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Accurate Long-Term Multiple People Tracking
Using Video and Body-Worn IMUSs

Roberto Henschel

Abstract— Most modern approaches for video-based multiple
people tracking rely on human appearance to exploit similari-
ties between person detections. Consequently, tracking accuracy
degrades if this kind of information is not discriminative or if
people change apparel. In contrast, we present a method to fuse
video information with additional motion signals from body-worn
inertial measurement units (IMUs). In particular, we propose a
neural network to relate person detections with IMU orientations,
and formulate a graph labeling problem to obtain a tracking
solution that is globally consistent with the video and inertial
recordings. The fusion of visual and inertial cues provides several
advantages. The association of detection boxes in the video
and IMU devices is based on motion, which is independent of
a person’s outward appearance. Furthermore, inertial sensors
provide motion information irrespective of visual occlusions.
Hence, once detections in the video are associated with an IMU
device, intermediate positions can be reconstructed from cor-
responding inertial sensor data, which would be unstable using
video only. Since no dataset exists for this new setting, we release
a dataset of challenging tracking sequences, containing video
and IMU recordings together with ground-truth annotations. We
evaluate our approach on our new dataset, achieving an average
IDF1 score of 91.2%. The proposed method is applicable to any
situation that allows one to equip people with inertial sensors.

Index Terms— Multiple people tracking, graph labeling, sensor
fusion, IMU, human motion analysis.

I. INTRODUCTION

ULTIPLE people tracking (MPT) in image sequences
has been an active field of research for decades. Several
applications exist where trajectories are required for further
analysis and interpretation. This could be to understand social
interactions of humans [1]-[4], support urban planning [5],
secure areas against dangerous behavior [6] or to provide
an automatic analysis of a player’s performance in sports
[71-[10]. Most state-of-the-art MPT approaches tackle this
problem in two steps: First, a person detector is applied to
each frame of the image sequence. Then, an optimization
problem is solved, which clusters all detections such that
ideally each cluster represents the trajectory of a person, and

false detections remain unconsidered.
A crucial part of this strategy is to derive a measure of
whether two detections belong to the same person or not.
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Typically, this involves a motion or appearance model. A
motion model attempts to assign likelihoods to observed per-
son movements. This is very generic and only depends on the
corner coordinates of the detection boxes. However, as soon
as the motion becomes more dynamic, simple motion mod-
els [11] are insufficient and the tracking accuracy degrades.
In particular, most motion models assume low and constant
velocities, which holds for pedestrians only within a short
temporal window [12]. Another complementary strategy is to
model relations between detections based on the appearance
information. Here, CNN-based feature representations are used
to evaluate if two detections show the same person. Recent
works have shown very impressive tracking results using this
information exclusively [12], [13] or in combination with
motion models [14], [15]. A major advantage of utilizing
appearance information over motion models is that they allow
to relate detections that are temporally far apart. This facilitates
re-identification of people even after long-term occlusions or if
they temporarily fall out of the camera view.

Despite the enormous progress in obtaining discriminative
appearance features, it remains challenging to re-identify
persons wearing similar or identical clothing. A prototypi-
cal example of such a situation is athlete tracking, where
team members wear almost identical jerseys. Further chal-
lenges arise in cases of low-resolution images, changes in
the viewpoint [16] or lighting conditions [17], or if people
change appearance throughout a sequence, e.g. they put on a
jacket or open an umbrella. Then, the assumption of appear-
ance constancy is violated, and the tracking accuracy degrades
consequently.

In this work, we propose to complement visual information
from video with motion information from body-worn inertial
measurement units (IMUs). IMUs are small motion sensors
measuring local orientation and acceleration.

In particular, we consider a monocular camera view and a
single IMU attached to each person to be tracked. Conceptu-
ally, the idea is to incorporate local IMU motion measurements
in order to disambiguate the assignments of detections to per-
son trajectories. Since IMUs are body-worn, the corresponding
motion measurements are unique for each person. Similar to
appearance, this property facilitates the re-identification and
tracking of persons even after long-term occlusions. Hence,
such a tracking approach is predestinated for scenarios where
it is possible to equip people with an IMU, and appearance
is less informative or not available. The latter could be the
case if people wear team jerseys or uniforms, if night-vision
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is used or if processing person appearance is prohibited due to
privacy regulations. Further, the tracking solution provides a
unique ID for each trajectory, which corresponds to the associ-
ated IMU device. Hence, once the wearer of an IMU device is
known, this enables a fully automatic labeling of trajectories to
person identities. In contrast, vision-based approaches require
manual labeling at this point. Another advantage of combining
IMUs and vision for the task of MPT is that inertial sensors
enable the reconstruction of people trajectories even if they
are occluded or fall out of the camera view.

Incorporating additional sensory input for the task of MPT
creates a very different problem setup compared to the afore-
mentioned vision-only methods. In particular, this involves
(i) solving the data association problem of detections to
trajectories in the video and (ii) simultaneously identifying
the corresponding IMU device for each trajectory. Hence,
solving this problem requires ensuring consistency within all
detections of a trajectory, and at the same time consistency
between each trajectory and the corresponding IMU data. On
the other hand, this fusion allows to combine the strength of
two complementary input sources, and is thus a promising
concept to obtain highly accurate trajectories. We denote this
new task as Video Inertial Multiple People Tracking (VIMPT).

Even though in VIMPT motion information is available
through IMU measurements, associating these measurements
to person detections still poses a very challenging problem.
From IMU data alone, it is not possible to generate stable 3D
trajectories due to unknown initial states and accumulating
drift caused by double integration of acceleration signals
[18], [19]. If this were possible, one could easily associate
each detection box to the closest IMU trajectory projected
to the image. Hence, instead of working on pre-computed
IMU trajectories, we have to associate 3D orientation and
acceleration measurements to 2D motion information observed
in the video. Relating 3D to 2D information under perspective
projection is a difficult task on its own. In particular, this
requires to relate IMU orientations, which are elements of the
3D rotation group SO(3) [20], to image data being a two-
dimensional pixel array. Further, IMU measurements often fit
to several people at a time step, and the person wearing the
IMU might be occluded or out of the camera view.

A. Contributions

Vision-based multiple people tracking systems rely on cer-
tain assumptions about the motion and the appearance of the
objects to be tracked. Once these assumptions are violated, the
tracking accuracy degrades. This frequently happens if people
wear similar apparel, or if persons are tracked across different
recordings, e.g. in a long-term motion study. Consequently,
the task of tracking and re-identifying people from visual
inputs only is still far from being solved.

To approach this difficult task, we consider a setting where
people are wearing IMU sensors, allowing to tackle tracking
and identification holistically. In particular, this setting allows
one (i) to reduce the dependency on artificial motion models
(velocities in the video can be related to actual IMU measure-
ments), (ii) to identify persons independent of their outward
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Fig. 1.
motion measurements of body-worn IMUs. Instead of relying on appearance
information, the proposed approach enables accurate long-term tracking by
finding a globally optimal assignment of detection boxes to IMU devices,
such that resultant trajectories in the video are consistent with the IMU
measurements.

