
Dynamic Algorithm Configuration:
Foundation of a New Meta-Algorithmic Framework

André Biedenkapp1 and H. Furkan Bozkurt1 and Theresa Eimer3 and
Frank Hutter1,2 and Marius Lindauer3

Abstract. The performance of many algorithms in the fields of
hard combinatorial problem solving, machine learning or AI in gen-
eral depends on parameter tuning. Automated methods have been
proposed to alleviate users from the tedious and error-prone task of
manually searching for performance-optimized configurations across
a set of problem instances. However, there is still a lot of untapped
potential through adjusting an algorithm’s parameters online since
different parameter values can be optimal at different stages of the
algorithm. Prior work showed that reinforcement learning is an ef-
fective approach to learn policies for online adjustments of algorithm
parameters in a data-driven way. We extend that approach by formu-
lating the resulting dynamic algorithm configuration as a contextual
MDP, such that RL not only learns a policy for a single instance, but
across a set of instances. To lay the foundation for studying dynamic
algorithm configuration with RL in a controlled setting, we propose
white-box benchmarks covering major aspects that make dynamic al-
gorithm configuration a hard problem in practice and study the per-
formance of various types of configuration strategies for them. On
these white-box benchmarks, we show that (i) RL is a robust candi-
date for learning configuration policies, outperforming standard pa-
rameter optimization approaches, such as classical algorithm config-
uration; (ii) based on function approximation, RL agents can learn to
generalize to new types of instances; and (iii) self-paced learning can
substantially improve the performance by selecting a useful sequence
of training instances automatically.

1 Introduction

To achieve peak performance of an algorithm, it is often crucial to
tune its parameters. Manually searching for performance-optimizing
parameter configurations is a complex and error prone task. General
algorithm configuration tools [4, 16, 27] free users from the manual
search for well-performing parameters. Such tools have been suc-
cessfully applied to state-of-the-art AI algorithms of various prob-
lem domains, such as mixed integer programming [15], AI planning
[12], machine learning [35], or propositional satisfiability solving
[18]. One drawback of classical algorithm configuration, however,
is that it only yields a fixed configuration that is used during the en-
tire run of the optimized algorithm. It does not take into account that
most AI algorithms are iterative in nature and thereby ignores that
the optimal target parameter configuration may change over time.

1 University of Freiburg, Germany,
email: {biedenka, bozkurf, fh}@cs.uni-freiburg.de

2 Bosch Center for Artificial Intelligence, Germany
3 University of Hannover, Germany, email: lastname@tnt.uni-hannover.de

From the field of adaptive and reactive heuristics, we already
know that non-stationary parameter configurations can indeed im-
prove the performance of algorithms substantially. To automatically
obtain policies adjusting parameter configurations online, prior work
showed that reinforcement learning (RL) can learn those in a data-
driven way and thus the performance of a variety of different algo-
rithms can be automatically improved [23, 32, 6, 10, 34].

Extending prior approaches to be applicable across instances, we
formalize the problem of learning dynamic configuration policies of
an algorithm’s parameters across instance sets (in short dynamic al-
gorithm configuration or DAC) as a contextual Markov decision pro-
cess (MDP) and apply reinforcement learning (RL) to it. Our formu-
lation of DAC as a contextual MDP allows explicit handling of in-
stances, which we combine with the self-paced learning scheme [22]
to focus on subsets of instances, facilitating faster learning of config-
uration policies. Furthermore, we propose white-box benchmarks ex-
plicitly designed to study dynamic algorithm configuration in a prin-
cipled manner without confounding factors. On these benchmarks,
we study the potential and challenges of our approach. Specifically,
our contributions are as follows:

1. We formalize the dynamic configuration of algorithm parameters
as a contextual MDP, taking instances into account;

2. We propose new and highly flexible white-box benchmarks that
allow to study DAC for scenarios involving: (i) budget constraints,
(ii) short effective sequences, (iii) noisy rewards, (iv) different de-
grees of homogeneity of training and testing instances, as well as
(v) strong parameter interaction effects;

3. We propose to use self-paced learning to order instances from easy
to complex, facilitating faster transfer learning, compared to learn-
ing on an unordered set.

4. We are the first to study dynamic algorithm configuration with
reinforcement learning in a controlled setting to shed light on its
strengths and weaknesses.

2 Related Work
Meta-algorithmic Frameworks The goal of algorithm selec-

tion (AS; [31]) is to learn a selection mechanism, that decides which
algorithm, out of a finite set of algorithms is most suited to solve
a given instance. Algorithm configuration (AC; [17]) however, not
only deals with one-dimensional categorical spaces, but with high-
dimensional, conditional and mixed categorical/continuous spaces.
AC by itself struggles with heterogeneous instance sets (in which dif-
ferent configurations work best for different instances), but it can be
combined with AS to search for multiple well-performing configura-
tions and select which of these to apply to new instances [39, 20]. For

each problem instance, even this more general form of per-instance
algorithm configuration (PIAC) still uses stationary configurations4.
However for different AI applications, dynamic configuration can be
more powerful than static or stationary ones.

Adaptive Configurations in Practice A prominent example for
parameters that need to be dynamically adjusted is the learning rate
in deep learning: a static learning rate can lead to sub-optimal train-
ing results and training times [30]. To facilitate fast training and con-
vergence, various learning rate schedules or adaptation schemes have
been proposed, but only a few are data-driven [10]. Contrary to hand-
designed adaptation schemes, a learned one was much less sensitive
to initial starting points. Further a learned configuration policy could
generalize to new architectures and larger networks.

