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ABSTRACT

Guitar effects are commonly used in popular music to shape the
guitar sound to fit specific genres or to create more variety within
musical compositions. The sound is not only determined by the
choice of the guitar effect, but also heavily depends on the pa-
rameter settings of the effect. This paper introduces a method to
estimate the parameter settings of guitar effects, which makes it
possible to reconstruct the effect and its settings from an audio
recording of a guitar. The method utilizes audio feature extrac-
tion and shallow neural networks, which are trained on data cre-
ated specifically for this task. The results show that the method
is generally suited for this task with average estimation errors of
+5% — £16% of different parameter scales and could potentially
perform near the level of a human expert.

1. INTRODUCTION

Extracting information from audio becomes continually more im-
portant. Music needs to be classified and categorized not only for
streaming services, but also in the music production itself. Mu-
sic information retrieval becomes more viable with increasing pro-
cessing power on consumer devices. This brings automatic mixing
and more complex effect chains closer to reality [1]. The electric
guitar is a widely used instrument in modern music and providing
methods to retrieve information from guitar tracks can be a great
help. Effects from recorded songs could be reconstructed quickly
and provide a better workflow, when searching for the right guitar
sound. Streaming services could not only create playlists based
on current metadata, but also based on the specific sound of the
guitars. Especially combined with more advanced deep learning
based source separation, such as Spleeter [2] and Open-Unmix [3],
analyzing individual instruments from recorded and mixed songs
may become viable. Lastly, an application in music education
might be possible, training novice guitar players to choose their
effects and settings, similarly to concepts in [4], helping them to
develop their unique sound. Even though skilled guitar players can
manually reconstruct the effects and their parameter settings from
audio, this is not an option for analyzing the massive amount of
music and different musical styles, that are published today.

The sound of the electric guitar is largely characterized by the
used effects and their parameter settings, transforming a sound
from very harsh distortion, as used in metal music, to spacious,
atmospheric, modulated sounds of psychedelic rock. Digital im-
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plementations of the most common guitar effects can be found in
[5].

In this work we present a method to estimate the parameter
settings of guitar effects. In Section 2 previous work related to
the topic is summarized. Section 3 gives a short overview of the
method for effect classification and parameter settings estimation
presented in this paper. Section 4 describes our reimplementation
of the effect classification. Section 5 our proposed method for the
estimation of parameter settings is explained and then evaluated in
Section 6. The Sections 7 and 8 present future work and summa-
rize the results of this work.

2. PREVIOUS WORK

Before methods for the recognition of guitar effects were pub-
lished, the automated distinction of different guitars and different
instruments was examined in [6] and [7]. Stein et al. [8] inves-
tigated the classification of eleven different digital guitar effect
classes. For this publication they assembled a database of gui-
tar samples, which were processed with different effects. This
database was also used as training and evaluation set for this paper.
Stein et al. achieve a classification accuracy of 95.5 %, meaning
that 95.5 % of the samples in the test set have been assigned the
correct effect class. Similar to the previously mentioned publi-
cations, a Support Vector Machine (SVM) was used as classifier.
Stein expanded his approach in [9] to classify multiple cascaded
guitar effects.

Schmitt and Schuller [10] presented a more detailed analysis
of the guitar effect classification, investigating the feature impor-
tance. Their approach is similar to Stein et al. [8], but has a less
complex feature extraction stage. Out of all their experiments the
maximum classification accuracy of the monophonic samples in
the database is 97.8 %. So even though a direct comparison to
Stein et al. for all samples is not possible, their classification ac-
curacy is in a similar range.

Yee-King et al. [11] provided an interesting method for re-
constructing the parameter settings of a synthesizer from an audio
sample. They compared more recent methods with learned fea-
tures, which are often used in speech recognition, such as neural
networks with Long Short-Term Memory (LSTM) cells.

In [12] Sheng et al. proposed a method to extract parameters
of a dynamic range compressor from a reference sound. They did
solve the problem as a regression problem using random forest
regression and linear regression. They expanded their approach
in [13] by using deep neural networks to learn features instead of
using handcrafted features.