Qualitative results obtained by fusing person detections and local

appearance, and (iii) to automatically assign each trajectory
to a person identity. To this end, we propose a graph labeling
formulation that fuses the video signal with complementary
motion information from the IMU sensors.

The underlying idea is that a global assignment of detection
boxes in the video to specific labels representing person
identities has to be consistent with the measured IMU data.
However, this requires a way to measure consistency between
video observations and body-worn IMU data. In order to relate
IMU orientations to video information, we design a neural
network that estimates the orientation of a person within a
detection box. Motion cues are incorporated by comparing
IMU acceleration measurements to video-based velocities.
Finally, a globally consistent assignment is obtained by solving
a binary quadratic problem.

Unfortunately, no existing dataset for multiple-people track-
ing contains body-worn IMU data. To evaluate our proposed
tracking approach, we created a new dataset. A special empha-
sis was put on similar person appearance, heavy occlusions,
and non-linear motion. These are the situations in which model
assumptions implicitly used in vision-based approaches are
violated. Also, since such tracking scenarios are currently
missing in standard benchmarks such as [21], [22], the new
dataset could be valuable to evaluate and improve vision-only
approaches.

The present work is an extension of our preliminary con-
ference paper [23] and improves it in several ways:

o« We introduce and evaluate an interpolation method in
Section III-E that uses IMU data to recover accurate
people trajectories if visual information is missing due
to occlusions. This demonstrates a unique advantage
of incorporating IMUs to the task of multiple people
tracking.

« We extend the evaluation of our tracking approach in
Section IV-D. Two new trackers are presented. One uses
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orientation only, while the other additionally uses the
acceleration signal.

« We provide an extensive evaluation of the orientation
predictor and validate the necessity of the perspective
correction in Section IV-D.

o« We propose a new dataset, VIMPT2019, that contains
video and body-worn IMU data for challenging soccer
and outdoor scenes. The dataset contains detection boxes
and ground-truth labels, and is publicly available for
research purposes.!

Overall, the entire work contains the following contribu-

tions:

o« We introduce a new extension to the multiple people
tracking problem, termed Video Inertial Multiple People
Tracking (VIMPT), which augments the video recording
with inertial measurements from body-worn IMUs.

o We release the first dataset for the VIMPT setting.

o« We present the first multiple people tracking system,
which is able to fuse video information with IMU mea-
surement for the purpose of VIMPT.

o We design a simple, yet effective neural network, which
relates detections to orientation measurements by utilizing
a novel perspective correction.

II. RELATED WORK
A. Data Association

Most multiple people tracking works employ the tracking-
by-detection paradigm [13]-[15], [24]-[32] that connects
either detections [13], [15], [28], [32] or precomputed tracklets
[26], [29], [33], [34] to form trajectories. The problem of
creating trajectories, often denoted as data association, is
usually formulated as a graph optimization problem. Several
works apply network-flow [11], [35], while more recently
submodular optimization [36], minimum cost multicut [12],
[15], [27], lifted disjoint paths [32] or graph labeling [13]
formulations have been proposed.

B. Association Weights

Crucial for graph-based tracking approaches are the asso-
ciation weights between detections (or tracklets) that indicate
how likely they belong to the same person. Several works have
focused on obtaining these weights from motion models [11],
[33], [37]-[40]. Typically, a linear constant velocity model
within short time windows is assumed [11], [38]. However,
the performance of these approaches degrades if motions
become more dynamic or people get temporarily occluded.
Consequently, current state-of-the-art tracking systems [12]—
[15], [27], [41]-[45] rely on appearance models that are invari-
ant to these issues. They use sophisticated neural networks to
derive association weights from the visual information. Some
works derive attention weights [45] that indicate whether the
appearance information is reliable. The accuracy of appearance
features has improved to a level that some works reformulate
the tracking problem as a person re-identification problem
[14], [44]. Accordingly, some works compose a multiple

T Access to the dataset via http://www.tnt.uni-hannover.de/project/ VIMPT/
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people tracking system out of multiple visual object trackers
[44]. Visual object trackers [46]-[48] require an initial mask
of the object to be tracked, and essentially detect the object
in each frame. During this process, the appearance model of
the object is updated frequently.

Despite the impressive progress of current tracking methods
that build upon appearance models, common to all these
approaches is the assumption of constant and discriminative
appearance information. However, these assumptions are vio-
lated if persons look identical or change their appearance.
Similarly, viewpoint and lighting variations can change the
perceived appearance of a person.

An alternative solution is to integrate additional modalities
into the tracking method.

C. Vision and Inertial Sensors

Body-worn inertial sensors provide motion information
independent of the visibility of the persons. However, it is
not possible to recover the 3D person trajectory from IMU
information alone [18], [19]. In contrast, using the video signal
allows to extract positional information, which is complemen-
tary to the IMU motion information.

Consequently, IMUs have been combined with visual infor-
mation in many applications, e.g. fusing video and inertial data
to stabilize self localization and mapping (SLAM) [49], [50].
The same modalities have been used to recover human poses
[51], [52].

There exist only very few works that incorporate IMUs for
people tracking in videos [53]-[55]. The closest reference to
our work is [54], which tackles single person tracking. In this
work, an IMU-equipped person has to be manually localized
in the first video frame. Then, IMU information are used to
recover the trajectory in situations where the visual tracker
fails. Instead, we propose a method that automatically iden-
tifies and tracks multiple IMU-equipped persons. In addition,
our fusion formulation uses both modalities simultaneously in
the optimization problem of the tracker, thereby combining the
advantages of both sensors.

D. Other Sensor Modalities

While we are the first that combine video information with
inertial sensors for the purpose of multiple people tracking,
there exist several works that incorporate other sensor modal-
ities, e.g. Camplani et al. [56] provide a survey of tracking
approaches using RGB-D cameras. However, depth cameras
work only indoors and have a limited depth range. Another
work [57] integrates video and wireless signals emitted from
cell phones. In this setup, the signal quality is used for
localization. This is problematic since signal strength heavily
depends on unpredictable reflections and absorptions. The
VIMPT setting does not suffer from these limitations.

E. Person Identification

Once trajectories are computed, they are used to analyze
certain patterns in the motion, e.g. for the purpose of motion
segmentation, when point trajectories are used [36], [58],
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[59], for understanding social behavior of humans [2]-[4],
or in order to assess the performance of athletes [7]-[10].
In many of these applications, it is crucial that a particular
person is associated with a unique trajectory ID. Ideally,
the associated ID is consistent throughout a recording but also
across different recordings.

Manual labeling of trajectories is a tedious task. Hence,
several works are focused on automatically obtaining the
true identities but consider this as a post-processing step.
For instance, the label computation can be formulated as a
Bayesian network inference problem [60], where the computed
trajectories belonging to the same person are equally labeled
by defining some measure of how likely two trajectories
belong to the same person. This allows to improve the ID
consistency within a sequence but is not sufficient to re-
identify persons across different recordings. By maintaining
a database of visual features for each person to be expected in
the recording, both tasks can be tackled [8]. Then, trajectories
are labeled by employing a conditional random field using the
visual features from the database. In contrast to these visual
approaches, the VIMPT setting allows to simultaneously seek
for a solution that is consistent with the video and IMU labels,
so that labeling all detections is not only a desired task but
also helps to obtain accurate tracking results.