In the field of EAs, self-adaptive strategies can change parameters
on the fly [21, 11]. These methods, however, are often tailored to
one individual problem, rely on heuristics and are also only rarely
learned in a data-driven fashion [32], making them applicable only
to homogeneous instances. A learned (and even a random) dynamic
configuration policy that adjusts the mutation strategy in differential
evolution has been shown to outperform non-adaptive strategies [34].

Similarly, reactive search [5] uses handcrafted heuristics to adapt
an algorithm’s parameters online. To adapt heuristics to the task at
hand, hyper-reactive search [3] parameterizes these reactive heuris-
tics and applies PIAC. In contrast, we propose to not only learn which
heuristic to apply, given an instance, but to learn how to configure on-
line without the need of hand-designed reactive heuristics.

Relation to Learning to Learn The work we present here can be
seen as orthogonal to work presented under the heading of learning
to learn (L2L; [2, 25, 8]). Both lines of work intend to learn optimal
instantiations of algorithms. The goal of a L2L agent is to learn how
to traverse a search space and how to directly modify solution can-
didates. In contrast, a dynamic configurator learns how a specific al-
gorithm behaves in a search space, based on which the optimal algo-
rithm parameters are selected;5 modifications of solution candidates
are still handled by the configured algorithm.

For example when configuring iterative optimization heuristics,
DAC learns when to switch between heuristics given the observed
behaviour when applying the heuristics. L2L in essence would learn
or discover new heuristics and thus would directly output how to tra-
verse through the search space.

By exploiting existing algorithms and only focusing on dynami-
cally configuring their parameters, DAC may be more sample effi-
cient and generalize better than directly learning algorithms entirely
from data, while also preserving guarantees that hold for the existing
algorithm regardless of its parameter settings.

3 DAC as Contextual MDP
Definition 3.1 (DAC: Dynamic Algorithm Configuration). Given a
parameterized algorithm A with a configuration space Θ, a proba-
bility distribution p over instances I (which correspond to different
inputs to A), a state description st ∈ S of A solving an instance
i ∈ I at time point t, and a cost metric c : Π × I → R assessing

4 Static configurations are unchanged throughout the solving process and
are not adjusted to new instances. Stationary configurations stay constant
throughout the solving process but might adapt to the instance at hand.

5 We emphasize that we refer to hyperparameters as algorithm parameters.
The goal of DAC is not to update weights (sometimes called the parameters)
of a neural network directly.

the cost of a dynamic configuration policy π ∈ Π on instance i (e.g.,
runtime to solve an instance, cost of a finally returned solution, or
the empirical loss of a predictive model) the goal is to obtain a pol-
icy π∗ : S × I → Θ, that adapts a parameter configuration θ ∈ Θ
at time point t, given a state st ofA solving instance i, by optimizing
its cost across a distribution of instances:

π∗ ∈ arg min
π∈Π

∫
I
p(i)c(π, i) di (1)

Contextual MDP We propose to formulate DAC as a contextual
Markov Decision Process (MDP) MI := {Mi}i∼I with Mi :=
(S,A, Ti ,Ri). The notion of context I induces multiple MDPsMi

with shared action and state spaces, but with different transition and
reward functions for a given instance i sampled from a distribution
I. The MDPMi is a 4-tuple, consisting of a state space S describ-
ing the algorithm state, an action space A changing the algorithm’s
parameter settings, a probability distribution Ti of algorithm state
transitions, and a reward function Ri indicating the progress of the
algorithm. Algorithms are often tasked with solving varied problem
instances from the same, or similar domains. Searching for well-
performing parameter settings on only one instance might lead to a
strong performance on that individual instance but might not general-
ize to new instances. In order to facilitate generalization, we therefore
explicitly take instance distributions I as context into account. In the
following, we describe in detail how this context I influences parts
of the individual MDPs.

State and Action Spaces At each time-step t, in order to make
informed choices about the parameter values to use, the dynamic
configurator needs to be informed about the internal state st of the
dynamically configured algorithm. Many algorithms collect various
statistics that are available at each time-step. For example, a SAT
solver might track how variable assignments change over time. This
information could be used to inform the dynamic configurator about
the algorithm’s current behaviour.

The theoretically possible state space does not change when
switching between instances, and is shared between all MDPs in-
duced by the context. Thus we consider the same state features which
will allow us to learn useful relations across instances. To enrich
the state space, we could also add instance-specific information, so-
called instance features (e.g. problem size), that could allow us to
reason across instances, which could be useful in particular for het-
erogeneous instance sets [24, 33].

Given a state st, the dynamic configurator has to decide how to
change the value v ∈ Ah of a parameter h or directly assign a value
to that parameter, out of a range of valid choices. This gives rise to
the overall action spaceA = Ah1 ×Ah2 × . . .×Ahn for n param-
eters. The action space solely depends on the algorithm at hand and
is also shared across all MDPs inMI , similar to the state space.

Transition Function The transition function describes the dynam-
ics of the system at hand. The probability of reaching state st+1 after
applying action at in state st can be expressed as p(st+1|at, st). For
simple algorithms and a small instance space, it might be possible
to derive the transition function directly from the source code of the
algorithm. However, we believe that the transition function cannot
be explicitly modelled for most interesting algorithms. Nevertheless,
even if the dynamics are not modelled, RL can learn how to optimize
policies directly from observed transitions.

instance idynamic configuration of h

Dynamic
Config. π

Algorithm A

apply action at

(set parameter h = v)

state st+1

reward rt+1

II

Figure 1: Dynamic configuration of parameter h of an algorithm A
on a given instance i ∈ I, at time-step t ∈ T . Until i is solved
or a maximum budget reached, the dynamic configurator decides to
change value v of parameter h, based on the internal state st of A on
the given instance i .

Contrary to the state and action space, the transition function de-
pends on the given instance. For example, an algorithm might be
faced with different search landscapes where applying different pa-
rameter settings could lead to different state transitions.

