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Abstract
The performance of many algorithms in the fields
of hard combinatorial problem solving, machine
learning or AI in general depends on tuned hy-
perparameter configurations. Automated methods
have been proposed to alleviate users from the te-
dious and error-prone task of manually searching
for performance-optimized configurations across a
set of problem instances. However there is still
a lot of untapped potential through adjusting an
algorithm’s hyperparameters online since differ-
ent hyperparameters are potentially optimal at dif-
ferent stages of the algorithm. We formulate the
problem of adjusting an algorithm’s hyperparam-
eters for a given instance on the fly as a contex-
tual MDP, making reinforcement learning (RL) the
prime candidate to solve the resulting algorithm
control problem in a data-driven way. Furthermore,
inspired by applications of algorithm configura-
tion, we introduce new white-box benchmarks suit-
able to study algorithm control. We show that on
short sequences, algorithm configuration is a valid
choice, but that with increasing sequence length a
black-box view on the problem quickly becomes
infeasible and RL performs better.

1 Introduction
To achieve peak performance of an algorithm, it is often
crucial to tune its hyperparameters. Manually searching for
performance-optimizing hyperparameter configurations is a
complex and error prone task. General algorithm configura-
tion tools [Ansótegui et al., 2009; Hutter et al., 2011; López-
Ibáñez et al., 2016] have been proposed to free users from the
manual search for well-performing hyperparameters. Such
tools have been successfully applied to state-of-the-art solvers
of various problem domains, such as mixed integer program-
ming [Hutter et al., 2010], AI planning [Fawcett et al., 2011],
machine learning [Snoek et al., 2012], or propositional satis-
fiability solving [Hutter et al., 2017].

One drawback of algorithm configuration, however, is that
it only yields a fixed configuration that is used during the en-
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tire solution process of the optimized algorithm. It does not
take into account that most algorithms used in machine learn-
ing, satisfiability solving (SAT), AI-planning, reinforcement
learning or AI in general are iterative in nature. Thereby, these
tools ignore the possible induced non-stationarity of the opti-
mal target hyperparameter configuration.

We propose a general framework to learn to control algo-
rithms which we dub algorithm control. We formulate the
problem of learning dynamic algorithm control policies wrt
its hyperparameters as a contextual Markov decision process
(MDP) and apply reinforcement learning to it. Prior work
that considered online tuning of algorithms did not explic-
itly take problem instances into account [Battiti and Campig-
otto, 2011] and did not pose this problem as a reinforcement
learning problem [Adriaensen and Nowé, 2016]. To address
these missing, but important components, we introduce three
new white-box benchmarks suitable for algorithm control. On
these benchmarks we show that, using reinforcement learn-
ing, we are able to successfully learn dynamic configurations
across instance sets directly from data, yielding better perfor-
mance than static configurations.

Specifically, our contributions are as follows:

1. We describe controlling algorithm hyperparameters as a
contextual MDP, allowing for the notion of instances;

2. We show that black-box algorithm configuration is a
well-performing option for learning short policies;

3. We demonstrate that, with increasing policy length, even
in the homogeneous setting, traditional algorithm con-
figuration becomes in-feasible;

4. We propose three new white-box benchmarks that allow
to study algorithm control across instances;

5. We demonstrate that we can learn dynamic policies
across a set of instances showing the robustness of ap-
plying RL for algorithm control.

2 Related Work
Since algorithm configuration by itself struggles with het-
erogeneous instance sets (in which different configurations
work best for different instances), it was combined with al-
gorithm selection [Rice, 1976] to search for multiple well-
performing configurations and select which of these to apply
to new instances [Xu et al., 2010; Kadioglu et al., 2010]. For



each problem instance, this more general form of per-instance
algorithm configuration still uses fixed configurations. How-
ever for different AI applications, dynamic configurations can
be more powerful than static ones. A prominent example for
hyperparameters that need to be controlled over time is the
learning rate in deep learning: a static learning rate can lead to
sub-optimal training results and training times [Moulines and
Bach, 2011]. To facilitate fast training and convergence, var-
ious learning rate schedules or adaptation schemes have been
proposed [Schaul et al., 2013; Kingma and Welling, 2014;
Singh et al., 2015; Daniel et al., 2016; Loshchilov and Hutter,
2017]. Most of these methods, however, are not data-driven.