To the best of our knowledge, there are currently no publica-
tions providing methods for estimating the effect parameter set-
tings of guitar effects.
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3. OVERVIEW

The approach that is proposed in this paper for extracting the gui-
tar effect and its parameter settings is displayed in Figure 1. First,
the effect class needs to be determined. Afterwards, the effect pa-
rameters can be estimated for this specific effect. This approach
allows to design specific algorithms for each effect class.

| Audio » }—

+ Effect Classification

Effect Class

+ Parameter Estimation

4

Effect Parameters

Figure 1: Pipeline for determining the guitar effect and its settings

4. GUITAR EFFECT RECOGNITION

The ten guitar effects of the database [8] can be split into the three
categories: Nonlinear effects, ambience effects and modulation ef-
fects. Additionally, there is one extra class which contains the un-
processed samples and samples that have been processed with an
equalizer to further diversify the sounds. Thus, all eleven classes
contain the same amount of processed guitar samples. A list of all
effects and their categories can be found in Table 1.

Table 1: List of effect classes in the database and their category

Category Effect Classes

Nonlinear Distortion, Overdrive

Ambience Feedback Delay, Slapback Delay, Reverb
Modulation Chorus, Flanger, Phaser, Tremolo, Vibrato
Clean Unprocessed & Equalized

There are 624 monophonic samples, containing all pitches of
the guitar until the 12th fret in standard tuning, recorded by using
two different guitars and two different pickup settings each. Addi-
tionally, 420 polyphonic samples are part of the database, covering
various intervals and chords spread over the guitar neck, also using
the same two guitars and two pickup settings. These 1044 samples
have been processed with 3 parameter settings of every effect, re-
sulting in roughly 16 hours (excluding silence) of 2 second clips or
about 34,500 samples respectively. To avoid bias, the guitar sam-
ples need to be peak normalized before feature extraction, since
the audio level could allow the classifier to draw a conclusion on
the effect class.

For training as well as the prediction of new samples, four
steps are incorporated, as shown in Figure 2. The silence is cut
from the beginning of the samples. This is achieved using onset
detection to find the start of the played note. With the Librosa
[14] implementation of the onset detection, only the strongest on-
set must be detected. This can be achieved by setting the pre max
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Figure 2: Processing pipeline for recognizing guitar effects

and post max values to 20000 samples each. This is especially
important since some of the polyphonic samples do have less than
half a second of silence in the beginning. Several features are then
extracted. A complete list of the used audio features can be found
in Table 2.

The frameworks Librosa [14] and a Python interface for Praat
[15] have been used for feature extraction. All features that are
extracted with Librosa use a Hann window with a length of 2048
samples and 25% overlap. The features extracted with Praat use
a window length of 2352 samples (four periods of the lowest fre-
quency 75 Hz) at a sample rate of 44.1kHz. For each window,
four values are calculated, oversampling the resulting time series
by a factor of four. The harmonics to noise ratio is calculated
only once for the whole guitar sample. Besides the time series,
deltas, local estimates of the derivatives, of those time series are
used, a combination of which has proven itself very useful in the
work of Schmitt and Schuller [10]. Beyond the features from Praat
and Librosa, an additional feature is extracted, which tracks the
unwrapped phase of the maximum frequency bin of a short-time
Fourier transform. In line with the results of Schmitt and Schuller,
we have found that modulation effects, especially the phaser, are
the hardest to classify. Thus, we implemented a new feature to de-
tect modulations of the phase, assuming that the unwrapped phase
of the maximum frequency bin is approximately linear if the sam-
ple is not processed with modulation effects.

Every extracted feature is then processed with several func-
tionals, mappings from time series to scalars, to obtain scalar val-
ues, which can be consolidated in a vector for the SVM from the
framework Scikit-learn [16]. This allows classification indepen-
dent of the length of the input signal under the condition that the
input signal only contains one onset, since more onsets radically
change those functionals tracking the gradients of audio features.
All used functionals can be found in Table 3. For the Fast Fourier
Transform (FFT)-Functional, the audio feature time series is filled
up with zeros to a length of 1024. The maximum of the interpo-
lated spectrum is then used to estimate whether an audio feature
is periodic and to what extent. Modulation effects generally lead
to periodic audio features, since they modulate either pitch, phase,
amplitude or a combination of those periodically.

