
I S C A

Proceedings of the 10th International Conference on
Bioinformatics and Computational Biology

(BICOB 2018)

March 19–21, 2018

Las Vegas, Nevada, USA

Editors: Hisham Al-Mubaid, Qin Ding, Oliver Eulenstein

Copyright c© 2018 by The International Society for Computers and Their Applications (ISCA)
http://www.isca-hq.org

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
of by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher.

ISBN: 978–1–943436–11–8

Printed in Winona, MN, USA — March 2018

http://www.isca-hq.org

International Program Committee

Conference Chair

Oliver Eulenstein Iowa State University, USA

Program Chairs

Hisham Al-Mubaid University of Houston – Clear Lake, USA
Qin Ding East Carolina University, USA

Publicity Chair

Nurit Haspel University of Massachusetts Boston, USA

Committee Members

Abdullah Arslan Texas A & M University - Commerce, USA
Mukul S. Bansal University of Connecticut, USA
Paola Bonizzoni Universita di Milano-Bicocca, Italy
Daniel Brown University of Waterloo, Canada
Kun-Mao Chao National Taiwan University, Taiwan
Lin Chen Elizabeth City State University, USA
Ping Chen University of Massachusetts Boston, USA
Jianlin Cheng University of Missouri Columbia, USA
Peter Clote Boston College, USA
Scott Emrich University of Notre Dame, USA
Krishnendu Ghosh Miami University, USA
Paweł Górecki University of Warsaw, Poland
Osamu Gotoh National Institute of Advanced Industrial Science and Technology (AIST), USA
Matthew Hayes Xavier University of Louisiana, USA
Filip Jagodzinski Western Washington University, USA
Danny Krizanc Wesleyan University, USA
Keith Marsolo Cincinnati Children’s Hospital Medical Center, USA
Bernard Moret Ecole Polytechnique Federale de Lausanne, Switzerland
Kamal Al Nasr Tennessee State University, USA
Tayo Obafemi-Ajayi Missouri State University, USA
Aida Ouangraoua Universite de Sherbrooke, Canada
Yann Ponty CNRS/LIX, Polytechnique, France
Jianhua Ruan The University of Texas at San Antonio, USA
Ugo Vaccaro University of Salerno, Italy
Jianxin Wang Central South University, China
Li-San Wang University of Pennsylvania, USA
Bartek Wilczynski University of Warsaw, Poland
Ka-Chun Wong City University of Hong Kong, Hong Kong
Jin Zhang Washington University in St. Louis, USA
Louxin Zhang National University of Singapore, Singapore
Jaroslaw Zola University at Buffalo, USA

iii

Message from Chairs

One of the greatest values of any scientific conference is in the gathering of a large number of fellow researchers in the same
place and same time. This is the main motivation and purpose of any conference, and this BICOB 2018 is no exception.

Having said that, we, at the organizing committee, are pleased to welcome you to the 10th International Conference on
Bioinformatics and Computational Biology (BICOB 2018), sponsored by the International Society for Computers and Their
Applications (ISCA). We also would like to express our gratitude for you taking the effort to come and present your research
findings to us. This year, BICOB 2018 is held in Las Vegas, Nevada, USA, during March 19–21, 2018, seemingly a popular
time and place for this conference.

BICOB is instituting in itself one of the important outlets of research presentations and discussions in the fields of bioinfor-
matics and computational biology. The tenth BICOB conference offers the opportunity and utmost venue for researchers and
scientists from all over the world to present and discuss their research results, techniques and findings with other researchers
having similar interests in the field of bioinformatics. Also, BICOB encourages interesting applications and emerging chal-
lenges in the field.

Being considered as one of the best destinations for vacations, entertainment, and conventions in the world, Las Vegas was
selected as the venue for BICOB 2018 which is held during March 19–21, 2018 in the heart of the entertainment capital of
the world.

This time the conference features a keynote talk by Dr. Dan Gusfield, who is well known for his outstanding work in
bioinformatics and computational biology. Dr. Gusfield is a distinguished professor coming from UC-Davis, California,
USA, to tell us about his outstanding research results and findings in bioinformatics algorithm and biomedical combinatorics.
This year, the main conference includes eight sessions of regular paper presentations. The conference addresses a broad range
of central topics in the bioinformatics area including: next generation sequencing, biological networks, regulatory networks,
genomics, proteomics, protein structure analysis, data mining and machine learning applications in bioinformatics, diseases
and drug related research, microarray research and applications and more.

The conference is gathering bioinformatics researchers, scientists, practitioners, and attendants from many countries. Further-
more, the participants are coming from various research institutions like universities, corporations, and government research
agencies.

In BICOB 2018, each submission was evaluated and peer-reviewed by three to five reviewers who are usually members
of the international program committee (PC). The members of the PC with their affiliations and countries are listed in the
proceedings and on the conference website. Papers have been evaluated by referees judging the originality, significance,
technical contents, application contents and presentation style. We used the EasyChair online conference management system
to automate the workflow for submission and refereeing.

Finally, we would like to gratefully acknowledge the professional work of the program committee and the sub-reviewers
for contributing a tremendous amount of time. We owe great thanks to ISCA president and board of directors for the well-
organized conference management. We also would like to thank the ISCA executive director for his help, guidance, support,
and work. We also want to thank all presenters and attendees for actively contributing to the success of BICOB 2018 and
look forward to excellent presentations and fruitful discussions at the meeting, which will certainly broaden our professional
horizons. All participants are invited to make new friends within the BICOB family. We sincerely wish to every participant a
very enjoyable and beneficial time at BICOB 2018. And as a final note: next year BICOB will be held in Honolulu, HI, USA
(another great destination for meetings and entertainments; thus we invite you to consider it for your research presentation
and meeting next year in March).

With Our Best Regards

Hisham Al-Mubaid, Program co-Chair
Qin Ding, Program co-Chair
Oliver Eulenstein, Conference Chair

March 2018

iv

Table of Contents

Keynote 1
Integer Linear Programming in Computational and Systems Biology

Dan Gusfield . 1

Genomics 3
RepCalc: a Tool for Calculating Transposable Element Density within the Genome

Tamer Aldwairi, Benjamin Elam, Federico Hoffmann, Andy D. Perkins . 3
Practical Space-efficient Linear Time Construction of FM-index for Large Genomes

Elena Y. Harris . 9
Global optimization approach for circular and chloroplast genome assembly

Sebastien François, Rumen Andonov, Dominique Lavenier, Hristo Djidjev . 17
Adjusted Likelihood-Ratio Test for Variants with Unknown Genotypes

Ronald J. Nowling, Scott J. Emrich . 25

Genes and Gene-Disease Applications 31
Computing Gene-Disease Associations Efficiently

Kamal Taha . 31
Searching Jointly Correlated Gene Combinations

Yuanfang Ren, Ahmet Ay, Travis A. Gerke, Tamer Kahveci . 37
Analysis of Human Genes with Multiple Functions

Hisham Al-Mubaid . 45
Selection of Informative Genomic Regions for Closely Related Isolates and Construction of their Phylogeny

Anindya Das, Xiaoqiu Huang . 52

Data-driven Modeling 58
A Data-driven Biomarker Computational Model for Lung Disease Classification

David Gnabasik, Gita Alaghband . 58
A multiscale model explains the circadian phase dependent firing pattern variations in Suprachiasmatic nuclei and the
occurrence of stochastic resonance

Shiju S, K Sriram . 64
cMutant : A Web Server and Compute Pipeline for Exploring the Effects of Amino Acid Substitutions via Rigidity
Mutation Maps

Hunter Read, Kyle Daling, Connor Freitas, Filip Jagodzinski . 70
Integration of biomedical big data requires efficient batch effect reduction

Jane Synnergren, Nidal Ghosheh, Pierre Dönnes . 76
Predicting Pathways from Untargeted Metabolomics Data

Daniel Salinas, Brendan Mumey, Ronald K. June . 83

Machine Learning Applications in Bioinformatics 89
Automated Biomedical Text Classification with Research Domain Criteria

Mohammad Anani, Indika Kahanda . 89
The Flashing-Decision-Trees: Towards an Intelligent Seizure Prediction System

Arwa Ali Al-Rubaian, Ghada Badr . 95

v

K-means-based Feature Learning for Protein Sequence Classification
Paul Melman, Usman W. Roshan . 99

Protein Mutation Stability Ternary Classification using Neural Networks and Rigidity Analysis
Richard Olney, Aaron Tuor, Filip Jagodzinski, Brian Hutchinson . 105

Protein and Disease Applications 111
Analysis of Energy Landscapes for Improved Decoy Selection in Template-free Protein Structure Prediction

Nasrin Akhter, Amarda Shehu . 111
Myocardial Infarction Detection using Multi Biomedical Sensors

Mohammad Mahbubur Rahman Khan Mamun, Ali T Alouani . 117
Extracting Co-mention Features from Biomedical Literature for Automated Protein Phenotype Prediction using PHENOs-
truct

Morteza Pourreza Shahri, Indika Kahanda . 123
Dynamics of Hepatitis C Virus Infection

Fathalla A. Rihan, Bassel F. Rihan . 129

Biological Sequences and Transcriptome 136
Identifying Translated uORFs based on Sequence Features via Tree-based Algorithms

Qiwen Hu, Steffen Heber . 136
Scalable Approach to Data Driven Transcriptome Dynamics Modeling

Alexandr Koryachko, Samiul Haque, Cranos Williams . 142
IsoRef Improves the Reference-BasedTranscriptome Assembly Accuracy for RNA-Seq Data

Xiang Ao, Zicheng Zhao, Shuai Cheng Li . 148
Exploring Multi-Objective with Protein Sequence Alignment

Maha M. Abdelrasoul, Yaohang Li . 154

Bioinformatics Applications I 161
A Two-level Scheme for Quality Score Compression

Jan Voges, Ali Fotouhi, Jörn Ostermann, M. Oğuzhan Külekci . 161
Minimising the Deep Coalescence

Dawid Dąbkowski, Paweł Górecki . 168
State-of-Art Genomic Data Compression Technology

Dunling Li, Lin-Ching Chang . 175
Computational Prediction of Alternative Metabolic Pathways of Plasmodium Falciparum

Jelili Oyelade, Itunuoluwa Isewon, Olufemi Aromolaran, Efosa Uwoghiren . 181

Bioinformatics Applications II 190
Identifying Temporal Variation of Transcription in Populations

Aisharjya Sarkar, Prabhat Mishra, Tamer Kahveci . 190
Integrated Metabolic Flux and Omics Analysis of Leishmania major metabolism

Sushil Shakyawar, Sonia Carneiro, Isabel Rocha . 198
A Next Generation Sequencing Approach to Analyze Genes Expression in Breast Cancer Stem Cells

Anushree Tripathi, Gautam K. Verma, Krishna Misra . 204
Machine Learning and Sentiment Analysis: Examining the Contextual Polarity of Public Sentiment on Malaria Disease
in Social Networks

Jelili Oyelade, Itunuoluwa Isewon, Efosa Uwoghiren, Olufunke Oladipupo, Olufemi Aromolaran, Michael Kingsley . 210

Author Index 219

vi

Integer Linear Programming in Computational and

Systems Biology

Keynote Address

Dan Gusfield
Department of Computer Science

University of California, Davis
Davis, CA 95616, USA
gusfield@cs.ucdavis.edu

Abstract

Integer (Linear) Programming, abbreviated
“ILP”, is a versatile modeling and optimization
technique that was developed for complex planning
and operational decision making. However, it has
been increasingly used in computational biology
in non-traditional ways, most importantly and
inventively as a computational tool to model
biological phenomena, to analyze biological data,
and to extract biological insight from the models
and the data. Integer programming is often very
effective in solving instances of hard biological
problems on realistic data of current importance,
despite the fact that many of those problems lack
general algorithmic solutions that are efficient (in a
provable, worst-case sense), and that the problem
of solving integer programs also lacks a provable
worst-case efficient general solution.

Highly engineered, commercial ILP solvers are
available (now free to academics and researchers)
to solve ILP formulations. The improvement of the
best solvers has been spectacular, with an estimate
that (combined with faster computers) benchmark
ILP problems can now be solved 200-billion times
faster than twenty-five years ago. Exploiting ILP,
some biological problems of importance can be
modeled in a way that allows a solution in seconds
on a laptop, while more common (statistically-
based) models require days, weeks or months of
computation on large clusters.

The effectiveness of the best ILP solvers on

problem instances of importance in biology opens
huge opportunities. The impact of faster and easier-
to-implement computation could be truly transfor-
mative in several parts of biology. However, there
are challenges in effectively using these tools for
biological problems, and educational and outreach
issues that must be addressed. In this talk, I will
discuss some of the successes, opportunities, and
challenges in exploiting ILP for computational and
systems biology.

Bibliography

Dr. Gusfield’s primary interests involve the
efficiency of algorithms, particularly for problems
in combinatorial optimization and graph theory.
These algorithms have been applied to study data
security, stable matching, network flow, matroid
optimization, string/pattern matching problems,
molecular sequence analysis, and optimization
problems in population-scale genomics. Currently,
he is focused on string and combinatorial
problems that arise in computational biology
and bioinformatics. Dr. Gusfield served as chair
of the computer science department at UCD from
July 2000 until August 2004, and was the founding
Editor-in-Chief of The IEEE/ACM Transactions
of Computational Biology and Bioinformatics until
January 2009.

Dan Gusfield received his Ph.D. in 1980 from UC
Berkeley, working with Richard Karp, and was an
Assistant Professor at Yale University from 1980
to 1986. His dissertation concerned problems of

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

1

sensitivity analysis in graphs, network flow and
Matroid theory. In January 1987 Dan moved to
UC Davis. In July 2016, he was promoted to the
rank of Distinguished Professor.

2

RepCalc: a Tool For Calculating Transposable Element Density within the Genome

Tamer Aldwairi

 Computer Science and Engineering

Mississippi State University

Mississippi State, MS 39762, USA

taa70email@gmail.com

Benjamin Elam

Mathematics and Statistics

Mississippi State University

Mississippi State, MS 39762, USA

 ben.a.elam@gmail.edu

Federico Hoffmann

Biochemistry and Molecular Biology

Mississippi State University

Mississippi State, MS 39762, USA

fgh19@msstate.edu

Andy D. Perkins

Computer Science and Engineering

Mississippi State University

Mississippi State, MS 39762, USA

perkins@cse.msstate.edu

Abstract

 Transposable elements (TEs) are mobile genetic

elements that comprise a large portion of the genome of

many eukaryotic organisms. They can transpose directly

through the use of cut/paste mechanisms or indirectly

copy/paste mechanisms. TE’s can sometimes induce a

harmful effect through inserting themselves in a gene,

rendering it non-functional. A number of tools have been

developed with the goal of providing annotation

information for the location of TEs within the genome.

Our tool provides the researchers with ways to speed up

the process of analyzing, comparing and summarizing the

important information, in regards to the distribution of the

densities for different families and subfamilies of TEs,

whether across the whole genome or within specific

regions of interest (ROI). Equipping researchers with such

a tool is an imperative necessity to the research

community. To demonstrate the usefulness of our tool we

used Piwi-interacting RNA (piRNA) clusters as our ROI

in which we calculate the densities for the different

families/subfamilies of TEs. We observed that the

densities of TEs varies and heavily depends on the

location being analyzed, whether it is a piRNA cluster, a

gene, or other parts of the genome.

1. Background And Motivation

 TEs are one of the several types of mobile genetic

elements, which can be defined as DNA sequences that

can move from one position to another within the genome

through replication and insertion. They can be divided

into two main classes based on their transposition

mechanism. The first type is retrotransposons, which use

copy and paste mechanisms and move indirectly via an

RNA intermediate. These include long terminal repeats

(LTRs), long interspersed elements (LINEs) and short

interspersed elements (SINEs). The second type is DNA

transposons, which move directly through the use of cut

and paste mechanisms. Retrotransposons are more

abundant in plants as well as many other organisms than

DNA transposons. For example, TEs account for

approximately 45% of the human genome, 41%-42% are

retrotransposons 20% are LINEs, 13% are SINEs, 8% are

LTRs, while DNA transposons account for only 3% of the

TEs within the human genome [1][2][3].

 TEs have the potential of causing harm or damage to

the host cell through their continuous movement within

the genome (insertion, deletion, duplication). For

example, they can insert themselves into a functional gene

which could block or disable the functionality of that

gene. However, most TEs are in a non-active state,

meaning they are not duplicating or moving from one

place to another in the genome. Even though active TEs

might be potentially harmful, the genome has developed

mechanisms to suppress and silence their activity [4][5].

Generally speaking, TEs can have a positive or a negative

impact on the organization of an organism’s genome and

its progeny [4].

 TEs have been an important topic of study since their

discovery in the 1940s by McClintok [6]. Advancement

of next-generation sequencing technologies and the large

amount of data produced by these methods has led to the

generation of many tools for the purpose of annotation

and classification of TEs. Some of these tools are tailored

specifically for TE identification while others are general

purpose tools that incorporate identification of TEs as part

of their overall framework. There is a numerous list of

tools for annotation of TE, with Bergman [7] listing more

than thirty tools while Lerat [8] listed more than fifty.

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

3

 These tools include Repeat Masker [9] , CENSOR [10],

RepeatFinder [11], RepSeek [12], DAWGPAWS [13],

RepeatScout [14] and various others. Some tools like

Repeat Masker and CENSOR enable the user to search for

repeats by comparing them to a reference sequence within

certain databases like Repbase [15], which is a repetitive

element database for eukaryotic organisms. These tools

differ significantly in their goals and the underlying

mechanisms of how they work. Some of these are general

purpose tools, while others perform specific tasks such as

TE annotation or classification, and sometimes both tasks.

What these tools have in common is that they provide the

researcher with basic information on the annotation of

TEs. However, we sometimes want to know the

distribution and quantitative information for specific

families and subfamilies of TE classes and whether these

classes are abundant within certain regions [16] [17] [18]

[19] [20] [21]. The tool described here allows researchers

to easily compare the different regions within the genome

to determine whether those regions share certain common

characteristics with respect to the presence or absence of

certain families or sub-families of TEs. It can also be used

to highlight regions of high recombination rates through

identifying those regions with high transposes and no

retrotransposons [25]. It is important to point out that the

tool cannot identify transposon-free regions [26] directly

but those regions can be inferred from the results based on

which regions have been identified to contain TEs. Here,

we provide the researchers with a tool that automates the

process of classifying the transposable elements into their

main class of families and sub-families across different

regions of interest and for the whole genome. Our tool

automates, facilitates and simplifies this long and difficult

task which is usually performed in a non-automated

fashion. We chose to demonstrate the functionality of the

tool by calculating the densities of TEs within Piwi-

interacting RNA (piRNA) clusters for both mouse and rat

genomes.

 We designed a tool called RepCalc that takes as input

the annotation information for TEs, which is usually

available through a variety of databases and specialized

annotation tools. Our tool then generates detailed

quantitative report regarding the TE densities within

specific ROIs as well as across the whole genome. It is

important to note here that this tool is not meant to be

used as a genome annotator for the repeats but as a tool

that simplifies analysis and comparison of annotated TE

information and provides a quick summary of those

results.

2. Implementation

 RepCalc was developed using Python and requires a

separate installation of Tkinter to run the tool in graphical

mode in Linux. Tkinter is a standard Python interface to

the Tk graphical user interface toolkit [22]. However, the

program can run on a Linux terminal without the support

of a visual interface if the Tkinter package is not installed.

It also can run directly on both Windows and Mac OS X

since Tkinter is included during the installation of Python

3.4 or later versions.

3. Results And Discussion

 RepCalc has two modes: graphical mode and

command line mode. To run RepCalc from the command

line, the user must specify a number of arguments. Some

of these arguments are mandatory while others are

optional. The general format for the order of arguments in

the command line mode is shown below. The square

brackets indicate optional arguments. However, the

optional arguments can sometimes become required,

depending upon which arguments are used and the

requirements set by the user. Below are the command line

arguments needed to run RepCalc.

./repcalc -options [length] TE file [CO] ROI file [CO]

output file [configuration]

- TE file: specifies transposable element filename

- CO: column order

- ROI file: specifies region of interest file

 RepCalc can be viewed as a set of three distinctive

tools that provide the user with a different set of

information regarding the quantitative information for the

densities of the TEs based upon the user’s needs. Each

tool gives the user a different set of useful information

with reference to the task being performed. The user may

choose one of three different analysis options. The first

analysis option computes the densities of the TEs within

the whole genome (WG). The second analysis option

finds the total sum of all the densities but within specific

ROI for each family and subfamily of TEs (ROI). The

third analysis option calculates the TE densities within

individual sub-regions for certain ROI/s for each family

and subfamily of TEs (MXROI). Those analysis options

correspond to options (a), (b) and (c), respectively, in the

command line version of the RepCalc tool. Table 1 below

shows the different command line options for Repcalc.

Table 1. Various options for the command line version of

RepCalc.

Description of the option Command
line option

Calculates the densities of TEs within

the whole genome. This option runs the

WG-tool.

A

Calculates the total sum of densities

within certain ROIs for each family and
B

4

subfamily of transposable elements. This

option runs the ROI-tool.

Calculates the transposable element

densities within individual ROIs for each

family and subfamily of transposable

elements. This option runs the MXROI-

tool.

C

The user must specify the order of the

columns for the TEs file.
A

The user must specify the order of the

columns for the RIO file.
B

Transpose the output file (this option

only works with the c option)
T

 In graphical mode, the analysis options are decided by

choosing one of three radio buttons. It is important to note

here that the user is required to choose only one of the

three analysis options for either mode.

 In the command line mode, the options argument

defines how the arguments following it shall be used. The

option letters are (a), (b) and (c), which represents the

different options to calculate TE densities discussed

earlier.We also have the (A) and the (B) options which

tells the program that the column order for the TE file and

the ROI file must be explicitly provided by the user after

the name of the file. The TE and ROI files contain

information regarding their locations (where they start and

end, and the chromosome in which they reside) with a

unique ID assigned to each location. The option (A) is for

the TE file and option (B) is for the ROI file. If the user

does not provide (A) or (B) in the options, then the order

of the column for each one of the data elements in the

files must match the default column order. The default

column order for the data elements is (ID, chromosome,

start, and end) which corresponds to column 1, 2, 3 and 4

respectively. TE Start and end within the TE or the ROI

file are the location information of the TEs and ROIs.