In the context of evolutionary algorithms, various on-
line hyperparameter adaptation methods have been pro-
posed [Karafotias et al., 2015; Doerr and Doerr, 2018]. These
methods, however, are often tailored to one individual prob-
lem or rely on heuristics. These adaptation methods are only
rarely learned in a data-driven fashion [Sakurai et al., 2010].

Reactive search [Battiti et al., 2008] uses handcrafted
heuristics to adapt an algorithms parameters online. To
adapt such heuristics to the task at hand, hyper-reactive
search [Ansótegui et al., 2017] parameterizes these heuristic
and applies per-instance algorithm configuration.

The work we present here can be seen as orthogo-
nal to work presented under the heading of learning to
learn [Andrychowicz et al., 2016; Li and Malik, 2017;
Chen et al., 2017]. Both lines of work intend to learn opti-
mal instantiations of algorithms during the execution of said
algorithm. The goal of learning to learn, however, is to learn
an update rule in the problem space directly whereas the goal
of algorithm control is to indirectly influence the update by
adjusting the hyperparameters used for that update. By ex-
ploiting existing manually-derived algorithms and only con-
trolling their hyperparameters well, algorithm control may be
far more sample efficient and generalize much better than di-
rectly learning algorithms entirely from data.

3 Algorithm Control
In this section we show how algorithm control (i.e., algorithm
configuration per time-step) can be formulated as a sequential
decision making process. Using this process, we can learn a
policy to configure an algorithm’s hyperparameters on the fly,
using reinforcement learning (RL).

3.1 Learning to Control Algorithms
We begin by formulating algorithm control as a Markov De-
cision Process (MDP) M := (S,A, T ,R). An MDP is a
4-tuple, consisting of a state space S, an action space A, a
transition function T and a reward functionR.

State Space At each time-step t, in order to make informed
choices about the hyperparameter values to choose, the con-
troller needs to be informed about the internal state st of the
algorithm being controlled. Many algorithms collect various
statistics that are available at each time-step. For example, a
SAT solver might track how many clauses are satisfied at the
current time-step. Such statistics are suitable to inform the
controller about the current behaviour of the algorithm.

Action Space Given a state st, the controller has to decide
how to change the value v ∈ Ah of a hyperparameter h or
directly assign a value to that hyperparameter, out of a range
of valid choices. This gives rise to the overall action space
A = Ah1

× Ah2
× . . . × Ahn

for n hyperparameters of the
algorithm at hand.

Transition Function The transition function describes the
dynamics of the system at hand. For example, the probability
of reaching state st+1 after applying action at in state st can
be expressed as p(st+1|at, st). For simple algorithms and a
small instance space, it might be possible to derive the transi-
tion function directly from the source code of the algorithm.
However, we assume that the transition function cannot not
be explicitly modelled for interesting algorithms. Even if the
dynamics are not modelled, RL can be used to learn an opti-
mizing policy directly from observed transitions and rewards.

Reward Function In order for the controller to learn which
actions are better suited for a given state, the controller re-
ceives a reward signalRi(st, at)→ R. On many RL domains
the reward is sparse, i.e., only very few state-action pairs re-
sult in an immediate reward signal. If an algorithm already
estimates the distance to some goal state well, such statistics
might be suitable candidates for the reward signal, with the
added benefit that such a reward signal is dense.

Learning policies Given the MDPM the goal of the con-
troller is to search for a policy π∗ such that

π∗(s) ∈ argmax
a∈A

R(s, a) +Qπ∗(s, a) (1)

Qπ(s, a) = Eπ

[ ∞∑
k=0

γkrt+k+1|st = s, at = a

]
(2)

where Qπ is the action-value function, giving the expected
discounted future reward, starting from state s, applying ac-
tion a and following policy π with discounting-factor γ.

