the condition of a sufficiently good entropy coding, is thus
proportional to the SATD. Therefore, the SATD is chosen as
the cost function over the pixel-wise sum of the prediction
errors.

We calculate the SATD block-wise by dividing the predic-
tion error P = It−Ip between target picture It and predicted
picture Ip into N non-overlapping 8x8 blocks Pi. According
to Liu et al. [5], the SATD `S(P) over all N blocks is obtained
by

`S(P) =

N∑
i=1

8∑
x=1

8∑
y=1

|HT(Pi)(x, y)| (3)

using the Hadamard transform

HT(Pi) = H ·Pi ·HT (4)

with the 8x8 Hadamard matrix

H =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


. (5)

Since the model is trained with a sequence of T pictures in
the YCbCr color space, the final cost is calculated by

`train =

T∑
t=1

λt
6`S(PY) + `S(PCb) + `S(PCr)

8
, (6)

where the prediction errors PY, PCb and PCr are weighted
in the ratio 6/1/1 following [8]. Analog to [6], the time step
weight λt is set to zero for the first time step, since it is used
to initialize the recurrent representation. For all following time
steps, λt is set to one. Compared to setting only λT to one,
the influence of preceding time steps is also considered which
shortens the training time.

To train our neural network, we used 13 sequences of train
and subway drives in HD resolution filmed with a front-
viewing camera downloaded from Youtube. The sequences
were down-sampled to a frame rate of 10 frames per second
and a resolution of 256x144. After down-sampling, the data
set consist of 487020 pictures. Each sequence was split into
1000 frames long snippets.

As model parameters, we used a layer channel size of (3, 48,
96, 192) following [6]. We trained two models over 4 epochs
with the full training data set. The first model was trained
minimizing the pixel-wise prediction error as in [6], [2]. The
second model was training using the SATD cost function as

formulated in Equation (6). Both models were trained with
Adam as optimizer, β1 = 0.1, β2 = 0.999 and an initial
learning rate of 0.001. After 2 epochs, we started to linearly
decrease the learning rate down to 0.0008 at the end of the
training.

The trained models are used to generate artificial reference
pictures for the motion-compensated prediction within the
VVC encoding and decoding process. We modified the VVC
reference software VTM 7.0 such that after the encoding of a
picture, the last coded picture is added to a ring buffer with ten
entries. The size of this ring buffer is independent of the size
of the reference picture list. The reason for not increasing the
size of the reference picture list is the increased signaling cost
it would cause. Considering that the reference picture selection
for the network is fixed, i.e. it does not imply any signalling
overhead, it is reasonable to use ten reference pictures as input.
The content of this ring buffer is then fed into the trained
neural network. As output of the neural network, we get a
new artificial reference picture, which replaces the picture in
the reference picture list with the highest temporal difference
to the next picture to be coded following [2]. The integration
of our neural network into VTM is depicted in Fig. 1. No
other changes to the encoding and decoding process or to
the signaling are necessary, because the motion-compensated
prediction can deal with the artificial reference pictures in the
same way as with conventional reference pictures.

TABLE I: BD-rates and coding time ratios relative to the
VTM 7.0 anchor for six sequences from the KITTI [9] data
set split into two classes. Sequences in curve class contain
scenes with lane changes, tight curves and road crossings,
while sequences in straight class contain predominantly scenes
driven on a straight track. Negative BD-rates indicate increased
coding efficiency. Coding time ratios > 1 indicate increased
complexity.

BD-Rates Time ratios

C
os

t

C
la

ss KITTI
drive Y Cb Cr Weighted Enc. Dec.
5 −0.10% 0.71% −0.05% −0.04% 1.01 3.74
35 −0.97% 2.79% 0.93% −0.52% 1.00 4.31
46 0.17% 1.47% 0.22% 0.28% 1.10 4.39C

ur
ve

Mean −0.30% 1.66% 0.36% −0.10% 1.06 4.15
13 −0.35% −2.20% 0.22% −0.45% 1.01 3.49
27 −0.68% −2.03% 1.09% −0.63% 1.07 3.41
16 −0.49% −1.60% 0.40% −0.50% 1.03 4.18
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Mean −0.49% −1.94% 0.57% −0.52% 1.04 3.69
5 −0.20% 0.26% −2.14% −0.30% 1.06 3.85
35 −1.06% 3.23% −1.65% −0.78% 1.00 4.34
46 0.12% 2.51% 0.89% 0.34% 1.10 4.60C

ur
ve

Mean −0.38% 2.00% −0.97% −0.25% 1.05 4.26
13 −0.58% −3.27% 0.80% −0.70% 1.03 3.64
27 −0.99% −5.82% 0.29% −1.32% 1.08 3.43
16 −0.74% −2.93% 0.28% −0.82% 1.04 3.99
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Mean −0.77% −4.01% 0.46% −0.94% 1.05 3.69

IV. EVALUATION

In this section, we discuss the results of our modified VVC
reference software VTM 7.0 in low-delay configuration with
two trained neural networks. One network was trained to
minimize the SATD between predicted and original picture.