RepCalc can accept a various number of file types input

provided that the user specifies the correct column order

for each data element and that the data column is

whitespace delimited.

 It is important that the ID column in the TE files match

a specific family/subfamily structure, which is identical to

the format given by RepeatMasker. In the ROI file, the ID

can represent any unique identifier for the regions of

interest. These regions of interest may be genes, piRNAs,

miRNAs or any number of regions within the genome.

The option (t) in the command line mode, which

transposes the data, is only used with the (c) option to

transpose the matrix output, to simplify the readability of

the output file. The length argument is mandatory when

using the (a) and (b) options, which are the length of the

whole genome and the total length of the regions of

interest, respectively. When using the (c) option, the

length should not be provided. The TE file argument is

mandatory for all the options while the ROI file argument

is mandatory for options (b) and (c).

 The final argument in the command line mode is an

optional configuration file which is created by the user.

The rules to create the configuration file are specified in

the readme and example.conf files in the documentation

of the program. This option enables the user to modify

how the family/subfamily structure of TEs are displayed

in the output file. It also enables the user to control which

TE families/subfamilies should be included when

calculating the total interspersed repeats. In addition, it

allows the user to specify whether certain families or

subfamilies of TEs are to be included under a different

name or under another family of transposable elements.

For example, one would use this option if the RC

(Rolling-Circle) TE family has a subfamily (i.e. Helitron)

and the user does not wish for that subfamily to be listed

in the output file as an individual subfamily entry under

the main RC family and would prefer it to be listed and

counted as part of the main RC family. The user can

specify this change in the configuration file by typing

RC/Helitron = RC. This will ensure that for each time a

Helitron subfamily is encountered under the RC family, it

will be reported and listed as part of the RC family

without listing the subfamily in the output.

 In the graphical mode of the program, based upon the

user’s choice of the analysis type, certain data fields in the

interface will be enabled or disabled. The user must still

provide the column order of the data elements for the files

uploaded if they do not match the default column order

for the data elements discussed earlier.

 Below is an example of the input requirements that

shows how each tool can be used from within the

command line mode:

1. The WG-tool can be used by choosing the (a) option in

the command line mode. The length of the genome must

be specified. The TE annotation file containing the

locations of the TEs within the genome follows. This file

can often be downloaded from available databases or can

be created by the user using specialized tools. A

restriction is that the file must have the order of the

columns matching the default column order or the user

must explicitly specify the order for each of the columns

required to perform the analysis. A name for the output

file is specified next. The tool then calculates the density

of the transposable elements within the whole genome for

that species and produces a table file similar to the one

generated by RepeatMasker with the number, length, and

percentage for each class and subclass of TEs. The main

advantage of using this tool is efficiency and speed since

it is possible to generate the table file for the whole

genome of an organism in a short time, less than two

5

minutes in most cases when the TE annotation

information is already available.

2. The ROI-tool can be used by choosing (b) in the

command line mode. The ROIs can be genes, microRNAs

(miRNAs), small interfering RNAs (siRNAs), Piwi

interacting RNA (piRNA) or piRNA clusters, or any set

of regions that the researcher wants to analyze. The user

must supply the TE file following the same rules

explained previously for the WG-tool. The user must then

specify a file that contains the information regarding the

location of the ROI within the genome. This file can be

downloaded from online databases, or created by the user.

However, the file must follow the default column order

for the file or explicitly specify the order of the columns

when creating the file. The third argument is the total

length of the ROIs. The user then specifies a name for the

output filename. The total of all the quantitative

information for the densities of the TEs within all the

regions is summed, and an output file with the number,

length, and percentage for each family and subfamily of

transposable elements is produced. Table 2 below shows

an example of a sample of the output table file. The

running time for this program will vary depending upon

the type of data that the user needs to process, whether the

ROIs are piRNAs, miRNAs, genes or any other type of

data, and the number and size of regions that need to be

analyzed.

Table 2. A sample of the table file which shows the output

generated using the ROI-sub-tool

Classes and
Subclasses
of (TEs)

number
of
elements

length
occupied percentage

SINE: 629772 90756490 bp 8.225%

MIR 30228 3608577 bp 0.327%

Deu 334 35149 bp 0.003%

B4 150860 24400087 bp 2.211%

B2 174238 29468031 bp 2.671%

Alu 256697 31969398 bp 2.897%

ID 17343 1266177 bp 0.115%

No subclass 72 9071 bp 0.001%

LINE: 265284 158098186 bp 14.328%

RTE-BovB 45 3783 bp < 0.0005%

CR1 2492 361438 bp 0.033%

Penelope 12 2093 bp < 0.0005%

RTE-X 231 41615 bp 0.004%

L2 15568 2581223 bp 0.234%

3. The MXROI tool can be used by choosing (c) in the

command line mode. The TE file, the ROI file, and the

output file are then specified. Here, the length of the

regions is not required since each individual sub-region is

included by default in our calculation. The user may also

transpose the data using the (t) in the options argument,

and this transpose option is enabled in the graphical

mode. This tool gives the user specific information about

the quantitative information for the densities of the TEs

for each family and subfamily in the specified region/s

and writes this information into a file in a matrix form.

This tool requires more time than the previous two tools

since it provides detailed output regarding each individual

region. The running time for this program varies

depending on the type of data being processed, the

number of regions, and the size of the genome. Figure 1

below shows the various features of RepCalc and how the

user can choose different analysis options.

Figure 1: Different features within RepCalc

4. Application On Real Data

 To test our tool we chose the region of interest to be

piRNA clusters. The locations of piRNA clusters vary

between different species as well as within different

databases, depending upon the mechanism used to

identify those clusters. We chose to analyze two main

databases containing piRNA data: piRNA Bank [23] and

Johannes Gutenberg University of Mainz piNRA database

(JGU database) [24]. The number of clusters within the

same organisms varies between those two databases. In

piRNA bank, the number of mouse piRNA clusters is

2710 while in the JGU database it is 171, also the number

of piRNA clusters of rat is 189 in piRNA bank and 168 in

JGU database. The difference in piRNA clusters in both

databases could be attributed to the different

methodologies used by each database to predict piRNA

clusters.

 From each database, we extracted the information

necessary to locate each piRNA cluster. The information

usually includes the cluster ID, the chromosome where it

6

is located, and the starting and ending position for the

cluster. We provided each tool with the necessary files.

For the WG tool, this is the TE locations found in the

annotation file and total genome length. For the ROI tool,

we provided the piRNA cluster locations, the TE

annotation information and total length for the ROIs. For

the MXROI tool, we used the same information that was

used for the ROI tool with the exception of the

information regarding the length of the ROI.

 We ran the tools on the piRNA data and generated table

files representing the densities for the TEs within the

whole genome for both mouse and rat using the WG tool.

Using the ROI tool we obtained the densities for the TEs

within piRNA clusters. We also created a matrix

representing the densities for the TEs for each family and

sub-family of transposable elements within each distinct

piRNA cluster using the MXROI tool. To verify the

accuracy of our calculation we compared the densities for

the TEs within the genome calculated using our tool to the

densities calculated using Repeat Masker. Figures 2 and

Figure 3 below show the different densities for TEs across

different regions within the mouse and rat genome.

Figure 2: Different Densities of TE in Mouse

 Figure 3: Different Densities of TE in Rat

5. Conclusions

 RepCalc is a tool designed to be used for generating

detailed quantitative information about the distribution of

certain classes of TE families and their subfamilies at the

genome level, within specific ROIs and across individual

sub-regions, utilizing TE annotation information available

throughout the various databases and annotation tools

designed for this purpose. The tool is comprised of three

tools, each one of them provides the user with a different

level of quantitative detail regarding the TE densities

across different segments of the genome.

 To demonstrate how the tool works, we calculated the

densities of TE families and sub-families within piRNA

clusters and compared them to the TE densities within the

genes and across the genomes of both mouse and rat

utilizing two different piRNA databases. We found that

the piRNA clusters that were extracted from piRNA bank

exhibit a higher TE density than the JGU database for

both the mouse and rat genes as well as across the whole

genome.

Availability And Requirements

Project name: RepCalc

Project home page: https://github.com/eenblam/repcalc

Operating system: Windows, Linux, Mac OS X

Programming languages: Python 3.4

Other requirements: Python 3.4, Tkinter

Competing Interests

The authors declare that they have no competing interest.

Authors' Contributions

TA, AP and FH developed the concept. TA and BE

designed the software. BE implemented the software. TA

and BE tested and evaluated the software. TA, AP and BE

wrote the manuscript. All the authors read and approved

the final manuscript.

Acknowledgements

This work was supported by the National Science

Foundation under award EPS-0903787. In addition we

would like also to thank Dr. David Ray for his helpful

suggestions throughout the work on this project.

References
[1] Lander ES, Linton LM, Birren B, Nusbaum C, Zody

MC, Baldwin J, et al. Initial sequencing and analysis

of the human genome. Nature, 409:860–921, 2001.

7

[2] Pray L. Transposons: The jumping genes. Nat.

Educ,1:204, 2008.

[3] Fedoroff N V. Transposable Elements, Epigenetics ,

and Genome Evolution. Science, 338:758–767, 2012.

[4] Malone CD, Hannon GJ. Molecular evolution of

piRNA and transposon control pathways in

Drosophila. Cold Spring Harb Symp Quant Biol,

74:225–234, 2009.

[5] Slotkin RK, Martienssen R. Transposable elements

and the epigenetic regulation of the genome. Nat Rev

Genet, 8:272–285, 2007.

[6] McClintock B. The Origin and Behavior of Mutable

Loci in Maize. Proc. Natl. Acad. Sci. U. S. A.,

36:344–355, 1950.

[7] Bergman CM, Quesneville H. Discovering and

detecting transposable elements in genome

sequences. Brief. Bioinform.,8:382 – 392, 2007.

[8] Lerat E. Identifying repeats and transposable

elements in sequenced genomes: how to find your

way through the dense forest of programs.

Heredity,104:520 – 533. 2010.

[9] Smit, AFA, Hubley, R & Green P. RepeatMasker.

http://www.repeatmasker.org/, March 2017.

[10] Jurka J, Klonowski P, Dagman V, Pelton P.

CENSOR--a program for identification and

elimination of repetitive elements from DNA

sequences. Comput. Chem, 20:119 –121.1996.

[11] Volfovsky N, Haas BJ, Salzberg SL. A clustering

method for repeat analysis in DNA sequences.

Genome Biol, 2(8):1-11, 2001.

[12] Achaz G, Boyer F, Rocha EPC, Viari A, Coissac E.

Repseek, a tool to retrieve approximate repeats from

large DNA sequences. Bioinformatics, 23:119–121,

2007.

[13] Estill JC, Bennetzen JL. The DAWGPAWS pipeline

for the annotation of genes and transposable elements

in plant genomes. Plant Methods,5(1):1-11, 2009.

[14] Price AL, Jones NC, Pevzner PA. De novo

identification of repeat families in large genomes.

Bioinformatics, 21:i351–i358, 2005.

[15] Jurka J, Kapitonov V V., Pavlicek A, Klonowski P,

Kohany O, Walichiewicz J. Repbase Update, a

database of eukaryotic repetitive elements. Cytogenet.

Genome Res,110:462–467 ,2005.

[16] Carène Rizzon, Gabriel Marais, Manolo Gouy,

Christian Biémont. Recombination Rate and the

Distribution of Transposable Elements in the

Drosophila melanogaster Genome. Genome Res, 12:

400-407, 2002.

[17] Cridland JM, Macdonald SJ, Long AD, Thornton

KR. Abundance and distribution of transposable

elements in two Drosophila QTL mapping resources.

Mol Biol Evol, 30(10):2311-2327, 2013.

[18] Bartolomé C, Maside X, Charlesworth B. On the

abundance and distribution of transposable elements

in the genome of Drosophila melanogaster.Mol Biol

Evol. 19(6):926-937, 2002.

[19] Jae-Sung Rhee, Beom-Soon Choi, Jaebum Kim, Bo-

Mi Kim, Young-Mi Lee, Il-Chan Kim, Akira

Kanamori, Ik-Young Choi, Manfred Schartl & Jae-

Seong Lee. Diversity, distribution, and significance

of transposable elements in the genome of the only

selfing hermaphroditic vertebrate Kryptolebias

marmoratus. Scientific Reports. 7, Article

number:40121, 2017.

[20] Leonardo Galindo González and Michael K

Deyholos. Identification, characterization and

distribution of transposable elements in the flax

(Linum usitatissimum L.) genome. BMC Genomics.

13:644, 2012.

[21] Xulio Maside, Carolina Bartolome, Stavroula

Assimacopoulos, Brian Charlesworth. Rates of

movement and distribution of transposable elements

in Drosophila melanogaster: in situ hybridization vs

Southern blotting data. Genetics Research.

78(2):121-136, 2001.

[22] 24.1. Tkinter — Python interface to Tcl/Tk — Python

v2.7.8 documentation.

https://docs.python.org/2/library/tkinter.html, August

2014.

[23] Lakshmi SS, Agrawal S. piRNABank: a web

resource on classified and clustered Piwi-interacting

RNAs. Nucleic Acids Res, 36:D173–D177, 2008.

[24] Rosenkranz D, Zischler H. proTRAC - a software for

probabilistic piRNA cluster detection, visualization

and analysis. BMC Bioinformatics,13:1-10, 2012.

[25] Laurent Duret, Gabriel Marais , Christian Biémont.

Transposons but Not Retrotransposons Are Located

Preferentially in Regions of High Recombination

Rate in Caenorhabditis elegans. GENETICS, 156(4):

1661-1669, 2000.

[26] Cas Simons, Michael Pheasant, Igor V. Makunin,

John S. Mattick. Transposon-free regions in

mammalian genomes. Genome Res, 16(2): 164–172,

2006.

8

Practical Space-efficient Linear Time Construction of FM-index for Large Genomes

Elena Y. Harris
California State University, Chico

Chico, California, 95929, USA
eyharris@csuchico.edu

Abstract

The Burrows-Wheeler Transform (BWT) and Full-text
index in Minute space (FM-index) are indispensable data
structures that are used in the next generation sequencing
data analysis to efficiently map reads to a reference
genome. Recently developed algorithms SA-IS and BWT-
IS allowed construction of a Suffix Array and Burrow-
Wheeler Transform, respectively, for mammalian-size
genomes in less than an hour. In practice, BWT-IS
algorithm outperforms SA-IS in terms of RAM usage.
Building an FM-index from a BWT requires LF-mapping
that is a relatively time-consuming step. Here, we present
a space-efficient linear time algorithm called BWT-ISFM
that builds an FM-index concurrently with a construction
of BWT. Our algorithm supports a genome size of up to
8Gb (giga-basepairs) in length while a publicly available
BWT-IS has a limit on a genome size of 4Gb. Moreover,
in practice, our algorithm requires only 2.3n bytes of RAM
for a genome size of n compared to 4n bytes of RAM used
by SA-IS algorithms.

keywords: next generation sequencing; BWT; FM-
index

1 Introduction

The Burrows-Wheeler Transform, BWT, introduced by
Burrows and Wheeler [1] together with a Full-text index in
Minute space, FM-index, proposed by Ferragina and
Manzini [3], are used to align sequenced reads generated
by the next generation sequencing instruments to a
reference genome. Suffix Array, SA, a data structure
introduced by Manber and Myers [9] is a concise
representation of sorted suffixes of a given string T. Given
a string T, SA is an array that stores positions of the
suffixes of T sorted in lexicographic order. Given a SA,
BWT can be constructed in linear time by scanning the SA
and retrieving characters of T at the previous positions of
the stored in the SA positions. Recent advances in linear
time construction of a SA (see the survey by Dhaliwal et
al. [2]) allow building a SA for large mammalian genomes
such as human genome in tens of minutes using practically
affordable space of about 15GB. It has been shown in
Harris et al. [4] that building the BWT on two strands of a
genome, positive strand and negative strand, speeds up
read alignment two times. In this case and, in general, for
larger genomes, space of at least 4n bytes (hereafter, n is

the length of a genome) required by the most time-efficient
SA algorithms, becomes not so practical. For example,
building a SA over two strands of a human genome of 6Gb
would require at least 24GB.

Only few aligners use a SA to map sequenced reads to a
reference genome, e.g. Hoffmann et al. [5]. Most aligners
rely on using BWT together with a FM-index. Recently, a
linear time algorithm BWT-IS for building BWT directly
was developed by Okanohara and Sadakane [11]. It
extends on the ideas of the recursive linear time SA-IS
algorithm by Nong et al. [10] that uses induced sorting to
build a suffix array. In practice, BWT-IS requires only up
to 2.2n bytes of memory, which is a significant advantage
over 4n required for building a SA. Building BWT directly
(without building a SA) for a human genome size is also
time efficient – it takes less than a half of an hour on a
human genome of size 3Gb. To build an FM-index from
BWT, first, a succinct data structure is built in linear time
that stores for each position i of BWT the total number of
occurrences of each character of the given alphabet in
BWT from the beginning to i. This structure is used in the
next step, LF-mapping, to retrieve and explicitly store
genomic positions equidistant from each other at a fixed
range, called step. In practice, O(n)-time LF-mapping is
relatively time consuming (compared to the building of the
BWT). Some algorithms (e.g. by Kärkkäinen [6]) build
BWT and SA in consecutive blocks, so the genomic
positions for each block are available for output on the fly.
The downside of this approach is (nlogn) time
requirement for building the BWT and FM-index. The
linear time algorithm BWT-IS does not store genomic
positions while constructing a BWT. In order to construct
an FM-index, we must first build BWT and then use LF-
mapping to construct an FM-index, which requires
additional time. Moreover, the existing implementation of
BWT-IS provided by the authors and publicly available
implementations of SA-IS have a limitation on the genome
size of less than 4Gb.

Here, we propose a practical, space-efficient, linear time
algorithm, BWT-ISFM, that calculates the FM-index while
building the BWT directly from a given genome. For two-
strands of human genome of 6Gb, it requires only 2.3n
bytes of memory and builds the BWT and FM-index in less
than an hour. Our algorithm supports genome size of up to
233 characters long, 8Gb. In addition, it introduces a new
algorithmic approach to optimize one step of SA-IS
algorithm that may be used for a pool of ideas on
optimization of BWT and SA constructions for small,

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

9

constant alphabets. Thus, our algorithm offers a memory
advantage over SA-IS algorithms, extends genome size
limitation, and constructs an FM-index on the fly while
building the BWT in practical time.

2 Preliminaries and Related Work

Let T be a string of length n over the given ordered

alphabet of size . Let $ be the sentinel character that is
the smallest in and occurs in T only once at the end of
the string. Let T[i] be a character of T, for 0 i n-1, and
T[i…j] be a substring of T of consecutive characters
starting with character T[i] and ending with T[j]. A suffix
of T, denoted by Ti, is a substring T[i…n-1], i.e. Ti ends
with $. A suffix array SA for a given string T is an array of
size n such that SA[i] stores the starting position p of suffix
Tp for 0 i n-1 and TSA[0] < TSA[1] < …< TSA[n-1]. In other
words, SA holds the starting positions of all suffixes of T
sorted in lexicographic order. Given a string T of length n
over alphabet of size , a suffix array can be built in
linear time. Some of the recently developed algorithms for
SA construction that use recursion and induce sorting of
suffixes are by Ko and Aluru [7] and by Nong et al. [10].
Hereafter, we will refer to the algorithm by Nong et al. [10]
called SA-IS in our detailed discussion.

SA-IS uses a concept of LMS substrings to induce-sort
suffixes of a given string T. To understand an LMS
substring, we need to categorize characters of T by L-type
and S-type (stands for Large and Small). The sentinel
character $ is of S-type. For 0 i n-2, character T[i] is of
S-type if it is lexicographically smaller than the next
character T[i+1], and T[i] is of L-type if it is greater than
T[i+1]. If T[i] and [i+1] are equal, then T[i] has the same
type as T[i+1]. Enumeration of characters of T by S- or L-
type can be done in linear time by scanning T in Right-to-
Left fashion. An LMS character stands for the left most S-
type character and it is character T[i] of S-type that has
previous character T[i-1] of L-type. Character T[0] is
considered to have sentinel as the previous character, so
T[0] cannot be an LMS character. Further, suffixes of T are
named L-type, S-type and LMS-type after their first
character’s type, e.g. if T[i] is of L-type, then Ti is an L-
type suffix. An LMS substring of T is a substring T[i…j]
such that T[i] and T[j] are LMS characters and no other
character between indices i and j are LMS characters. The
sentinel character is the only LMS substring of length one.

When suffixes of T are arranged in lexicographic order,
suffixes starting with the same character c occur in
consecutive range, and their positions are stored in
consecutive entries of SA. We will refer to the consecutive
range SA[i…j] that stores starting positions of all suffixes
of T starting with character c as a c-bucket. Sorted in
lexicographic order suffixes in the same c-bucket have the
following order: L-type suffixes precede S-type suffixes in
the c-bucket (please refer to the original paper for proof of
this and other statements regarding SA-IS algorithm).

Furthermore, SA-IS algorithm uses a notion of fronts
and ends of c-buckets. If a SA[i…j] is a c-bucket, initially,
index i is the head of c-bucket pointing to the front of the
bucket and index j is the tail of c-bucket pointing to the end
of the bucket; as entries of SA fill in, the heads and the tails
of the buckets are incremented and decremented
respectively.

Figure 1 shows the outline of SA-IS algorithm and
Figure 2 demonstrates the execution of the steps of SA-IS
for a string T='DABRACADABRACABRAB$'. Given a
string T, SA-IS calculates the type array t that stores S- and
L-type for characters of T. Using t, it identifies the starting
positions of LMS substrings and places them into ends of
the corresponding c-buckets. This is done in linear time by
scanning t Right-to-Left (see Figure 2, A and B). Next,
InduceSort(T, SA, t) procedure consists of two steps: (1)
Left-to-Right scanning of SA with head pointers initialized
to the fronts of the corresponding c-buckets, and (2) Right-
to-Left scanning of SA with tail pointers initialized to ends
of the corresponding c-buckets. During Left-to-Right
scanning of SA, for each position p at SA[i], it checks
whether the character T[p – 1] at the previous position p –
1 is of L-type, and if so, it places position (p – 1) into the
current front of the c-bucket, where c is T[p – 1], and
increments the head of c-bucket (see Figure 2 C).