3.2 Learning to Control across Instances
Algorithms are most often tasked with solving varied prob-
lem instances from the same, or similar domains. Searching
for well performing hyperparameter settings on only one in-
stance might lead to a strong performance on that instance but
might not generalize to new instances. In order to facilitate
generalization of algorithm control, we explicitly take prob-
lem instances into account. The formulation of algorithm con-
trol given above does not take instances into account, treating
the problem of finding well performing hyperparameters as
independent of the problem instance.

To allow for algorithm control across instances, we for-
mulate the problem as a contextual Markov Decision Process
Mi := (S,A, Ti ,Ri), for a given instance i ∈ I. This no-
tion of context induces multiple MDPs with shared action and
state spaces, but with different transition and reward func-
tions. In the following, we describe how the context influ-
ences the parts of the MDP.

Context The controller’s goal is to learn a policy that can
be applied to various problem instances i out of a set of in-
stances I. We treat the instance at hand as context to the MDP.
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Figure 1: Control of hyperparameter h of an algorithm on a given
contextual instance i ∈ I, at time-step t ∈ T . Until an instance is
solved or a maximum budget reached, the controller decides which
value v to apply to hyperparameter h based on the internal state st
of the algorithm, on the given instance i .

Figure 1 outlines the interaction between controller and algo-
rithm in that setting. Given an instance i , at time-step t, the
controller applies action at to the algorithm, i.e., setting hy-
perparameter h to value v. Given this input, the algorithm ad-
vances to state st+1 producing a reward signal rt+1, based on
which the controller will make its next decision. The instance
stays fixed during the algorithm run.
State and Action spaces The space of possible states does
not change when switching between instances from the same
set, and is shared between all MDPs induced by the context.
Thus we consider the same state features. To enrich the state
space, we could also add instance-specific information, so-
called instance features such as problem size, which could be
useful in particular for heterogeneous instance sets [Leyton-
Brown et al., 2009; Schneider and Hoos, 2012].

Similar to the state space, the action space stays fixed for
all MDPs induced by the context. The action space solely de-
pends on the algorithm at hand and is thus shared across all
MDPs of the same context.
Transition Function Contrary to the state and action space,
the transition function is influenced by the choice of the in-
stance. For example, a search algorithm might be faced with
completely different search spaces where applying an action
could lead to different kind of states.
Reward Function As the transition function depends on
the instance at hand, so does the reward function. Depend-
ing on the instance, transitions beneficial for the controller on
one instance might become unfavorable or might punish the
agent on another instance.

It is possible to choose a proxy reward function that is
completely independent of the context, i.e., a negative reward
for every step taken. This would incentivize the controller to
learn a policy to quickly solve an instance which would be
interesting if the real objective is to minimize runtime. How-
ever, a controller using such a reward would potentially take
very long to learn a meaningful policy as the reward would
not help it to easily distinguish between two observed states.
Learning policies across instances Given the MPD and a
set of instances I the goal of the controller is to find a pol-
icy π∗i∼I such that

π∗i∼I(s) ∈ argmax
a∈A

Ri∼I(s, a) +Qπ∗i∼I (s, a) (3)

Qπi∼I (s, a) = Eπi∼I

[ ∞∑
k=0

γkri,t+k+1|st = s, at = a, i ∼ I
]

(4)

whereQπi∼I is the action-value function, giving the expected
discounted future reward, starting from s, applying action a,
following policy πi∼I on instance i with discounting-rate γ.
Relation to Algorithm Configuration and Selection This
formulation of algorithm control allows to recover algorithm
configuration (AC) as a special case: in AC, the optimal pol-
icy would simply always return the same action, for each state
and instance. Further, this formulation also allows to recover
per-instance algorithm configuration (PIAC) as a special case:
in PIAC, the policy would always return the same action for
all states, but potentially different actions across different in-
stances. Finally, algorithm selection (AS) is a special case
of PIAC with a 1-dimensional categorical action space that
merely chooses out of a finite set of algorithms.