Fig. 3: Usage of the artificial reference picture generated by
the neural network trained to optimize the SATD in VTM as
a heat map. Linearly scaled from no usage (white) to highest
usage (purple).

The other network was trained with the original PredNet cost
function as described in [6]. Exemplary pictures generated by
both networks are shown in Fig. 2. While both networks were
trained using sequences of front-viewing train and subway
drives, for the evaluation we used sequences from the KITTI
data set [9] containing front-viewing car drives. We chose
these sequences, because they are available as uncoded raw
data. The affine motion model of VVC’s motion-compensated
prediction is not optimal for the KITTI sequences showing
scenes with a camera moving towards a vanishing-point. Thus,
we use these sequences to demonstrate the capability of
our method. Since our neural networks were trained with a
different data set than we evaluate on, we can show that our
method is capable to generalize to unseen content.

We defined two classes (curve and straight) which each
contain 3 sequences from the KITTI data set. The curve
class contains the KITTI sequences 5, 35 and 46, which
mainly contain scenes with lane changes, tight curves and road
crossings. The straight class contains the KITTI sequences 13,
27 and 16, which predominately depict scenes driven on a
straight track. Since the aspect ratio of these sequences differs
from the aspect ratio of the videos our networks were trained
on, we cropped a central 16:9 window of maximal size and
scaled these down to a resolution of 256x144.

To calculate the coding efficiency, we encoded and decoded
each of our 6 evaluation sequences with our modified VTM
using both neural network variants with QP values 22, 27,
32, 37 following the common test conditions [10]. BD-rates
were calculated according to [11]. Additionally, weighted BD-
rates were calculated with weighting factors 6/1/1 for the
three PSNR values of Y/Cb/Cr following [8]. The results are
shown in Table I. BD-rate gains up to 1.06% for luma and
5.82% for chroma are measured. On average the weighted BD-
rate for the neural network trained with the original PredNet
cost function is −0.10% for curve class and −0.52% for
straight class. The neural network trained with our SATD
cost function has average weighted BD-rates of −0.25% for
curve class and −0.94% for straight class. For both cost
functions, the sequences from straight class lead to lower,
thus better, BD-rates than sequences from curve class. This is
expected, since both neural networks were trained using train

sequences consisting of mostly straight tracks. Furthermore,
the motion of a straight movement is easier to model than
a curved movement. The mean encoding complexity of our
method is only 5% higher than the unmodified VTM anchor.
The mean decoding complexity increased by 298%. It should
be noted that the neural network adds the same absolute
coding complexity to the encoder and decoder. This leads
to a higher increase in relative coding complexity for the
decoder compared to the encoder, since the absolute decoding
complexity is significantly lower than the absolute encoding
complexity.

To show in which areas of a picture our method has the
highest impact on the coding efficiency, we overlayed a heat
map of the block-wise average usage of the artificial reference
picture for the sequence KITTI drive 13 encoded with our
modified VTM using the neural network trained to optimize
the SATD over an example picture from that sequence in
Fig. 3. Since this sequence is depicting a drive on a straight
track, the positions of the road, road markings and forest do
not significantly change over time. It can be observed, that
the highest usage is on the road section and in the areas
perpendicular to the road. If a front-viewing camera is moved
in a straight line parallel to a plane, temporally different
picture blocks depicting the same position on that plane
can only be transformed into each other using a perspective
transformation. Since VVC only supports an affine motion
model, our method is expected to outperform the non-modified
VTM implementation in these cases. In our example, the road
is planar and thus fits this model, which explains the high
usage of the artificial reference picture. The trees perpendicular
to the road are inhomogeneous and thus harder to predict.

In [2], Laude et al. achieved average weighted BD-rate gains
up to 1.54% using a similar approach implemented in the
HEVC reference software HM 16.18. With our aproach, an
average weighted BD-rate gain of up to 0.94% was measured
for the straight class. Our lower BD-rate gain compared to
Laude et al. is mainly due to technical improvements of VVC
over HEVC, especially the new affine motion model of VVC’s
motion-compensated prediction. Although the affine model is
not capable of describing the motion in our evaluation scenes
accurately, it may be a relatively good approximation.

V. CONCLUSIONS

In this paper, we propose an enhanced machine learning-
based inter coding algorithm for VVC. Conceptually, the ref-
erence pictures from the decoded picture buffer are processed
using a recurrent neural network to generate an artificial refer-
ence picture at the time instance of the currently coded picture.
We selected a SATD cost function specifically suited for
video coding. By this, we outperform traditional cost functions
commonly employed for the training of neural networks. BD-
rate gains of up to 1.06% for luma and up to 5.82% for chroma
are measured (0.94% and 0.25% average weighted BD-Rate
gains for straight and curve class, respectively). The increase
in coding time is moderate with 5% for the encoder and 298%
for the decoder.
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