III. METHOD

We follow the tracking-by-detection paradigm and group
detections to short tracklets in a first step. The tracking task
can then be formulated to assign IDs to tracklets, such that all
tracklets with identical IDs correspond to person trajectories
in the video.

In the context of this work, we solve the tracking task
(or data association) by incorporating motion information
from body-worn IMUs. Hence, we formulate a graph labeling
problem to find an optimal assignment of IMU IDs to tracklets,
such that the resultant trajectories are visually smooth in the
video and consistent with measured IMU orientations and
accelerations.

We integrate the IMU signals at different conceptual levels:
For each potential detection to IMU assignment, we require
that the person orientation, as seen by the camera, is consistent
with the corresponding IMU orientation. Orientation consis-
tency alone is very ambiguous, and hence we also enforce
spatio-temporal consistency if two detections are associated
with the same ID. Here, we exploit the complementary char-
acteristics of short-term detection box motion features and
long-term IMU acceleration features. Figure 2 illustrates the
graph and shows an exemplary labeling solution. We refer the
interested reader to [61] for more information on IMUs and
corresponding orientation and acceleration signals.

A. Model

The tracking task is formulated using an undirected
weighted graph G = (V, &,C, L), where V is the vertex set
comprising all tracklets of the entire sequence and & is the
edge set containing all edges that connect a pair of tracklets.
Vertices and edges may obtain a label [ € £, where the label
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Fig. 2. Every tracklet represents a node in the graph. Each node can be
assigned to an IMU device (indicated by color) and is linked to other nodes
by short-term edges (solid) and long-term edges (dashed). An edge is activated
if corresponding nodes share the same color. The idea is that every graph color
configuration is associated with costs representing the consistency of video
information and IMU data. The goal is to find the assignment with minimal
costs.

set L = {1,2,3,..., P} contains an ID for all P persons
wearing an IMU. We represent each detection d as a 5-
dimensional vector (x, y, w, h, tq) € R, where (x, y) denotes
the position at the middle of the lower edge of the detection
box in image coordinates (also called foor position), w and h
represent the box width and height, respectively, and tq holds
the timestamp of detection d. Each tracklet v represents a
set of detections that do not overlap in time and are spatio-
temporally consistent.

At this point, we introduce the notion of an assignment
hypothesis H = (v,[), which associates a label [ € L to
tracklet » € V. Associated to each hypothesis are assignment
costs cf) € C reflecting the assignment likelihood and indicator
variables xll) , which take value 1 if hypothesis H is selected,
and 0O otherwise. Additionally, for pairs of hypotheses sharing
the same label and whose vertices are connected by an edge
e € &£, we consider compatibility costs cé € C modeling the
likelihood that two tracklets belong to the same person.

The tracking task is then to select hypotheses for the entire
sequence that minimize the total costs. This can be cast into
a binary optimization problem:

arg min Z (Zcixé—i—Zcénxé), (1)

XeFn0,VP e Py \pey cef  vee

where the entry of matrix X at row / and column corresponding
to v equals x,l). The feasibility set F is subject to

P
VveV:lel)Sl, 2

=1
Vie(l,....T}Vlefl,....,P}: D xb<1.  (3)
UEV[

The subset V; C V comprises all tracklets » that contain a
detection in frame ¢ and T denotes the number of image
frames. Eq. (2) ensures that each tracklet v is assigned to
at most one label and Eq. (3) guarantees that a label is not
assigned to more than one tracklet at a time.

The solution of (1) provides the desired trajectories.
Specifically, for each label / € L, we obtain a trajectory
T, : T(l) — R, where T(l) := {ta | d € v, x! = 1} is the set
of frames at which a detection has been assigned to person /,
and 7;(t) := d is the assigned detection d at time ¢.
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Fig. 3. (a) We define person orientation in terms of the normal vector of

the torso’s coronal plane (black arrow) projected to the ground plane (blue
arrow). (b) Consider a top view of a person walking on a straight line parallel
to the image plane. Even though the person’s torso orientation n is constant
(depicted as blue arrows for three distinct positions), the perceived orientation,
as seen from the camera, varies. In particular, the perceived orientation differs
from the global orientation by an angle a, which describes the angle between
the depth axis of the camera (straight line) and a vector pointing from the
camera center to the person position (dashed line). We use this angle to correct
person orientation estimates from the camera in order to relate them to global
orientation measurements from body-worn IMUs.

Next, we describe the unary and pairwise potentials in
detail. Specifically, we introduce consistency features which
are mapped to costs ¢/ and ¢!, as described in Section TV-C.

B. Unary Features

In order to provide a measurement for the likelihood of an
assignment hypothesis H = (v, [), we estimate the orientations
of a person in each detection box of tracklet o and compare
those orientations to the temporally aligned orientation mea-
surements of IMU /.

We define the person orientation n € R? as the normal
vector of the torso’s coronal plane projected to the ground
plane, as illustrated in Figure 3(a). We use the projected
normal (instead of the 3D normal) as this comprises fewer
degrees of freedom, and people usually move in a rather
upright pose.

Hence, given the image data Iq of detection d, we seek to
estimate the heading ng of the person. However, the observed
heading in Iq depends on the person position in the image,
see Figure 3(b). To see this, consider a person walking on
a straight line parallel to the image plane of a non-moving
camera. In a global context, this person has a constant ori-
entation. However, due to perspective effects, the perceived
orientation of that person with respect to the viewpoint of the
camera is different at every point in the image. We compensate
for this by considering a correction angle derived from the
detection box within the image. Let agq be the angle between
the vector defined by the camera center and box position pqg,
and the depth-axis of the camera. In order to compensate the
perspective influences, we rotate the perceived orientation by
—aq and obtain the prediction fig, compare Figure 3(b).

In order to obtain the person heading from image data,
we employ a neural net to learn the mapping Ig — ng. More
specifically, we extend VGG16 [62] pretrained on ImageNet
[63] to regress the heading, which also incorporates the
aforementioned perspective correction (PC) in the last layer.
We refer to this network as the Visual Heading Network

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Visual Heading Network
FC1 FC2
I, VGG16 FC3  pC
[”] (00[ coooe < Ny
Pd
Fig. 4. The Visual Heading Network predicts the heading fg of a person

using the image data Iq of detection d. Based on the box position pgq,
the network performs a perspective correction (PC) in the last layer.

(VHN) in the following. A graphical illustration showing the
network architecture is depicted in Figure 4. In the VIMPT
setting, IMUs are consistently placed on the back of each
person such that the local sensor z-axis corresponds to the
normal vector of the torso’s coronal plane. Hence, we get
the measured torso orientation vector n;, of IMU [ at time
t according to

n,, = [I(R,z), 4)

where z = [001]7 is the local z-axis vector, R;; € SO(3) is
the measured IMU orientation mapping the local sensor coor-
dinate frame to the global coordinate frame, and IT : R3 — R?
projects the normal vector to the ground plane. Finally,
we measure the deviation of the predicted orientation from
the IMU heading vector in terms of the cosine similarity.