4 Benchmarks
To study the algorithm control setting we use two benchmarks
already proposed by Adriaensen and Nowé (2016) and intro-
duce three new benchmarks. Our proposed benchmarks in-
crease the complexity of the optimal policy by either increas-
ing the action space and policy length or including instances.
Counting The first benchmark introduced by Adriaensen
and Nowé (2016) requires an agent to learn a monotonically
increasing sequence. The agent only receives a reward if the
chosen action has been selected at the corresponding time-
step. This requires the agent to learn to count, where the size
of the action space is equal to the sequence length. In the orig-
inal setting of Adriaensen and Nowé (2016), agents need to
learn to count to five, with the optimal policy resulting in a
reward of five. The state is simply given by the history of the
actions chosen so far.
Fuzzy The second benchmark introduced by Adriaensen
and Nowé (2016) only features two actions. Action 1 returns
a fuzzy reward signal drawn from N (1, 2), whereas playing
action 0 terminates the sequence prematurely. The maximum
sequence length used in Adriaensen and Nowé (2016) is 20
with an expected reward of the optimal policy also being 20.
Similar to the previous benchmark, Fuzzy does not include
any state representation other than a history over the actions.
Luby Similar to the already presented benchmarks, the
newly proposed Luby (see Benchmark Outline 1) does not
model instances explicitly. However, it increases the com-
plexity of learning a sequence compared to the benchmarks
by Adriaensen and Nowé (2016). An agent is required to
learn the values in a Luby sequence [Luby et al., 1993],
which is, for example, used for restarting SAT solvers. The
sequence is 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, ...; formally,
the t-th value in the sequence can be computed as:

lt =

{
2k−1 if t = 2k − 1,
lt−2k−1+1 if 2k−1 ≤ t < 2k − 1.

(5)

This gives rise to an action space for sequences of length T
withA := {0, 1, . . . , blog2 T c} for all time-steps t ≤ T , with
the action values giving the exponents used in the Luby se-
quence. For such a sequence, an agent can benefit from state
information about the sequence, such as the length of the se-
quence. For example, imagine an agent has to learn the Luby



Benchmark Outline 1: Luby

Actions: at ∈ {0, 1, . . . , blog2 T c} for all 0 ≤ t ≤ T ;
States: st ∈ {t,Hist(at−4, at−3, . . . , at)};
for t ∈ {0, 1, . . . , T} do

if at == luby(t) then
rewardt = 1;

else
rewardt = −1;

end
end

Benchmark Outline 2: Sigmoid

si ∼ U(−100, 100);
pi ∼ N (T/2, T/4);
Actions: at ∈ {0, 1} for all 0 ≤ t ≤ T ;
States: st ∈ {t; si, pi};
for t ∈ {0, 1, . . . , T} do

rewardt = 1− sig(t; si, pi);
if at == 1 then

rewardt = sig(t; si, pi);
end

end

sequence for length T = 16. Before time-step 8 the action
value 3 would never have to be be played. For a real algo-
rithm to be controlled, such a temporal feature could be en-
coded by the iteration number directly or some other measure
of progress. The state an agent can observe therefore consists
of such a time feature and a small history over the five last
selected actions.

Sigmoid Benchmark Sigmoid (see Benchmark Outline 2)
allows to study algorithm control across instances. Policies
depend on the sampled instance i, which is described by a
sigmoid sig(t; si, pi) = 1

1+e−si·(t−pi)
that can be character-

ized through its inflection point pi and scaling factor si. The
state is constructed using a time feature, as well as the in-
stance information si and pi.