During Right-to-Left scanning of SA, for position p at
SA[i], it checks whether the character T[p – 1] at the
previous position p – 1 is of S-type, and if so, it places
position (p – 1) into the current end of the c-bucket, where
c is T[p – 1], and decrements the tail of c-bucket. By the
end of this step, LMS substrings are correctly sorted in
lexicographic order relative to each other.

Figure 2 D shows SA after this step and shows LMS
substrings sorted in lexicographic order relative to each
other.

ALGORITHM 1: SA by induced sorting
0: Input: string T of length n over alphabet of size
 Output: Suffix Array for T
1: Check for termination condition: if n is equal to ,

calculate SA directly
2: Calculate S/L-type array t
3: Place the starting positions of LMS substrings into

the ends of c-buckets of SA
4: InduceSort(T, SA, t)
5: Assign names to LMS substrings
6: Build the shortened string T1
7: Recursively calculate SA1 for T1
8: Induce positions of LMS substrings of T from

positions of suffixes T1 stored at SA1
9: Place the starting positions of LMS substrings in the

sorted order in their corresponding c-buckets of SA
10: InduceSort(T, SA, t)
11: return: SA

Figure 1: SA-IS outline

10

The next step of SA-IS is to assign a new integer-name
to each LMS substring. The sentinel LMS is assigned name
0. The naming of the rest of LMS substrings is done by
Left-to-Right scanning of SA, and comparing two
consecutive LMS substrings: if two substrings are the
same, then they are assigned the same name, otherwise, the
current LMS is assigned the next integer-name than the
previous LMS.

Finally, to build a shortened string T1 that consists of
integer-names of LMS substrings of T, the integer-names
must be placed in the same order as their corresponding
LMS substrings occur in T. To clarify, if the i-th LMS
substring of T has been assigned integer-name d1 and the
k-th LMS substring of T has been assigned integer-name
d2, then character T1[i] = d1 and T1[k] = d2. Figure 1 E
shows the resulting T1 for the given T in our example.

To make sure this step is done in linear time, the original
algorithm [10] proposed to keep a bit array of length n with
1s denoting the starting positions of LMS substrings. In
addition, a succinct data structure supporting Rank(i)
operation must be prebuilt in linear time, where given the
starting position i of an LMS substring in T, Rank(i) in
constant time returns the rank of the LMS substring in T
(the order of the LMS substring in T from left to right).

Thus, once the LMS substring T[i…j] is assigned name d,
we set T1[Rank(i)] = d.

The recursive call to SA-IS on the shortened string T1
returns the suffix array SA1 for T1. The next step of the
algorithm is to induce the positions of LMS substrings of
T from the suffix positions of T1 stored in SA1. Since each
character T1[j] corresponds to the j-th LMS substring of T,
we can convert positions of suffixes of T1 to starting
positions of the corresponding LMS of T as follows. Let j
= SA1[i] be the position of the suffix of T1, starting with
T1[j], which corresponds to the j-th LMS in T. Then we can
use a prebuilt in linear time succinct data structure that
supports operation Select(j) that returns the position of the
j-th LMS in T in constant time, given j. After inducing the
starting positions of the LMS substrings in T from suffix
positions of T1, we have positions of LMS suffixes of T
sorted in lexicographic order and place them into SA at the
ends of the corresponding c-buckets.

The last step InduceSort is used again to induce SA from
the LMS positions. Each step of SA-IS takes linear time.
Since two LMS characters cannot be consecutive
characters by definition, then the length of T1 is at most n/2,
half of the length of T, and, hence, the recursive algorithm
SA-IS takes linear time.

Figure 2: Execution of Algorithm 1 applied to the given string T='DABRACADABRACABRAB$'. (A) Type array t
is shown for T and the starting positions of LMS substrings are marked with * character. (B) Suffix array SA is shown
after the starting positions of LMS substrings have been placed at the end of the c-buckets, where c is the starting
character of an LMS. (C) SA is shown after Left-to-Right scanning of SA and after the order of L-type suffixes has
been induced from LMS and L-type suffixes. The induced L-type suffix positions are shown in bold. (D) SA is shown
after Right-to-Left scanning and after the order of S-type suffixes has been induced from L-type and S-type suffixes.
The induced S-type suffix positions are shown in bold. (E) The shortened string T1 is shown: each integer-character
T1[i] corresponds to the i-th LMS substring of T, whose names have been assigned according to their lexicographic
order in SA.

11

BWT-IS simulates InduceSort procedure with the help
of four queues: LMS, L, S and LS (each of the four queues
for each character in the alphabet). Instead of keeping a
suffix array of size n that holds positions of all suffixes,
BWT-IS keeps LMS substrings of T directly and uses
circular shift of characters in LMS so that the front
character directs the next step of induce-sorting. Initially
all LMS substrings are reversed and placed into LMS
queues (by their last character), e.g. the reverse of an LMS
T[i…j] is stored in LMST[j] queue for T[j] character.

Left-to-Right scanning of InduceSort procedure
processes c-buckets in increasing order of characters c.
BWT-IS simulates this step by considering characters of
the alphabet in increasing order, and for each character c,
first, it processes Lc queue and then LMSc queue (just as
SA-IS algorithm processes L-type suffixes and then LMS
suffixes of a c-bucket). While Lc queue is not empty, a
current LMS is popped at the front of the queue, and if the
front character b of the current LMS substring is greater
than or equal to c, then b is of L-type, so the LMS substring
is pushed to the back of Lb queue (in this case, b is shifted
to the back of the LMS substring). Otherwise, the LMS
substring is pushed to the back of LSc queue. This
simulates processing of L-type suffixes of a c-bucket. Next,
while LMSc queue is not empty, a current LMS substring
is popped from the front of the queue, and the front
character b of the current LMS substring is placed to the
back of the LMS substring. The character b is of L-type, so
the LMS substring is pushed to the back of the Lb queue.
These two steps simulate Left-to-Right scanning of SA and
induce sorting of L-type suffixes.

The Right-to-Left scanning of SA of SA-IS algorithm is
simulated by processing characters of the alphabet in
decreasing order. Prior to this step, LS queues are reversed.
Next, for each character c, first Sc queue is processed and
then LSc queue is processed. In SA-IS this corresponds to
processing of S-type suffixes and then L-type suffixes of a
c-bucket during Right-to-Left scanning of SA. While Sc
queue is not empty, pop a current LMS substring from the
front of the queue, move the front character b of the LMS
substring to the back of the LMS substring, and if b is less
than or equal to c (i.e. b is of S-type), then push the LMS
substring onto the back of Sb queue. Next, while LSc is not
empty, pop a current LMS substring from the front of the
queue, move the front character b to the back of the
substring, and push LMS substring onto the back of Sb
queue. During these movements involving the four types
of queues, BWTs of L-type suffixes and of S-type suffixes
are built separately for each character c, and at the end of
the algorithm, BWT for T is constructed from these shorter
BWT substrings.

Hereafter, we will refer to BWT-IS as it is implemented
by the authors of the original paper. Given a string T, (1)
BWT-IS sorts LMS substrings using quick sort and builds
a shortened string T1, then (2) calls SA-IS algorithm to
recursively calculate SA1 for T1; (3) deduces positions of

the LMS substrings of T from positions of suffixes of T1 in
SA1; and finally, (4) simulates InduceSort using the four
types of queues to build the BWT for T. BWT-IS saves
space by avoiding storing SA for T.

In the presented here algorithm, we use BWT-IS as the
basis for our algorithm BWT-ISFM. The major difference
between the proposed algorithm and BWT-IS is that we
keep the starting positions of LMS suffixes in the queues
instead of LMS substrings. This allows accessing induced-
sorted positions of suffixes directly on the fly while
constructing the BWT, which allows building an FM-index
on the fly. In addition, our implementation of sorting
distinct LMS substrings and building a shortened T1 of the
given string T differs from the BWT-IS’s implementation.
The rest of the paper is organized as follows. In section 3,
we describe our algorithm and analyze its time
requirements. In section 4, we convey a benchmarking that
demonstrates the performance of our algorithm in terms of
time and RAM, and compares it with the performance of
BWT-IS and existing FM-index building tools: the most
popular tool Bowtie-2 by Langmead et al. [8] and another
tool called BRAT-nova by Harris et al. [4], an aligner for
bisulfite-treated reads used to identify methylation within
a DNA sequence.

3 Construction of BWT and FM-
Index

3.1 Implementation of Induce Sorting and

Calculation of Explicitly Stored Positions

FM-index constructed by our algorithm BWT-ISFM
consists of (1) a succinct data structure Character
Occurrences that for each character c in allows
calculating of the total number of occurrences of c in
BWT[0…i] in constant time, for 0 i n-1; (2) a succinct
data structure Positions Occurrences that consists of a bit
array called bwtMarked (with bit 1 at index i indicating
that the suffix position corresponding to SA[i] is explicitly
stored) together with a succinct structure that calculates
Rank(i) in constant time; this structure is used to retrieve
an explicitly stored genomic position; (3) an array called
Positions with explicitly stored suffix positions. In addition
to this classical FM-index, our program constructs a bit
array called posBit with 1 at index i indicating that stored
position corresponding to SA[i] is greater than maximum
value of an unsigned integer, MAXUI = 232 – 1.

12

The array Positions stores unsigned integers (requiring
4B per integer). To retrieve the correct position, algorithm
uses 4B stored at Positions and one bit stored at posBit: if
a bit at posBit is 1, then to the value stored at Positions, we
need to add MAXUI.

Our algorithm follows the outline of BWT-IS. Our
algorithm uses four types of deques: LMS, L, S and LS
(similarly to the queues used by BWT-IS described above).
Each deque supports four operations: push front and push
back (inserts a suffix position at front and back
respectively), and pop front and pop back (removes a suffix
position from the front and back of a deque respectively).
At any time of the algorithm, there are at most X positions
stored in all deques, where X is the total number of LMS
substrings of the original string T.

The procedure InduceSort of BWT-ISFM is shown in
Figure 3. As in BWT-IS, InduceSort is used only once. We
keep BWT array of length 2n bits (2 bits per character).
Initially, the starting positions of sorted LMS substrings of
T are pushed back onto the corresponding LMSc deques for
each character c, the starting character of an LMS
substring; and the head pointers for each character c in
are set to the fronts of corresponding c-buckets. The moves
of LMS positions between the deques exactly simulate
induce sorting using an SA in SA-IS algorithm. First,
characters of alphabet are processed in increasing order in
the first for loop (simulating processing of c-buckets in
Left-to-Right order), and then characters are processed in
decreasing order in the second for loop (simulating
processing of c-buckets in Right-to-Left order). In the first
for loop, Lc deque is processed before LMSc deque. In each
of these deques, a current front position p is popped from a
deque, and if the character T[p-1] is greater or equal to
T[p], then T[p-1] is of L-type, and position (p – 1) is pushed
back onto LT[p-1] deque. The corresponding BWT character
is calculated as T[p-2]. In addition, we check whether the
position (p – 1) is a position that we explicitly store (mod
step is equal to 0, where step is log(n)). If so, then we
output to a file the position p – 1 and the BWT index,
headT[p-1]. In addition, we set bits of bwtMarked (if position
p – 1 is explicitly stored) and posBit (if p – 1 is greater than
MAXUI) to 1. At the end, the head pointer is incremented.
In case when the front of Lc deque induces position p – 1
that corresponds to S-type suffix, then our algorithm
pushes p to the back of LST[p] deque.

To simulate Right-to-Left scanning of SA of SA-IS
algorithm, our algorithm sets tail pointers to the back of c-
buckets for each character c in . Next, BWT-ISFM
processes the second for loop, in which for each character
c taken in decreasing order, Sc deque is processed first and
then LSc deque is processed. Until a deque is not empty, a
current suffix position p from the back of the deque is
popped (scanning Right-to-Left), and if the previous
position, p – 1, is of S-type, then the position p – 1 is pushed
to the front of ST[p-1] deque. In addition, BWT character
T[p-2] is set at index tailT[p-1] and if needed bits of

bwtMakred and posBit at index tailT[p-1] are set to 1, and an
explicitly stored position p – 1 together with index tailT[p-1]
are printed to a file. At the end, the tail pointer is
decremented.

Once InduceSort procedure is finished, we need to place
explicitly stored SA positions in the correct order, i.e. in
increasing order of BWT indices. First, BWT-ISFM pre-
builds in linear time the succinct data structure Positions
Occurrences using bwtMakred. Recall that given a BWT
index i, this structure calculates Rank(i) in constant time.
Then, our algorithm reads in the outputted to the file

ALGORITHM 2: InduceSort of BWT-ISFM
0: Input: string T and for each character, four
 types of deques: LMS, L, S and LS;
 LMS deques are initialized with positions of LMS
 substrings
 Output: BWT, bwtMarked, posBit, explicitly stored
 positions of suffixes of T
1: for each character c := 0,1,2,…,-1, do
2: for Qc := Lc, LMSc
3: while Qc is not empty do
4: p Qc.popFront()
4: if(T[p] T[p-1]) then
5: LT[p-1].pushBack(p-1)
6: BWT[headT[p-1]] := T[p-2]
7: if((p-1) mod step = 0)
8: bwtMarked[headT[p-1]] := 1
9: write: (p-1) and headT[p-1]
10: if(p – 1 > MAXUI)
11: posBit[headT[p-1]] := 1
12: headT[p-1] := headT[p-1] + 1
13: else if processing Lc queue,

 and T[p] > T[p-1],
then LST[p].pushBack(p)

14: end of while
15: end of for
16: end of for
17: for each character c := -1, …, 2, 1, 0, do
18: for Qc := Sc, LSc
19: while Qc is not empty do
20: p Qc.popBack()
21: if(T[p-1] T[p]) then
22: ST[p-1].pushFront(p-1)
23: BWT[tailT[p-1]] := T[p-2]
24: if((p-1) mod step = 0)
25: bwtMarked[tailT[p-1]] := 1
26: write: (p-1) and tailT[p-1]
27: if(p – 1 > MAXUI)
28: posBit[tailT[p-1]] := 1
29: tailT[p-1] := tailT[p-1] – 1
30: end of while
31: end of for
32: end of for

Figure 3: InduceSort of BWT-ISFM

13

indices one at a time (suffix position and the corresponding
BWT index). Using the BWT index i, it places the
corresponding suffix position into the array Positions at
index Rank(i). We chose to output positions and their BWT
indices into the file to save memory. There are total of
n/log(n) explicitly stored positions, and we need log(n) bits
to store each position or BWT index. Hence, the total space
to store positions and BWT indices would be
2log(n)n/log(n), which results in 2n bits. In case of
keeping these positions and indices in memory, I/O
operations would not affect linear time of the algorithm. In
practice, I/O operations do not add much to the total time
(not more than about 3 minutes in our experiments – results
are not shown), but printing out positions and BWT indices
allows saving memory for larger genomes and offers extra
flexibility for users (our program allows users to select the
value for step, which regulates the total number of
explicitly stored positions).

3.2 Sorting Distinct LMS Substrings,
Assigning Names and Building a
Shortened String T1

In SA-IS, the InduceSort procedure is used for the first
time to sort LMS substrings in lexicographic order relative
to each other. One can use InduceSort that guarantees
theoretical linear time, but in practice, another method to
sort all distinct LMS substrings is much faster. For
example, in our experiments on a human genome using two
strands, InduceSort takes about 20 minutes, whereas
sorting distinct LMS substrings using a quick sort and
building a shortened T1 string takes less than 2 minutes.
Here, we will describe our method of building a shortened
T1 using a quick sort. We used ideas similar to those of the
BWT-IS algorithm, but devised a different implementation
for this procedure.

First, we collect the starting positions of distinct LMS
substrings into a separate array. LMS are categorized as
short substrings and long substrings dependent on their
lengths. An LMS substring of length at most 12 characters
is considered to be short, and the rest of LMS substrings
are long. We would like to clarify that by the term all
distinct LMS substrings we mean all long LMS substrings
and distinct short LMS substrings. To identify the starting
positions of distinct short LMS substrings, we keep a hash
table of size 412 entries, where 4 is the size of the DNA
alphabet {A, C, G, T}. The length 12 for a short LMS
substring was chosen to keep a good balance between the
space required for the hash table and the total number the
long LMS substrings that is at most n/12. Each character is
represented using 2 bits (A is 00, C is 01, G is 10 and T is
11). We scan T Right-to-Left, and if T[i] is the starting
character of a short LMS substring s, then we convert s to
its hash index h equal to the complement of s. We must use
the complement of s to distinguish between LMS
substrings such as AATA and ATA; since A is represented

as 0 in binary, both strings AATA and ATA in binary are
represented as the same integer, namely, 12 (00001100 and
001100 respectively). By taking the complement of these
strings, their binary representations become
distinguishable (11110011 and 110011 respectively). For
all identical short LMS substrings whose hash index is h,
we store a single position that is the greatest. For example,
if T[i…i+m] and T[j…j+m] correspond to a short LMS
substring s, and the position i is greater than j, then we store
i at index h in the hash table and in the array with the
distinct LMS positions. If a current LMS is long, we store
its starting position in the array with distinct positions.

Once the positions of distinct LMS substrings are
collected, we sort the distinct LMS substrings using a quick
sort. Dependent on implementation, theoretically, it takes
(nlogn) time, but in practice, it is much faster than
InduceSort that takes theoretical linear time (e.g. it takes
on average 9 seconds to sort all distinct LMS substrings of
two strands of human genome). Next, we assign names to
the distinct LMS substrings by scanning the sorted array
and comparing two consecutive LMS substrings. If the
current LMS substring is the same as previous one, it is
assigned the same integer-name, otherwise, it is assigned
the next integer-name, starting with integer-name of 0 for
the sentinel character. The integer-names are stored in
another array such that the corresponding starting position
of an LMS and its integer-name are stored at the same
index of the corresponding arrays.

Finally, to build a shortened string T1 whose characters
are integer-names of LMS substrings of T, we use another
quick sort that sorts the integer-names of all distinct LMS
substrings according to the increasing order of their
corresponding starting positions in T. To make it clear, we
use quick sort to sort pairs <position, integer-name> in
increasing order of positions. This places integer-names

ALGORITHM 3: Building a shortened T1
0: Input: string T, integer arrays positionsDistinctLMS

and namesDistinctLMS, integer array hashTable
Output: shortened string T1 of size equal to the total

 number of LMS substrings in T
1: Scan T Right-to-Left:
 keep pointer p to point to the last position in
 positionsDistinctLMS;
 fill in T1 Right-to-Left using index j
2: If index i is the starting position of LMS substring s
3: If i is equal to positionsDistinctLMS [p],
4: then T1[j] = namesDistinctLMS[p];
 j--; p--;
5: If current LMS substring s is short,
 hashTable[~s] = namesDistinctLMS[p]
6: Else if i positionsDistinctLMS [p]
7: then T1[j] = hashTable[~s]; j--;
8: return: T1

Figure 4: Building a shortened T1

14

into appropriate slots within T1. Figure 4 shows the
procedure that builds T1.

We fill in T1 Right-to-Left while scanning T Right-to-
Left. We maintain the pointer p that points to the currently
processed position in the array positionsDistinctLMS
(processed Right-to-Left). If the currently processed
position i in T corresponds to the starting position of LMS
substring s, we compare i with the current position stored
at positionsDistinctLMS[p]. If these positions are equal,
then this means that the currently processed LMS substring
s is either long or the representative of identical LMS
substrings. This also means that in case s is a short LMS,
then no other LMS the same as s has been processed yet. If
s is a short LMS, we retrieve the integer-name of s stored
at namesDistinctLMS[p] and place this name in the
corresponding entry of the hash table using hash index
equal to ~s (the complement of s). Either s is long or short,
we fill in the current slot of T1 with its integer-name stored
at namesDistinctLMS[p]. In case, if the current starting
position i in T corresponds to an LMS substring s whose
position is not stored at positionsDistinctLMS, we extract s
from T, and use the hash index ~s to retrieve its integer-
name stored in the hash table at index ~s and place the
name into the current slot of T1. This procedure takes linear
time.

4 Experimental Result

The major motivation for our algorithm was to time-
efficiently construct an FM-index together with BWT for a
large genome in practical space (less than 16GB of RAM).
Taken this into account, to benchmark the performance of
our algorithm, we chose the existing tools that build an FM-
index or BWT for large genomes in practical space. We
chose BWT-IS algorithm (implemented by the authors)
because it can calculate the BWT for a human-size
genome. We wrote our own script that given BWT-IS’s
output BWT, calculates an FM-index. The other chosen
tool was Bowtie-2, [8] that builds an FM-index using
algorithm by Kärkkäinen [6]. Bowtie-2 can build FM-
index for small size genomes (less than or equal to 4Gb)
and large genomes (greater than 4Gb). Finally, we show
the results of BRAT-nova [4] that builds an FM-index
exclusively for mapping bisulfite-treated reads to identify
methylation, an important epigenetic marker.

We intentionally did not choose any of SA-IS algorithms
because they run in space greater than 16GB and because
publically available implementations of SA-IS have
limitation to work with strings less than 231. We used
BWT-IS algorithm that was kindly provided by the
authors, and we used versions bowtie2-2.3.2 (for a human
genome) and bowtie2-2.2.5 (for two strands of a human
genome). All programs were compiled using the provided
Makefiles. No additional options were used with Bowtie2.

We used total of three data sets. The first data set was the
human genome GRCh38, from which we removed long
runs of consecutive N characters leaving at most 49 of
consecutive Ns. The size of this resulting genome was
2,934,896,319. The second data set was concatenation of
two strands (positive and negative) of the same human
genome. We took the reverse of the negative strand
concatenated with the reverse of the positive strand. The
reason for this choice of concatenation was the way the
DNA reads are mapped to the FM-index: this way allows
mapping reads starting with the starts of the reads that have
the least number of sequencing errors. Finally, we used two
strands of GRCh38 just as in the second step, but with all
Cs converted to Ts. This index is used to map bisulfite-
treated reads to identify methylation within a genome; in
particular, this index is used in BRAT-nova, a mapping
tool for bisulfite-treated reads. Hereafter, we will call these
three data sets as hg-one-strand, hg-two-strands and hg-
two-strands-bs respectively. Table 1 shows the running
time of the tools on all three data sets measured in seconds
and RAM usage. For BWT-IS, the running time is the sum
of the time needed to run BWT-IS and the time to build the
FM-index from the resulted BWT.