Reward Function In order for the dynamic configurator to learn
which actions are better suited for a given state, the dynamic con-
figurator receives a reward signalRi(st, at) ∈ R. Reward functions
for DAC include either sparse rewards, e.g., runtime at the end of the
algorithm run, or dense rewards, e.g., distance estimations to some
goal state or intermediate solution qualities, such as validation error
of a partially trained neural network.

As the transition function depends on the instance at hand, so does
the reward function. Transitions deemed beneficial by the dynamic
configurator on one instance might become unfavorable on another
instance, which is reflected by the reward signal.

Interaction of Dynamic Configurator and Algorithm The dy-
namic configurator’s goal is to learn a policy that can be applied to
various problem instances i out of a set of instances I, treated as the
context of the MDP, see Figure 1. Given an instance i , at time-step
t, the dynamic configurator applies action at to the algorithm, e.g.,
setting parameter h to value v. Given this input, the algorithm ad-
vances to state st+1 producing a reward signal rt+1, based on which
the dynamic configurator will make its next decision. The instance
stays fixed throughout the algorithm run.

Learning Policies across Instances Given the MDP and a distri-
bution of instances I, the goal is to find a policy π∗ from a space of
possible policies Π that performs well across all instances i from a
probability distribution p(i) over I. Formally,

Vπi (st) = E [rt+1(i) + γVπi (st+1)|st+1 ∼ Ti(st, π(st))] (2)

= E

[
∞∑
k=0

γkrt+k+1(i)|st = s

]
(3)

π∗ ∈ arg max
π∈Π

∫
I
p(i)

∫
S0

Pr(s0) · Vπi (s0) ds0 di (4)

Vπi is the value function, giving the expected discounted future re-
ward, starting from st, following policy π (i.e. advancing through
st+1, st+2, . . . and adjusting the parameters according to π) on in-
stance i with discounting-rate γ until a termination criterion is met.
For finding the optimal configuration policy, we limit ourselves to the
set of possible start-states S0 of the algorithms, which might depend
on stochastic initialization or pre-processing of a given instance. In
practice, we use simply a Monte-Carlo estimate by performing sev-
eral runs with different seeds of the algorithm at hand.

Relation to Algorithm Configuration and Selection This for-
mulation of DAC allows to recover classical algorithm configuration
(AC) as a special case: in AC, the optimal policy would simply al-
ways return the same action, for each state and instance. Further, this
formulation also allows to recover per-instance algorithm configu-
ration (PIAC) as a special case: in PIAC, the optimal policy would
always return the same action for all states, but potentially different
actions across different instances. Finally, algorithm selection (AS)
is a special case of PIAC with a 1-dimensional categorical action that
merely chooses out of a finite set of algorithms.

Markov Property We argue that most developers in fact already
assume the Markov property by using manually designed rule based
reactive-heuristics that change parameters if certain conditions are
met, independent on how these conditions were met. This behav-
ior satisfies the Markov property since future states (behavior after
adaptations) are independent of past states (prior algorithm behav-
ior), given the present (state features).

4 Reinforcement Learning for DAC

Why Reinforcement Learning? In algorithm configuration, a
typical black-box optimizer (i) has no access to state information
and (ii) sets the parameters only once in the beginning. Both short-
comings hinder classical black-box optimizers from learning optimal
sequences of parameters. As a proof of concept, context-oblivious
agents [1] take state information into account when selecting which
action to play next. This enabled these agents to learn sequences of
parameters. However, only a history of previous actions was used and
employing a richer state information would enable to learn dynamic
policies, that are capable of adapting to the context at hand.

RL is a promising candidate to learn DAC policies in a data driven
fashion as we showed how to formulate it as a contextual MDP. It has
been demonstrated that RL is capable of generalizing to new tasks
given enough examples [9]. Given DAC as an MDP we can sam-
ple large numbers of episodes given enough compute resources. For
small action and state spaces, RL agents can be easily implemented
using table lookups, for large spaces, function approximation meth-
ods can make learning feasible. In our experiments, we evaluated ε-
greedy Q-learning [38] in the tabular setting as well as using function
approximation inspired by DQN [29].

Self-Paced Learning for Dynamic Algorithm Configuration
Since evaluating a policy on a single instance can already require
quite some time (e.g., solving an NP-hard problem), evaluating a
policy on all instances is often not feasible in practice. As, shown
for classical algorithm configuration, using too few instances likelys
result in overfitting and too many instances is too costly [17]. There-
fore, we need an efficient, dynamic approach for selecting a subset
of instances for training a dynamic configurator.

Similarly to curriculum learning [7], self-paced learning
(SPL; [22]) aims to order tasks from easy to complex such that a con-
figurator can transfer knowledge from easier to harder tasks, improv-
ing the overall learning. In DAC, these tasks relate to the instances the
algorithm has to solve. In contrast to curriculum learning, however,
the curriculum is dynamically adjusted to the pace of the learning
process. In SPL, the goal is to maximize the reward achievable by a
dynamic configurator on the current curriculum by jointly learning
the dynamic configuration policy π and the curriculum v ∈ [0, 1]|I|

Benchmark Outline 1: Luby

1 Benchmark Parameters: minimal episode length L, maximal
episode length T , noise level σ;

2 i ∼ sample instance;
3 Actions: at ∈ {0, 1, . . . , blog2 T c} for all 0 ≤ t ≤ L ≤ T ;
4 States: st ∈ {t,Hist(at−4, at−3, . . . , at), i};
5 for t ∈ {0, 1, . . . , L} do
6 lt ← luby(t, i);
7 if at 6= lt then
8 rewardt ∼ N (−1, σ2);
9 L← min(L+ |at − lt|, T);