At each time-step an agent has to decide between two ac-
tions. The received reward when playing action 1 is given
by the function value of the sigmoid sig(t; si, pi) at time-
step t and 1− sig(t; si, pi) otherwise. The scaling of the sig-
moid function is sampled uniformly at random in the interval
(−100, 100). The sign of the scaling factor determines if an
optimal policy on the instance should begin by selecting ac-
tion 0 or 1. The inflection point is distributed according to
N (T/2, T/4) and determines how often an action has to be
repeated before switching to the other action. Figure 2 de-
picts rewards for two example instances. The sigmoid in Fig-
ure 2a is unshifted and unscaled, leading to an optimal policy
of playing action 1 for the first half of the sequence and 0 for
the rest of the sequence. In Figure 2b the sigmoid is shifted
to the left such that the inflection point is at t = 3 and scaled
by factor 20. The optimal policy in this case is to play action
0 for the first three steps and 1 for the rest of the sequence.

reward action 0 reward action 1

0 2 4 6 8 10
0

.5

1

t

R

(a)

0 2 4 6 8 10
t

(b)

Figure 2: Example rewards for Benchmark 2 with T = 10 on both
instances, p(a) = 5, s(a) = 1 on instance (a) and p(b) = 3, s(b) =
20 on instance (b). The solid line shows the received reward when
playing action 1 and the dashed line gives the reward for action 0.
On the x-axis are the time steps and on the y-axis is the reward. On
instance (a) it is preferable to select action 1 for the first halve of the
sequence whereas on instance (b) it is better to start with action 0.

Benchmark Outline 3: SigmoidMVA

si ∼ U(−100, 100);
pi ∼ N (T/2, T/4);
Actions: at ∈

{
0
L ,

1
L , . . . ,

L
L

}
for all 0 ≤ t ≤ T ;

States: st ∈ {t, si, pi};
for t ∈ {0, 1, . . . , T} do

rewardt = 1− abs(sig(t, si, pi)− at);
end

SigmoidMVA Benchmark SigmoidMVA (see Benchmark
Outline 3) further increases the complexity of learning across
instances by translating the setting of Sigmoid into a multi-
valued action setting. An agent not only has to learn a simple
policy switching between two actions but to learn to follow
the shape of the sigmoid function used to compute the reward.
The available actions an agent can choose from at each time-
step are at ∈

{
0
L ,

1
L , . . . ,

L
L

}
. Note that, depending on the

granularity of the discretization (determined by L) the agent
can follow the sigmoid more or less closely (thereby directly
affecting its reward).

5 Algorithms to be Considered
In this section we discuss the agents we want to evaluate for
the task of algorithm control. We first discuss how to apply
standard black-box optimization to the task of algorithm con-
trol. We then present agents that are capable of taking state
information into account.

5.1 Black-Box Optimizer
In a standard black-box optimization setting, the optimizer in-
teracts with an intended target by setting the configuration of
the target at the beginning and waiting until the target returns
the final reward signal. This is, e.g., the case in algorithm con-
figuration. The same setup can be easily extended to search
for sequences of configurations for online configuration of
the target. Instead of setting a hyperparameter once, the opti-
mizer would have to set a sequence of hyperparameter values,
once per time-step at which the target should switch its con-
figuration. For sequences with T such change points and large
T , this drastically increases the configuration space, since the
optimizer would need to treat each individual parameter as T



different hyperparameters. In addition, black-box optimizers
cannot observe the state information, which are required to
learn instance-specific policies.

5.2 Context-oblivious Agents
As a proof-of-concept Adriaensen and Nowé (2016) intro-
duce context-oblivious agents that can take state information
into account when selecting which action to play next. In their
experiments the only state information they took into account
was the history of the actions.

To move their proposed agents from a black-box setting
towards a white-box setting, during training the agents keep
track of the number of times an action lead from one state
to another, as well as the average reward this transition pro-
duced. This tabular approach limits the agents to small state
and action spaces. The proposed agents include:

• URS: Selects an action uniformly at random.

• PURS: Selects a previously not selected action uni-
formly at random. Otherwise, actions are selected in pro-
portion to the expected number of remaining steps.

