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ABSTRACT

Previous studies on quality score compression can be classified into two main lines: lossy
schemes and lossless schemes. Lossy schemes enable a better management of computational
resources. Thus, in practice, and for preliminary analyses, bioinformaticians may prefer to
work with a lossy quality score representation. However, the original quality scores might be
required for a deeper analysis of the data. Hence, it might be necessary to keep them; in
addition to lossy compression this requires lossless compression as well. We developed a
space-efficient hierarchical representation of quality scores, QScomp, which allows the users
to work with lossy quality scores in routine analysis, without sacrificing the capability of
reaching the original quality scores when further investigations are required. Each quality
score is represented by a tuple through a novel decomposition. The first and second di-
mensions of these tuples are separately compressed such that the first-level compression is a
lossy scheme. The compressed information of the second dimension allows the users to
extract the original quality scores. Experiments on real data reveal that the downstream
analysis with the lossy part—spending only 0.49 bits per quality score on average—shows a
competitive performance, and that the total space usage with the inclusion of the compressed
second dimension is comparable to the performance of competing lossless schemes.

Keywords: quality score compression, variant calling, genomic data management, lossless data
compression, lossy data compression, high-throughput sequencing.

1. INTRODUCTION

EQUENCING DATA PRODUCED BY HIGH-THROUGHPUT SEQUENCING MACHINES are typically stored in the

FASTQ format (Cock et al., 2010). Due to the growing volumes of sequencing data, processing,
transmission, and storage of the FASTQ files becomes challenging. Therefore, the compression of data stored
in FASTQ files has been receiving great interest in the last years (Numanagi¢ et al., 2016). Compact
representations of the data do not only help during storage and transmission by decreasing the required disk
space or by enabling the possibility to better manage the available bandwidth, but also help during the
analysis of the huge data volumes when the applied compression schemes support functionality such as
random access over the compressed data directly. That dimension, namely compressive genomics, has been
proposed and discussed in previous studies (Loh et al., 2012; Berger et al., 2016).
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FASTAQ files include four lines per read. The first and the third line, beginning with the @ and + symbols,
respectively, indicate the read identifier and an optional description. The second line lists the read-out
nucleotides. For each nucleotide in the second line, a corresponding quality score (QS) Q is stored in the
fourth line. The quality scores indicate the accuracy of the base calling by Q= —10 - log,, P, where P is the
error probability of the base-calling process (Ewing and Green, 1998).

So far, efforts in compressing raw sequencing data stored in FASTQ files have been focusing on
compressing the nucleotide sequences, quality scores, and read identifiers separately. This approach yields
a better performance than jointly compressing the different streams since these streams have divergent
statistical properties. Previous studies on quality score compression can be further separated into two
categories: lossy schemes and lossless schemes. The lossy methods achieve much better compression ratios
by sacrificing some information. This is done by reducing the alphabet size of the quality scores according
to specific quantization methods. Although these lossy approaches help a lot in terms of storage and
transmission of the data, the original values might still be required for further analyses (Van der Auwera
et al., 2013).

The daily practice in sequencing data analysis starts with regular routines. In further steps of the analysis,
deeper investigations are performed on the reads that are mapped to regions of interest detected by these
regular routines. Quantized quality scores may work well during the initial processing unless the incor-
porated quantization does impact further steps significantly. Thus, when the target regions regarding the
tested hypothesis become clear, necessity to access the original quality scores of the selected reads may
become unavoidable during further downstream analyses. Yet another reason to keep the original values
stems from the underlying thought that the original quality scores might be required by new methods in the
future. Specifically, in large population genomics projects, the owners of the data may prefer lossless
compression techniques. Thus, an approach would be preferable where the users have the choice to work
effectively in the first stage with quality scores represented with a lossy scheme, but at the same time have
the choice to reach the original values in following analysis steps.

Motivated by this demand, we explore in this study a two-level approach for the compact representation
of the quality scores. By using a novel decomposition scheme D, we represent each quality score Q with a
tuple D(Q) — {q1, q2). The compression of the ¢, values constitutes the first compression level, and
compressing the g, values creates the second level, where the g, values determine the context during the
compression of the ¢, sequence. The first level is the lossy representation of the quality scores Q. Thus,
working with this level corresponds to a lossy scheme. Given ¢, and ¢, the inverse decomposition D!
yields the original quality scores by Q<D™ '(gi, ¢»). This way, we preserve the capability to extract the
original values. With such a two-level approach, both lossy compression and lossless compression of the
quality scores can be achieved hierarchically. In the scope of this article, we evaluate the lossy layer in
terms of its effect on downstream analyses. The space occupied by the first level and the second levels is
expected to be competitive to previously proposed lossless schemes.