10 else rewardt ← 0;
11 end

Benchmark Outline 2: Sigmoid

1 Benchmark Parameters: number of actions H , number of
action values Ch, episode length T ;

2 si ∼ U(−100, 100, H);
3 pi ∼ N (T/2, T/4, H);

4 Actions: ah,t ∈
{

0
Ch
, 1
Ch
, . . . , Ch

Ch

}
∀ 0 ≤ h < H; 0 ≤ t ≤ T ;

5 States: st ∈ si ∪ pi ∪ {t};
6 for t ∈ {0, 1, . . . , T} do
7 rewardt ←

∏H−1
h=0 1− abs(sig(t, si,h, pi,h)− ah,t);

8 end

(the i-th element vi indicates if instance i belongs to the curriculum):

max
π,v
C(π,v,K) =

|I|∑
i=1

viRi(π)− 1

K

|I|∑
i=1

vi (5)

where Ri(π) is the reward of following the dynamic configuration
policy π on instance i. The term − 1

K

∑|I|
j=1 vi regulates the cur-

riculum size, moving from smaller to larger subsets, given a suitable
increasing schedule of K.

Instead of evaluating the dynamic configurator’s performance on
all instances to determine the true reward Ri(w), we propose to
use the expected reward as given by the Q-function. Easy instances,
for which the dynamic configurator already knows well-performing
policies, will quickly lead to good rewards which will quickly be
reflected in the Q-function. This then lets us efficiently determine
which instances should be included in the current curriculum as:

vi :=

{
1, if C(w,vi := 0,K) ≤ C(w,vi := 1,K)
0, otherwise

(6)

where vi := 0 excludes the instance in computing the expected re-
ward and vi := 1 includes it. In each training-iteration we greed-
ily construct the set of training instances from scratch, such that in-
stances are only included if they are expected to improve the reward
of the dynamic configurator and then train the dynamic configurator
on that set of training instances. If no instance at all is expected to
improve the reward, an instance is randomly sampled.

5 White-Box Benchmarks for DAC
As discussed in the related work, various shades of DAC have already
been applied to a wide range of AI problems. While they already
yielded improved performance in several applications, none of them

studied the general DAC problem, and none of them employed a set
of carefully-controlled benchmarks with ground truth data to allow
a scientific study of when which approaches work well. To remedy
this, and to enable an evaluation of DAC policies with full control
over all aspects and characteristics of the environment, we propose
two highly flexible, white-box benchmarks.

Our benchmarks are designed based on typical challenges in DAC
on real algorithms, such as, (i) budget constraints for running an algo-
rithm until a cutoff is reached, (ii) varying lengths of algorithm runs
depending on the effectiveness of the chosen parameter settings, (iii)
strong parameter interaction effects where the choice of one param-
eter value influences others, (iv) varying degrees of homogeneity of
the instances or (v) noisy rewards because of non-deterministic be-
havior of algorithms. We focus here on a setting with dense rewards,
since in many domains we can approximate the quality of a solu-
tion candidate, e.g., validation performance of partially trained deep
neural networks or plan quality in optimal AI planning.

Luby To evaluate the ability of agents to dynamically configure al-
gorithms with budget constraints, short effective sequences and noisy
rewards across instances of varying degree of heterogeneity, we in-
troduce benchmark Luby (see Benchmark Outline 1). The underlying
task requires an agent to learn the values in a Luby sequence [28],
which is, for example, used for restarting SAT solvers. The sequence
is 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, ...; formally, the t-th value in
the sequence can be computed as:

lt =

{
2k−1 if t = 2k − 1,

lt−2k−1+1 if 2k−1 ≤ t < 2k − 1.
(7)

This gives rise to an action space for sequences of length T with
A := {0, 1, . . . , blog2 T c} for all time-steps t ≤ T , with the ac-
tion values giving the exponents used in the Luby sequence. State
information includes the time-step t, the history of actions, and an in-
stance feature describing how the original Luby sequence is shifted.6

Inspired by running real algorithms, this benchmark simulates dif-
ferent execution times that depend on the quality of the used policy.
The short horizon L (which we dub short effective sequences) refers
to the minimal time required to solve an instance and thus determines
the minimal number of configuration steps. The long term horizon T
is equivalent to the cutoff (the maximal time a user wants to run an
algorithm) and thus limits the total number of steps. For real algo-
rithm runs, suboptimal parameter settings can lead to longer execu-
tion times. To reflect that, in our benchmark, L is increased by the
severity of each suboptimal choice, i.e. L← min(L+ |at − lt|, T).

Since most algorithms in AI are non-deterministic and do not pro-
vide a reliable reward signal, the benchmark uses a fuzzy reward
N(−1, σ2) to penalize wrong action choices, i.e. not the true Luby
value lt at time-step t, in a stochastic way. E.g., setting σ2 to 1.5
results in a reward where roughly 3

4
of wrong action choices are cor-

rectly penalized and the rest return a false positive signal.
Finally, we task the agent to learn across a distribution of in-

stances. To generate homogeneous instances, every m-th element of
the sequence either skips or repeats an element of the true Luby se-
quence, leading to largely overlapping instances. To generate hetero-
geneous instances, we sample different starting points of the Luby
sequence, leading to little overlap in the resulting instances. For de-
tails of the sampling strategies, we refer to the appendix.

6 luby(t, i = 0) from Benchmark Outline 1 is given in Equation 7. See
appendix for details on i 6= 0.

Sigmoid Our second benchmark Sigmoid (see Benchmark Out-
line 2) allows to study DAC across instance distributions for a vary-
ing number of parameters (determined by the scalar H) and vary-
ing number of choices per parameter h (determined by Ch). Policies
depend on the sampled instance i, which is described by indepen-
dent sigmoid functions sig(t; si,h, pi,h) = 1

1+e
−si,h·(t−pi,h) , each

of which can be characterized through its inflection points pi,h and
scaling factors si,h. The state consists of a time feature, as well as the
instance information si,h and pi,h for each parameter dimension h.