• GR: Selects an action greedily based on the expected
future reward.

During the evaluation phase, all agents greedily select the best
action given the observations recorded during training.

URS and GR both are equivalent to the two extremes of
ε-greedy Q-learning [Watkins and Dayan, 1992], with ε = 1
and ε = 0 respectively. PURS leverages information about
the expected trajectory length, but it does not include the ob-
served reward signal in the decision making process. For tasks
where every execution path has the same length (e.g. Count-
ing, Luby, Sigmoid and SigmoidMVA), PURS would fail to
produce a policy other than a uniform random one. Further,
when using PURS, we need to have some prior knowledge if
shorter or longer trajectories should be preferred. For exam-
ple on benchmarks like Fuzzy, PURS is only able to find a
meaningful policy if we know that longer sequences produce
better rewards.

5.3 Reinforcement Learning
Reinforcement learning (RL) is a promising candidate to
learn algorithm control policies in a data driven fashion be-
cause we can formulate algorithm control as an MDP and we
can sample a large number of episodes given enough compute
resources. An RL agent repeatedly interacts with the target al-
gorithm by choosing some configurations at a given time-step
and observing the state transition as well as the reward. Then,
the RL agent updates its believe state about how the target
algorithm will behave when using the chosen configuration
at that time-step. Through these interactions, over time, the
agent can typically find a policy that yields higher rewards.
For small action and state spaces, RL agents can be easily
implemented using table lookups, whereas for larger spaces,
function approximation methods can make learning feasi-
ble. We evaluated ε-greedy Q-learning [Watkins and Dayan,
1992] in the tabular setting as well as DQN using function
approximations [Mnih et al., 2016].

6 Experimental Study
To compare black-box optimizers, context-oblivious
agents [Adriaensen and Nowé, 2016] and reinforcement
learning agents for algorithm control, we evaluated various
agents on the benchmarks discussed above.

6.1 Setup
We used SMAC [Hutter et al., 2011] in version 3
(SMACv3 [Lindauer et al., 2017]) as a state-of-the-art algo-
rithm configurator and black-box optimizer. We implemented
URS using simple tabular 1-greedy Q-learning. We decided
against using PURS as it would only be applicable to Fuzzy,
see Section 5.2.

Q-learning based approaches were evaluated using a dis-
counting factor of 0.99. On benchmarks with stochastic re-
ward we set the learning rate to 0.1 and to 1.0 otherwise. The
ε-greedy agent was trained using a constant ε = 0.1.

As Sigmoid has continuous state features we include Q-
learning using function approximation in the form of a
DQN [Mnih et al., 2013] implemented in RLlib [Liang et
al., 2018]. We used the default configuration of the DQN in
RLlib (0.6.6), i.e., a double dueling DQN where the target
network is updated every 5 episodes and the exploration frac-
tion ε of the DQN is linearly decreased from 1.0 to 0.02. We
only changed the number of hidden units to 50 and the train-
ing batch size and the timesteps per training iteration to the
episode length such that in each training iteration only one
episode is observed.

In each training iteration each agent observed a full
episode. Training runs for all methods were repeated 25 times
using different random seeds and each agent was evaluated
after updating its policy. When evaluating on the determinis-
tic benchmarks (Counting and Luby) only one evaluation run
was performed. On the other benchmarks we performed 10
evaluation runs of which we report the mean reward. When
using a fixed instance set of size 100 on Sigmoid and Sig-
moidMVA, we evaluated the agents once on each instance.

All experiments were run on a compute cluster with nodes
equipped with two Intel Xeon E5-2630v4 and 128GB mem-
ory running CentOS 7. The results on the benchmarks that do
not model problem instances (Counting, Fuzzy and Luby) are
plotted in Figure 3. The results for benchmarks with instances
(Sigmoid and SigmoidMVA) are shown in Figures 4 and 5.