2. PREVIOUS STUDIES

In a FASTQ file the alphabet for the nucleotides (i.e., A, C, G, T, and N) is usually much smaller than
that of the quality scores, which typically stem from an alphabet of size 40 or 41 (Cock et al., 2010). Thus,
quality scores at full resolution are, in general, more difficult to compress. Therefore, the overall success of
compressing an input FASTQ file depends more on the representation of the quality scores than on the
compression of the nucleotide sequences.

Lossless compression techniques focus on detecting regularities in quality score streams (Wan et al.,
2012). For instance, some of the quality scores are likely to be more frequent than others, or several biases
may appear in some positions of the reads due to the underlying sequencing technology. Remember that a
compression scheme can be viewed as a two-step process, where the first phase is to devise a context model
describing the data, and the second phase is to encode the data that are represented with that model using an
entropy coder. General-purpose FASTQ compressors mainly differ in their context modeling approaches.
The DSRC scheme defines three models for quality score streams, and represents a given quality score
sequence according to its best-fitting model (Deorowicz and Grabowski, 2011). SCALCE (Hach et al.,,
2012) and Quip (Jones et al., 2012) make use of a single standard order-3 context model, and encode every
quality score according to its three immediate predecessors. Fastqz (Bonfield and Mahoney, 2013) applies a
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more complex scheme that uses relations in the near predecessors to define the context of the current
quality score.

Lossy compression was considered based on the assumption that the resolution of raw quality scores is
much higher than required for accuracy evaluation, and that the tools in the analysis pipelines will not be
affected much from a lossy representation. It was proven that this assumption is true, and more than that,
actually lossy representations improve the efficiency of downstream analyses in many cases (Yu et al.,
2015; Ochoa et al., 2016). The authors (Wan et al., 2012) explored different binning strategies and their
effects on the compression efficiency. Besides simple bucketing that uses fixed-length intervals, variable-
length intervals inferred through a number of different statistical measures have also been proposed
(Canovas et al., 2014).

Another statistical approach has been introduced with QualComp (Ochoa et al., 2013). QualComp fits a
Gaussian distribution to the quality score sequences (i.e., vectors), and provides users with the ability to define
the level of acceptable distortion during encoding. According to the specified number of bits to be used per
quality score, QualComp performs the optimal alteration of the quality scores such that the mean squared
error is minimized according to the precomputed Gaussian model. This idea has been further improved by the
more recent QVZ and QVZ 2 compressors (Malysa et al., 2015; Hernaez et al., 2016). Besides the binning
and statistical inference approaches, there are other efforts which exploit the information contained in the
read-out nucleotide sequences (Janin et al., 2014; Yu et al., 2015; Voges et al., 2017). For example, the
Quartz compressor (Yu et al., 2015) sets the quality scores of the most frequent k-mers to a predefined high
value with the motivation that if a specific nucleotide sequence is observed many times, then its correctness
does not need any further verification from the quality scores. Thus, the quality scores can be set to a fixed
value. This way the entropy is reduced and higher compression performance is achieved.

3. PROPOSED METHODS

When an analysis pipeline automatically returns results for a set of reads (stored in a FASTQ file), the
analyst usually feels the necessity to perform a verification of these results by investigating the reads
together with their associated quality scores. A bioinformatician working on such reads might become
suspicious when she observes low-quality scores since those indicate a possible error in the base-calling
process, which could have then caused problems in the automatically produced results. Similarly, when
quality scores are larger than a threshold, it does not tell much to the analyst in most cases as there appears
to be not much practical difference between the 99.999% accuracy with Q=50 than 99.9999% with O =60.
This difference becomes less and less important as long as the quality scores get higher. On the other side,
due to the logarithmic nature of the quality scores, Q=10 is quite different from Q =20, since the first case
implies 90% accuracy, whereas the second indicates 99% accuracy in the base-calling process.