In order to be successful, for each parameter dimension h, an agent
has to approximate the sigmoid sig(t; si,h, pi,h) at each time-step t
and choose the action ah,t closest to it. For example, for a single pa-
rameter (H = 1) with only two action values a0,t ∈ {0, 1}, an agent
would need to learn which value to play first and when to switch to
the other value (a concrete example is given in the appendix).

In a multi-parameter setting (i.e. H > 1) an agent not only has to
learn a simple policy switching between two actions but to learn to
follow the shape of each sigmoid function that describe the instance
at hand. To simulate interaction effects of the individual parameters,
the reward is computed as the product of the individual approxima-
tion errors, i.e. rewardt ←

∏H−1
h=0 1− abs(sig(t, si,h, pi,h)− ah,t).

Further, the granularity of the discretization of the action space can
be adjusted by Ch, such that an agent can follow the sigmoid more
or less closely, directly affecting its reward.

6 Baselines

As the simplest baseline, we present the best static policy; this defines
an upper bound to the performance that could be reached by static al-
gorithm configuration methods, such as SMAC [16]. Our agents, in
contrast, can find non-stationary policies that outperform (even op-
timal) static choices. One could also use SMAC to learn such non-
stationary policies by searching for an optimal sequence of param-
eter values (which we dub parameter scheduling SMAC, short PS-
SMAC). For each time-step, PS-SMAC sets parameter values, mak-
ing the problem exponentially harder when increasing the episode
length. This relates to an optimized schedule of static parameter con-
figurations which ignores all instance features and state information,
similar to previous approaches, such as aspeed [14].

As second baseline we consider context-oblivious agents [1]. As
state information they only take a history of actions into account.
During training the agents keep track of the number of times an ac-
tion lead from one state to another, as well as the average reward this
transition produced. This tabular approach limits the agents to small
state and action spaces. In our experiments we include URS, which
selects an action uniformly at random during the training phase; and
during the evaluation phase, URS greedily selects the best action
given the observations recorded during training. We did not evalu-
ate additional context-oblivious agents due to their limitations on our
challenging benchmarks, see the appendix for details.

7 Experimental Study

Setup We used SMAC [16, 26] as a state-of-the-art algorithm con-
figurator and black-box optimizer. We implemented URS using sim-
ple tabular 1-greedy Q-learning. Q-learning based approaches (such
as URS and our RL-agents) were evaluated using a discounting factor
of 0.99 and a constant learning rate of 1.0. The ε-greedy agent was
trained using a constant ε = 0.1. To facilitate generalization to un-

seen test instances, we include Q-learning using function approxima-
tion in the form of a double DQN [37] implemented in chainer [36].7

In each training iteration (105 in total) each agent observed a full
episode. Training runs for all methods were repeated 25 times using
different random seeds and each agent was evaluated after updat-
ing its policy. When evaluating on the benchmarks we performed 10
evaluation runs of which we report the mean reward. When using a
fixed instance set of size 100 on Sigmoid we evaluated the agents
once on each instance. To allow the tabular Q-learning approaches
to work on this continuous state-space we round the scaling factor
and inflection point to the closest integer values. We provide further
details and results in the supplementary material.8

Effect of Short Effective Sequence Length On the Luby bench-
mark with a fixed noise level, we first study the effect of changing the
short effective sequence length L, i.e., the minimal sequence length
to solve an instance, see Table 1. By construction of the Luby se-
quence, the optimal static policy is to play the most frequent element
in the sequence, i.e. the lowest value, as it makes up roughly 50% of
the sequence. With increasing length of the short effective sequence,
the reward achievable by this simple policy quickly approaches this
50% threshold (i.e. a reward of 0.5). Given its random behaviour,
URS is only able to learn a random policy, which performs much
worse than the optimal static policy. Increasing the short effective se-
quence length degrades PS-SMAC’s result as it is only able to find a
local optimum, i.e. SMAC identifies that action 0 needs to be played
often but not when it should be played. Therefore PS-SMAC is un-
able to outperform the simple static policy. Contrary to the results of
PS-SMAC, our ε-greedy RL agent is able to adjust its policies better
to the presented instance, regardless of the effective sequence length,
consistently achieving the best anytime and final reward, readily out-
performing the best static policy. However, the greater the intended
short effective sequence length, the longer it takes the ε-greedy agent
to learn (see the appendix for details).

Stochasticity of Reward Signal To study the impact of the
stochasticity, we evaluated the agents with different noise levels of
the reward and a fixed short effective sequence length, see Table 2.
Given very low noise-levels, URS achieves slightly better any-time
performance than purely random policies, but still is far off the best
static policy. With increasing noise-level, however, URS quickly de-
grades to a random policy. Due to its black-box nature, PS-SMAC is
less affected by the noise coming from a symmetric Gaussian; since it
optimizes the cumulative reward of the sequence, the noise is nearly
averaged out. In contrast, the RL agent learns to average out the noise
for each individual state transition. As a result, our ε-greedy agent is
hardly more influenced by the noise-level than PS-SMAC, with a
drop in AUC by 0.20 compared to PS-SMAC’s drop to 0.16.

Homogeneity of Instances The observations made above hold
both for more homogeneous and more heterogeneous instance dis-
tributions, see Table 1a and 1b as well as Table 2a and 2b. Only
PS-SMAC is affected by the change of instance distributions; this is
expected since SMAC uses a racing algorithm that assumes a certain
degree of homogeneity and given its static algorithm configuration
view, PS-SMAC cannot return instance-specific configurations.