In detail, we define the unary orientation feature represent-
ing the likelihood of hypothesis H as

1 R
fori(H) = <= > ©(Ba, ), )
Y dev
where @ denotes the cosine similarity
n-m
Oy, m) = ———— € [-1,1] (6)
[l lIngl

between vectors ny, ny € RZ, N, corresponds to the number of
detections of tracklet v, and tg represents the time stamp of a
detection d. The orientation feature foi(H) thus measures the
average orientation consistency of the tracklet » to the IMU
device with ID .

C. Pairwise Features

We define pairwise features, which represent the compat-
ibility of two hypotheses H = (v,[) and H' = (v',1). Two
hypotheses are said to be compatible, if the assignment of a
joint label [ to v and v’ is reasonable with respect to spatio-
temporal aspects.

1) Spatio-Temporal Features: Within a short temporal win-
dow, a person cannot move arbitrarily fast. Hence, the tracklets
of a compatible hypothesis pair should be spatially close,
and corresponding detection boxes should be similar in size.
We derive corresponding features in the following.

For each detection box d, we obtain an estimate
[Troot(d) :==pa € RR? of the foot position of the corresponding
person in world coordinates (on the ground plane) by project-
ing the foot position of the detection to the ground plane of the
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scene. Hence, for detections d of v and d’ of v’, let vap(d, d’)
denote the velocity in 3D from d to d’. Let N(v,v’) be the
set of all pairs of detections between H and H'. We define the
mean velocity feature between H and H' as

1
IN(@,v")] 2

(d,d)eN(v,0")

fea(M, ) = [vsp@, a)[,.

Additionally, we compare the detection box heights included
in both hypotheses. Let g denote the height of detection box
d in pixels. We define a compatibility measure f(d, d") based
on the heights of detections d and d’ according to

ha — ha'l

fud, d) = /;(d, )

min{hgq, hq'}

; @)

where the factor in front of the fraction compensates for the
temporal distance between d and d’, reducing the weight of
this comparison with higher temporal distances. In detail, if d
and d’ are k frames apart, we set

1
dd)y=———, 9
fi(d,d) logc 1 5) ©)
where c is chosen such that log(c+1) = 1. Then, f;(d,d’) =1
holds, if the frame distance between d and d is 1 and
it increases slowly with bigger frame distances k. Finally,
we define our box height feature as

fu(d, ). (10)

"N _ 1
Jheight(H, H') = NG o >,

(d,d)eN(v,v")

Both fyer and fheigne are features which are meaningful within
short temporal windows. However, in this work, we focus
on sequences where people get occluded or fall out of the
camera view quiet often and for longer time periods. Hence,
in the following, we utilize acceleration measurements to link
hypotheses that cover larger temporal horizons.

2) Acceleration Feature: 1deally, the ground position p;, €
RR? at time 71 of an IMU can be recovered by double integration
of the corresponding acceleration signal a according to

1 u
Py, = Pry + Vio (11 — 10) +/ / a(s)dsdu, (11)
o 1o

where 1y, py,, and v;, denote initial time, initial position, and
initial velocity, respectively. Please note that a in this case
represents the gravity-free acceleration in global coordinates.

Now let py, denote the 2D ground position of detection d
and p;, the 2D ground position of d’. After double integration
of the acceleration signal, we can solve Eq. (11) for the initial
velocity, which we denote vivy(d, d'). Thus,

t u
n ptO — t()l ‘/;0 a(S)dS du
(n — o) ’
Concurrently, we can approximate the velocity vq of a
person at initial time #y in terms of finite differences of neigh-

boring detections of d. Hence, for a compatible hypotheses
pair H and H’, the velocity differences

P
vimu(d, d’) = (12)

fo(d,d) = |vimu(d, d') — va| (13)
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should be small for all possible detection pairs d € v and
d’ € v’. We define the acceleration feature as the set of all
such differences according to

face(H,H) ={fo(d,d)[(d,d) € Nb,v)}. (14

D. Optimization

The graph labeling problem defined in (1) is a binary
quadratic program. We reformulate this program as an equiv-
alent binary linear program (BLP) by introducing slack vari-
ables: Each product of variables xll,xll) , is replaced by a new
variable zf) o and the following constraints are added:

2, < x, (15)
2 <l (16)
2= x,+xl, -1, a7)
2, € {0.1}. (18)

A similar reformulation is proposed in [64]. The resulting
problem can then be solved to optimality using BLP solvers
like gurobi [65].

E. Interpolation

The solution to problem (1) assigns detection boxes to
unique IMU devices. Given these associations, it becomes
feasible to accurately reconstruct the trajectory of a person
using IMU accelerations. In particular, the positions of a
person can be recovered in all frames, even though the person
is temporarily occluded or falls out of the camera view. This
is a unique advantage of the VIMPT setting.

In the following, we consider a trajectory 7 tracking a
person with label / and define proj(7) := [[p. 07 to be
the foot coordinates of the trajectory projected to the ground
plane, described in world coordinates. Further, let f¢ and 7,
denote the timestamps of the first and last detection assigned
to trajectory 7, respectively. Then, the interpolation has to
recover the locations for all image frames in [fF, ]

Given the correspondences between visual information and
IMU device [, the obtained trajectory 7 is improved by
our interpolation algorithm by seeking for the interpolated
trajectory iy that is spatially close to 7 while following
the motion information given by IMU sensor / (in terms of
acceleration).

Let ¥ denote the set of all possible trajectories in this time
window. Then, we seek for a trajectory that minimizes the
following optimization problem:

’}'nmi(w epos(T/a proj(7), 1) + (1 — w) eacc(T, @y, l)) , (19)
e

where the residual

epos(p» q,l) = z

teT(l)

Ip(t) — q()II3
IT(0)|

measures the mean squared distance between the interpolated
trajectory and the detections of trajectory 7. The residual

la) —a, 0|3
[Timu ()]

(20)

eacc(p,a,l) = Z

teTimu(l)

21



8482

Fig. 5.
appearances. (e¢) Rapid motions and motion blur. (f) Heavy occlusions. (g) Outdoor scene with frequent occlusions.

measures the mean squared distance between the acceleration
signal a given by the IMU signal and the approximated
acceleration a derived from the video.

Thereby, the acceleration a(p, r) of a trajectory at time ¢ is
approximated via finite differences:

(t = Anvu) — 2p(1) + p(t + Ativu)
(Atvu)?

where Amyu is the time distance between consecutive IMU

signals. The set Timu(/) denotes the timestamps within the

first and last detection of 7 at which IMU signals exist.