Therefore, it seems that a simple bucketing approach with short intervals for the small quality scores and
larger intervals for the higher quality scores might work well in practical analyses. Hence, we propose to
decompose a quality score Q into the tuple

D(Q) — (g1, 92) (1
such that
g1 =round(/Q), )
7@2=0~(qi—q1+1). 3)
Notice that given g, and g, the inverse decomposition yields the original quality score as
0=D g1, q2)=q; —~q1 + 1 +>. @)

This decomposition is inspired by the representation of integers in an Elias gamma code (Elias, 1975; or
its generalization, the Exp-Golomb code, Ostermann et al., 2004). Assume Q=¢? +c with c=1—-¢q; +¢,. If
Q is an n-bit binary number, then g; is an n/2-bit binary number and c lies in the interval [0, 2b]. Then ¢,
can be encoded using any universal coding. Given ¢q;, the number of bits necessary to represent ¢ can be
determined as log,(24q; + 1). However, as the scope of this work is the two-level representation of quality
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TABLE 1. AN EXAMPLE DESCRIBING THE PROPOSED
REPRESENTATION OF QUALITY SCORES

(q1—1) items q% q, items

Q 30 31 32 33 34 35 36 37 38 39 40 41 42 43
g 5 6 6 6 6 6 6 6 6 6 6 6 6 7
% 9 0 1 2 3 4 5 6 7 8 9 10 11 O

The corresponding squared ¢; value is highlighted in bold.

scores and not the exploration of sophisticated entropy coding schemes, we use the well-known general-
purpose compressor bzip2 for the compression of the tuples D(Q).

Table 1 shows the decomposition of quality scores in the interval [30, 43]. The proposed decomposition
creates buckets of length (2 - g), where typically ¢, € {6,7,8,9, 10, 11} since in the FASTQ format the
quality scores are between 33 and 126 (i.e., in the range of printable ASCII characters). The first (¢; — 1) of
the items in a bucket are promoted to a better quality, whereas the last ¢, are faced with a penalty. Notice
that the (2 - g;) items long bins are relatively short for the smaller g, values, which fits to the motivating
observation described above.

Without incorporating the g, values, the representation of quality scores (only by their corresponding g,
values) creates a simple lossy scheme. In that sense, a FASTQ file in which all quality scores are changed to
their ¢? values will exhibit a better compressibility since the alphabet for the quality scores is reduced to at
most 6 symbols instead of 94(=126 —33 + 1) possible characters. Remember that, in general, the observed
number of symbols is around 40 as opposed to the theoretically possible 90+ symbols. Similarly, when the
users would like to obtain the capability to retrieve the original scores, then they need to also keep the g,
sequence. Instead of handling the ¢, sequence as a single stream, which would force the subsequent
compressor to assume the most general alphabet for the ¢, sequence, clustering the ¢, values according to
their corresponding ¢; values would improve the compression ratio (as the g, value in a tuple specifies the
exact alphabet for the g, values). Thus, for each distinct g; value observed in the input FASTQ file, we
maintain a separate sequence of ¢, values. Finally, we compress the ¢; values and the multiple ¢, sequences
individually. Any general-purpose compressor can be applied. As already mentioned, we prefer to use
bzip2. Surely, the users of the proposed system can proceed with different choices at this step.

4. EXPERIMENTAL RESULTS

In this section, we provide experimental results for the evaluation of the proposed compression scheme
QScomp. We compare QScomp to three competitors, namely Crumble (https://github.com/jkbonfield/
crumble), Quartz (Yu et al., 2015), and QVZ 2 (Hernaez et al., 2016). Table 2 lists the tools, including
QScomp, which were selected for the evaluation in this work.

Note that QScomp is the only tool which truly is able to operate in the lossless and in the lossy mode.

The data sets used to evaluate the performance of the selected compression tools originate from the same
individual, namely NA12878. For this individual, the National Institute of Standards and Technology
(NIST) released a consensus set of variants, which we used for our analyses (Zook et al., 2016). Note that
similar analyses were conducted in other works (Alberti et al., 2016; Ochoa et al., 2016; Voges et al., 2017).
The selected data sets are shown in Table 3. For more information on the used data sets we refer the reader
to the Supplementary Data.