7 We expect that proper tuning of these hyperparameters would further im-
prove the performance of the RL agents, but would be fairly expensive in a
real application of DAC.

8 Appendix and code: https://github.com/automl/DAC

8 16 32

ε-greedy 0.86 (0.93) 0.72 (0.82) 0.47 (0.65)
PS-SMAC 0.62 (0.72) 0.39 (0.40) 0.39 (0.40)
URS 0.17 (0.17) 0.17 (0.17) 0.17 (0.17)

(a) Homogeneous

8 16 32

ε-greedy 0.89 (0.96) 0.75 (0.84) 0.47 (0.66)
PS-SMAC 0.56 (0.69) 0.37 (0.39) 0.37 (0.39)
URS 0.17 (0.17) 0.17 (0.17) 0.17 (0.17)

(b) Heterogeneous

Table 1: Results on Luby with fuzzy rewards for L ∈ {8, 16, 32} with T = 64 on two instance distributions and a noise factor leading
to roughly 15% of the actions returning a false positive reward. The values represent the normalized area under the learning curve for 105

training episodes. A random policy would achieve 0.17 and the optimal one 1.0. The normalized final performance is given in brackets. The
best achieved rewards are highlighted in bold. Respectively, the performance (on both sets) of the best static policy are 0.88, 0.59 and 0.52.

p(rt > 0)
0.01 0.08 0.15 0.20 0.25

ε-greedy 0.96 0.92 0.86 0.81 0.76
PS-SMAC 0.71 0.63 0.62 0.62 0.55
URS 0.21 0.18 0.17 0.17 0.16

(a) Homogeneous

p(rt > 0)
0.01 0.08 0.15 0.20 0.25

ε-greedy 0.97 0.94 0.89 0.84 0.80
PS-SMAC 0.60 0.63 0.56 0.61 0.52
URS 0.21 0.19 0.17 0.17 0.16

(b) Heterogeneous

Table 2: Sensitivity analysis of the presented agents for varying degrees of noise on Luby. The short effective sequence was set to 8 with a
cutoff of 64. The values represent the normalized area under the learning curve for 105 training episodes. The corresponding standard errors
and plots are contained in the supplementary material. The first columns in Table 1 correspond to the third columns here.

This effect is amplified in the experiments on Sigmoid where PS-
SMAC cannot find a policy better than random (see Figure 2 and
3), since it does not take instance features into account and thus can-
not distinguish between a positive and negative slope of the sigmoid.
Roughly half the instances need completely orthogonal policies to be
solved optimally, as the scaling factor is uniformly sampled.

Generalization We study the ability of generalization to unseen
instances on the Sigmoid benchmark with a single parameter. We
note that we evaluated our RL agent not only based on tabular
ε-greedy, but also based on DQN as we expect function approxi-
mation to be crucial for generalization. For this benchmark, the best
static policy is to play the action value that is closest to 0.5, as it
results in the smallest approximation error on average. This is due
to the sampling of the scaling factor and inflection point, where the
scaling factor is uniformly sampled between −100 and 100 with the
inflection point being normally distributed with a mean at T

2
. In the

binary case both action values are equally preferable. Learning on
a distribution of instances (see Figure 2a), DQN learns faster than
either tabular approaches and is able to learn an instance-dependent
optimal policy, whereas the tabular ε-greedy agent gets stuck in a
local optimum9. Being completely exploratory, URS does not suf-
fer from this problem and recovers the optimal policy. The optimal
static policy and PS-SMAC are unable to adapt to the task at hand,
resulting in the same reward as a random non-stationary policy.

On the fixed training set (see Figure 2b), results are very simi-
lar to the case of learning on a distribution of instances (see Figure
2a); the exception are the tabular agents (URS and ε-greedy), which
learn much faster (since the possible state-space is much smaller), but
which are not able to recover the optimal policy and end up in a lo-
cal optimum. Furthermore, on the test instances, these tabular agents
are incapable of generalization (see Figure 2c), whereas DQN, using
function approximation, is able to generalize. Our DQN can quickly
generalize from observations on the training set to those on the test
instances, resulting in a performance on the test set that only slightly
lacks behind the performance on the training instances.

9 A tuned epsilon schedule might mitigate this problem.

Scaling with the Number of Parameters To study the ability of
agents to dynamically configure multiple, strongly interacting pa-
rameters, we evaluated them for an increasing number of parameters
on the Sigmoid benchmark, see Figure 3.

PS-SMAC slowly approaches the same performance as the op-
timal static policy. For an action space of size 3, PS-SMAC and
the static policy are able to achieve a better reward than a ran-
dom policy. With increasing dimensionality, the static policy out-
performs both tabular-agents. Our DQN agent is capable of learn-
ing instance-dependent policies even on moderately higher dimen-
sional action spaces. With strong parameter interactions, (see re-
ward of Benchmark Outline 2) learning policies for multiple param-
eters across a distribution of instances quickly becomes challenging.
However, even on the highest presented dimensionality, our DQN
is able to outperform the best static policy, while still improving at
the end of training. Without longer training nor tuning of the agents’
parameters, configuration of five very strongly coupled parameters
proves very difficult for the presented agents. Parameter interactions
are quite severe, as incrementing the number of parameters roughly
halves the reward achievable by a random policy. If one parame-
ter is adjusted suboptimally, this can drastically, negatively influence
the overall achievable reward. All agents struggle to cope with such
strong interaction effects. Our DQN agent scales best with the num-
ber of parameters, as tabular agents cannot model interaction effects.

Effect of Self-Paced Learning We study the effect of using SPL
to present a learning agent with new instances ordered from easy to
hard and compare it to a simple round-robin (RR) scheme, see Fig-
ure 4. SPL first performs poorly but then learns to transfer its learned
policies to larger sets of instances. Compared to RR, this substan-
tially improves the final reward, approaching the optimal reward.