The parameter w can be used to balance the importance
of each input channel. The optimization problem (19) has a
non-linear least squares form, and we apply the Levenberg-
Marquardt algorithm [66], [67] to obtain a local optimum.

a(p,1) =2 )

1V. EVALUATION

In order to assess our proposed method, we recorded new
sequences, since no dataset for the VIMPT setting exists so far.
Our recordings contain challenging sequences captured with
a calibrated camera and body-worn IMUs. An introduction
of the dataset and details about the recording procedure are
provided in Section IV-A. Further properties and challenges
of the dataset are discussed in Section IV-B. In Section IV-C,
we provide technical details of our tracking approach and
assess its performance in Section IV-D. We evaluate tracking
accuracy with respect to several relevant tracking and re-
identification metrics and examine the influence of IMU fea-
tures. In order to demonstrate the advantages of incorporating
IMU data, we also compare to vision-based state-of-the-art
baselines.

A. VIMPT2019 Dataset

Existing benchmarks for video based people tracking do
not contain IMU data. Hence, in order to evaluate our
approach, we recorded a new dataset which we denote the
VIMPT2019 dataset.
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First row: Different camera views and scenes in the VIMPT dataset. Second row: Challenges in the VIMPT dataset. (d) Very similar person

1) Sequences: The dataset comprises 7 challenging soccer
and outdoor recordings. In total, it contains nearly 6500 frames
captured with a static camera and 8 IMU-equipped actors in
varying clothing styles.

During soccer recordings, two four-person teams in team
jerseys (see Figure 5(a,b,d)) play soccer in a competitive man-
ner. Consequently, these recordings contain a lot of motion,
motion blur, abrupt changes in direction, and occlusions, see
Figure 5(e)-(f). Hence, tracking challenges arise from non-
linear motion and ambiguous appearance information. Further-
more, the soccer sequences are captured from two different
viewpoints and differ in recorded game situations.

In addition to the soccer recordings, the VIMPT2019 dataset
contains an outdoor sequence recorded at a pedestrian cross-
walk in a public park (see Figure 5(c,g)). Actors walk around
in natural apparel and meet regularly for short conversations.
This sequence serves as a reference to standard benchmarks
such as MOT16/17 [22] and DukeMTMC [21], since it is
comparable in terms of motions and scenery. Throughout all
sequences, actors regularly leave the field of view and are
heavily occluded by other actors.

2) Camera Setup: For all sequences, a calibrated camera
has been mounted to a tripod at a height of approximately 1.8m
(see also Figure 5(a)). The videos were captured in landscape
at 30Hz with 1920 x 1080 spatial resolution, and the camera’s
extrinsic matrix was calibrated to a fixed reference point in
the scene.

3) Time Synchronization: All wireless IMU devices are
automatically synchronized using the recording system of the
IMU manufacturer. For the time synchronization between the
IMU devices and the video, an additional IMU has been
attached on a clapperboard. The clapperboard allows to detect
the shut of the clap within the video and the IMU signal,
respectively (see Figure 6).

4) Detections: We used the person detector Faster R-CNN
[68] trained on COCO [69] to generate person detections
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Fig. 6. Time synchronization using a clapper board.

TABLE I
CHARACTERIZATION OF THE VIMPT2019 DATASET

Name |Length |Boxes | #(vis) o2 (vis) Activity |Density
RecO1| 1189 | 7496 | 0.84 | 0.10 |Football| 7.48
Rec02| 1148 | 7428 | 0.83 | 0.11 |Football| 7.90
Rec03| 1067 | 6677 | 0.77 | 0.15 |Football| 7.34
Rec04| 653 | 4384 | 0.77 | 0.19 |Football| 7.65
Rec05| 726 | 4848 | 0.81 | 0.11 |Football| 7.42
Rec06| 542 | 3653 | 0.79 | 0.15 |Football| 7.72
Rec07| 1036 | 6358 | 0.83 | 0.11 |Walking| 6.74
TABLE II

AVERAGE ORIENTATION VARIANCE FOR ALL FOOTBALL SEQUENCES AND
THE PARK SEQUENCE. HERE, zrf AND 022 DENOTE THE VARIANCE
OF THE HEADING VECTOR IN x- AND z-DIRECTION IN GLOBAL

COORDINATES, RESPECTIVELY

Name | a)% | o2
Football | 0.29 | 0.39
Walking | 0.63 | 0.25

within all frames of the dataset. For all detections, we compute
the corresponding 3D positions using the homography between
ground and image plane. In addition, we manually created
ground-truth detection boxes and labeled them with the corre-
sponding person IDs. Similar to MOT16 [22], we interpolated
ground-truth detections for occluded persons.

5) IMU Setup: Throughout all sequences, eight persons
were equipped with an IMU. Each sensor was attached to a
person at hip height. IMU orientation and acceleration were
captured at a frame rate of 60Hz. We calibrated the inertial
reference coordinate frame to the same reference point as used
for the extrinsic camera parameters.

6) Training, Validation and Test Split: We split the VIMPT
dataset into disjoint subsets. One soccer sequence is selected
for training and validation of tracker parameters, while the
residual six sequences are used for testing and evaluation.

B. Characteristics of the VIMPT2019 Dataset

Many different state-of-the-art MPT datasets exist, each
focusing on certain challenges of multiple people tracking.
Some concentrate on a wide variety in the camera views [22],
containing low- to semi-crowded scenes, while others focus on
long-term tracking [21] with sometimes very crowded scenes,
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filmed from multiple static cameras. Our recordings focus on
ambiguous appearance information and non-linear motions.
Further, they deal as a proof-of-concept for the VIMPT setting.
1) Quantitative Characteristics: In this section, we provide
further details of the VIMPT2019 dataset. Table I provides an
overview of several recording characteristics. The lengths of
the sequences range from 540 to nearly 1200 frames, which
is similar to the MOT16/17 sequences. The third column of
Table I shows the number of detections per sequence. Density
denotes the average number of ground-truth detections per
frame, indicating the number of people present in the scenes.
Ground-truth labels have been created by manually annotating
ground-truth boxes. Note that people have also been labeled
in situations of full occlusion using interpolation. We further
provide a visibility distribution of the dataset. To this end,
we compute for each ground-truth box d a visibility score
vis(d). We define a box d’ to partially occlude a box d with
respect to the image coordinates from a camera C, denoted as
d <c d’, if the boxes d and d’ have a non-empty intersection
and if the box foot position of d’ is lower than the box foot
position of d. Then, we compute the relative number of pixels
within d that are not occluded by other ground truth boxes:

)1 Udacd I(d) N1I(d)
V@ @) ’
where I(d) is the set of image pixels contained in box d.
The mean visibility score u(vis) is provided in Table I and
ranges between 0.79 and 0.84 with a standard deviation o2 (vis)
between 0.10 and 0.19.

The concept of the VIMPT setting is to exploit local motion
measurements from IMU sensors in order to compensate for
ambiguous appearance or motion information. On the other
hand, those local measurements may be very similar at a
given timestep between people showing group behavior with
similar walking aims (see e.g. [37]). We thus analyze the
distribution of the orientations. To this end, we consider all
heading directions n € R? from the IMU sensors at a time step
t to obtain the population variance o 2(r) of the orientations.
Averaging over all frames and all sequences, we obtain the
mean orientation variance o2 and 2 with respect to the x-axis
and z-axis in the global coordinate frame. The results are
presented in Table II. Thereby, moving in x-axis in global
coordinates corresponds to moving closer or further to the
camera and moving in z-direction corresponds to moving to
the left or right.