Bowtie-2 builds an FM-index for forward strand and
reverse strands separately (first, it builds the FM-index for
forward strand and then for the reverse strand). To make
comparison fair, in Table 2 for Bowtie-2 we show time as
reported by the program required to build the FM-index for
forward strand only. For BWT-IS and our algorithm BWT-
ISFM, we report the time as reported by the Linux
command /usr/bin/time -v by summing up user and system
times, and for Bowtie-2 as reported by the tool. BWT-IS
does not support strings of length greater than 232-1, so
there are no results for data sets that use two strands of a
human genome. To make our report complete, here we
report time spent by BWT-IS to build BWT for hg-one-
strand: it took 728sec. The rest 1536sec is required to build

Table 1: Time and RAM Usage

Tool
hg-one-strand hg-two-strands hg-two-strands-bs

Time RAM Time RAM Time RAM
BWT-IS + FM-index 2264sec 5.45GB 1.86n - - - -
Bowtie2 3190sec 5.58GB 1.90n 7154sec 15.70GB 2.86n 7972sec 16.02GB 2.73n
BRAT-nova - - - - 38826sec 7.56GB 1.29n
BWT-ISFM 1397sec 6.15GB 2.10n 2736sec 13.00GB 2.22n 2429sec 11.47GB 1.95n

15

an FM-index. Our program BWT-ISFM shows the best
time on hg-one-strand among the three tools compared.
BWT-ISFM is 2.3, 2.6 and 3.3 times faster than Bowtie-2
on these three data sets; and it is 15.9 times faster than
BRAT-nova. It shows comparable results with BWT-IS,
but in addition our tool supports larger input strings.

All experiments were run on a 6-core Intel Xeon
Processor 2.8GHz, 198GB RAM, and 216TB of raw
storage space running Linux Ubuntu. RAM usage was
measured as the maximum resident size. For BWT-IS we
report memory usage while running BWT-IS. Space is
reported in GB and as a function relative to the genome
length n. For example, on hg-one-strand, BWT-IS used
total of 5.45GB, which is 1.86n of bytes.

On hg-one-strand, our program uses slightly more
memory than BWT-IS and Bowtie-2. On two strands of a
human genome, BWT-ISFM shows better results than
Bowtie-2 in terms of RAM. Compared to BRAT-nova,
BWT-ISFM uses 1.5 times more space, but is 15.9 times
faster. Overall, our program demonstrates a good practical
tradeoff between space and time performance.

The source code for BWT-ISFM together with the
scripts used in this benchmarking as well as the User
Manual can be found at:
https://drive.google.com/drive/folders/0Bx79W9h8ZBHe
ZTlZRzFPSVVaRjQ

5 Conclusion and Future
Improvements

In our work we extended BWT-IS algorithm to build an
FM-index on fly while constructing BWT. We tuned our
implementation to achieve a good balance between the
running time and RAM usage while running on large
genomes (of size at most 232 - 1) as input. We think our
algorithm can be extended to work with genomes of size
up to 234 (instead of up to 233) as long as the total number
of LMS substrings in a given genome-string T fits into 32
bits. For the genome of size 234-1, this would mean that the
total number of LMS substrings (i.e. the length of T1)
should be no more than n/4. In this case, our algorithm
instead of using 1 bit to indicate whether a position is
greater than MAXUI, will have to keep 2 most significant
bits of the position.

6 Acknowledgement

The author thanks Stefano Lonardi and Tim Close (UC

Riverside) for access to their computing server.

This work was supported in part by a 2017-1018
California State University Research, Scholarly, and
Creative Activities Grant.

References

[1] Michael Burrows and David J. Wheeler. 1994. A
Block Sorting Lossless Data Compression
Algorithm. Technical Report 124, Digital Equipment
Corporation.

[2] Jasbir Dhaliwal, Simon. J. Puglisi, and Andrew
Turpin. 2012. Trends in suffix sorting: a survey of
low memory algorithms. In Proceedings of the
Thirty-fifth Australasian Computer Science
Conference (ACSC '12), Mark Reynolds and Bruce
Thomas (Eds.), Vol. 122. Australian Computer
Society, Inc., Darlinghurst, Australia, Australia, 91-
98.

[3] Paolo Ferragina and Giovanni Manzini. 2000.
Opportunistic data structures with applications.
In Proceedings 41st Annual Symposium on
Foundations of Computer Science, Redondo Beach,
CA, 2000, 390-398.

[4] Elena Y. Harris, Rachid Ounit, and Stefano Lonardi.
2016. BRAT-nova: Fast and accurate mapping of
bisulfite-treated reads. Bioinformatics 32, 17 (Feb
2016), 2696–2698.

[5] Steve Hoffmann, Christian Otto, Stefan Kurtz,
Cynthia M. Sharma, Phillipp Khaitovich, Jörg Vogel,
Peter F. Stadler, and Jörg Hackermüller, 2009. Fast
mapping of short sequences with mismatches,
insertions and deletions using index structures. PLoS
Computational Biology 5, 9 (Sep 2009), e1000502.

[6] Juha Kärkkäinen. 2007. Fast bwt in small space by
blockwise suffix sorting. Theoretical Computer
Science 387, 3 (Nov 2007), 249-257.

[7] Pang Ko and Srinivas Aluru. 2005. Space efficient
linear time construction of suffix arrays. Journal of
Discrete Algorithms 3, 2-4 (June 2005) 143-156.

[8] Ben Langmead, Cole Trapnell, Mihai Pop, and
Steven L. Salzberg. Ultrafast and memory-efficient
alignment of short DNA sequences to the human
genome. Genome Biology 10, 3 (Mar 2009), R25.

[9] Udi Manber and Gene Myers. 1990. Suffix arrays: a
new method for on-line string searches.
In Proceedings of the first annual ACM-SIAM
symposium on Discrete algorithms (SODA '90).
Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 319-327.

[10] Ge Nong, Sen Zhang, Wai H. Chan. 2009. Linear
suffix array construction by almost pure induced-
sorting. In Data Compression Conference (DCC).
IEEE Computer Society, Snowbird, UT, USA, 193–
202.

[11] Daisuke Okanohara and Kunihiko Sadakane. 2009. A
Linear-Time Burrows-Wheeler Transform Using
Induced Sorting. In Proceedings of the String
Processing and Information Retrieval: 16th
International Symposium (SPIRE 2009). Saariselkä,
Finland, 90–101.

16

Global Optimization Approach for Circular and
Chloroplast Genome Assembly

Sebastien François 1 Rumen Andonov 1∗ Dominique Lavenier 1

Hristo Djidjev 2

1 Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France
2 Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

We describe a global optimization approach for
genome assembly where the steps of scaffolding, gap-
filling, and scaffold extension are simultaneously solved
in the framework of a common objective function.
The approach is based on integer programming
model for solving genome scaffolding as a problem of
finding a long simple path in a specific graph that
satisfies additional constraints encoding the insert-size
information. The optimal solution of this problem
allows one to obtain new kind of contigs that we call
distance-based contig. We test the algorithm on a
benchmark of chloroplasts and compare the quality of
the results with recent scaffolders.

keywords: genome assembly, scaffolding, unitig,
contig, longest simple weighted path problem, integer
programming

1 Introduction

Modern Next-Generation Sequencing (NGS) tech-
niques output billions of short DNA sequences, called
reads, and the typical way to process this information is
by using de novo assembly. However, assembling these
fragmented raw data into complete genomes remains a
challenging computational task. This is a very complex
procedure, usually involving three main steps: (1)
generation of contigs, which are contiguous genomic
fragments issued from the overlapping of the reads;
(2) constructing scaffolds–set of ordered and oriented
contigs along the genome interspaced with gaps; (3)
finishing, which aims to complete the assembly by
inserting DNA text in the gaps between the ordered
contigs.

The first step generates a list of contigs that usually
represent the ”easily assembled regions” of the genome.
Building contigs is currently supported by methods us-
ing a specific data structure called de-Bruijn graph [13].

∗Corresponding author. Email: randonov@irisa.fr

Here we use unitigs–a special kind of high-confidence
contigs that represent maximal unambiguous paths in
the de-Bruijn graphs. Despite the progress done in the
domain, complex regions of the genome (e.g., regions
with many repeats) generally fail to be assembled by
these techniques. If the genome contains repeats longer
than the size of the reads, the entire genome cannot be
built in a unique way.

Whereas the main challenge of the first step relies
on handling huge volume of data, the scaffolding step
manipulates data of moderate size. However, the
problem remains largely open because of its NP-hard
complexity [9]). The goal here is to provide a reliable
order and orientation of the contigs in order to link
them together into scaffolds. Contigs can be linked
together using paired-end or mate-pair reads [16, 11].
This complementary data is due to the ability of the
sequencing technology to provide couples of reads that
are separated by a known distance (called insert size).
They bring a long distance information that is not
used in the first assembly stage, but is essential for the
second.

The scaffolding phase usually produces multiple scaf-
folds. Moreover, these scaffolds may contain regions
that have not been completely predicted. Hence,
two additional steps, gap-filling and scaffold extension
(elongating and concatenating the contigs after the
scaffolding step) are typically needed to complete the
genome.

The strategy proposed here differs significantly from
the approaches described in the literature. While
the latter apply various heuristics for tackling the
different assembly stages one after another separately,
our methodology consists of developing a global op-
timization approach where the scaffolding, gap-filling,
and scaffold extension steps are simultaneously solved
in the framework of a common objective function. Our
approach is based on integer programming models for
solving the genome scaffolding as a problem of finding
a long simple path in a specific graph that satisfies as
many as possible of the additional constraints encoding

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

17

the insert-size information [4].

We are not aware of previous approaches on scaffold-
ing based on longest path problem reduction. Most
previous work on scaffolding is heuristics based, e.g.,
SSPACE [2], GRASS [6], BESST [15] and SPAdes [1].
Such tools may find in some cases good solutions,
but their accuracies cannot be guaranteed or pre-
dicted. Exact algorithms for the scaffolding problem
are presented in [17], but the focus of that work is
on finding structural properties of the contig graph
that will make the optimization problem of polynomial
complexity. In [12], integer linear programming is used
to model the scaffolding problem, with an objective to
maximize the number of links that are satisfied. In
order to avoid sub-cycles in the solution, the authors
use an incremental process, where cycles that may
have been produced by the solver are forbidden in
the next iteration. Integrating the distances between
contigs and accounting for possible multiplicities of the
contigs (repeats, copy-counts) is indicated as future
improvement in [12], while it has been realized in our
approach.

This paper focuses on circular genomes and, in
particular, on chloroplasts. The reasons for this choice
are as follows. Chloroplasts possess circular and rel-
atively small genomes. The particularity of these
genomes is the presence of numerous repetitions, while
these are the main chalenges for the modern genome
assembly techniques. On the other hand, the size
of the chloroplast genome permits assembling them
rapidly (each one of the instances from the considered
benchmark except one, EuglenaGracilis genome, has
been solved for less that 1 sec.) and so we were able to
refine our strategy and to focus entirely on the quality
of the obtained results.

The contributions of this study are as follows:

• We adapt and further develop the general case
approach proposed in [4] to the case of circular
genomes. Using the specificities of this particu-
lar case we succeed to simplify significantly the
sophisticated mixed integer linear program (MILP)
described in [4].

• We propose an exact approach for scaffolding
in the case of circular genomes as a problem
of finding longest paths in specific unitig graphs
with additional set of constraint distances between
couples of vertices along these paths.

• We deeply analyze the reasons for the existence
of a huge number of multiple equivalent optimal
solutions. These solutions are mainly explained by
the presence of repetitions in the set of unitigs.
We find sufficient conditions for the existence of

multiple solutions zones and propose an algorithm
for identifying these zones.

• By using the optimal path found by the MILP
model, our algorithm permits merging a set of
unitigs satisfying the link distances into what we
call distance-based contigs. These contigs, together
with the other unitigs, are given to QUAST [7] for
assessment.

• We tested this strategy on a set of 33 chloroplast
genome data and compared the results with
some of the most recent scaffolders (namely
with SPAdes [1], SSPACE [2], BESST [15] and
SWALO [14]).

• Our numerical experiments show that our ap-
proach produces assemblies of higher quality than
the above heuristics on the considered benchmark.

2 Modeling the scaffolding
problem

In this section we adapt the optimization approach
proposed in [4] to the particularities and characteristics
of the circular genomes. Section 2.1 describes the graph
modeling that is common for both approaches, while
the mathematical programming formulation presented
in section 2.2 includes enhancements of the model
that, while making it less general, greatly increase its
efficiency for chloroplast genome scaffolding.

2.1 Graph Modeling

The input data for our approach are the following:

• A set of unitigs together with their copy-count
(multiplicity). Only unitigs larger than a prede-
fined threshold (cf section 4.1) are considered.
The copy-count is determined from k-mer counting
techniques (cf section 4.1.2).

• A list of overlaps between the unitigs. Two
unitigs overlap if they share a minimum of common
nucleotides at their extremities.

• A list of oriented couples of unitigs (links). Links
are determined from paired-end or mate-pair infor-
mation. Due to insert size fluctuation, an interval
distance is associated with any link from this list.

We follow the modeling from [4] where the scaffolding
problem is reduced to a path finding in a directed graph
G = (V,E), called a unitig graph, where both vertices
V and edges E are weighted. The set of vertices V is

18

generated based on the set C of the unitigs according
the following rules: the unitig i is represented by at
least two vertices vi and v′i (forward/inverse orientation
respectively). If the unitig i is repeated ki times (this
value corresponds to the copy-count), it generates a set
Ci of 2ki vertices. If two different vertices v and w
belong to Ci and have the same orientations, we can
use the notation v ≈ w. Let us denote N =

∑
i∈C ki;

thus |V | = 2N .

The edges are generated following given patterns—
a set of known overlaps/distances between the unitigs.
Any edge is given in the graph G in its forward/inverse
orientation. We denote by eij the edge joining vertices
vi and vj and the inverse of edge eij by ej′ i′ . Let wv
be the length of the unitig corresponding to vertex v
and denote W =

∑
v∈V wv. Moreover, let the weight

le on the edge e = (vi, vj) correspond to the value of
the overlap/distance between unitigs represented by vi
and vj . The problem then is to find a path in the
graph G such that the total length (the sum over the
traversed vertices and edges) is maximized, while a set
of additional constraints is also satisfied:

• For any i, either vertex vi or v′i is visited (partici-
pates in the path).

• The orientations of the nodes does not contradict
the constraints imposed by the links. This is at
least partially enforced by the construction of G.

To any edge e ∈ E we associate a variable xe. Its
value is set to 1, if the corresponding edge participates
in the assembled genome sequence (the associated path
in our case), otherwise its value is set to 0. There are
two kinds of edges: edges corresponding to overlaps
between unitigs, denote them by O (from overlaps), and
edges associated with the links relationships, denote
them by L. We therefore have E = L ∪ O. Let le be
the length assigned to the edge e = (u, v). We define le
∀e ∈ O such that le < 0 and |le| < min {wu, wv} is the
overlap between the contigs corresponding to vi and vj ,
and le > 0 ∀e ∈ L, where le is the link distance between
unitigs represented by vi and vj .

Let δ+(v) ⊂ E (resp. δ−(v) ⊂ E) denote the sets of
edges outgoing from (resp. incoming to) v.

2.2 Mixed Integer Linear
Programming Formulation

The crucial observation in the approach proposed in
[4] is that the genome can be assembled by searching for
a particular longest path in the associated unitig graph.
However, the beginning and the end of this path are
unknown in the general case. This constraint leads to
the sophisticated model described in [4]. Here we use

the following facts/hypotheses for chloroplast genomes
in order to simplify the above general approach:

(1) Chloroplast genomes are circular;

(2) We assume that any input unitig is part of the
genome.

(3) We assume that the entire genome is sufficiently
covered (no gaps in its sequence).

In our runs we choose the largest unitig (say s) to play
the role of the beginning and the end of the genome.
Consequently, we introduce a supplementary vertex t
that gets all incoming edges from s. Specifically, each
edge (x, s) we replace by an edge (x, t) and set δ−(t) =
δ−(s), δ+(t) = ∅, and δ−(s) = ∅. Vertices s and t will
be considered respectively as the source (start) and the
sink (end) of the path we are looking for.

Furthermore, to any vertex v ∈ V \ {s} we associate
the variable iv s.t.

0 ≤ iv ≤ 1 (1)

encoding whether v is in the solution path. Moreover,
each vertex (or its inverse) should be visited at most
once, which we encode as

∀(v, v′) : iv + iv′ ≤ 1. (2)

We associate a binary variable for any edge of the
graph, i.e.,

∀e ∈ O : xe ∈ {0, 1} and ∀e ∈ L : ge ∈ {0, 1}. (3)

The two possibles states for a vertex v (to be (or not)
an intermediate vertex in the path) are enforced by the
following constraints

iv =
∑

e∈δ+(v)

xe =
∑

e∈δ−(v)
xe. (4)

It is then obvious that the real variables iv,∀v ∈ V
take binary values.

We introduce a continuous variable fe ∈ R+ to
express the quantity of the flow circulating along the
edge e ∈ E. Without this variable, the solution found
may contains some loops and hence may not be a simple
path. We put a requirement that no flow can use an
edge e when xe = 0, which can be encoded as

∀e ∈ E : 0 ≤ fe ≤Wxe, (5)

where W is as defined above (W =
∑
v∈V wv).

We use the flows fe in the following constraints, ∀v ∈
V \ {s},

∑

e∈δ−(v)
fe −

∑

e∈δ+(v)

fe = iv(wv +
∑

e∈δ−(v)
lexe), (6)

19

while for the source vertex we require

∑

e∈δ+(s)

fe = W. (7)

We furthermore observe that, because of (4), the
constraint (6) can be written as follows

∀v ∈ V : (8)∑

e∈δ−(v)
fe −

∑

e∈δ+(v)

fe = ivwv +
∑
e∈δ−(v) lexe.

The constraint (8) is linear and we keep it in our
model instead of (6).

The model so far defines a solution to the longest
path problem. We need also to add information related
to the links distances. For that reason, we associate
a binary variable ge with each link e. For (u, v) ∈ L,
the value of g(u,v) is set to 1 only if both vertices u
and v belong to the selected path and the length of the
considered path between them is in the given interval
[L(u,v), L(u,v)]. Constraints related to links are :

g(u,v) ≤ iu and g(u,v) ≤ iv (9)

∀(u, v) ∈ L : (10)∑

e∈δ+(u)

fe −
∑

e∈δ−(v)
fe ≥ L(u,v)g(u,v) −M(1− g(u,v)),

∀(u, v) ∈ L : (11)∑

e∈δ+(u)

fe −
∑

e∈δ−(v)
fe ≤ L(u,v)g(u,v) +M(1− g(u,v)),

where M is some big constant.

Our goal is to find a long path in the graph such that
as many as possible link distances are satisfied. The
corresponding objective function hence is of the form

max

(∑

e∈O
xele +

∑

v∈V
wviv + p

∑

e∈L
ge

)
(12)

where p is a parameter to be chosen as appropriate
(currently p = 1).

3 Dealing with multiple optimal
solutions

By its nature, the information provided by the
overlaps and mate pairs is not always sufficient to
determine the assembly in a unique way. For instance,
the unitig graph G is symmetric by construction, e.g.,
if there is an edge (v, w) between vertices v and w, then

there is an edge (w′, v′) between their inverses w′ of w
and v′ of v. Moreover, it contains repeated identical
unitigs, which are modeled by different vertices of G.
For all the above reasons, for each optimal solution
(path) p∗ found by our algorithm, there are typically
multiple (exponential in the worst case) number of
equivalent solutions (paths). Such paths are different
from p∗ as sequences of vertices of G, but correspond
to the same set of unitigs (and their inverted copies)
and satisfy the same number of links, and hence
are equally ”optimal” from the point of view of the
optimization problem (1)–(12). This issue is especially
pronounced for chloroplasts due to their higher number
of repeated/symmetrical regions.

Choosing just any arbitrary path from the set of
equivalent optimal ones can result into an assembly
different from the genome reference, which is the main
criterion for evaluating the accuracy of the prediction.
Therefore, our strategy is to detect in the optimal
path multiple solution portions and to separate them
from subpaths that cannot be replaced by equivalent
ones. This latter type of subpaths will be merged in
what we call db-contigs (distance-based, i.e., contiguous
sequences that satisfy the link distances). Obviously,
none of the optimal solutions is eliminated while pro-
ceeding in such a manner. We call these zones ”unsafe”
and ”safe,” respectively.

In this section we describe a method to decompose
a solution path into safe and unsafe zones. Our algo-
rithm is heuristic, meaning that it does not necessarily
identify all safe zones, but, as our experiments show, it
works well in practice.

Formally, we call two paths p1 = (v1, . . . , vk) and
p2 = (w1, . . . , wk) of G equivalent, if they satisfy the
same set of links and their components are permuta-
tions of the same set of unitigs (and their inverted
copies). These paths can differ (or not) as sequences
of base pairs. If p is a path in the unitig graph
representing a solution of the optimization problem, we
call a subpath p′ of p a safe zone of p if there exists no
path in the graph G minus p\p′ that is equivalent to and
different from p′, and p′ is a maximal subpath with this
property. Safe zones are in fact subpaths containing
a number of satisfied links, since each such link adds
a constraint that reduces the number of subpaths that
may be equivalent to it. Removing all safe zones from
p leaves a set of paths that we call unsafe zones. We
call a path p link-closed if for any link that has as an
endpoint an intermediate vertex of p, its other endpoint
is also p.