Moreover, for the evaluation of the proposed compression scheme QScomp, we selected three different
variant-calling pipelines. The first pipeline is composed of GATK (Van der Auwera et al., 2013) variant

TABLE 2. TOOLS SELECTED FOR THE EVALUATION

Tool name Tool version Lossless (Y/N) Lossy (Y/N)

QScomp ec5c61b Y Y
Crumble 0.5 N Y
Quartz 0.2.2 N Y
QVZ 2 d5383c6 Y Y
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TABLE 3. DATA SETS SELECTED FOR THE EVALUATION

ID Name Technology Coverage
HO1 ERR174324 Ilumina HiSeq 2000 14X
H11 SRR1238539 Ton Torrent 10x
H12 Garvan replicate Illumina HiSeq X 49 x

calling (using the HaplotypeCaller tool) and SNP extraction with subsequent filtering of variants using
GATK Vector Quality Score Recalibration (VQSR) with four different filter values. The second pipeline is
also composed of GATK variant calling using the HaplotypeCaller tool and SNP extraction, but followed
by the more traditional hard filtration of variants instead of VQSR. The third pipeline uses Platypus
(Rimmer et al., 2014) for variant calling. For the individual commands and tools and auxiliary files used,
we refer the reader to the Supplementary Data.

Each of the mentioned pipelines outputs a set of variants in the VCF file format. Subsequently, each set of
variants is compared with the consensus set of variants. We perform this comparison using the tool hap.py
(https://github.com/Illumina/hap.py) released by Illumina and adopted by the Global Alliance for Genomics
and Health (GA4GH). This benchmarking tool outputs the following values for each comparison:

¢ True Positives (T.P.): All those variants that are both in the consensus set and in the set of called
variants.

¢ False Positives (F.P.): All those variants that are in the called set of variants but not in the consensus set.

e False Negatives (F.N.): All those variants that are in the consensus set but are not in the set of called
variants.

¢ Non-Assessed Calls: All those variants that fall outside of the consensus regions defined by a BED file.

These values are used to compute the following two metrics:

e Recall/Sensitivity: This is the proportion of called variants that are included in the consensus set; that
is, R="" 1 p 1EN)s
 Precision: This is the proportion of consensus variants that are called by the variant calling pipeline;
that is, P=T-+
) /(T.P.+E.P.)-

Finally, we measured the maximum memory usage and the execution time of each tool on each dataset
with GNU time.

4.1. Performance analysis of the proposed scheme

In this section we first show the compression ratios of all tools and for all datasets from Table 3.

Figure 1 shows the compression results for all tools in bits per quality score. In addition to the com-
pression results for the mentioned tools, we also show the memoryless entropy per original quality score,
which is 3.62 bits per quality score, averaged over all data sets. Furthermore, we show the gzip and bzip2
compression results for the raw quality scores, which are 3.54 bits per quality score and 3.27 bits per quality
score, also averaged over all data sets.
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8 250
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FIG. 1. Compression ratios results.
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As shown in Figure 1, the lossy quality score representation obtained using QScomp with subsequent
bzip2 compression (i.e., ““QScomp dim!1 (+ bzip2 —9)’") yields 0.49 bits per quality score on average. This
result is comparable to the results obtained with QVZ 2 when a target mean squared error (MSE) of 8 (i.e.,
“QVZ 2 T8”) is specified, which yields 0.35 bits per quality score on average.

We can observe from the figure that the lossless quality score representation of QScomp with subsequent
bzip2 compression (i.e., “QScomp dim1 and dim2.* (+ bzip2 —9)”’) is capable of delivering 3.35 bits per
quality score, which is slightly below the entropy, as expected. The two-level scheme of QScomp with
conditional compression of the second level with respect to first level is slightly superior to just com-
pressing the quality scores with gzip, and comparable to compressing the quality scores with bzip2. Thus,
QScomp does not sacrifice the lossless compression performance, while combining the lossless and lossy
compression through its unique two-level scheme. We finally show in Figure 1 the results of compressing
the joint single sequence of g, values (i.e., ““QScomp diml and dim2_a (+ bzip —9)”’). This experiment
yields 3.53 bits per quality score. These results suggest that the proposed separate compression of multiple
g» sequences is superior to just compressing the g, residues as a single stream.

Furthermore, we measured the maximum memory usage and the execution time of each tool with GNU
time 1.7.

The complete performance results for all tools and datasets are shown in Figure 2.

FIG. 2. Performance measurements results.