Comparing the soccer sequences with the park sequence,
the evaluations show that the orientations in the park sequence
have a higher average variance. Accordingly, it is hard to
distinguish the people of the soccer sequence directly from the
orientation. Yet, as the subsequent experiments show, by taking
all time steps of the sequence into account, our globally
optimizing tracking system is able to resolve local ambiguities,
thereby improving the tracking accuracy considerably.

2) Difficult Appearance: We provide a measurement
of the appearance difficulty by employing standard re-
identification metrics as a proxy. In particular, we compute
the Top-1 and the mAP scores for the MOT16 dataset

(23)
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TABLE III

DIFFICULTY OF RE-IDENTIFYING PERSONS IN TERMS OF THE TOP-1 AND
MAP METRICS FOR THE MOT16 AND THE VIMPT2019 DATASET.
IN ADDITION, WE ALSO PROVIDE THE METRICS EVALUATED ONLY
ON THE FOOTBALL SEQUENCES (VIMPT2019%)

Dataset | Top-1 mAP
MOT16 90.3% 88.0%
VIMPT2019 |67.4% 81.1%

VIMPT2019%|63.4% 78.3%

TABLE IV

COMPARISON OF THE VELOCITY DISTRIBUTIONS IN TERMS OF THE MEAN
VELOCITY » AND ITS VARIANCE 02(0) FOR THE MOT16 AND THE
VIMPT2019 DATASETS. IN ADDITION WE ALSO PROVIDE THE
METRICS EVALUATED ONLY ON THE FOOTBALL SEQUENCES
(VIMPT2019%)

| v 02(1))
MOT16 0.19 0.06
VIMPT2019 |0.60 0.34
VIMPT2019%|0.63 0.36

Dataset

and the VIMPT2019 dataset using the state-of-the-art re-
identification system [70] fine-tuned on DukeMTMC [21].
Further, we restrict the gallery and query set to contain the
same number of identities, making the evaluations between
the different datasets comparable. In particular, we randomly
sample query and gallery images from the ground-truth detec-
tions of a randomly selected sequence, obtaining two dis-
joints sets and evaluate the metrics. The results shown in
Table III, which have been averaged over 100 repetitions,
indicate that it is much harder to track people correctly in
the VIMPT2019 dataset, as the appearance information are
ambiguous due to the soccer jerseys.

3) Motion Characterizations: We characterize the velocity
distribution of the VIMPT2019 dataset. To this end, we use
the ground-truth trajectories and compute the average image
velocity between two detections d; and dy belonging to the
same person and normalize it by the mean box height of d;
and d», in order to compensate perspective effects. To put the
values into perspective, we compare to the MOT16 dataset’
and present the results in Table IV. The evaluations show
that VIMPT2019 contains much higher velocities, and most
importantly, the velocities have a variance, which is more
than 5 times higher compared with the MOT16 dataset.
Accordingly, it is much more difficult to define a discrimi-
native motion affinity that covers the whole range of plausible
movements for the VIMPT2019 dataset.

C. Tracker Parameters

1) Tracklet Generation: We generate reliable tracklets by
grouping detections using the method of [71]. In order to avoid
error propagation, temporally subsequent detections can only
be connected if their intersection over union is above 0.7. The
maximal tracklet length is set to 0.5 seconds.

2) Visual Heading Network: The overall network architec-
ture is depicted in Figure 4. It contains the VGG16 architec-
ture, which is truncated after its last pooling layer. The layers

2We use all training sequences which are filmed from a static camera.
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FC1, FC2 and FC3 are fully connected layers with 16, 16, and
2 neurons, respectively. To output an orientation vector n that
is within the unit sphere S', we use hyperbolic tangent activa-
tion functions. Note that VGG16 has been trained on ImageNet
with an invariance for horizontal flipping [62]. To undo this,
we train the layers FC1, FC2, and FC3 together with the last
convolutional layer of VGG16 while keeping the weights of
all other layers fixed. During training, we add dropout layers
[72] with p = 0.3 between the fully connected layers to avoid
overfitting. Furthermore, using dropout makes the prediction
more robust against clutter within a detection box (e.g. other
objects or body parts of other people), so that the neural
network is forced to predict the orientation given any arbitrary
body part. The network was trained using RMSprop [73] for
250 epochs with a learning rate of 10~* and a batch size of 16.
Input images of detection boxes were scaled to 250 x 675.

Finally, the network weights W of VHN are learned by
maximizing the average cosine similarity between predicted
and ground-truth heading vector

1

24
D] (24)

> ®(Ra(W), ng),

deD

given all ground-truth detections d € D and corresponding
IMU heading vectors ng of the VIMPT training sequence.

3) Graph Edge Settings: In the graph G, weighted edges
e € & are created between two nodes v and v’ in the following
cases. If the shortest temporal distance between all detections
of v and v’ is at most 12 frames, we establish a short-term edge
associated with costs derived from box features. Similarly,
we establish long-term edges associated with costs derived
from acceleration features between all detections of v and v’
if the temporal distance is between 12 and 150 frames.

4) Feature to Cost Mapping: In order to transform unary
and pairwise features to costs, we use different strategies. For
orientation and box features we apply a logistic regression
model [74]. A feature vector f is mapped to costs ¢ = —(f, w),
by learning the appropriate weight w, so that the optimization
problem (1) is probabilistically motivated [75]. We use ground-
truth trajectories in the training sequence of the VIMPT dataset
to train the model parameters w. This does not work satis-
factorily for the acceleration feature. We observed that noise
in 3D position estimates destroys much of the expressiveness
of this feature. Instead, we use a threshold J to indicate if
two hypotheses are highly incompatible. Hence, we assign a
high constant cost to an edge if min fyec (H, H') > 6.

D. Tracking Evaluation

The goal of this work is to track IMU-equipped persons in
a video accurately. Hence a perfect tracking result is achieved
if the assignment of person-specific IDs to corresponding
tracklets is coherent throughout the whole tracking sequence.

1) Error Metrics: We evaluate tracking performance by
assessing assignment coherency in terms of ID metrics.
According to [21] we compute IDP, IDR and IDFI. IDP is
the ID precision measuring the fraction of ground-truth person
detections that are correctly assigned to a unique person ID.
Similarly, IDR is the recall rate of respective ground-truth
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TABLE V
TRACKING ACCURACY SOCCER SEQUENCES

Tracker IDP 4 IDR 4 IDs | MOTA 1 |IDFI 4
DeepCC [14] | 263 279 395 118 | 27.1
DeepSORT [40]| 49.6 424 193 77.1 | 458
FWT [13] 297 267 489 716 | 28.1
VIT 93.6 90.1 44 861 | 918

TABLE VI
TRACKING ACCURACY OUTDOOR RECORDING

Tracker IDP 1 IDR 4 IDs | MOTA 1 |IDFI 4
DeepCC [14] | 554 57.0 47 673 | 562
DeepSORT [40]| 534 480 28 835 | 505
FWT [13] 391 363 66 824 | 37.6
VIT 895 785 22 813 | 885

detections. The metric IDF1 is the ratio of correctly identi-
fied detections over the average number of ground-truth and
computed detections. The basic idea of IDFI is to combine
IDP and IDR to a single number.