8 Discussion

In practice, the feasibility of RL for DAC depends on several fac-
tors. First of all, computing state information and querying the pol-
icy to make a decision will induce some overhead. In scenarios with

(a) Sampling from distribution (b) Fixed Training Set (c) Unseen Test Instances

Figure 2: Comparison of generalization to new instances on 1D-Sigmoid with binary action space and T = 11. The solid line represents
the mean reward and the shaded area the standard error over 25 repetitions. To estimate the performance over the distribution of instances
in (a), we sample 10 new random sigmoid functions for evaluation. In (b) we evaluate the agents on 100 training instances. In (c) we show
the generalization capability by evaluating the agents on 100 new, prior unseen test instances, evaluating them after every training-step in (b)
without additional training. A random policy could only achieve a reward of 5.5. The performance of the optimal static policy is given in black.

(a) 1D (b) 2D (c) 3D (d) 5D

Figure 3: Comparison on higher dimensional dynamic configuration problems on {1, 2, 3, 5}D-Sigmoid with |ah,t| = 3 and T = 10. The
solid line is the average performance and the shaded area the standard error over 25 repeated experiments. Due to the interaction effects of the
parameters the reward for random policies is halved when incrementing the number of parameters.

Figure 4: Comparison of training rewards for the ε-greedy agent using
a round robin (RR) scheme against the same agent using self-paced
learning (SPL) on a 1D-Sigmoid with binary actions and T = 11.

runtime as a performance metric, it will therefore be of importance
to find a good trade-off between the granularity of making decisions
and minimizing the overhead. In future work, we plan to jointly learn
the optimal parameter value as well as when to adjust the parameter
value using recent advances in hierarchical RL.

Furthermore, it is important to have informative state features
based on which a policy can change parameter configurations. This is
a known problem for RL in general. However, we argue that most AI
algorithms anyway collect information for reactive heuristics which
could also be used as state information in DAC. Regarding context in-
formation, there exists a plethora of work on descriptive instance fea-
tures, e.g. for AI-planning [13], mixed integer programming [20, 19]
or propositional satisfiability solving [40], which can be used for con-
figuration of algorithms from their respective domains.

As always with RL, the reward function is crucial for learning a
correct behavior. If an algorithm is able to approximate the quality of
solution candidates well, this can be directly used as a reward signal.
However, for some algorithms, the quality of solution candidates is
hard to approximate and in some domains, runtime-related perfor-
mance metrics are relevant, e.g., in SAT solving, which cannot be

easily approximated ahead of time. Nevertheless even for SAT solv-
ing, proxy reward functions were proposed [6] which led to well-
performing SAT solvers. Therefore, we believe it viable in future
work to carefully design reward functions for many AI domains.

9 Conclusion
We proposed a general framework that enables us to learn configu-
ration policies across instances. To the best of our knowledge we are
the first to formalize the dynamic algorithm configuration problem as
a contextual MDP, explicitly taking problem instances into account.
To study different agent types for the problem of DAC in a controlled
setting, we introduced new white-box benchmarks, which enabled us
to study DAC with a variety of different properties.

Using these white-box benchmarks, we demonstrated the robust-
ness of using RL for DAC in scenarios with budget constraints, short
effective sequences, noisy rewards and demonstrate the ability of RL
to handle not only homogeneous but also heterogeneous instances,
readily outperforming classical algorithm configuration. We showed
the effectiveness of function approximation to handle more chal-
lenging state and configuration spaces. We explored the open issue
of handling high-dimensional strong parameter interaction effects,
where out-of-the box RL methods struggled to scale to higher dimen-
sions. Finally we showed the efficacy of self-paced learning for dy-
namic algorithm configuration, ordering instances from easy to hard
to facilitate faster transfer across instances.

ACKNOWLEDGEMENTS
The authors acknowledge funding by the Robert Bosch GmbH, sup-
port by the state of Baden-Württemberg through bwHPC and the
German Research Foundation through INST 39/963-1 FUGG.

REFERENCES

[1] S. Adriaensen and A. Nowé, ‘Towards a white box approach to auto-
mated algorithm design.’, in Proc. of IJCAI’16, pp. 554–560, (2016).

[2] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, ‘Learning to learn by gra-
dient descent by gradient descent’, in Proc. of NeurIPS’16, pp. 3981–
3989, (2016).

[3] C. Ansótegui, J. Pon, M. Sellmann, and K. Tierney, ‘Reactive dialectic
search portfolios for maxsat’, in Proc. of AAAI’17, (2017).

[4] C. Ansótegui, M. Sellmann, and K. Tierney, ‘A gender-based genetic
algorithm for the automatic configuration of algorithms’, in Proc. of
CP’09, pp. 142–157, (2009).

[5] R. Battiti, M. Brunato, and F. Mascia, Reactive search and intelligent
optimization, volume 45, Springer Science & Business Media, 2008.

[6] R. Battiti and P. Campigotto, ‘An investigation of reinforcement learn-
ing for reactive search optimization’, in Autonomous Search, 131–160,
Springer, (2011).

[7] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, ‘Curriculum
learning’, in Proc. of ICML’09, pp. 41–48, (2009).

[8] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap,
M. Botvinick, and N. De Freitas, ‘Learning to learn without gradient de-
scent by gradient descent’, in Proc. of ICML’17, pp. 748–756, (2017).

[9] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, ‘Quantify-
ing generalization in reinforcement learning’, in Proc. of ICML’19, pp.
1282–1289, (2019).

[10] C. Daniel, J. Taylor, and S. Nowozin, ‘Learning step size controllers for
robust neural network training’, in Proc. of AAAI’16, (2016).