HO1 (ERR174324)
Chromosome 11 Chromosome 20
RAM usage (kB) Time (s) RAM usage (kB) Time (s) Platform
Max User System Max User | System| Total
QvzaTi 2,506,427 272 1,126,761 126 1 B
avzaT2 2,506,113 237 1,126,496 110 1
QvzaTa 2,505,804 1,126,331 96 1
2,499,661 1,115,645 89 1 Intel Xeon E5-2680
2,494,090 1,111,468 83 1 v3CPU (2.50
57 2 GHz);270 GB RAM
359 3
289 3
456 238
H11 (SRR1238539)
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RAM usage (kB) Time (s) RAM usage (kB) Time (s) Platform
Max User System Max User | System| Total
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4 57 2 270 GB RAM
9 1,282 3
5 414 2 416
4 260 190 450
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Chromosome 11 Chromosome 20
RAM usage (kB) Time (s) RAM usage (kB) ﬁme{s} Platform
Max User System | Total Max User | System| Total
Qvz 2Tl 7,850,046 1,017 10 1,027 7,850,046 | 1,017 10
Qvz aT2 7,849,238 546 17 93 3,553,962 420 4 424
Quz 214 7,848,577 766 14 780 3,553,311 367 4 371
7,848,052 812 16 828 3,552,965 382 8 390 |Intel Xeon E5-2680)
?,86,896 736 17 753 3,552,674 362 4 366 |v3CPU (2.50 GHz);
436 14 450 205 7 212 270 GB RAM
14 911 8 119
14 825 6 831
387 1,346 285 - |
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FIG. 3. Maximum RAM usage results.

The maximum RAM usage results for all tools and datasets are shown in Figure 3. Note that we applied a
logarithmic scaling to the Y-axis.

The running times for all tools and datasets are shown in Figure 4.

QScomp exhibits the least RAM usage of all tools, with 3.4 MB on average, due to its low algorithmic
complexity. The running times of QScomp are comparable to that of the different runs of QVZ 2 and even
two orders of magnitude lower than that of Quartz.

4.2. Variant calling results

In this section, we show the results of variant calling with the GATK + VQSR pipeline. For further
results obtained from running the other two pipelines, we refer the reader to the Supplementary Data. For
the first set of simulations we used the paired-end run ERR174324 of the NA12878 individual. This run was
sequenced by Illumina on an Illumina HiSeq 2000 system as part of their Platinum Genomes project. The
coverage of this data set is 14 x. Due to the size of data and following the approach of Ochoa et al., 2016,
we consider chromosomes 11 and 20. Furthermore, we averaged the Recall and Precision metrics over the
two chromosomes (11 and 20) and the four VQSR filter values (6 € {90, 99, 99.9, 100}), which yield two
plots. In what follows, we did the same for the other data sets. Thus, we present in total six plots (i.e., 3 data
sets X 2 metrics) in this section.

We can observe from Figure 5 that QScomp compresses the quality scores down to 0.16 bits per quality
score while the Precision is retained. However, we also observe a slight drop in Recall, compared with the
results for the uncompressed data.

3,500
= 3,000
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) 2,000
=
E 1,500
e
g 1,000 II I
; * hoooh ol 1 LLI
IR 1| | BT | BT [ O | B | R R | 1l |
avzaTti avzamz avzaTa avzaTts avzaTie QScomp Crumble-1  Crumble -9 Quartz
® ERR174324, chrll 278 240 229 188 185 136 984 701 1,379
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W SRR1238539, chrll 315 307 290 288 284 135 3,087 921 862
m SRR1238539, chr20 256 241 254 118 172 59 1,285 416 450
m Garvan replicate, chrll 1,027 963 780 828 753 450 2,012 1911 3,330
B Garvan replicate, chr20 1,027 424 371 350 366 212 919 831 1,631

mERR174324, chrll wmERR174324,chr20 m SRR1238539, chrll m SRR1238539, chr20 wm Garvan replicate, chrll m Garvan replicate, chr20

FIG. 4. Total running time results.
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FIG. 5. Recall and Precision results averaged over both chromosomes (11 and 20) and all four VQSR filter values for
the Illumina HiSeq 2000 data set (ERR174324) with a coverage of 14x. VQSR, Vector Quality Score Recalibration.

Next, we show the results for the SRR1238539 run on the NA12878 individual for which an Ion Torrent
sequencing machine was used. The coverage of this data set is 10 x. Again, chromosomes 11 and 20 were
considered due to the size of the data. Moreover, the results shown are also the results of averaging over the
same four filter values and both chromosomes. Figure 6 shows that QScomp is the worst performer in terms
of both Recall and Precision. Since all other tools exhibit a similar performance, we must conclude that the
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FIG. 6. Recall and Precision results averaged over both chromosomes (11 and 20) and all four VQSR filter values for
the Ion Torrent data set (SRR1238539) with a coverage of 10X.