In addition to the aforementioned ID metrics, we report
the CLEAR-MOT metric MOTA [76]. MOTA comprises three
different error metrics, namely the number of ID switches,
false positives, and false negatives. Note that the computa-
tions of false positives and false negatives within MOTA is
based solely on detection existence. Hence, detections from
computed trajectories are matched to ground truth detections
for each frame separately, ignoring any ID consistency checks.
In constrast to that, IDF1 evaluates false positives (negatives)
and also verifies that the person ID is correct. In particular,
the IDF1 score incorporates the longest coverage of each
ground truth trajectory by exactly one computed trajectory.
Thus we consider IDF1 as the more meaningful metric for the
VIMPT task. Yet, MOTA is a well-known metric for MPT,
and it enables to put the tracking results into the context of
other works.

2) Tracking Accuracy: We report tracking accuracy of our
approach, denoted as Video Inertial Tracker (VIT), on the
VIMPT dataset in the bottom rows of Table V and Table VI.
For the challenging soccer sequences, VIT achieves a very
high IDF1 score of 91.8%. Hence, for all IMU-equipped
persons, we find and correctly assign almost all corresponding
tracklets in the video. This works even though the motions are
very dynamic, and people get occluded or temporarily leave
the field of view. The overall good tracking performance is
also supported by the other metrics. Additionally, we obtain
almost identical scores for the park sequence, which contains
less dynamic motions but is comparable in terms of people
visibility. This proves that our approach is not limited to
sport tracking but generalizes to other scenarios too. Note
that the Faster-RCNN input detections perform very well
on the VIMPT sequences, so that there are very few false
positives or false negatives, which is why the margin on the
MOTA score is very small between the different trackers.
In the supplementary material, we provide a video showing the
sequences of the dataset and corresponding tracking results.
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3) Comparison to Vision-Based Methods: We apply three
different state-of-the-art vision-based trackers to the VIMPT
dataset, namely FWT [13], DeepSORT [39], and DeepCC
[14]. FWT is among the top performing trackers of the
MOT17 [22] benchmark, DeepSORT is an online tracker using
a sophisticated motion model, and DeepCC focuses on re-
identifying persons across different cameras. These approaches
have in common that they rely on appearance to establish
affinities between detection boxes. The parameters of these
trackers were used as provided by the respective authors.

Within the soccer sequences, all team players wear identical
jerseys; hence, the appearance information is very ambiguous.
The tracking results shown in Table V validate that this is very
challenging for all considered state-of-the-art trackers. Respec-
tive IDF1 scores vary between 27.1% and 45.8%. In contrast,
by using IMU information, VIT can double the IDF1 score
to 91.8%. The other metrics show the same trend, and also
the MOTA score of VIT is approximately 9 percentage points
higher compared to appearance-based approaches. However,
a comparison of VIT to the vision-only trackers is not com-
pletely fair. They use different sensor modalities and also,
the number of tracked people is not fixed for the vision-only
approaches. However, the results demonstrate the advantages
of incorporating IMU data if appearance is ambiguous and
also validate that the proposed fusion algorithm works accu-
rately. Further note that no competing multiple people tracking
method exists which fuses video and IMU information.

Interestingly, for the park sequence where people have
discriminative appearance, our proposed tracker is on par
with the other trackers when MOTA is considered. In con-
trast, the IDF1 score of VIT is still higher, indicating that
people specific trajectories are recovered more accurately by
VIT. Finally, comparing Table V with Table VI indicates
that the biggest gain over vision-based tracking systems is
achieved when the appearance information is not discrim-
inative. In those cases, the IMU devices compensate the
misleading information.

4) Effectiveness of Interpolation: We analyze the benefit of
having IMU information available in terms of reconstructing
missing detections. To this end, we compute the tracking
performance using the interpolation method introduced in
Section III-E and analyze its robustness for all sequences of the
VIMPT2019 dataset. Further, we compare the results against
vision-only based linear interpolation.

To this end, we remove randomly selected input detections
and compute the reconstruction accuracy in terms of tracking
metrics. We repeat the computations 10 times and plot the
mean value of each metric in Figure 7. The experiment
shows significantly better performance when the interpolation
using IMU information is used, with a difference of more
than 10 percentage points in terms of IDF1 and more than
20 percentage points of MOTA when all input detections
are used. The improvement over video-based interpolation
increases significantly as more detections are removed.

Accordingly, using the IMU interpolation, the tracking
approach becomes more robust against occlusions and less
dependent on appearance information. When 10% of the
input detections are removed, the performance using the
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IMU interpolation is almost the same as using the entire
detection set. Even when 30% of the detections are artificially
suppressed, the performance drop is still acceptable and clearly
better than using the vision-only based linear interpolation,
e.g. the IDF1 score drops from 91% to 80% for the IMU
interpolation, while it drops to about 30% using the lin-
ear interpolation. This experiment clearly demonstrates the
benefits of the VIMPT setting. Objects of interests may be
occluded or even out of view and can still be tracked reliably.

5) Influence of IMU Features: In order to investigate the
influence of orientation and acceleration measurements on the
tracking result we report tracking accuracy of five tracker vari-
ants: Ori, Acc+Ori, VT, VT+Acc and VT+Ori. We evaluate
all trackers on the VIMPT dataset and show the results in
Table VII.

Ori incorporates only the heading information from the
VHN network, setting all other costs to zero. It reaches an
IDF1 score of 48.7% and a MOTA score of 45.1%, which
is already 53% of the overall MOTA and IDF1 performance
of VIT, respectively. Given that no temporal information has
been used for this tracker, the results show the effectiveness
of using orientation predictions. However, note that distin-
guishing people by means of their heading vectors poses a
very challenging problem. Especially for the VIMPT dataset,
heading predictions have to be very accurate in order to
successfully differentiate people. This is due to the soccer
sequences, where soccer players are often oriented similarly
to follow the game ball (see also Table II). Consequently,
these sequences provoke a high number of IDS. In this sense,
the soccer recordings can be seen as a worst-case test setup.