6.2 Results
Counting Figure 3a shows the evaluation results of SMAC,
URS, as well as an ε-greedy agent on Counting. The agents
are tasked with learning a policy of length T = 5 with
at = {0, 1, 2, 3, 4} for all t ≤ T . On this simple bench-
mark, SMAC outperforms both other methods and learns the
optimal policy after observing approximately 100 episodes.
This is in contrast to Adriaensen and Nowé (2016), where on
this benchmark they evaluated black-box optimization for a
static policy producing constant reward 1. The ε-greedy agent
quickly learns policies in which 4 out of 5 choices are set
correctly but requires to observe approximately 900 episodes
until it learns the optimal policy. URS purely exploratory be-
haviour prohibits quick learning of simple policies, requiring
close to 104 episodes until it recovers the optimal policy.
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Figure 3: Results of SMAC, URS and tabular ε-greedy Q-learning, on a set of discrete benchmarks. The x-axis depicts the number of episodes
seen during training and the y-axis the gained reward. The lines depict the gained reward for each agent when evaluating it after the given
number of training episodes with the solid line representing the mean reward over 25 repetitions and the shaded area the standard error. The
presented lines are smoothed over a window of size 10. The results in (a) are obtained on Counting. The results in (b) stem from Fuzzy and
the results in (c) depict the results on Luby.

Fuzzy The results of the agents’ behaviours on Fuzzy with
T = 20 are presented in Figure 3b and extend the findings
of Adriaensen and Nowé (2016). In such a noisy setting, ε-
greedy Q-learning is faster than SMAC in learning the opti-
mal policy, approaching it after roughly 2 000 episodes. How-
ever, SMAC is still able to learn the optimal policy after more
than 24 000 episodes. URS has still not learned the optimal
policy after 105 episodes, only learning a policy that chooses
action 1 approximately 16 times before choosing action 0.

Luby Learning the optimal policy for Luby requires the
agent to learn a policy of length T = 32 with at =
{0, 1, 2, 3, 4, 5} for all t ≤ T . The ε-greedy agent already
learns the optimal policy after observing about 200 episodes.
In roughly the same amount of episodes SMAC found a pol-
icy in which half of the choices are set correctly, and after
observing 105 episodes it is able to find a policy that selects
roughly 70% of the actions correctly. URS was roughly 10
times slower in learning a policy that achieves a reward of
0, selecting half of the actions correctly after roughly 2 · 103
episodes (see Figure 3c); it found its final performance 100
times slower than SMAC.

Sigmoid Results considering instances are shown in Fig-
ure 4. In this setting the agents have to learn to adapt their
policies to the presented instance, with each policy of length
T = 11 and at = {0, 1} ∀t ≤ T . For each episode an in-
stance can be either directly sampled or taken out of a set of
instances stemming from the same distribution. Therefore an
agent that learns policies dependent on the task can achieve
a maximal reward of 11 and black-box optimizers can only
achieve at most 6. To allow the tabular Q-learning approaches
to work on this continuous state-space we round the scaling
factor and inflection point to the closest integer values.

Figure 4a shows the gained reward of the agents when
randomly drawing new instances in each training iteration.
We can observe that all agents received a reward of roughly
5.5 for randomly selecting which actions to play. The DQN
quickly began to learn faster than either of the tabular ap-
proaches, receiving a reward of 8 before ε-greedy and URS
begin to learn an improving policy. After roughly 104 training
episodes the DQN learns policies that adapt to the instance at

hand, whereas the ε-greedy agent gets stuck in a local op-
timum. Due to being completely exploratory, URS does not
exhibit the same behaviour and can continue to improve its
policy before learning the optimal policy after roughly 2 ·104
training episodes. SMAC is unable to find a policy that is able
to adapt to the instances at hand. This is due to the optimizer
not being able to distinguish between a positive and negative
slope of the sigmoid. Therefore, it cannot decide if it should
start a policy with action 0 or 1 before switching to the other.
Furthermore, the agent does not know the inflection point and
can only guess when to switch from one action to the other.