Downloaded by University Of Illinois At Urbana-champaign from www.liebertpub.com at 09/02/18. For personal use only.

A TWO-LEVEL SCHEME FOR QUALITY SCORE COMPRESSION 9

. X 103 Recall <10 Precision

0.5
(]

5]
o,
T
L

o
T
L

-0.5 @ 1

o
w
T
L

Average Recall difference w.r.t. original data
@ ; ¢
n ~
T T T T T
*
Average Precision difference w.r.t. original data

1.5 F - ey

* QVZ2T1

X QvzaT2

® QvzaT4

2 | % avzaTs

B QVZ2Tie

& QScomp (+ bzip2 -9) |
Crumble -1 (+ CRAM)

-25 | = Crumble -9 (+ CRAM]

_Quartz (+ bzip2)

* QVZ2T1

X QVZaT2

® Qvz2T4

* QvZ2T8

m QVZ2Ti6

& QScomp (+ bzip2 -9)
Crumble -1 {(+ CRAM)
Crumble -9 (+ CRAM)

* | Quartz (+ bzip2)

(]

[ed
wm

r

n

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 06 0.8 1
Average bits per quality score Average bits per quality score

FIG.7. Recall and Precision results averaged over both chromosomes (11 and 20) and all four VQSR filter values for
the Illumina HiSeq X data set (Garvan replicate) with a coverage of 49x.

assumptions used for the construction of the binning scheme implemented in QScomp do not seem to hold
for the quality score statistics produced by Ion Torrent sequencing machines.

Finally, we used the first replicate of the sample data set generated by the Garvan Institute from the
Coriell Cell Repository NA12878 reference cell line. These data were sequenced on a single lane of an
Illumina HiSeq X machine. The coverage of this data set is 49 X . These results are shown in Figure 7. In
terms of Recall and Precision, QScomp exhibits a similar performance as for the data set ERR174323,
which is shown in Figure 5. Again, the Precision is retained. However, for this data set, a better Recall can
be observed for all tools, including QScomp. Due to the high coverage of this data set, the competing tools
are able to spend less bits per quality score than QScomp. Nevertheless, QScomp compresses the quality
scores down to 0.55 bits per quality score, yielding a compression factor of 5.9 with respect to the entropy
of the uncompressed data.

5. CONCLUSIONS

We presented a hierarchical quality score compression scheme, which represents the quality scores in
two levels. The first level maps each quality score to its nearest square integer, and the second level encodes
the distance of the original quality score to its mapped value. The impact of the lossy representation of
quality scores on downstream analyses was investigated using three different variant calling pipelines. For
data produced by Illumina sequencing machines, the downstream analysis results are competitive to the
results obtained with competing lossy quality score compressors. Here, the Precision is retained, while a
slight drop in Recall was observed. When this lossy level is accompanied by the second level, we observe
that the compression ratio is around the entropy of the original quality scores. This shows that the suggested
method to represent each quality score by a tuple does not have a negative effect on the lossless com-
pression ratio performance.

What is more, we showed that the proposed separate compression of multiple second-level streams is
superior to the compression of the second level as a single stream. Hence, the incorporation of other
quantization strategies from previous works into the proposed two-level scheme might be a reasonable
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future research avenue. Besides the compression ratios, the memory consumption and the running times are
also important parameters. In this study, with an average of only approximately 3.4 MB, QScomp shows a
significant reduction in peak memory usage, and achieved the highest speed in the benchmark.

Previous studies on quality score compression proposed solutions that are either lossless or lossy. Thus, if
a user prefers lossy compression, the possibility to extract the original quality scores disappears, and in the
reverse case, the user loses the capability to work with lossy quality scores to reduce the necessary
computing resources. The QScomp scheme introduced in this study is unique in terms of providing lossless
and lossy compression in a single framework by utilizing a hierarchical two-level representation.

In daily practice, we suggest to replace the quality scores in FASTQ files with the proposed first-level
values, and to perform initial explorations with this lightweight presentation. The second-level values could
for example be stored in an archive, and when deeper investigations are required, the original quality scores
could be retrieved.
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