With 12 functionals and 54 time series audio features and one
scalar audio feature, the input vector for the SVM has a size of
12 - 54 + 1 = 649. Since we used less functionals and features
than Schmitt and Schuller, the input vector of our SVM is only a
tenth of the size, resulting in much faster training times, since the
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Table 2: Used audio features for guitar effect recognition

Feature Framework | Time Series | Delta
# Features / Frame
Mel Frequency Cep-
stral Coefficients
20+20 A

Spectral Contrast

7

Zero Crossing Rate
1+1A

Root Mean Square
Energy

1+1A

Unwrapped  Phase
of Maximum Fre-
quency Bin

1

Pitch Curve

1

Voiced Probability

1

Harmonics to Noise
Ratio

Librosa Yes Yes

Librosa Yes

Librosa Yes Yes

Librosa Yes Yes

(None) Yes

Praat Yes

Praat Yes

Praat

Table 3: Used functionals and number of scalar values as output
of the functionals

# Scalars
1

Functional

Maximum

Minimum

Average
Standard Deviation
2 Linear Regression Coefficients + Residual
3 Quadratic Regression Coefficients + Residual

Maximum of FFT

| Sum [

—_ B W =] =] =

training time for SVM scales at least quadratically with the input
vector size [17]. This allows for more flexibility through shorter
testing cycles for new features. Despite the smaller input vector,
similar results were achieved, classifying the guitar samples with
an accuracy of 94.85 %.

We have also investigated the feature importance using an ex-
tra trees classifier [18] to determine the most important scalars
within the 649-dimensional input vector for the SVM. In another
experiment, we excluded each feature and each functional to train
and evaluate again and then measure the accuracy difference. In
those evaluations, the lower Mel Frequency Cepstral Coefficients
(MFCC), Root Mean Square (RMS) and Spectral Contrast and
their deltas were the most important features and the FFT, max,
min, standard deviation and linear regression were the most im-
portant functionals. This provided a good insight for selecting the
features for the estimation of effect settings.
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5. ESTIMATION OF EFFECT SETTINGS

We first attempted to apply our reimplementation of the approach
of [10] to the parameter estimation. Therefore, the gain parameter
of the distortion effect was quantized into five classes, each cover-
ing an interval of 0.2 of the parameter range from 0.0 to 1.0. We
then applied our reimplementation of the effect classification to
classify the intervals of the parameter range. This way a classifica-
tion accuracy of 66% was reached. Despite that, when adding the
error, that results from quantizing the parameter range into classes,
onto the estimation, the overall result was of similar accuracy as
assuming random settings. Therefore it was necessary to develop
a new method for the effect parameter estimation.

When developing the method for estimating the effect settings,
we first investigated whether it is possible to separate effect set-
tings by a certain feature. For this investigation, we chose the dis-
tortion effect with the three settings that were already included in
the database. We were able to classify those three settings with
a linear SVM using only the two linear regression coefficients of
three MFCC with 98 % accuracy. Based on these encouraging re-
sults we decided to investigate whether a more precise parameter
estimation was possible. Since the problem of estimating contin-
uously adjustable effect parameters is more a regression problem
than a classification problem, we used neural networks instead of
SVMs. Neural networks are well suited to solve regression prob-
lems if a mean square loss function and linear output nodes are
used [19].

To train the neural network using Keras [20], new samples had
to be generated which represent the full range of the parameters.
We used the digital audio workstation Reaper and the unprocessed
samples from the database supplied by Stein et al. [8]. This way,
we could process the samples with uniform randomly distributed
settings of the distortion effect parameters, namely tone, edge and
gain. Tone determines the cutoff frequency of a low pass filter;
edge determines the gain of resonant peak at the cutoff frequency.
After that the signal is multiplied by the gain factor and distorted
by the nonlinearity. The processed samples are 624 monophonic
and 420 polyphonic samples. Using a Reaper script about 1000
samples can be generated in one hour on a typical desktop com-
puter.

The neural network for parameter estimation can neither have
many layers nor many neurons per layer, since the number of trained
parameters should not be greater than the number of training sam-
ples. Therefore, we started out using a neural network with only
one hidden layer varying the size in powers of two. The best re-
sults could be achieved using 32 neurons in the hidden layer. We
also tested using more layers, but this did not yield better results
than using the previously described configuration.