[11] B. Doerr and C. Doerr, ‘Theory of parameter control for discrete black-
box optimization: Provable performance gains through dynamic param-
eter choices’, arXiv:1804.05650, (2018).

[12] C. Fawcett, M. Helmert, H. Hoos, E. Karpas, G. Roger, and J. Seipp,
‘Fd-autotune: Domain-specific configuration using fast-downward’, in
Proc. of ICAPS’11, (2011).

[13] C. Fawcett, M. Vallati, F. Hutter, J. Hoffmann, H. Hoos, and
K. Leyton-Brown, ‘Improved features for runtime prediction of
domain-independent planners’, in Proc. of ICAPS’14, pp. 355–359,
(2014).

[14] H. Hoos, R. Kaminski, M. Lindauer, and T. Schaub, ‘aspeed: Solver
scheduling via answer set programming’, TPLP, 15, 117–142, (2015).

[15] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Automated configuration of
mixed integer programming solvers’, in Proc. of CPAIOR’10, pp. 186–
202, (2010).

[16] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Sequential model-based op-
timization for general algorithm configuration’, in Proc. of LION’11,
pp. 507–523, (2011).

[17] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle, ‘ParamILS: An
automatic algorithm configuration framework’, JAIR, 36, 267–306,
(2009).

[18] F. Hutter, M. Lindauer, A. Balint, S. Bayless, H. Hoos, and K. Leyton-
Brown, ‘The configurable SAT solver challenge (CSSC)’, AIJ, 243, 1–
25, (2017).

[19] F. Hutter, L. Xu, H. Hoos, and K. Leyton-Brown, ‘Algorithm runtime
prediction: Methods and evaluation’, AIJ, 206, 79–111, (2014).

[20] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, ‘ISAC -
instance-specific algorithm configuration’, in Proc. of ECAI’10, pp.
751–756, (2010).

[21] G. Karafotias, M. Hoogendoorn, and A. E. Eiben, ‘Parameter control
in evolutionary algorithms: Trends and challenges’, IEEE Transactions
on Evolutionary Computation, 19(2), 167–187, (2015).

[22] M. P. Kumar, B. Packer, and D. Koller, ‘Self-paced learning for latent
variable models’, in Proc. of NeurIPS’10, pp. 1189–1197, (2010).

[23] M. G. Lagoudakis and M. L. Littman, ‘Learning to select branching
rules in the DPLL procedure for satisfiability’, Electronic Notes in Dis-
crete Mathematics, 9, 344–359, (2001).

[24] K. Leyton-Brown, E. Nudelman, and Y. Shoham, ‘Empirical hardness
models: Methodology and a case study on combinatorial auctions’,
Journal of ACM, 56(4), 1–52, (2009).

[25] K. Li and J. Malik, ‘Learning to optimize’, in Proc. of ICLR’17, (2017).
[26] M. Lindauer, K. Eggensperger, M. Feurer, S. Falkner, A. Biedenkapp,

and F. Hutter. SMAC v3: Algorithm configuration in Python. https:
//github.com/automl/SMAC3, 2017.

[27] M. López-Ibáñez, J. Dubois-Lacoste, L. Perez Caceres, M. Birattari,
and T. Stützle, ‘The irace package: Iterated racing for automatic al-

gorithm configuration’, Operations Research Perspectives, 3, 43–58,
(2016).

[28] M. Luby, A. Sinclair, and D. Zuckerman, ‘Optimal speedup of las vegas
algorithms’, Information Processing Letters, 47(4), 173–180, (1993).

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘Human-level control through
deep reinforcement learning’, Nature, 518(7540), 529–533, (2015).

[30] E. Moulines and F. R. Bach, ‘Non-asymptotic analysis of stochastic ap-
proximation algorithms for machine learning’, in Proc. of NeurIPS’11,
pp. 451–459, (2011).

[31] J. Rice, ‘The algorithm selection problem’, Advances in Computers, 15,
65–118, (1976).

[32] Y. Sakurai, K. Takada, T. Kawabe, and S. Tsuruta, ‘A method to control
parameters of evolutionary algorithms by using reinforcement learn-
ing’, in Proc. of SITIS, pp. 74–79, (2010).

[33] M. Schneider and H. Hoos, ‘Quantifying homogeneity of instance sets
for algorithm configuration’, in Proc. of LION’12, pp. 190–204, (2012).

[34] M. Sharma, A. Komninos, M. López-Ibáñez, and D. Kazakov, ‘Deep re-
inforcement learning based parameter control in differential evolution’,
in Proc. of GECCO’19, pp. 709–717, (2019).

[35] J. Snoek, H. Larochelle, and R. Adams, ‘Practical Bayesian optimiza-
tion of machine learning algorithms’, in Proc. of NeurIPS’12, pp. 2960–
2968, (2012).

[36] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki,
K. Uenishi, B. Vogel, and H. V. Yamazaki, ‘Chainer: A deep learning
framework for accelerating the research cycle’, in Proc. of KDD’19, pp.
2002–2011, (2019).

[37] H. van Hasselt, A. Guez, and D. Silver, ‘Deep reinforcement learning
with double q-learning’, in Proc. of AAAI’16, pp. 2094–2100, (2016).

[38] C. Watkins and P. Dayan, ‘Q-learning’, Machine learning, 8(3-4), 279–
292, (1992).

[39] L. Xu, H. Hoos, and K. Leyton-Brown, ‘Hydra: Automatically config-
uring algorithms for portfolio-based selection’, in Proc. of AAAI’10, pp.
210–216, (2010).

[40] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown, ‘SATzilla: Portfolio-
based algorithm selection for SAT’, JAIR, 32, 565–606, (2008).