Next, we will illustrate a method for identifying un-
safe zones by an example. Consider a unitig vs of mul-
tiplicity two. According to the graph-generation rules,
there are vertices vs0 and vs1 inG corresponding to vs in

20

the forward orientation and their corresponding vertices
v′s0 and v′s1 in the opposite direction. Assume also that
there exists a link-closed subpath p = (vk, vk+1, . . . , vr)
of a solution to the optimization problem such that
vk = vs0 and vr = v′s1. Remember that, for each edge
(vi, vi+1) from p, the inverse edge (v′i+1, v

′
i,) also exists

in the unitig graph. Then we show that the inverse of p,
i.e. the path p′ = inv(p) = (v′r, v

′
r−1, . . . , v

′
k) of inverted

unitigs is also an optimal solution of the optimization
problem. Obviously, length(p) = length(p′). Since
v′r = vs1 = vs0 and v′k = v′s0 = v′s1, the paths p and
p′ have the same sets of unitigs corresponding to their
vertices and have identical unitigs at the beginning and
their ends, but they are different as paths (sequences
of vertices). The subsequence p = (vk+1, . . . , vr−1) is in
this sense unsafe zone in the solution path. An example
of such unsafe zone is illustrated on Figures 1.

vs0 vi vt vk v
′
s1

vs1 v
′
k v

′
t v

′
i v

′
s0

Figure 1: Top: a path p containing
two links visualized with dashed lines;
Bottom: its reversible path p

′
. Note

that vs0(resp. v
′
s0) is identical to

vs1(resp. v
′
s1).

It turns out that the type of subpath illustrated in
the previous example is quite common and most of the
unsafe zones that we have identified in our experiments
can be captured using it. The algorithm for safe/unsafe
zones detection based on using this pattern works as
follows:

(1) The vertices belonging to any satisfied link from
the optimal path p∗ found by the model in section
2.2 are considered elements of a potential db-
contig.

(2) Potential db-contigs that overlap at least one
vertex are merged in new (longer) potential db-
contigs.

(3) Any vertex outside the potential db-contigs is
considered as unsafe.

(4) For any potential db-contig C we apply the follow-
ing algorithm.

(a) Any vertex vs ∈ C is initialized as safe.

(b) For any safe vertex vs ∈ C with multiplicity
of at least two, and such that exists a couple
(vs0, v

′
s1) belonging to C, and such that the

subpath between vs0 and v
′
s1 is link-closed do:

(i) indicate as unsafe both vertices vs0 and
v
′
s1; (ii) indicate the path between vs0 and
v
′
s1 as a new potential db-contig.

(5) All adjacent safe vertices are merged in true db-
contigs (new meta-vertices).

The algorithm is illustrated on Figures 2, 3 and 4.

v40 v
′
3 v

′
41

v2 v1 v
′
81

v6 v
′
7

v80

Figure 2: The initial solution.

v40 v
′
3 v

′
41

v2 v1 v
′
81

v6 v
′
7

v80
s s s s u s s s s

Figure 3: Steps 1, 2 and 3. Two potential db-contigs
are created (the first one is red colored, the second
is blue colored). Their vertices are initially labeled
as safe. The vertex v1 is labeled as unsafe since it is
outside the potential db-contigs.

v40 v
′
3 v

′
41

v2 v1 v
′
81

v6 v
′
7

v80
s s s s u u s s u

Figure 4: Step 4. Two repetitions are detected : the
couples (v40, v

′
41) and (v

′
81, v80). However, the path

(v40, v
′
3, v

′
41) is not reversible, since it is not link-

closed (because of the link (v
′
3, v2)). On the other

hand, the path (v
′
81, v6, v

′
7, v80) is reversible. The

vertices v
′
81 and v80 are labeled as unsafe. Finally,

two true db-contigs are created : the first one,
C1 (in red), contains the subpath (v40, v

′
3, v

′
41, v2),

the second one C2 (in blue), contains the subpath
(v6, v

′
7). These two db-contigs, together with

vertices/unitigs v2 (in white) and v80 (in yellow) are
given for assessment to QUAST.

In order to evaluate the quality of obtained solution
we use QUAST [7]. Note that this tool requires
for input just a set of contigs without indication
for their repetition and orientation (for example, the

21

input concerning the instance from Figure 4 consists in
contigs C1, C2, v1 and v80 uniquely). QUAST maps any
of them to the reference genome on order to assess its
quality.

Note that this algorithm does not necessarily find
all unsafe/safe zones, but it works well in practice.
Correctly identifying all such zones is an interesting
research problem, whose solution can further improve
the quality of our tool. In the next section we report
some experimental results comparing our tool with
some of the best existing similar tools.

4 Experimental Analysis

4.1 Data Generation

4.1.1 Simulated Data

From 33 chloroplast reference genomes (cf Table 1), 33
datasets of mate-pairs or pair-ended reads are generated
with the art-illumina software with 100x depth of
coverage [8]. For each dataset, the two following
tasks are performed: (i) unitig generation; (ii) link
computation.

4.1.2 Unitig generation

Unitigs are generated with the Minia assembler [3]. A
range of different k-mer sizes are tried to find the one
that yields the best assembly.

For each unitig, its abundance (copy-count) is com-
puted, that is, the number of times it appears in the
genome. For that, we define the kmer abundance as the
number of times this kmer or its reverse-complement
appears in the read files. The abundance of a unitig
is then computed as the average abundance of all its
kmers. This abundance is computed and returned by
the Minia software.

In theory, the abundance of a unitig that is not
repeated in the genome should be equal to the depth
of coverage of sequencing, twice that amount for dupli-
cated unitigs, and so on. We assume that the longest
unitig is not duplicated, i.e. that its abundance is equal
to the depth of coverage. The multiplicity of each unitig
is then simply computed as its abundance divided by
the depth of coverage, rounded to the nearest upper
integer value.

This strategy provides an estimation of the coverage,
but its accuracy strongly depends of the length of the
unitigs. Longer the unitigs, better the estimation.
Actually, for very short unitigs, we can only provide
intervals of confidence or, at least an upper bound.

4.1.3 Link computation

Each mate-pair or pair-ended read is individually
mapped to unitigs with minimap [10]. We discard
reads that map ambiguously to several locations.
Reads of a pair that map to different unitigs indicate
a mate-pair link in the graph. To avoid false positives,
we only keep links that are validated by at least 5
pairs. The link size is estimated thanks to the known
inserts size and mapping position in each unitig, and
averaged over all pairs that confirm the link.

4.1.4 Computational results

We have generated a data set of 33 chloroplasts
genomes obtained from the NCBI website
(https://www.ncbi.nlm.nih.gov/genome). In order
to simulate mate-pairs and pair-ends sequencing, we
used the ART simulator Illumina [8].We have produced
reads with a length of 250bp and 100X coverage. Two
types of simulation were performed: for the pair-end
simulation the inserts size was 600bp, while, for the
mate-pairs simulation, we used an insert of 8000bp.
The reads were subsequently assembled in unitigs by
Minia [3] and the generated fasta file was input to the
scaffolders that needed it (SPAdes [1] and SWALO [14]
work directly with the reads and do not require it).
The unitigs were produced with an abundance of 4 and
a k-mer of 125.

The assemblies were evaluated by QUAST [7] tool by
comparison with the reference genome that was used
for the simulation. (More detailed experimental data is
given in the Appendix.) Our tool is denoted by GAT
(Genscale Assembly Tool). In our experiments, GAT
has been as good as, and often better, than the best
current scaffolding tools, while ensuring good coverage
of the reference genome (a parameter that tends to
degrade with other scaffolders). It has been particularly
good in case of pair-ends computations by ensuring a
regular and nearly optimal assembly.

During the mate pairs computations GAT performed
well by producing often the smallest number of contigs
and was outperformed only in the case of Atropa
genome. GAT produces on average fewer contigs than
its competitors. Moreover, it ensures the best genome
coverage. This indicates that the output produced
by our tool are reliable, complete, and don’t lose
information compared to the original genome. SWALO
failed to assemble 10 genomes out of 33, SSPACE
3 genomes, and BESST–one genome. SPAdes and
GAT where the only tools for which QUAST did not
indicate any missassemblies (these results are given in
the extended version of this paper [5]).

In the case of pair-end simulations, we have obtained

22

equally good results. The performance of GAT and
SPAdes are very close in term of average number of con-
tigs (cf. Figure 5). However, SPAdes is outperformed
by GAT, BESST and SWALO concerning the genome
coverage (cf. Figure 6). On this figure we also observe
that BESST is as reliable as GAT, but it couldn’t solve
Euglena (21)–something that GAT achieved.

Figure 5: Pair-ends data : Average number of contigs
comparison.

Figure 6: Pair-ends data : Average fraction of genome
left out comparison.

5 Conclusion

Here we design and test an algorithm for scaffolding
and gap filling phases in the case of circular genomes.
Our approach is based on a version of the longest path
problem solved by MILP modeling. It works both
in case of mate-pairs and pair-ends distances. On a
benchmark of 33 chloroplast genomes our algorithm
significantly outperforms four recent scaffolding heuris-

No Genomes Size |V | |O| |L| nsl

1
Acorus
Calamus

153821 8 16 16 3

2
AdiantumCapillus
Veneris

150568 20 24 24 5

3
Agrostis
Stolonifera

136584 20 52 24 6

4
Angiopteris
Evecta

153901 34 78 70 12

5
Anthoceros
Formosae

161162 16 32 24 5

6
Arabidopsis
Thaliana

161162 20 40 32 7

7 Arabishirsuta 153689 12 24 24 5
8 Atropa 156687 46 90 34 9

9
Capsella Bursa
Pastoris

154490 12 24 24 5

10
Chaetosphaeridium
Globosum

131183 8 16 16 3

11
Chara
Vulgaris

184933 24 56 24 7

12
Chlorella
Vulgaris

150613 52 50 50 24

13
Chlorokybus
Atmophyticus

152229 10 18 18 4

14
Citrus
Sinensis

160129 12 24 24 5

15
Cyanidioschyzon
Merolae

149067 72 82 46 22

16
Cyanidium
Caldarium

164921 38 36 32 15

17
Daucus
Carota

155911 8 16 16 3

18
Draba
Nemorosa

153289 12 24 24 5

19
Eimeria
Tenella

160604 10 18 18 4

20
Epifagus
Virginiana

70028 12 24 24 5

21
Euglena
Gracilis

143171 146 554 30 5

22
Gossypium
Barbadense

160317 12 24 24 5

23
Gossypium
Hirsutum

160301 14 28 24 5

24
Gracilaria
Tenuistipitata

183883 54 54 44 21

25
Guillardia
Theta

121524 44 88 24 5

26
Helianthus
Annuus

151104 10 18 18 4

27
Huperzia
Lucidula

154259 20 48 20 5

28
Lactuca
Sativa

152765 8 16 16 3

29
Lepidium
Virginicum

154743 24 48 48 11

30
Liriodendron
Tulipifera

159886 8 16 16 3

31
Lobularia
Maritima

152659 16 32 32 7

32
Lotus
Corniculatus

150519 20 80 32 7

33 Pinus 116864 58 128 12 6

Table 1: The benchmark containing 36 chloroplast
genomes whose names given in the first column. The
second column contains their lengths. We observed that
this value equals the value given by the first term of the
objective function (12). The third and fourth columns
give the size of the graph (i.e. number of vertices and
edges). |L| indicates the number of given links, while
nsl stands for number of satisfied links in the solution.

23

tics with respect to the quality of the scaffolds. The
obtained results fully justify the efforts for designing
exact approaches for genome assembly. Regardless
of that, we consider the current results as a work
in progress. The biggest challenge is to extend the
method to much bigger genomes. We are currently
implementing advanced combinatorial optimization de-
composition techniques to increase the scalability of the
approach without sacrificing the accuracy of the results.

Acknowledgments

We would like to thank Guillaume Rizk for adapting
the Minia assembler [3] for the purpose of our algorithm
and for his help in data generation. Many thanks to
Rayan Chikhi for valuable discussions.

This work has been supported in part by Inria
international program Hipcogen.

References

[1] Anton Bankevich, Sergey Nurk, Dmitry Antipov,
Alexey A Gurevich, Mikhail Dvorkin, Alexander S
Kulikov, Valery M Lesin, Sergey I Nikolenko, Son
Pham, Andrey D Prjibelski, Alexey V Pyshkin,
Alexander V Sirotkin, Nikolay Vyahhi, Glenn
Tesler, Max A Alekseyev, and Pavel A Pevzner.
Spades: a new genome assembly algorithm and its
applications to single-cell sequencing. Journal of
computational biology : a journal of computational
molecular cell biology, 19(5):455477, May 2012.

[2] Marten Boetzer, Christiaan V. Henkel, Hans J.
Jansen, Derek Butler, and Walter Pirovano.
Scaffolding pre-assembled contigs using SSPACE.
Bioinformatics (Oxford, England), 27(4):578–579,
February 2011.

[3] Rayan Chikhi and Guillaume Rizk. Space-efficient
and exact de bruijn graph representation based on
a bloom filter. Algorithms for Molecular Biology,
8(1):22, 2013.

[4] S. François, R. Andonov, H. Djidjev, and
D. Lavenier. Global optimization methods for
genome scaffolding. In 8th International Network
Optimization Conference (INOC), 2017. to appear
in the special issue of Electronic Notes in Discrete
Mathematics (ENDM) V. 64.

[5] S. François, R. Andonov, D. Lavenier, and
H. Djidjev. Global optimization approach for
circular and chloroplast genome assembly. bioRxiv,
2017.

[6] Alexey A. Gritsenko, Jurgen F. Nijkamp,
Marcel J.T. Reinders, and Dick de Ridder.
GRASS: a generic algorithm for scaffolding next-
generation sequencing assemblies. Bioinformatics,
28(11):1429–1437, 2012.

[7] Alexey Gurevich, Vladislav Saveliev, Nikolay
Vyahhi, and Glenn Tesler. Quast: quality assess-
ment tool for genome assemblies. Bioinformatics,
29(8):1072–1075, 2013.

[8] Weichun Huang, Leping Li, Jason R Myers, and
Gabor T Marth. Art: a next-generation sequencing
read simulator. Bioinformatics, 28(4):593–594,
2011.

[9] Daniel H. Huson, Knut Reinert, and Eugene W.
Myers. The greedy path-merging algorithm for
contig scaffolding. J. ACM, 49(5):603–615, 2002.

[10] Heng Li. Minimap and miniasm: fast mapping
and de novo assembly for noisy long sequences.
Bioinformatics, 32(14):2103–2110, 2016.

[11] Paul Medvedev, Son Pham, Mark Chaisson, Glenn
Tesler, and Pavel Pevzner. Paired de Bruijn
graphs: A novel approach for incorporating mate
pair information into genome assemblers. Journal
of Computational Biology, 18(11):1625–1634, 11
2011.

[12] Briot Nicolas, Chateau Annie, Rémi Coletta,
Simon de Givry, Philippe Leleux, and Schiex
Thomas. An integer linear programming approach
for genome scaffolding. In Workshop on Constraint
based Methods for Bioinformatics, 2015.

[13] Pavel A. Pevzner, Haixu Tang, and Michael S.
Waterman. An Eulerian path approach to DNA
fragment assembly. PNAS, 98(17):9748–9753,
2001.

[14] Atif Rahman and Lior Pachter. Swalo: scaffolding
with assembly likelihood optimization. bioRxiv,
2016.

[15] Kristoffer Sahlin, Francesco Vezzi, Björn Nystedt,
Joakim Lundeberg, and Lars Arvestad. BESST -
efficient scaffolding of large fragmented assemblies.
BMC Bioinformatics, 15:281, 2014.

[16] James L. Weber and Eugene W. Myers. Human
whole-genome shotgun sequencing. Genome
Research, 7(5):401–409, 1997.

[17] Mathias Weller, Annie Chateau, and Rodolphe
Giroudeau. Exact approaches for scaffolding. BMC
bioinformatics, 16(Suppl 14):S2, 2015.

24

Adjusted Likelihood-Ratio Test for Variants with Unknown Genotypes

Ronald J. Nowling and Scott J. Emrich
Computer Science & Engineering

University of Notre Dame
Notre Dame, IN 46656

(rnowling,semrich)@nd.edu

Abstract

Association tests performed with the Likelihood-
Ratio Test (LR Test) can be an alternative to FST ,
which is often used in population genetics to find
variants of interest. Because the LR Test has several
properties that could make it preferable to FST , we pro-
pose a novel approach for modeling unknown genotypes
in highly-similar species. To show the effectiveness
of this LR Test approach, we apply it to single-
nucleotide polymorphisms (SNPs) associated with the
recent speciation of the malaria vectors Anopheles
gambiae and Anopheles coluzzii and compare to FST .

1 Introduction

Fixation index, or FST , has been used extensively in
population genetics analyses (see [5, 10, 15] for insect-
focused studies). FST is a score between 0 and 1 calcu-
lated from population frequencies of known alleles. To
identify variants for further analysis, researchers often
calculate FST for each single nucleotide polymorphism
(SNP) individually, average individual FST scores over
larger regions (windows), rank them using these scores,
and then select interesting SNPs or regions based on an
arbitrarily-chosen cutoff (e.g., top 500 or top 0.1%).

An alternative approach is performing Likelihood-
Ratio Tests (LR Tests) using Logistic Regression (Lo-
gReg) models [2]. For each SNP, a LogReg model is
trained, and then a LR Test is performed between the
LogReg model and a null model based on the class
probabilities [7]. LR Tests report p-values that can be
used to identify statistically-significant variants relative
to this null model. Note that LR Tests have been used
extensively in human genome-wide association studies
(GWAS) [1].

Population analysis of heterogeneous insect genomes
often faces two challenges: small sample sizes and
unknown genotypes. Because FST does not take
samples sizes into account, the same FST score could be
reported with 2 or 100 samples, as long as the observed

frequencies of the alleles are identical. In contrast, LR
Tests can account for sample sizes when determining
the p-value of a SNP, which helps control type I errors
(false positives).

Another concern is unknown genotypes that result
from a variety of challenges, both biological (i.e.,
high levels of heterozygosity) and experimental (i.e.,
lower sampling coverage than expected). In humans
and other organisms, unknown genotypes are often
imputed using tools such as IMPUTE2 [8, 11] before
performing single SNP association tests using tools
such as SNPTEST [12]. Unknown genotypes in insect
genomes, however, are rarely imputed because of the
difficulty in doing so accurately with limited samples.

Rather than imputing unknown genotypes, we pro-
pose a framework that handles unknown genotypes
directly. We make the conservative (uninformative)
assumption that each unknown genotype has an equal
probability of being each genotype. We then ensure
that this assumption is reflected in the conditional
class probabilities calculated by the LogReg models
(Section 2.3). Then, in Section 3.2, we validate
these resulting LogReg models by comparing predicted
probabilities to analytically-calculated probabilities.

In Section 3.3, we compare the properties of FST

and our LR Test approach using simulated data. We
demonstrate that the p-values computed by the LR
Test vary with the number of unknown genotypes and
underlying sample sizes, while the FST scores do not.

As a specific example of a real-world application, we
apply our LR Test framework to ≈1.7 million SNPs
from the recently speciated malaria vectors Anopheles
gambiae and Anopheles coluzzii from [5]. These data
derive from a single chromosome arm (2L) contain-
ing relatively strong regions of differentiation [10, 15].
Identifying specific sequence-based differences is highly
valuable for molecularly characterizing such closely-
related species and ultimately to help understand spe-
ciation in these model systems [13]. Even though PCA
analysis of samples from the two species has shown
strong evidence for strong similarity within species

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

25

and clear differences between species [15], localizing
key variants is ongoing work [14]. At a significance
level of 1%, we find that as many as 522 positions on
chromosome arm 2L are statistically significant after
correcting for multiple comparisons. Of 1,633 positions
with the highest possible FST score (1), only twenty
overlap with this set of 522 significant positions.

This result suggests that the adjusted LR Test may
be more specific than averaging SNP FST values across
larger windows as performed by [10] and can better
address unknown and heterogeneous genotypes than
FST alone. We provide a reference implementation
using scikit-learn in Asaph, a variant analysis toolkit.
Note that since this framework uses common methods,
it can also be easily implemented using alternative
programming language/libraries if needed.

2 Methodology

2.1 Data sets

Details on the sequencing and variant calling (in-
cluding filtering) for the 16 mosquito samples from
Cameroon studied here are given in [5, 10,15].

As part of the assessment of our method vs. FST ,
we simulated a single variant. We used fifty individuals
per population for the sweep over unknown genotypes,
and for each combination, we converted the appropriate
number of samples’ genotypes to unknown genotypes
before computing the two metrics. For the sweep
over population sizes, we increased population sizes in
multiples of two.

2.2 Analytical Equations for
Probabilities

In diploid organisms, SNPs for individual samples can
be thought of as multi-sets over the nucleotides A, T, C,
and G. For example, the homozygous A, homozygous
T, and heterozygous genotypes would be represented as
the following multi-sets, respectively: {A,A}, {T, T},
and {A, T}.

We can calculate the probability that an individual
belongs to population one of two conditioned on its
genotype as follows:

P (y = 1|gt) =
P (gt|y = 1)P (y = 1)

P (gt)

=

Ngt,1

N1
· N1

N
Ngt

N

=
Ngt,1

Ngt
(1)

For unknown genotypes, we make the uninformative
assumption that the unknown genotype could be any
of the possible genotypes with equal probability. In
particular, we do not want to assume that we can
accurately infer the true genotype of an unknown
genotype from the known genotypes among sampled
individuals. Additionally, we do not want to infer
the class probability based on the distribution of the
unknown genotypes across the classes. Note that
this is a significant difference between this method
traditional human GWAS analysis, because in the latter
imputation is often required prior to running LR Tests.

Mathematically, we can define the conditional class
probability for the unknown genotype as the union of
of the conditional class probabilities for each of the
known genotypes. Note that the known genotypes are
mutually exclusive.

P (y = 1|gt) =
P (gt|y = 1)P (y = 1)

P (gt)

=
Ngt,1 + 1

3N{},1
Ngt + 1

3N{}
(2)

P (y = 1|{}) =
P ({}|y = 1)P (y = 1)

P ({})

=
N1

N
(3)

2.3 Logistic Regression Model

Assume that we have N samples with V biallelic
positions. Each position has a reference allele and an
alternative allele, and at each position, each sample
has one of three genotypes (homozygous reference,
homozygous alternate, or heterogyzous).

For each position, we encode the variants as a feature
matrix X with dimensions N × 3. We represent each
genotype for each position as one of three categorical
variables. If sample i has the homozygous reference
genotype at position k, then we set Xi,1 = 1. If sample
i has the homozygous alternate genotype at position k,
then we set Xi,2 = 1. If sample i has the heterozygous
genotype at position k, then we set Xi,3 = 1. If the
genotype of sample i is unknown at position k, then
the row contains zeros in every column.