Additionally, using a batch norm layer in front of the hidden
layer appears to prevent overfitting, since the input vectors are nor-
malized differently depending on the batch, providing more vari-
ety. Thus, the training can span over 1000 epochs with a monoton-
ically decreasing validation error. For our evaluation we excluded
30% of the data as test set and used the remain 70 % for training
and validation. The neural network has rectified linear activation
functions and is trained using an Adam optimizer with a learning
rate of 0.01, mean squared error as loss function, a batch size of
32 and a 5-fold cross-validation on the training data.

The previously described implemented pipeline is depicted in
Figure 3. After developing the parameter estimation for the distor-
tion effect, we investigated how the same approach would perform
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Figure 3: Pipeline for the estimation of the three parameters of the
distortion effect

on two further effects. We chose the delay with the parameters de-
lay length and volume of the wet signal and the tremolo effect with
the parameters modulation frequency and modulation depth. The
delay time ranges from O ms to 1000 ms, the tremolo frequency
ranges from 0.1 Hz to 30 Hz. By choosing these effects, we im-
plemented the method for one nonlinear time-invariant, one linear
time-invariant and one linear time-variant effect. We have used
different features and functionals that are better suited for the spe-
cific effect parameters, but the approach remains the same.

[ Audio + »
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v
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Figure 4: Pipeline for estimation of the three parameters of the
delay effect

For the delay, we used the onset detection not only for cut-
ting the silence in the beginning but also to try to find the delayed
onset. Since the feedback was disabled only one onset had to be
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found. Despite that, extracting features at two onsets has proven
to be more reliable, since the wrong onset can be detected and ex-
tracting features at the second onset provides redundancy for this
case. Finding the correct onset is not trivial because the second
onset is superimposed on the original signal with arbitrary phase
relation. Out of different combinations of RMS-energy, MFCCs,
spectral flow (onset strength) and their respective deltas, using the
first MFCC delta and the RMS at the onset position yielded the
best results. For the MFCC delta, not only the frame at the onset is
used, but rather a sum of MFCC delta of the five frames before the
detected onset. So, both features provide a measure of signal en-
ergy at the onset, which is increasing with the onset of the delayed
signal.
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Figure 5: Pipeline for estimation of the three parameters of the
tremolo effect

The tremolo effect modulates the volume of the incoming sig-
nal periodically. Consequently, we try to analyze the volume of the
signal using the RMS and its delta. Next, the FFT of those time
series is calculated to find periodic modulation. To provide suffi-
cient resolution, the FFT is interpolated by appending zeros until
a size of 1024 is reached. This also ensures the corresponding fre-
quencies of the frequency bins stay the same, independent of the
length of the input signal. After identifying the maximum of the
FFT spectrum, this maximum and 64 bins around it are set to zero
and a second maximum is identified. This way, a redundancy is
provided, in case the first maximum is not caused by the tremolo
effect, but rather by the natural decay of the guitar signal, which
generally causes a peak at around 1 Hz, making it harder to iden-
tify low modulation frequencies. The amplitude of the maximums
and their bin numbers are then standardized and processed by the
neural network.
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6. EVALUATION

We used the absolute error e from the ground truth parameter set-
ting Strue, @ continuous value from zero to one, to the estimated
setting Ses¢ to measure the performance.
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Figure 6: Absolute error of the estimation of the distortion effect
parameters: the median is marked by an orange line, the surround-
ing box covers data from the 25% quartile to the 75% quartile. The
whiskers cover the S5th percentile to the 95th percentile; everything
outside of those percentiles is an outlier, displayed as circle.

Figure 6 displays the absolute error for the parameters edge,
gain and tone of the distortion effect. The gain parameter is pre-
dicted with the smallest error of 0.05 on average. This parameter
also generally has the largest subjective impact on the sound. The
parameters edge and tone can be estimated with an average abso-
lute error of 0.14 and 0.10 respectively. The extreme errors are
also much greater than those of the gain parameter.