It is most often not the case that we have an entire distri-
bution of instances at our disposal, but only a finite set of
instances sampled from an unknown distribution. To include
this setting in our evaluation, we sampled 100 training and
100 test instances from the same distribution used before. The
reported results here give the performance across this whole
training or test set. On the training set, the results for the DQN
as well as SMAC look very similar to the results for the dis-
tribution of instances. Both tabular agents learn much faster
since the possible state-space is much smaller. However both
agents get stuck in a local optimum and are unable to recover
the optimal policy.

On the test instances, the tabular agents are incapable of
generalization (see Figure 4c), but, using function approxi-
mation, DQN is able to generalize. At first, DQN overfits on
a few training instances, before it learns a robust policy for
many training instances that generalizes to the test instances.

SigmoidMVA The results on SigmoidMVA are shown in
Figure 5. Similar to Sigmoid, agents need to adapt their policy
to a sampled instance, however, on an extended action space
of size 5. Again URS benefits from its random sampling be-
havior, whereas the ε-greedy agent needs to observe roughly
104 episodes before improving over a random policy. Without
any state information SMAC struggles to find a meaningful
policy and the DQN is capable of adjusting the policy to the
instance at hand even on this higher-dimensional space.



(a) Sigmoid (b) Sigmoid Traing (c) Sigmoid Test

Figure 4: Comparison of SMAC, URS and tabular ε-greedy Q-learning, and a DQN on Sigmoid. The x-axis depicts the number of episodes
seen during training and the y-axis the gained reward. The lines depict the gained reward for each agent when evaluating it after the given
number of training episodes with the solid line representing the mean reward over 25 training repetitions and the shaded area the standard
error. To estimate the performance over the distribution of instances in (a), we sample 10 random sigmoid functions when evaluating the
agents. In the case of (b) we evaluate the agents on all 100 training instances. The presented lines are smoothed over a window of size 10. (a)
depicts results over a distribution of instances, (b) depicts results over a fixed set of training instances and (c) the results on prior unseen test
instances, evaluated every 500 training episodes. For the tabular approaches the sate values have been rounded to the closest integer.

Figure 5: Comparison of the agents on SigmoidMVA. The x and y-
axis show the number of episodes and the gained reward respec-
tively. The lines depict the reward for each agent when evaluating it
after the given number of training episodes where the line represents
the mean reward over 25 training repetitions and the shaded area the
standard error, smoothed over a window of size 10.

7 Conclusion
To the best of our knowledge we are the first to formalize
the algorithm control problem as a contextual MDP, explic-
itly taking problem instances into account. To study different
agents types for the problem of algorithm control with in-
stances, we present new white-box benchmarks. Using these
benchmarks, we showed that black-box optimization is a fea-
sible candidate to learn policies for simple action spaces.
With increasing complexity of the optimal policy however,
black-box optimizers struggle to learn such an optimal policy.
In contrast, reinforcement learning is a suitable candidate for
learning more complex sequences. If heterogeneous instances
are considered, black-box optimizers might struggle to learn
any policy that is better than a random policy. In contrast, RL
agents making use of state information are able to adapt their
policies to the problem instance, which demonstrates the po-
tential of applying RL to algorithm control.

The presented white-box benchmarks are a first step to-
wards scenarios resembling real algorithm control for hard-
combinatorial problem solvers on a set of instances. In fu-

ture work, we plan to extend our benchmarks considering
mixed spaces of categorical and continuous hyperparameters
and conditional dependencies. Furthermore, we plan to train
cheap-to-evaluate surrogate benchmarks based on data gath-
ered from real algorithm runs [Eggensperger et al., 2018].
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Towards a white box approach to automated algorithm de-
sign. In Proc. of IJCAI’16, pages 554–560, 2016.

[Andrychowicz et al., 2016] M. Andrychowicz, M. Denil,
S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shilling-
ford, and N. De Freitas. Learning to learn by gradient
descent by gradient descent. In Proc. of NIPS’16, pages
3981–3989, 2016.
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