The tracker VT uses only box features with all costs
related to IMU data set to zero. It obtains an IDF1 score
of 38.1%, which is approximately 58% worse compared to
VIT. VT+Acc extends VT by taking the acceleration feature
into account, and applying the interpolation method based on
the IMU’s acceleration signal. This helps to recover more
detections and to form consistent trajectories, which are closer
to ground-truth in the end. Accordingly, the MOTA score
increases by 25% and the IDF1 score by about 20% com-
pared to VT. However, recall that due to measurement noise,
the impact of the acceleration feature on the data association
had to be weakend to a simple thresholding rule. In con-
trast, incorporating orientation information to VT, denoted as
VT+Ori, leads to a significant increase in tracking accuracy
yielding an IDF1 score of 76.4%. Hence, the orientation
consistency in combination with the simple motion model are
key to disambiguate tracklet assignments and help to correctly
reject most of implausible hypotheses. The tracker Ori+Acc
is leveraging the IMU signals for the features and for the
interpolation. The video information is used only to compare
orientations in the video and the IMU signal. Except for the
full VIT tracker, the variant Ori4+-Acc performs best among
all other tracker variants. Its MOTA score is only about 20%
worse than VIT. It achieves a very high IDF1 score of 76.7,
being about 16% worse than VIT. Note that Ori4+Acc is
independent of any artifical motion model or of the constancy
assumptions on the appearance, as it just compares measure-
ments. This shows the potential of the VIMPT setting.
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TABLE VII

TRACKING ACCURACY OF FOUR TRACKER VARIANTS AND OUR PRO-
POSED TRACKER (VIT), EVALUATED ON ALL SEQUENCES

Tracker [IDP 4 IDR 1 IDs | MOTA 1 |IDF1 1

Ori 48.1 493 1083  45.1 48.7

VT 38.0 38.1 267 52.0 38.1

VT+Acc| 449 45.1 256 65.0 45.0

VT+Ori | 770 758 146 58.9 76.4

Acc+Ori| 76.5 77.0 322 71.6 76.7

VIT 929 89.6 66 85.3 91.2
TABLE VIII

TRAINING AND TEST ACCURACY OF THE VISUAL HEADING NETWORK.
WE PROVIDE THE RELATIVE NUMBER OF HEADING ERRORS WITHIN
A THRESHOLD OF € € {30°, 45°}

<45°  <30°
Train[PC] 97.2% 88.8%
Train[w/o PC] | 96.7%  87.5%
Test[PC] 96.2%  88.1%
Test[w/o PC] 86.3%  70.4%

By considering all features, which corresponds to our
proposed VIT approach, we obtain the highest IDF1 score
of 91.2%. In this case, the rejection of implausible hypotheses
pairs based on acceleration is more meaningful. Finally, Ori
shows the results when all pairwise costs are set to zero,
thereby relying completely on the VHN network.

6) Visual Heading Network Accuracy: We evaluate the
Visual Heading Network accuracy by computing the relative
number of predicted heading vectors ng that deviate not more
than € degrees from ground-truth. The network is trained on
the VIMPT training sequence and tested on all other sequences
of the dataset. According to Table VIII, the network predicts
orientations with high accuracy and is able to generalize to
unseen images (Train[PC] and Test[PC]). Also note that the
perspective correction is crucial to obtain accurate results on
the test set. Without the perspective correction (Train[w/o PC]
and Test[w/o PC]), the neural network is not able to generalize
the observed perspectives from the training data, thus being
heavily prone to overfitting.

Since the orientation feature has shown to be very discrim-
inative, the VHN is key to our proposed tracking approach.

7) Runtime: In general, solving binary quadratic problems
such as (1) is very challenging. However, in our experiments
we observed very fast solutions. On a Intel i9 CPU with
8 cores and 3.60GHz, the runtime of the solver> for the entire
dataset was 28 seconds. We attribute this to the IMU features
being very discriminative, resulting in a very constrained opti-
mization problem. Note that the complexity of (1) increases
with the number of people to be tracked. If runtime becomes
critical, various approximative solvers [13], [77], [78] could
be applied to accelerate the computations.

8) Identification Accuracy: According to [21] the ID pre-
cision metric (IDP) evaluates if all tracklets of a person are
correctly assigned to a unique ID i € N. However, this does
not necessarily mean that a person’s trajectory is assigned to
the person label j € L defined by the corresponding IMU

3we used gurobi in version 9.02.
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device. Hence, we manually investigated if each ID i actually
corresponds to the associated IMU ID j. This is the case for
all persons and sequences in the VIMPT dataset.

Within the VIMPT setting, our method is thus able to
simultaneously track and identify IMU equipped people from
a video.

V. CONCLUSION AND FUTURE WORK

This work introduces a novel extension to the common mul-
tiple people tracking problem; combining video information
with measurements from body-worn IMUs for the purpose
of multiple people tracking, which we call Video Inertial
Multiple People Tracking (VIMPT). Conceptually, this setting
enables accurate long-term tracking of multiple people even
under dynamic motions and heavy occlusions. An interesting
characteristic of VIMPT is that video-based trajectories of
objects equipped with an IMU have to be assigned to the
respective IMU devices. Hence, given the correspondence of
objects and IMUs is known in advance, a tracking solu-
tion automatically provides object identities within the video.
To tackle the challenging VIMPT problem, we proposed a
graph labeling formulation to assign tracklets in the video
to corresponding IMU devices, such that the assignments are
consistent with the video information and the IMU signals
at the same time. The IMU orientations are correlated to
predicted orientations of the corresponding objects in the
video. For this purpose, we propose a neural network with a
novel perspective correction procedure, which turned out to be
essential for accurate video to IMU assignments. Accelerations
measured from the IMU sensors were correlated to initial
velocities, as measured in the video. Besides the proposed
tracking approach, this work releases the first VIMPT dataset,
which we called VIMPT2019. We use this dataset to evaluate
the effectiveness of the VIMPT setting and to benchmark our
proposed tracker. Current state-of-the art video-based trackers
mainly rely on appearance information to establish a simi-
larity measure between person detections. However, there are
situations where people wear similar or even identical apparel

-40

100% 80% T0% B60%

Reduced Input Detections

(b)

90% 50%

Impact of different interpolation methods, when detections are missing.

and appearance is less informative. This observation was the
main motivation to record VIMPT2019 and to propose an IMU
enhanced tracking solution which is independent of person
appearance and still able to track fast and dynamic motions.
In the experiments, we validate that our proposed tracker
shows substantial improvements over video-based tracking
systems. This demonstrates the potential of the VIMPT setting.
Yet, the proposed tracker shows some limitations with respect
to practicability. Every object or person has to be equipped
with an IMU, which is impractical in certain situations.
Also, the intrinsics and extrinsics of the camera have to be
calibrated. As future work, we plan to extend our approach
to work with an uncalibrated camera. In order to improve
orientation predictions from the video, we plan to integrate
attention mechanisms (in the spirit of [45]) that estimate
the orientation only for those detections of a tracklet that
do not contain impaired visual information, such as partial
occlusions or motion blur. We further plan to transform our
proposed tracker to an end-to-end trainable tracking system,
inspired by the current progress in this direction [79], [80]
for other tracking systems. While we demonstrated that a
fusion of Video data with IMU signals improves multiple
people tracking systems, the same concept could be applied to
track other objects, which would extend our setup to VIMOT
(Video Inertial Mulit-Object Tracking). Thus, another future
direction of research is to apply the VIMOT setting to various
other scenarios, especially for cases where it is very hard
to distinguish individual objects. One application in mind is
tracking and identifying individual animals in a herd.
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