From the samples’ population labels, we define a
N -length vector y of class labels. We then fit the
parameters of a Logistic Regression model with the
form [7]:

P (yi = 1|Xi) =
1

1 + exp(−β ·Xi + β0)
(4)

where yi is the class label and Xi is the feature vector
for a single sample i and β is the P -length weight vector

26

and β0 is the intercept. We trained the model using
Stochastic Gradient Descent (SGD) and an L2 penalty.
(For the experiments in this paper, we performed 10,000
epochs of training for each model.)

In the “standard case”, we fit a LogReg model on the
feature matrix X for each position and vector y of class
labels described above.

To adjust the conditional class probabilities, we
employ the following revised training procedure. We
form a new 3N × 3 feature matrix X̃ and a new 3N
vector ỹ of class labels by duplicating each data point
three times (since there are three possible genotypes).
For unknown genotypes, we set each copy to one of
the three known genotypes. Thus, the conditional class
probabilities for the known genotypes will incorporate
a key assumption of our method: that each unknown
genotype has an equal probability of being one of the
known genotypes (i.e., “uninformative prior.”). We
also set the LogReg model intercept to the fraction of
samples in class one versus all of the samples and fix the
intercept so it is not altered during the SGD training.
This ensures that the conditional class probabilities for
the unknown genotypes are determined by the ratio of
class one samples to all samples. Lastly, we train the
weights of the LogReg model using SGD.

Note that for predicting the conditional class prob-
abilities, we utilize the original feature matrix X and
class labels y, regardless of training method.

2.4 Likelihood-Ratio Test

The log likelihood for the Logistic Regression model
is given by [7]:

logL(β, β0|X, y) =

N∏

i=1

log yiP (yi = 1|Xi)+

(1− yi) log(1− P (yi = 1|Xi))
(5)

To perform the Likelihood-Ratio Test, two LogReg
models are trained. The first model (the alternative),
trained as described in Section 2.3, contains additional
independent variables (features) not in the null model.
(In our case, the null model only contains the intercept
and thus, predicts the conditional class probabilities
using the ratio of class one samples to all samples.)
The weights (β1, β0) from the two models are used to
compute the log likelihoods. The difference G between
the two is calculated by:

G = 2(logL(β1, β1
0 |X1,y)− logL(β0, β0

0 |X0,y)) (6)

The p-value for the difference in log likelihoods is
calculated using the χ2 distribution:

p = P [χ2(df) > G] (7)

where df is the difference in the number of degrees of
freedom (weights) between the two models.

2.5 Corrected Significance Level

We used a significance level of α = 0.01 (1%).
Following the method of [6], we performed a PCA
analysis of the Anopheles SNPs and found that 15
principal components were needed to explain 99.9% of
the variance. Using their modified version of Bonferroni
correction, we used 0.01/15 = 6.66×10−4 as the cutoff.

2.6 Ranking SNPs with FST

To rank the SNPs, we first calculated the the FST

score for each position using VCFTools [3]. Scores
which were invalid (nan) or negative were to set to zero.
Then, we sorted the SNP positions in descending order
by their FST scores.

2.7 Asaph

Our method was evaluated using Asaph, our toolkit
for variant analysis. Asaph was implemented in Python
using Numpy / Scipy [18], Matplotlib [9], and Scikit
Learn [16] and is available at https://github.com/

rnowling/asaph under the Apache Public License v2.

3 Experimental Results

3.1 Genotypes for Many Anopheles
Variants are Unknown

To motivate our work, we analyzed the prevalence of
unknown genotypes among the ≈1.7 million positions
described in Section 2.1. For each site, we counted
the number of unknown genotypes per species, which is
given as a 2D histogram (with log counts) in Figure 1a.
The unknown genotypes seemed to occur equally in
both species. Fewer than 3% of all positions have known
genotypes for each sample, while for as many as 25%
of the positions, none of the genotypes are known for
any of the samples in at least one population (data not
shown).

We also analyzed the presence of unknown genotypes
across the 2L chromosome arm. We counted the
number of unknown genotypes per site and computed
averages over non-overlapping 100 Kbp windows (see
Figure 1b. While, the number of unknown genotypes
was highest from the beginning of the inversion region
(at 25 Mbp) to the end of the arm, on average more
than half of the genotypes per site are unknown. Thus,
unknown genotypes are highly common for this data
set, which makes downstream analysis challenging.

27

Figure 1: Analysis of Sites on 2L with Unknown
Genotypes. (a) Histogram (log10) of Unknown
Genotypes Per Site By Species (b) Average Number of
Unknown Genotypes Per Site in non-overlapping 100
Kbp Windows

(a) (b)

3.2 Mean Absolute Error of Proposed
Training Method

We also evaluated the agreement of the conditional
class probabilities computed by Logistic Regression
(LogReg) models. For each of 800 SNPs with between
zero and all-but-one unknown genotypes sampled from
the Anopheles data set, we trained models with the
standard approach and with our proposed approach
described in Section 2.3. We calculated the probability
for each of the four possible genotypes using each of
the models. Lastly, we calculated the mean absolute
error (MAE), broken down by genotype, between the
probabilities from the LogReg models and the analyti-
cal probabilities.

The MAEs are reported in Table 1. With the
standard training method, the LogReg model achieves a
MAE as large as 0.23. With the new training approach,
the largest MAE is as low as 0.0081. For the case of
the unknown genotype, the error is reduced to 0, as
expected.

Table 1: Mean Absolute Errors (MAE) of Analytical vs
Logistic Regression-Estimated Probabilities

Standard Corrected
Homo. 1 1.3× 10−1 1.5× 10−4
Homo. 2 1.3× 10−2 8.1× 10−3

Het. 1.7× 10−2 8.1× 10−3
Unknown 2.3× 10−1 0.

3.3 Varying of the Number of Samples
and Unknown Genotypes

The Likelihood-Ratio Test (LR Test) differs from FST

in two significant ways: its p-value incorporates the
number of the samples and, because of our proposed
training method, the percentage of unknown genotypes

is also factored in. We illustrate these differences in
comparisons on simulated data (see Section 2.1).

First, we considered a fixed difference where samples
in one class have one homogeneous genotype and
samples in the second class have the other homogeneous
genotype. We swept over different combinations of
percentages of samples with unknown genotypes from
each population. Except for cases where all of the
samples in a single class have unknown genotypes, the
FST scores for all combinations are one. In contrast, the
LR Test p-values increase as the percentage of unknown
genotypes increase, as desired (see Figure 2).

In the second comparison, we re-considered the fixed
difference, but with different combinations of sample
sizes in each class. We calculated the LR Test p-value
and FST score for each combination (see Figure 3). As
before, the FST scores for each combination were one,
except when one of the populations had zero samples.
The LR Test p-values decreased as the number of
samples increased.

Figure 2: Adjusted Likelihood-Ratio Test p-Values
(− log10) and FST Scores for Different Percentages of
Unknown Genotypes for a Fixed Difference

1.00.90.80.70.60.50.40.30.20.10.0
Unknown Genotypes (Population 1)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0Un
kn

ow
n

Ge
no

ty
pe

s (
Po

pu
la

tio
n

2)

0

5

10

15

20

25

30

(a) LR Test p-Values (log)

1.00.90.80.70.60.50.40.30.20.10.0
Unknown Genotypes (Population 1)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0Un
kn

ow
n

Ge
no

ty
pe

s (
Po

pu
la

tio
n

2)

0.0

0.2

0.4

0.6

0.8

1.0

(b) FST Scores

Figure 3: Adjusted Likelihood-Ratio Test p-Values
(− log10) and FST Scores for Different Combinations
of Sample Sizes for a Fixed Difference

0 2 4 8 16 32 64 128
Population 1 (Samples)

0

2

4

8

16

32

64

128

Po
pu

la
tio

n
2

(S
am

pl
es

)

10

20

30

40

50

60

70

(a) LR Test p-Values (log)

0 2 4 8 16 32 64 128
Population 1 (Samples)

0

2

4

8

16

32

64

128

Po
pu

la
tio

n
2

(S
am

pl
es

)

0.0

0.2

0.4

0.6

0.8

1.0

(b) FST Scores

28

3.4 Analysis of SNPs from the
Anopheles Data set

We applied the adjusted Likelihood-Ratio Test (LR
Test) to perform single SNP association tests on two
data sets of SNPs from the Anopheles gambiae and
Anopheles coluzzii species. We first calculated q-values,
a measure of significance in terms of the false discovery
rate (FDR) [17, 19]. None of the SNPs, however,
satisfied a q-value threshold of 0.01 (FDR of 1%).

Next, we then used the PCA-based method of [6] to
determine a less conservative significance threshold (see
Section 2.5). Our chosen significance level of α = 0.01
(1%) was corrected to 0.01/15 = 6.66 × 10−4. At that
level, 522 SNPs passed the revised threshold.

For initial validation, we “binned” these 522 SNPs
across the 2L chromosome in non-overlapping 10 Kbp
windows—combining our method with that of [10]—
and found three interesting regions: 10 Mbp, 25
Mbp, and 40 Mbp. Significantly, the 25 Mbp region
and 40 Mbp region corresponds to the 2La inversion
boundaries, the frequencies of which are known to differ
between these samples [10,15]. The high concentration
in the 10 Mbp region is a novel result, and has been
provided to our biological collaborators.

We also briefly analyzed the top 20 (as ranked by
their p-values) statistically-significant SNPs individu-
ally. The first- (position 25,396,564), third- (posi-
tion 21,707,904), and fifth-ranked (position 25,403,885)
SNPs are located within the resistance to dieldrin
(Rdl) gene, which has been previously associated with
insecticide resistance in A. gambiae and other insects
[4, 10].

Figure 4: Counts of 522 Statistically-Significant SNPs
Appearing in 10 Kbp Windows Across 2L Chromosome

We compared the adjusted LR Test p-values to the
FST scores for the SNPs (see Figure 5). Notably, 1,633
SNPs have FST scores of 1, but only 20 were found in
the set of 522 statistically-significant SNPs. The small
number of statistically-significant SNPs with FST = 1
was most likely due to unknown genotypes.

Additionally, the FST scores of some of the 522
statistically-significant SNPs were as low as 0.2. We
attribute this result to our categorical encoding scheme,
which considers genotypes, not alleles. In fact, the
uncovered 2La inversion breakpoints are only fixed in
one species and by definition have non-ideal FST scores.

Figure 5: Likelihood-Ratio Test p-Values vs FST

Scores. Red dashed line indicates significance
threshold.

4 Discussion and Conclusion

The Likelihood-Ratio Test (LR Test) has several
properties that make it desirable for population genetics
analysis. In particular, unlike the more commonly used
FST metric, the LR Test provides p-value that can be
used to identify statistically-significant variants relative
to a null model based purely on class probabilities.

Challenges in the sequencing and assembly of insect
genomes results in a high propensity for unknown
genotypes, as illustrated in Section 3.1. Significantly,
we demonstrated in Section 3.3 that our LR Test
framework can adjust the calculated p-value in line
with the percentage of unknown genotypes and smaller
sample sizes to address unknown values without re-
quiring highly difficult and often impossible genotype
imputation these species.

Using the adjusted LR Test, 522 Anopheles SNPs
were found to be statistically significant. Since FST

only uses population frequencies and ignores unknown
genotypes in their calculation, only 20 of the 1,633 SNPs
with FST = 1 were among the 522 significant SNPs.
Significantly, treating the heterozygous genotype sepa-
rately may help uncover important non-fixed differences
such as the ecologically important 2La inversion [10]
rediscovered here.

When used in place of FST , the adjusted LR Test
has the potential to substantially reduce false positives
without requiring combining multiple loci together, as
is often down with window analysis (see [10]). As
such, the adjusted LR Test could significantly impact

29

population genetics by ranking specific sequence-based
differences, which will be essential to quickly character-
izing and ultimately helping understand speciation in
highly similar species.

5 Acknowledgments

The authors would like to thank Nora Besansky,
Michael Fontaine, Becca Love, and Aaron Steele for
thoughtful discussions that provided the motivation for
this effort.

References

[1] Genome-wide association study of 14,000 cases of
seven common diseases and 3,000 shared controls.
Nature, 447(7145):661–678, Jun 2007.

[2] D. J. Balding. A tutorial on statistical methods
for population association studies. Nat Rev Genet,
7(10):781–791, Oct 2006.

[3] P. Danecek, A. Auton, G. Abecasis, C. A. Albers,
E. Banks, M. A. DePristo, R. E. Handsaker,
G. Lunter, G. T. Marth, S. T. Sherry, et al. The
variant call format and vcftools. Bioinformatics,
27(15):2156, 2011.

[4] W. Du, T. Awolola, P. Howell, L. Koekemoer,
B. Brooke, M. Benedict, M. Coetzee, and L. Zheng.
Independent mutations in the Rdl locus confer
dieldrin resistance to Anopheles gambiae and An.
arabiensis. Insect Mol Biol, 14(2):179–183, 2005.

[5] M. C. Fontaine, J. B. Pease, A. Steele, R. M.
Waterhouse, D. E. Neafsey, I. V. Sharakhov,
X. Jiang, A. B. Hall, F. Catteruccia, E. Kakani,
et al. Extensive introgression in a malaria
vector species complex revealed by phylogenomics.
Science, 347(6217), 2015.

[6] X. Gao, J. Starmer, and E. R. Martin. A multiple
testing correction method for genetic association
studies using correlated single nucleotide poly-
morphisms. Genetic Epidemiology, 32(4):361–369,
2008.

[7] D. W. Hosmer Jr., S. Lemeshow, and R. X.
Sturdivant. Applied Logistic Regression. Wiley,
3 edition, 2013.

[8] B. N. Howie, P. Donnelly, and J. Marchini. A
flexible and accurate genotype imputation method
for the next generation of genome-wide association
studies. PLOS Genetics, 5(6):1–15, 06 2009.

[9] J. D. Hunter. Matplotlib: A 2d graphics envi-
ronment. Computing In Science & Engineering,
9(3):90–95, 2007.

[10] M. K. N. Lawniczak, S. J. Emrich, A. K.
Holloway, A. P. Regier, M. Olson, B. White,
S. Redmond, L. Fulton, E. Appelbaum, J. Godfrey,
et al. Widespread divergence between incipient
Anopheles gambiae species revealed by whole
genome sequences. Science, 330(6003):512–514,
2010.

[11] J. Marchini and B. Howie. Genotype imputation
for genome-wide association studies. 11:499 EP –,
Jun 2010. Review Article.

[12] J. Marchini, B. Howie, S. Myers, G. McVean,
and P. Donnelly. A new multipoint method for
genome-wide association studies by imputation of
genotypes. Nat Genet, 39(7):906–913, Jul 2007.

[13] A. P. Michel, W. M. Guelbeogo, O. Grushko,
B. J. Schemerhorn, M. Kern, M. B. Willard,
N’ F. Sagnon, C. Costantini, and N. J. Besansky.
Molecular differentiation between chromosomally
defined incipient species of Anopheles funestus.
Insect Molecular Biology, 14(4):375–87, 2005.

[14] A. Miles, N. J Harding, G. Botta, C. Clarkson,
T. Antao, K. Kozak, D. Schrider, A. Kern,
S. Redmond, I. Sharakhov, et al. Natural diversity
of the malaria vector anopheles gambiae. 2016.

[15] D. E. Neafsey, M. K. N. Lawniczak, and D. J.
Park. SNP genotyping defines complex gene-
flow boundaries among African malaria vector
mosquitoes. Science, 2984, 2010.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830,
2011.

[17] J. D. Storey and R. Tibshirani. Statistical
significance for genomewide studies. Proceedings of
the National Academy of Sciences, 100(16):9440–
9445, 2003.

[18] S. v. d. Walt, S. C. Colbert, and G. Varoquaux.
The numpy array: A structure for efficient
numerical computation. Computing in Science &
Engineering, 13(2):22–30, 2011.

[19] J.D. Storey with contributions from A. J. Bass,
A. Dabney, and D. Robinson. qvalue: Q-value
estimation for false discovery rate control, 2017.
R package version 2.8.1.

30

Abstract

Most common diseases are complex genetic traits, with

genetic contributing to susceptibility to the diseases. Knowing

the genes and their variations that involved in a disease is

crucial for early intervention and the identification of

techniques that can cure the disease. Experimental methods

for determining gene–disease associations are laborious and

time consuming. This created the need for computational

methods to predict the candidate genes associated with

diseases, which will be verified using experimental methods.

However, most current computational methods may return a

large spectrum of candidate genes, which makes their

verification by the experimental methods to be time

consuming and laborious. We propose in this paper a state-of-

the-art biological system called GDL that can overcome the

above-mentioned limitation. It does so by short-listing the

likely candidate genes involved in a disease to a small and

tightly defined group that elicits the disease when work in

concert. Since the number of predicted genes is small, the

verification of their involvement in the disease by

experimental methods will be highly efficient. GDL will help

biologists focus their investigation on a small and tightly

defined group of genes.

Keywords: Biomedical literature, Gene-disease associations,

Genetic illnesses, Information extraction, Text mining.

1 Introduction

Most current computational methods for predicting gene-

disease associations may return a large spectrum of candidate

genes, which makes their verification by the experimental

methods time consuming and laborious. Some of these

promising methods take advantage of the exponential

explosion of biomedical literature. They extract gene-disease

associations that appear within the literature. Despite the

strength of these methods, however, they suffer the following

limitations: (1) they may be suited for only certain classes of

diseases, and (2) they may predict a large number of

candidate genes as associated with the disease.

 We propose in this paper a state-of-the-art biological

system called GDL “Gene-Disease Linker” that can

overcome the above-mentioned limitations of current

computational methods. GDL does so by short-listing the

candidate genes to be involved in a disease to a small and

tightly defined group that will elicit the disease when work in

concert. Since the number of predicted genes is small, the

verification of their involvement in the disease by

experimental methods will be highly efficient. To ensure that

the predicted genes will likely elicit the disease when work in

concert, these genes should possess the characteristics of all

the Functional Categories associated with the disease under

consideration. GDL will help biologists focus their gene-

disease investigations on small and tightly defined groups of

genes. First, GDL extracts the genes that appear within the

biomedical literature associated with the Functional

Categories involved in the disease. Then, it short-lists these

genes by employing the following triple techniques: decision

tree [11], logistic regression [3], and chi-squared analysis [9].

 First, GDL needs to classify the genes that are likely to

be involved in a disease under consideration into the

Functional Categories that define the classes of these genes.

Towards this, GDL will extract the genes that appear within the

biomedical literature associated with each Functional

Category involved in the disease. Then, GDL will rank the

Functional Categories based on their Information Gains [7].

Subsequently, GDL will construct a decision tree by placing

each node representing a Functional Categories in a

hierarchical level in the tree that corresponds to its rank. GDL

uses logistic regression to estimate the linear decision

boundary (i.e., threshold) that divides the class of genes

defined by each Functional Category in the decision tree.

Finally, GDL will compute the chi-squared value for each path

(i.e., branch) in the decision tree to identify the nodes of the

path p that yields the highest chi-squared value. Our

hypothesis is that the leaf node of the path p contains the

smallest short-listed group of genes that are most likely to

elicit the disease when work in concert.

 The gene-disease associations predicted by GDL can

enhance the development of new techniques for preventing,

diagnosing, and treating genetic diseases. Below are more

specific contributions of the proposed system GDL:

 GDL can help in studying phenotype-genotype

relationships, which facilitates genetic testing,

monitoring of symptoms, and prognosis. It can be used

by medical research centers to develop applications

that allow linking existing genetic associations to

structured knowledge of phenotypes. This can be done

by linking the associations between a group of genes

predicted by GDL to structured knowledge of

phenotypes. Recall that GDL identifies such a group of

genes by locating the leaf node of the path in the

decision tree with the highest chi-squared value. The

applications can be used for determining which

genomic variants affect phenotypes [6, 10]. This will

Computing Gene-Disease Associations Efficiently

Kamal Taha

Department of Electrical and Computer Engineering, Khalifa University, UAE

kamal.taha@kustar.ac.ae

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

31

help in explaining diseases, health, and evolutionary

fitness.

 After medical research centers verify the gene-disease

association predicted by GDL, they can use this

information to find new techniques that will improve

the quality of life for patients affected by genetic

disorders and rare diseases, which increases the life

span of the patients.

 It can be used for investigating gene-gene interactions

and gene-environment interactions.

 To the best of our knowledge, this is the first study that

advocate the prediction of the smallest and tightest defined

group of genes involves in a disease, where the group has the

following properties: (1) it possesses the characteristics of all

the Functional Categories associated with the disease, and (2)

it is likely to elicit the disease when work in concert.

Moreover, this is the first study that investigates the

employment of the following triple techniques to short-list the

likely genes involved in a disease: decision tree, logistic

regression, and chi-squared analysis.

 The following is an overview of the sequential

processing steps taken by GDL to short-list the likely candidate

genes to be involved in a disease d:

1) Determining the set of genes annotated with all the

Functional Categories involved in the disease d: For

each Functional Category f associated with d, we select

the biomedical literatures associated with f from high-

quality biological databases (e.g., [17]). GDL will extract

the genes that occur within these literatures. It will

classify the extracted genes into the Functional

Categories that define the classes of genes annotated

with their functions. GDL uses Stanford Named Entity

Recognizer [12] to tag gene terms in texts. It employs a

tokenizer and a stemmer to align the sequence of words

in the texts and the names of genes [13].

2) Constructing a decision tree: GDL will rank the

Functional Categories based on their Information Gains

[7]. Then, it will construct a decision tree [11] by placing

each Functional Category in a hierarchical level in the

decision tree that corresponds to its rank.

3) Using logistic regression to estimate the linear decision

boundary of a Functional Category: GDL uses logistic

regression [3] to estimate the linear decision boundary

(i.e., threshold) that divides the class of genes defined

by a Functional Category f into two subclasses. It will

represent the decision boundary of f by a Z-Score [1].