Tone Parameter Error in Relation to Parameter Settings
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Figure 7: Absolute error of the tone parameter estimation plotted
against the ground truth setting of tone and edge

Figure 7 gives more insight into the outliers, which are de-
picted as the darkest points. Especially with high tone parameter
settings, corresponding to high cutoff frequency, changes are hard
to detect, since guitar signals have their highest amplitudes in the
frequency spectrum in the first harmonics. Thus, the MFCC will
not change very much when only the high frequency content is af-
fected by changing the tone parameter. The outliers of the edge
parameter show no such clear trends. One should consider that the
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edge parameter has a much smaller effect on the sound as it is per-
ceived by a human than the other two parameters. So, errors in the
setting of this parameter will not be noticed as clearly.
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Figure 8: Absolute error of the delay effect parameters, boxplot
properties are as described in Figure 6

The delay parameters wet and length can be estimated with
an average absolute error of 0.16 and 0.06 respectively. Figure 8
shows that the extreme errors for both parameters are above 0.7.
The wet parameter estimation performs worse than the length, since
errors in the length parameter estimation will lead to errors in the
wet parameter estimation, since the wrong segment of the audio
sample will be analyzed.

Length Parameter Error in Relation to Parameter Settings
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Figure 9: Absolute error of the length parameter estimation plotted
against the ground truth setting of length and wet

Figure 9 shows that these outliers are all at either low wet set-
tings, where the delay will be inaudible or at low length settings.
A length setting below 0.05 corresponds to a delay below 50 ms,
where the delay rather acts as a comb filter. Thus, most of the
outliers are negligible, since they are results of settings that would
not be chosen, when a delay effect is desired. Analyzing the wet
parameter error, we observed the same phenomena, with the dif-
ference of an overall greater error.

The tremolo parameters depth and frequency can be esti-
mated with an average absolute error of 0.08 and 0.06 respectively.
Figure 10 also shows some outliers, but the median error here is
much lower compared to other effects. The depth error is influ-
enced by the frequency error, since if the wrong FFT bin is chosen,
the magnitude of the wrong bin will be analyzed.

Figure 11 shows that very low depth settings, leading to the
effect being inaudible, make the frequency estimation harder. Low
frequency settings can be indistinguishable from the natural decay
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Figure 10: Absolute error of the estimation of the tremolo effect
parameters, boxplot properties are as described in Figure 6
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Figure 11: Absolute error of the frequency parameter estimation
plotted against the ground truth setting of frequency and depth

of the guitar string. Especially if the modulation curve decreases
while the sample is decaying, the effect can be inaudible. The
greatest outliers of the depth parameter error seem to stem from
the same phenomenon. As with the delay, it can be assumed that
the settings producing the greatest errors, are being used the least
in typical guitar recordings.

From our own experience of creating guitar sounds, we esti-
mate that a guitar player can be sufficiently accurate by only setting
effect parameters in steps of 0.1, which would result in an abso-
lute error of 0.05. This would mean that the average errors of the
proposed method are close to the precision of a human expert, es-
pecially considering, that currently only a single note is analyzed.
If a whole song or song section was analyzed, the results could
potentially be significantly improved by taking an average of the
estimated settings for each onset.

7. FUTURE WORK

Future research should investigate whether better results could be
reached using architectures with learned features for this problem,
such as convolutional neural networks or neural networks with
long short-term memory cells as suggested by Humphrey et al.
[21] and similar to the implementations of Sheng et al. in [13].
It might be effective to utilize transfer learning using networks
that have previously been trained for phoneme recognition, since
phoneme recognition implicitly determines filter parameters (such
as jaw, tongue and lip positions) of the human voice, necessary to
distinguish phonemes independent of the speaker. Additionally, it
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might be useful to investigate how well humans can estimate in-
dividual effect parameters to evaluate if the current method’s per-
formance is sufficient for the designated use case. This could be
done in a survey by either having humans reproduce effect set-
tings from audio or humans rating differences in effect settings in
a MUSHRA test.

8. CONCLUSION

This paper presents a novel method for estimating guitar effect
settings. For this purpose, specific features catered to the charac-
teristics of each effect class have been selected. These features
are then processed by shallow neural networks to perform a map-
ping from the feature data to the estimated parameter values. This
method can estimate effect parameters with errors potentially close
to those of human experts. The method has been implemented and
tested successfully for a distortion, delay and tremolo effect, rep-
resenting one effect from each major guitar effect category. The
average errors for the different parameters are between +5% and
+16%. The estimation is most accurate for parameters which have
the greatest impact on the sound and commonly used settings are
estimated more accurately.

The python code base containing the effect parameter esti-
mation as well as our implementation of the effect recognition is
available at:

https://github.com/henrikjuergens/guitar-fx-extraction/
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