4) Using chi-squared analysis to short-list the likely genes

to be involved in the disease d: Finally, GDL will

compute the chi-squared value [9] for each path (i.e.,

branch) in the decision tree. Our hypothesis is that the

path p that yields the highest chi-squared value contains

the likely genes involved in the disease d. Specifically,

the leaf node of the path p will contain the smallest

short-listed group of genes that are most likely to elicit

the disease d when work in concert

2 Constructing a Decision Tree

GDL employs ID3 algorithm [11] for building decision trees.

ID3 measures impurity through entropy. The following are

GDL’s sequential processing steps for building a decision tree:

1) First, biologists need to construct a table. Each column

represents a Functional Category. Each row holds a list

of genes annotated with all the Functional Categories

involved in the disease.

2) The biologists will need to add a column to the table.

In each field of this column, the biologists indicate the

likelihood that the combination of all the genes in the

corresponding row will elicit the disease when work in

concert. The biologists can determine this based on the

following: (a) the information in the row, and (b) their

own domain knowledge and expertise.

3) The table described in steps 1 and 2 will be broken into

sub-tables according to the Functional Categories.

Each sub-table holds the likelihoods of the genes

annotated with only one Functional Category to elicit

the disease.

4) For each of the sub-tables described in step 3, GDL will

calculate the entropy of each distinct gene in the sub-

table. Entropy (ENT) is computed using Equation 1.

f ff ppENT 2log (1)

where pf is the probability of each Functional Category

f. ENT measures the uncertainty. The higher the

uncertainty, the higher the entropy is. ENT of a pure

table that consists of a single Functional Category is

zero, since pf = 1 and log2pf = 0 (hence, we achieve

minimal impurity). Maximal impurity can be achieved

when we have n Functional Categories and each

happens with equal probability.

5) GDL computes the Information Gain (IG) [2] for each

Functional Category f based on the entropies of f that

were calculated in step 4. IG measures the difference in

entropy for f before and after the data is split on the data

of f (i.e., before and after the table described in steps 1

and 2 is broken on the data of f as described in step 3).

It measures the degree of reduction of uncertainty after

the data is broken. It is computed as purity degrees of

the parent table and weighted summation of impurity

degrees of the subset table. IG is computed as follows:

IG = ENT(parent) - Weighted Sum of ENT(Child) (2)

 Finally, the Functional Categories are ranked

based on their IG values. Then, a decision tree is

constructed by placing each node representing a

Functional Category f in the hierarchical level in the

decision tree that corresponds to the rank of f. Thus, the

root node of the decision tree represents the Functional

Category that has largest IG.

32

Running Example: As a running example throughout the

paper, we illustrate how GDL can short-list the likely genes

involved in the disease “deletion syndrome”, using the

following five Functional Categories involved in the disease:

- Di-trihydroxycholestanoic acid oxidation/Bile acid (DAO).
- Fatty acid oxidation (FAO).
- Fatty acid synthesis (FAS).
- Peroxisomal membrane proteins (PMP).
- Straight chain fatty acids oxidation (CFAO).

 Example 1: We show how GDL builds the decision tree

of the running example based on the likelihood data in Table

1 of genes involvement in the disease. Table 2 shows Table 1

after being broken into 5 sub-tables. Table 3 shows the ENT

of each gene. The IG of each Functional Category is

calculated based on the data in Table 3, as shown in Table 4.

Finally, the Functional Categories are ranked based on their

IGs. The decision tree shown in Figure 1 is constructed by

placing each node representing a Functional Category in the

hierarchical level in the tree that corresponds to its rank.

Table 1: The Likelihood that the combination of the genes in

each row elicits the disease “Deletion Syndrome” when

work in concert. The set of genes in each row is annotated

with all the Functional Categories involved in the disease

PMP FAS FAO DAO CFAO Likelihood to Elicit the Disease

g6 g12 g17 g19 g14 Yes

g6 g36 g17 g19 g38 No

g35 g53 g25 g8 g20 Yes

g15 g36 g17 g11 g14 Yes

g15 g36 g44 g19 g37 Yes

g6 g12 g17 g19 g38 Yes

g35 g53 g25 g8 g14 No

g35 g12 g17 g19 g14 Yes

g15 g12 g44 g8 g3 No

g15 g53 g44 g19 g37 No

Table 2: Breaking table 1 into sub-tables according to the

Functional Categories. Each sub-table shows the likelihoods

of the genes of one Functional Category elicits the disease

PMP L.E.D. FAS L.E.D. FAO L.E.D. DAO L.E.D. CFAO L.E.D.

g6 Yes g12 Yes g17 Yes g19 Yes g14 Yes

g6 No g12 Yes g17 Yes g19 No g14 Yes

g6 Yes g12 Yes g17 Yes g19 Yes g14 Yes

g35 Yes g12 No g17 Yes g19 Yes g14 No

g35 No g36 No g17 No g19 Yes g14 No

g35 Yes g36 Yes g25 Yes g19 No g17 No

g15 Yes g36 Yes g25 No g8 Yes g17 Yes

g15 Yes g53 Yes g44 Yes g8 No g25 Yes

g15 No g53 No g44 No g8 No g25 Yes

g15 No g53 No g44 No g11 Yes g25 No
L.E.D. denotes “Likelihood to Elicit the Disease”. The genes are represented
numerically for easy reference.

Table 3: ENT of each distinct gene annotated with a

Functional Category involved in the disease “Deletion

Syndrome”. ENT is calculated based on Tables 1 and 2

PMP ENT FAS ENT FAO ENT DAO ENT CFAO ENT

g6 0.918 g12 0.811 g17 0.722 g19 0.918 g14 0.971
g35 0.918 g36 0.918 g25 1 g8 0.918 g17 1
g15 1 g53 0.918 g44 0.918 g11 0 g25 0.918

Table 4: The IG of each Functional Category, calculated

based on Table 3

Functional Category PMP FAS FAO DAO CFAO

IG 0.0202 0.0958 0.1346 0.1448 0.0101

Figure 1: The decision tree of the running example. Y, N, and

g denote “Yes”, “No”, and “gene” respectively. The linear

decision boundary for each Functional Category is

represented by a Z-score as described in Example 2. The

figure shows also the number of genes satisfying the Y and N

outcomes of Functional Categories. For example, Y (127 g)

denotes that the number of genes satisfying the “Yes”

outcome of Functional Category DAO is 127.

3 Using Logistic Regression to Estimate

the Linear Decision Boundary of a

Functional Category

GDL uses logistic regression to estimate the linear decision

boundary of a Functional Category, based on the coefficients

B0 and B1 [15] for the (multi)linear regression of variables,

which are computed as shown in Equations 3 and 4. Equation

5 is used for determining the value of x that makes y zero

n

i i

n

i

n

i iii

xnx

yxyx
B

1

22

1 1

1
 (3)

 xByB 10 (4)

 xBBy 10 (5)

n

i

i

n

y
y

1
,

n

i

i

n

x
x

1
 , EPoddy ln

similarnonofNosimilarofNo

similarofNo
EP

..

.
)(

,

)(1

)(
))((

EP

EP
EPodd

33

 In the framework of GDL, the decision boundary of a

Functional Category f is represented by a Z-Score [1]. First,

biomedical texts are divided into partitions, where each

partition is an incremental percentage of the texts. Let Si be

the set of texts in partition i. The estimators B0 and B1 of the

coefficients for the (multi)linear regression of variables x1,...,

xn are computed for sets S1, …, Sn, respectively. In the

framework of GDL, xi denotes the Z-score for set Si. That is,

we use Z-Score to identify the set of genes in set Si that

significantly possesses the characteristics of f. This is done by

computing the differences between the probabilities of genes

occurrence across all function classes. Let: (1))(if SN be the

number of genes that occur in set Si and are annotated with

Functional Category f, which is involved in the disease under

consideration, (2))(iSN be the mean of the number of genes

that occur in Si and are annotated with any Functional

Category, and (3) be the standard deviation of the

population. The Z-score of set Si is computed as Equation 6:

)()(
)(

iif

i

SNSN
SscoreZ

 (6)

 Example 2: We show how GDL can determine the

linear decision boundary for Functional Category DAO (i.e.,

the Z-score = 0.69 for DAO shown in Figure 1). The decision

boundary is determined based on the data in Table 6 (which

is in turn calculated from Table 5). Table 5 is constructed as

follows. First, the biomedical texts associated with DAO are

divided into partitions. Each partition Si is an incremental

percentage of the texts. The following are calculated for each

Si and recorded in the table: (1) NDAO (Si) (the number of genes

that occur in Si and are annotated with DAO), (2) N (Si) (the

number of genes that occur in Si and are annotated with any

Functional Category), and (3) Z-score (Si) (the Z-score for Si

calculated using Equation 6, where)(iSN is the mean of the

number of genes that occur in Si and are annotated with any

Functional Category). The coefficients B0 and B1 are

computed using Equations 3 and 4 based on the intermediate

data in Table 6 (which is in turn calculated from Table 5).

Table 5: The Z-score of each partition Si of texts selected in

an incremental percentage of all the texts associated with

Functional Category DAO, which is involved in the disease

of the running example.

Z-score (Si))(iDAO SN)(iSN Percentage of selected texts

0.107 17 47 20%

0.872 38 83 40%

-0.625 41 137 60%

-1.08 48 184 80%

-2.64 62 268 100%

Table 6: Intermediate data for calculating B0 and B1. The

data is computed using equations 3 and 4 based on Table 5

Z-score P(E) odd(P(E)) ln(odd(P(E)))
0.107 0.266 0.362 -1.016
0.872 0.314 0.458 -0.781
-0.625 0.230 0.299 -1.207
-1.08 0.207 0.261 -1.343
-2.64 0.188 0.232 -1.461

x and y in equations 3-5 denote Z-score and ln(odd(P(E))), respectively

in the table

4 Using Chi-Squared Analysis to Short-

List the Genes that are Likely to be

Involved in a Disease

A chi-squared value (χ2) is computed as follows: χ2 = (O−E)2/E

, where O and E are the observed and expected frequencies of

the data, respectively. The expected frequency (E) for each

possible value of the variable is computed as follows: E = np ,

where n is the size of the sample and p is the relative

frequency (or probability).

 Example 3: Using the decision tree in Figure 1, we

show how GDL uses chi-squared analysis to identify the leaf

node containing the likely short-listed genes involved in the

disease “deletion syndrome”. As Figure 2 shows, there are 16

paths in the tree. GDL computed the chi-squared value for each

path. Path 6 achieved the highest chi-squared value. Thus, the

leaf node of path 6 contains the short-listed genes. The 5 genes

satisfying outcome Y of Functional Category CFAO within

the leaf node of path 6 are the short-listed genes that are: (1)

likely to be involved in the disease, and (2) annotated with all

Functional Categories involved in the disease.

Figure 2: The 16 paths in the decision tree of the running

example. Each path is denoted by a combination of: an arrow

 , a letter “p” underneath the arrow, and a digit underneath

the letter. The digit represents the path’s number. For

example, denotes path number 3. GDL identified the 5 genes

that satisfied outcome Y of Functional Category CFAO

within the leaf node of path 6 as the short-listed genes that

are: (1) likely to be involved in the disease, and (2) annotated

with all the Functional Categories involved in the disease

“deletion syndrome”. Path 6 is marked with blue background.

3

p

34

5 Experimental Results
We implemented GDL in Java, run on Intel(R) Core(TM) i7

processor, with a CPU of 2.70 GHz and 16 GB of RAM, under

Windows 10. We experimentally evaluated the quality of GDL

for predicting and short-listing the likely genes involved in

the disease “Acyl-CoA Oxidase Deficiency”. We evaluated

the quality of GDL by comparing the list of genes it predicted

as the likely to be involved in the disease with the actual list

of genes already known to be involved in the disease. We

considered the actual list of genes known to be involved in the

disease as ground-truth data. Table 7 shows the list of

Functional Categories involved in the disease. We retrieved

217 PubMed texts associated with the five Functional

Categories according to their entries in the UniProtKB

database [17]. Let f be one of the five Functional Categories

in Table 7. GDL extracted the list Lf of genes that occur within

the texts associated with f among the 217 PubMed texts. GDL

stored this information in a genes table with an entry for each

of the five Functional Categories.

Table 7: List of Functional Categories involved in the

disease “Acyl-CoA Oxidase Deficiency” and their abbreviations

Functional Category Abbreviation

Di-trihydroxycholestanoic acid beta-oxidation DABO

Long-chain dicarboxylic acids oxidation LDAO

Fatty acid synthesis/PUFAS synthesis FAPS

Straight chain fatty acids beta-oxidation SFABO

Branched-chain fatty-acid oxidation BFAO

 GDL ranked the paths in the decision tree based on their

chi-squared values. As Figure 3 shows, path 15 achieved the

highest chi-squared value. GDL identified the 5 genes satisfied

outcome Y of Functional Category LDAO within the leaf

node of path 15 as the short-listed group of genes that are

likely to elicit the disease “Acyl-CoA oxidase deficiency”

when work in concert.

Figure 3: The paths in the decision tree of the disease “Acyl-

CoA oxidase deficiency”. GDL identified the 5 genes satisfied

outcome Y of LDAO within the leaf node of path 15 as the

most likely to be involved in the disease.

 For each of the top-3 paths ranked by GDL, we measured

the Recall, Precision, and F-value of the predicted genes

contained in the leaf node of the path. We used the following

metrics: Recall=Cg/Ng , Precision = Cg/Mg , and F-value = (2 Recall

* Precision)/(Recall+ Precision), where Cg is the number of

correctly predicted genes in the path’s leaf node, Ng is the

number of actual genes involved in the disease, and Mg is the

number of predicted genes in the lead node. As Figure 4

shows, the F-value of a path increases as its rank increases

(i.e., the top-ranked path achieved the highest F-value). This

is an evident of the accurate identification, classification, and

ranking of paths.

 Recall Precision F-value

Figure 4: The Recall, Precision, and F-value for predicting

the genes contained in the leaf node of each of the top-3

ranked paths in the decision tree.

 We also evaluated the accuracy of GDL in terms of the

distances between the positions of the genes in the list ranked

by GDL and the positions of the same genes in lists ranked by

the standard network metrics (i.e., Degree, Closeness, and

Betweenness metrics [16]), using the disease-specific gene

interaction network. Specifically, we measured the distances

between: (1) the positions in the list ranked by GDL that belong

to the genes contained in the leaf nodes of the top-3 ranked

paths, and (2) the positions of the same genes in the lists

ranked by the standard network metrics using the disease-

specific gene interaction network. Intuitively, the smaller the

distances the better GDL. The following is the procedure we

considered for ranking the list of genes predicted by GDL:

 Each of the 5 genes in path 15 (which is ranked first)

is considered to be in position # 1 in the list.

 Each of the 6 genes in path 3 (which is ranked second)

is considered to be in position # 6 in the list.

 The gene in path 16 (which is ranked third) is

considered to be in position # 12 in the list.

A ranking is a permutation of the integers 1, 2, For each of

the top-3 ranked paths, we measured the average Euclidean

Distance between the positions in the list ranked by GDL that

belong to the genes contained in the leaf node of the path, and

the positions of the same genes in the lists ranked by the

standard network metrics. We used the Euclidean Distance

measure shown in Equation 7. Figure 5 shows the results.

35

p

gg

mpd
pg

pm

)()(

),(

 (7)

where:

),(mpd : The average Euclidean Distance between

the positions of path p and network metric m.

)(gp : The position in the list ranked by GDL that

belongs to gene g, which is contained in the leaf

node of path p.

)(gm : The position of gene g in the list ranked by

network metric m.

 Closeness Betweenness Degree

Figure 5: The average Euclidean Distance between the

positions of the genes contained in each of the top-3 ranked

paths and the positions of the same genes in each of the lists

ranked by standard network metrics. Intuitively, the smaller

the average distance the more accurate the path.

 As Figure 5 shows, the Euclidean Distances between the

positions of the genes in the list ranked by GDL and the

positions of the same genes in the lists ranked by the standard

network metrics are small. Moreover, these distances tend to

decrease as the rank of a path increases, where the top-ranked

path (i.e., path 15) achieved the smallest distances.

6 Conclusion
We proposed in this paper a state-of-the-art biological system

called GDL that can help biologists short-list the candidate

genes that are likely to elicit a disease when work in concert.

This helps biologists focus their investigation of the likely

genes involved in a disease on a small and tightly defined

group of genes. This overcomes the limitations of most

current approaches that predict a large spectrum of candidate

genes, which makes the verification of these genes by

experimental methods time consuming and laborious.

Moreover, these approaches may be suited for only certain

classes of diseases. First, GDL constructs a decision tree by

ranking the Functional Categories involved in the disease.

After employing logistic regression to estimate the linear

decision boundaries of the Functional Categories, GDL uses

chi-squared analysis to identify the path p that yields the

highest chi-squared value. Our hypothesis is that the leaf node

of p contains the smallest and tightest defined group of genes

involves in a disease, where the group has the following

properties: (1) it possesses the characteristics of all the

Functional Categories involved in the disease, and (2) it is

likely to elicit the disease when work in concert. We

experimentally evaluated the quality of GDL for predicting the

likely genes involved in the disease “Acyl-CoA Oxidase

Deficiency”. Results showed high prediction accuracy.

References
[1] A. Wong, H. Shatkay. Protein Function Prediction using Text-

based Features extracted from the Biomedical Literature: The

CAFA Challenge. BMC Bioinformatics 2013, 14(Suppl 3):S14.

[2] Bauer S, et al. (2010) GOing Bayesian: model-based gene set

analysis of genome-scale data. Nucleic Acids Res, 38:3523.

[3] David Hosmer (2013). Applied logistic regression. Hoboken,

New Jersey: Wiley. ISBN 978-0470582473.

[4] Hettne et al., “The implicitome: A resource for rationalizing

gene-disease associations”, 2016, PloS one 11 (2).

[5] H. Zhou, J. Skolnick, “A knowledge-based approach for

predicting gene-disease associations”, 2016,

Bioinformatics, 32(18).

[6] Morbid Map of the OMIM downloads (2017). Available at:

http://www.omim.org/downloads.

[7] O. Al-Jarrah, O Alhussein, P Yoo, S Muhaidat, K Taha, and K.

Kim. “Data Randomization and Cluster-Based Partitioning for

Botnet Intrusion Detection”. IEEE Transactions on

Cybernetics. 2015, 46(8): 1796-1806.

[8] Ozgür A, Vu T, Erkan G, Radev DR. Identifying gene-disease

associations using centrality on a literature mined gene-

interaction network. Bioinformatics 2008, 24(13), i277 – i285.

[9] P.E. Greenwood, M.S. Nikulin. (1996) A guide to chi-squared

testing. Wiley, New York.

[10] R. Al-Dalky, Taha, K., Dirar Al Homouz. “Applying Monte

Carlo Simulation to Biomedical Literature to Approximate

Genetic Network". IEEE/ACM Transactions on Computational

Biology and Bioinformatics. 2016, 13(3), pp. 494 - 504.

[11] Sung-Hyuk Cha; Charles C Tappert (2009). "A Genetic

Algorithm for Constructing Compact Binary Decision Trees".

Journal of Pattern Recognition Research. 4 (1): 1–13.

[12] Stanford Tokenizer, POS Tagger, and Named Entity

Recognizer (2017): http://nlp.stanford.edu/software/

[13] Taha, K. "Extracting Various Classes of Data from Biological

Text using the Concept of Existence Dependency". IEEE

Journal of Biomedical and Health Informatics (IEEE J-BHI),

2015, Vol. 19, issue 6, pp. 1918 - 1928.

[14] Taha, K. "Determining the Semantic Similarities among Gene

Ontology Terms". IEEE Journal of Biomedical and Health

Informatics, 2013, 17(3).

[15] Tue Tjur (2009). "Coefficients of determination in logistic

regression models". American Statistician: 366–372.

[16] Taha, K., Yoo, P. "Using the Spanning Tree of Mobile

Communication Network for Identifying Criminal Leaders".

IEEE Transactions on Information Forensics & Security, 2016,

Vol. 12, issue 2, pp. 445 – 453.

[17] UniProt: The UniProt Consortium. Activities at the Universal

Protein Resource. Nucleic Acids Research, 2014, Vol. 42,

D191–D198.

36

Searching Jointly Correlated Gene Combinations

Yuanfang Ren∗, Ahmet Ay�, Travis A. Gerke† and Tamer Kahveci∗

∗ Department of Computer and Information Science and Engineering, University of Florida
Gainesville, FL, 32611, USA

(yuanfang, tamer)@cise.ufl.edu

� Departments of Biology and Mathematics, Colgate University
Hamilton, NY, 13346, USA

aay@colgate.edu

† Moffitt Cancer Center
Tampa, FL, 33607, USA
travis.gerke@moffitt.org

Abstract

Gene expression associations play an essential role to
decipher functions of genes and their interactions. Cor-
relation score between pairs of genes is usually utilized
to associate two genes. However, the relationship
between genes is often more complex; multiple genes
might collaborate to control the transcription of a gene.
In this paper, we introduce the problem of searching
pairs of genes, which collectively correlate with another
gene. This problem is computationally much harder
than the classical problem of identifying pairwise gene
associations. Exhaustive search is infeasible for the en-
tire human transcriptome also; since for m genes, there
are O(m3) possible gene combinations. Our method
builds three filters to avoid computing the association
for a large fraction of gene combinations, which do
not produce high correlation. Our experiments on a
prostate cancer dataset demonstrate that our method
produces accurate results at the transcriptome level
in practical time. Moreover, our method identifies
biologically novel results which classical pairwise gene
association studies are unlikely to discover.

Keywords: Pearson’s correlation, pairwise correla-
tion, joint correlation, prostate cancer.

1 Introduction

Gene expression analysis is key for understanding the
mechanisms of central biological processes, which often
small changes in gene transcription levels may have pro-
found effects such as cancer. Analysis of gene transcrip-
tion patterns has been shown to be helpful in numerous
applications such as understanding cellular functions

of genes [2], progression of major disorders [16] and
cellular responses to external stimulants [8]. One of
the first steps in studying gene expression is to explore
the associations between genes. Two standard ways
to formulate such associations mathematically are to
compute the correlations between gene transcription
levels using Pearson correlation [15, 18] or Spearman
correlation [17, 4, 9]. In this paper, we focus on
Pearson’s correlation function as it is arguably the most
commonly used correlation function, and as it takes the
gene transcription levels into consideration.

Although correlation studies on transcription
datasets are frequently done, many exhibit a major
limitation; the correlations are often computed
only for pairs of genes. This is a natural outcome
of the correlation functions, including Pearson’s
correlation, as they work only for two genes at a
time. The relationships between genes however are
more complex as sets of genes collaboratively can
affect the transcription of other genes. Particularly
in a cohesive expression network, the identification of
subtly interacting gene sets that comprise networks
remains to be a challenging task. In the literature,
a subset of such collaborative relationships are
defined as SSL (Synthetic Sickness and Lethality)
interactions [23, 13, 7]. As such, many existing
gene expression networks in popular usage have
been defined on the basis of biological inference, not
through computational search [19]. SSL interactions
describe how groups of genes affect an outcome, such
as survivability and mobility of cells, instead of the
transcription of other genes. As we explain later in
detail, here we consider a mathematically different

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

37

problem, and aim to find groups of genes which
collectively correlate with a target gene rather than
an outcome in phenotype. Exhaustively searching
for groups of genes which collectively regulate or are
associated with others is a computationally challenging
task. Some attention has previously been given to gene
expression pairs that jointly correlate with a binary
phenotype [6]. However, to the best of our knowledge,
no algorithms have been proposed to efficiently seek
gene expression pairs that jointly correlate with a
third transcript. In the following, we briefly present
a conceptual description of the problem considered
in this paper. We present a mathematically precise
definition in Section 2.1 after defining proper terms
and variables.

Problem definition. Consider a dataset of n samples
with each sample having the transcription levels of a set
of m genes. Consider three genes gi, gj , and gk from
this set. We say that gi and gj jointly correlate with gk
if the following three conditions hold:

(i) gi and gk do not correlate.

(ii) gj and gk do not correlate.

(iii) Cumulative transcription levels of gi and gj
correlate with gk.

Figure 1 explains this problem on a real example.
In this example, we focus on three genes: CLOCK,
MED4 and RB1. We obtained gene expression levels
from 333 prostate cancer patients from the The Cancer
Genome Atlas (TCGA) [1] database (See Section 3 for
details on this dataset). We present the scatter plots
of the transcription levels for different combinations
and compute their correlations. We observe that
CLOCK and MED4 genes have low correlation with
RB1. However, the sum of the transcription levels of
CLOCK and MED4 genes, highly correlate with RB1.
Thus, genes CLOCK and MED4 jointly correlate with
gene RB1. In this paper, we would like to find all such
jointly correlated genes.

Joint correlations between genes may reveal subtle,
yet important relationships, which govern transcription
of genes. Because the relevant gene triads cannot be
identified through classical pairwise gene correlation
analyses, this is a computationally challenging task.
The challenge arises due to the geometric increase in
the number of combinations of genes. More specifically,
there are m ×

(
m−1
2

)
(i.e. O(m3)) gene combina-

tions. For instance, the human transcriptome has
around 20,000 well-annotated genes, which translates
into about 4 × 1012 possible combinations, making it
infeasible to use an exhaustive approach.

Our Contributions. In this paper, we address the
problem of finding jointly correlated gene combinations.
We develop three efficient filters to avoid an exhaustive

search. We perform extensive experiments on a real
gene expression dataset obtained from TCGA database.
Our results demonstrate that our method has very high
accuracy, and it is dramatically faster than the classical
exhaustive approach. Further analysis of the results
obtained by our method reveals that there are many
substantial joint correlations between genes that are
impossible to determine using existing strategies.

We outline the rest of the paper as follows. We
formally define the problem and present our method
in Section 2. We discuss our experimental results in
Section 3 and conclude in Section 4.

2 Methods
We developed three efficient filters to dramatically

reduce the time to find joint correlations. Section 2.1
provides the key terms used in our method. Section 2.2
describes our three filters.

2.1 Preliminary terms

Here, we define the key terms which are needed to
describe our method. We start by taking a look at
the calculation of the Pearson’s correlation between two
genes.

Assume that we are given a dataset containing the
transcription levels of m genes for n samples. We
denote the transcription of the ith gene, gi, for all the
n samples with vector Xi = [xi1, xi2, . . . , xin], where
xij is the transcription level of gi for the jth sample.
Let us denote the standard deviation of vector Xi

with σ(Xi), and the covariance between vectors Xi

and Xj with cov(Xi, Xj) respectively. We denote the
Pearson’s correlation function between genes gi and gj
with f(gi, gj) and calculate it as:

f(gi, gj) =
cov(Xi, Xj)

σ(Xi)σ(Xj)
.

Next, we define a key term which is needed to
formulate the problem considered in this paper.

Definition 1. (Joint correlation). Given three
genes gi, gj and gk, two real valued parameters α >
0 and β > 0, and the correlation thresholds ε, ε′ ∈
[0, 1] (ε′ 6 ε), we define the joint correlation between
the pair (gi, gj) and the target gene gk as the Pearson’s
correlation between vectors αXi + βXj and Xk, and
denote it with f(αgi ⊕ βgj , gk). We say that genes gi
and gj jointly correlate with gk if all of the following
three conditions hold:

(1) |f(αgi ⊕ βgj , gk)| > ε,

(2) |f(gi, gk)| < ε′,

(3) |f(gj , gk)| < ε′.

38

200 600
5

0
0

1
0

0
0

2
0

0
0

CLOCK

R
B

1

400 800 1200

5
0

0
1

0
0

0
2

0
0

0

MED4

400 800 1400

5
0

0
1

0
0

0
2

0
0

0

CLOCK+MED4

Figure 1: An example of jointly correlated gene combination. Left: scatter plot of the expression levels of genes
CLOCK and RB1 over 333 samples (Pearson’s correlation = 0.569). Middle: same scatter plot for genes MED4
and RB1 (Pearson’s correlation = 0.527). Right: scatter plot of the cumulative transcription of CLOCK and MED4
against RB1 (Pearson’s correlation = 0.864).

An important observation following from Definition 1
is that scaling the coefficients of gene combinations by
a constant κ does not change their joint correlation. In
other words,

f(αgi ⊕ βgj , gk) = f(καgi ⊕ κβgj , gk).

Thus, using κ = 1/(α+ β), we get

f(αgi ⊕ βgj , gk) = f(g′i ⊕ g′j , gk),

where g′i = α
α+β gi and g′j = β

α+β gj .

The above equation implies that after preprocessing
(i.e., multiplying the transcription value of genes gi and
gj with α

α+β and β
α+β , respectively), we simplify the

calculation of the joint correlation by getting rid of the
parameters α and β. To simplify our notation, in the
rest of this paper, unless otherwise specified, we assume
that the transcription values of all genes are already
multiplied with these constants, and thus α = β = 1.

Next, we derive the formulation for the joint correla-
tion of three genes:

f(gi ⊕ gj , gk) =
cov(Xi +Xj , Xk)

σ(Xi +Xj)σ(Xk)

=
cov(Xi, Xk) + cov(Xj , Xk)

σ(Xi +Xj)σ(Xk)

=
σ(Xi)

σ(Xi +Xj)

cov(Xi, Xk)

σ(Xi)σ(Xk)
+

σ(Xj)

σ(Xi +Xj)

cov(Xj , Xk)

σ(Xj)σ(Xk)

=
σ(Xi)f(gi, gk) + σ(Xj)f(gj , gk)

σ(Xi +Xj)
.

From the above formulation, we obtain the rela-
tionship between the joint correlation and pairwise
Pearson’s correlation.

Notice that finding the jointly correlated sets of genes
can be solved by exhaustively trying all combinations
of three genes gi, gj and gk. Although, this would
yield correct results, it is computationally prohibitive
as the number of combinations is massive when scaled
to the entire transcriptome for many organisms. Next,

we describe how we solve this problem efficiently. Our
method avoids exhaustively testing the geometrically
growing search space by developing three filters to
quickly remove a substantial fraction of gene combi-
nations, which are guaranteed to not jointly correlate.
We discuss these three filters next.

2.2 Filters

In this section, we describe our three filters in detail.
Among these, the first two are unconditional; the
decision to filter gi does not depend on gj . The third
filter is conditional as it considers the gj level while
making a decision on gi. All these filters utilize the
relationship between the joint correlation of three genes
and pairwise Pearson’s correlation (see section 2.1 for
the derivation).

f(gi ⊕ gj , gk) =
σ(Xi)f(gi, gk) + σ(Xj)f(gj , gk)

σ(Xi +Xj)
(1)

Filter 1. We obtain our first filter directly from
the problem definition. We only consider gi for joint
correlation with gk if

|f(gi, gk)| < ε′

as neither gene in the gene combination correlates with
the target gene individually if they jointly correlate with
the target gene.

This filter gives the filter condition for every gene
without considering their relationship with others.
Thus, it has small computational cost. However, the
bound for this filter is loose, and thus we expect to
have many gene combinations to remain for the next
two filters.

Filter 2. The second filter takes gene gj into consider-
ation, which leads to a tighter bound. To do this while
ensuring that the filter is unconditional, it considers the
maximum possible absolute correlation value between
gj and gk as well as the minimum standard deviation
between gi and gj . It works as follows.

39

For each target gene gk, consider the genes in the
group which have positive correlation values with gk.
For gene gi, we only consider the genes whose standard
deviations are smaller than that of gi. It is worth
mentioning that no combination of gi and gj is missed in
this way. Given σ(Xj) 6 σ(Xi), we have the following
formulation:

f(gi ⊕ gj , gk) =
σ(Xi)f(gi, gk) + σ(Xj)f(gj , gk)

σ(Xi +Xj)

6σ(Xi)[f(gi, gk) + f(gj , gk)]

σ(Xi +Xj)
.

(2)

Then, we obtain our second filter by replacing two
terms in this inequality. We explain how we do this
next. Let us denote the set of genes with standard
deviation less than or equal to that of gene gi with

Ai = {gt| σ(Xt) 6 σ(Xi)}.

Also, let us denote the set of genes which are in the
same group as gi with respect to the target gene gk
with

Bi,k = {gt| f(gt, gk) · f(gi, gk) > 0}.
Consider

gr = argmaxt{f(gt, gk)| gt ∈ Ai ∩Bi,k}.

We have f(gr, gk) > f(gj , gk) since gj ∈ Ai∩Bi,k. Now,
consider

gs = argmint{σ(Xi +Xt)| gt ∈ Ai}.

Similarly, we have σ(Xi+Xs) 6 σ(Xi+Xj) as gj ∈ Ai.
Using these inequalities, we replace the terms f(gj , gk)
and σ(Xi+Xj) in Equation 2 with f(gr, gk) and σ(Xi+
Xs), respectively. Thus, our second filter removes gi
from consideration if

f(gi ⊕ gj , gk) 6 σ(Xi)[f(gi, gk) + f(gr, gk)]

σ(Xi +Xs)
< ε.

Notice that, the transformation above eliminates the
term gj from the inequality. This transformation seems
more complicated than the original one in Equation 1,
however, it allows for a much more efficient implemen-
tation.

Filter 3. We expect our second filter to yield false
positives when the standard deviation of gi, σ(Xi),
becomes too large. Our third filter deals with such false
positives by actually taking the transcription values of
gj into account. Instead of introducing the two terms
gr and gs into Equation 2 as we did in Filter 2, we
only replace the term f(gj , gk) with f(gr, gk). Thus,
our third filter removes the combination gi and gj if

f(gi ⊕ gj , gk) 6 σ(Xi)[f(gi, gk) + f(gr, gk)]

σ(Xi +Xj)
< ε.

That is, gi and gj cannot jointly correlate with gk if

σ(Xi +Xj) >
σ(Xi)[f(gi, gk) + f(gr, gk)]

ε
.

An interesting question at this point would be: why
do we need to use Filter 3 if we need to use the
transcription of all the three genes gi, gj and gk?
In other words, why do we not simply compute the
joint correlation f(gi ⊕ gj , gk) directly and resort to a
filter? The answer lies in the final inequality of Filter
3 above. It gives us a lower bound for the standard
deviation if gi and gj do not jointly correlate with gk.
As we precompute the standard deviation for all gene
pairs, we utilize this information to avoid computing the
joint correlations of all candidate combinations. Recall
that in total there are only

(
m
2

)
pairs as compared to

m×
(
m−1
2

)
three gene combinations. Thus, this filter has

the potential to eliminate many false joint correlations
at a little expense which is already computed as a
preprocessing step to our algorithm.

Now that we have demonstrated our method; we next
describe an application of this method to a real gene
expression dataset.

3 Results
In this section, we experimentally test our method

on a real dataset, and measure its performance in
terms of accuracy and running time. Moreover, we
also discuss the biological characteristics of jointly
correlated gene combinations we have found. Notice
that, in all experiments, we set the parameter α and β
to 1. In the following, we describe the dataset used in
our experiments.

Real dataset. We use the processed Prostate Ade-
nocarcinoma (PRAD) RNA-seq data [12] downloaded
from TCGA. This dataset consists of transcription
levels of 20,531 genes for 333 samples. Notice that, all
transcription levels of genes have been normalized using
log transformation. We remove genes with consistently
low expression throughout a large majority of the
samples in the following way. If the transcription level
of a gene is less than 10 for more than 95 percent of
samples, we say that this gene is not expressed at a
sufficient level, and remove it. After the preprocessing
step, a total of 16,513 genes remain in our dataset.

3.1 Evaluations on real datasets

In this section, we measure the performance of our
method on the real dataset described above in terms of
its running time and accuracy.

3.1.1 Evaluation of running time

In the real dataset, three parameters affect the running
time of our method: the number of genes, and the

40

two correlation thresholds ε and ε′. Out of these three
parameters, only the first and the third affect the run-
ning time of the exhaustive search. We experimentally
evaluate the impact of all of the these parameters on
the performance of our method next.

Impact of number of genes. As the exhaustive
approach does not scale to the entire dataset, we
run experiments on small subsets of our dataset with
varying number of genes. In particular, we vary the
dataset size from 200 to 2000 at increments of 200.
For each dataset size, we construct 10 different gene
sets by randomly selecting a subset of genes and report
the average and the standard deviation of the running
time for each dataset size. We fix the thresholds ε and
ε′ to 0.75 and 0.6 respectively. Figure 2a reports the
results for our method and exhaustive search. When
the number of genes reaches 800, exhaustive search
takes excessively long time (i.e., more than 10 hours).
Thus, we do not report the running time of exhaustive
search when number of genes exceeds 800. We observe
a huge difference in the running time of the two
methods. Our method runs several orders of magnitude
faster than the exhaustive search. As the number
of genes increases, the gap between the running time
of exhaustive approach and our method grows much
faster. It is worth noting that the standard deviation
of the running time in this experiment is very low (less
than 0.005 times the mean) for both exhaustive search
and our method for all dataset sizes, as such the error
bars indicating the standard deviation in Figure 2a
are almost overlapping. This is very promising, as it
suggests that our results are stable, and thus the gap
between the running time of our method and that of
exhaustive search does not change by altering the gene
set.

In summary, we observe that the exhaustive search
is not practical for large number of genes, whereas our
method scales to large datasets.

Impact of joint correlation threshold. Next, we
turn our attention to the effect of the threshold ε. We
vary the threshold ε from 0.7 to 0.95, and fix the size of
gene set and ε′ to 500 and 0.6, respectively. We repeat
the experiment on 10 different datasets and report the
average running time. Figure 2b plots the results for
our method. We do not plot the running time of the
exhaustive method as the parameter ε has no influence
on its performance. It takes about 2 hours 40 minutes
for exhaustive search to run on a dataset of this size.
Similar to the previous experiment, our method runs
several orders of magnitude faster than the exhaustive
method for all values of ε. Moreover, we observe that
the threshold ε has slight effect on the running time of
our methods. As the value of ε increases, the running
time of our method slightly reduces.

Impact of pairwise correlation threshold. Finally,
we explore the effect of the threshold ε′. We vary
the value of threshold ε′ from 0.4 to 0.7 at increments
of 0.1. We set the number of genes and ε to 500
and 0.75, respectively. We repeat the experiment on
10 different datasets and report the average running
time. Figure 2c shows the results for both methods.
Similar to the previous experiments, our method runs
several orders of magnitude faster than the exhaustive
method for all values of ε′. Moreover, we also observe
that when ε′ grows, the running time slightly goes up.
This is expected as smaller ε′ value makes Filter 1
remove more gi. However, the increase of the running
time is not notable. This is because the effect of
the threshold ε′ mainly depends on the distribution of
pairwise correlation values. In other words, a large
number of pairwise correlation values on our dataset
are smaller than 0.4.

In summary, our experiments demonstrate that both
methods depend mainly on the number of genes. As
the number of genes grows, the running time of both
methods increases. However, our method runs several
orders of magnitude faster than the exhaustive search.
The joint correlation threshold does not affect the
running time of exhaustive search, but has negligible
impact on our method. Moreover, the pairwise correla-
tion threshold does have some effect on the running
time of both methods. However its effect mainly
depends on the distribution of pairwise correlation
values. Furthermore, compared with our method,
exhaustive search is more susceptible to this parameter
value. Based on above analysis, in terms of running
time, we find our method to be more desirable in
practice.

3.1.2 Evaluation of accuracy

Here, we observe whether our method misses any joint
correlation in practice. To do this, we compare the
results found by our method with those of exhaustive
search, which guarantees to find all the joint correla-
tions. Notice that, only one parameter, the threshold ε,
has the potential to affect the results. To this end, we
design our experiment as follows. We set the dataset
size to 500 genes, and the threshold ε′ to 0.6. We
vary the threshold ε from 0.7 to 0.76 at increments
of 0.02. For each parameter setting, we repeat the
experiment 10 times by randomly selecting a different
subset of genes. We report the average and the standard
deviation of the total number of joint correlations found
by each method. Figure 2d shows the results. A notable
observation is that for all ε values, our method yields
the same number of joint correlations as the exhaustive
one. In other words, our method yields 100% accuracy.
Moreover, we also observe that the number of joint
correlations decreases as we increase the threshold ε.

41

10
0

10
1

10
2

10
3

10
4

10
5

 400 800 1200 1600 2000

A
v
e
ra

g
e
 r

u
n
n
in

g
 t
im

e
 (

s
)

Number of genes

Exhaustive
Filter

(a)

 24

 24.5

 25

 25.5

 26

 0.7 0.8 0.9

A
v
e
ra

g
e
 r

u
n
n
in

g
 t
im

e
 (

s
)

Joint correlation threshold

(b)

 24.5

 25

 25.5

 0.4 0.5 0.6 0.7

 8000

 8200

 8400

 8600

R
u
n
n
in

g
 t
im

e
 (

F
ilt

e
r)

 [
s
]

R
u
n
n
in

g
 t
im

e
 (

E
x
h
a
u
s
ti
v
e
)

[s
]

Pairwise correlation threshold

Exhaustive
Filter

(c)

 0

 50

 100

 150

 200

 250

0.7
0.72

0.74
0.76

T
h
e
 n

u
m

b
e
r

o
f
jo

in
t
c
o
rr

e
la

ti
o
n
s

Joint correlation threshold

Filter
Exhaustive

(d)

Figure 2: Performance of our method on a real dataset. (a) Effect of gene set size on running time of filter
method and exhaustive method. ε and ε′ are set to 0.75 and 0.6 respectively.(b) Effect of threshold for the joint
correlation on running time of filter method. The number of genes is 500 and ε′ is 0.6. (c) Effect of threshold for the
pairwise correlation on running time of filter method and exhaustive method. The running time of the filter method
corresponds to the left y scale while that of the exhaustive search corresponds to the right y scale. The number of
genes is 500 and ε is 0.75. (d) The number of joint correlations obtained by filter method and exhaustive method.

This is expected because large ε value enforces more
stringent condition for joint correlation.

In summary, the exhaustive method is not practical
for large dataset, whereas our method finds gene com-
binations in a much faster time with the same quality
as the exhaustive method.

3.2 Biological significance of the joint
correlations

In this section, we explore the biological significance
of the joint correlations. For the entire human tran-
scriptome, we set the correlation thresholds ε and ε′

to 0.8 and 0.6, respectively. Using these thresholds,
our filter method reports 6,740 jointly correlated gene
combinations in one day. As Pearson’s correlation is
sensitive to outliers, while Spearman correlation is not,
we use Spearman correlation to recalculate the joint
correlation for those 6,740 combinations, and keep the
ones which have correlations greater than or equal to
0.8. Finally, we obtain 482 gene combinations.

Pathways in jointly correlated genes. In our
first experiment, we evaluate whether joint correlations
reveal functional pathways which cannot be identified
through the standard pairwise correlation analysis. We
do this in two steps.

(1) We run the Gene Set Enrichment Analysis
(GSEA) [19] to find the statistically significant
functions and biological processes among 530
unique genes in 482 jointly correlated combinations
our method reports. Table 1 shows the significant
pathways for these genes.

(2) We obtain the pairwise associated gene sets as
follows. First, we build a gene expression corre-
lation network where each node is a gene and an
edge links two genes if their Spearman correlation
is greater than or equal to the joint correlation
threshold ε. We then find the maximal cliques on
this network [26, 24]. We take the union of genes

Table 1: Summary of GSEA results of jointly correlated
gene combinations with comparison to KEGG gene sets.

Description p-value
FDR

q-value
Regulation of actin cytoskeleton 6.58e−10 1.22e−7

Vascular smooth muscle contraction 9.27e−9 8.62e−7

Focal adhesion 6.55e−7 4.06e−5

Leukocyte transendothelial migration 1.13e−6 5.23e−5

Prostate cancer 8.64e−6 3.21e−4

Pathways in cancer 3.01e−5 9.33e−4

MAPK signaling pathway 6.37e−5 1.79e−3

Dilated cardiomyopathy 9.25e−5 2.15e−3

Alzheimer’s disease 1.54e−4 2.74e−3

Melanoma 1.65e−4 2.74e−3

in all cliques, resulting in totally 2,919 genes. We
conduct GSEA on this set. Table 2 presents the
result.

We highlight the pathways common to the two sets
in Tables 1 and 2.

We notice that one important pathway that joint
correlation finds while the pairwise associated gene
groups fails to report is the prostate cancer pathway.
This is significant as the samples in our real dataset are
taken from tissues with prostate adenocarcinoma. This
suggests that joint correlations have the potential to
reveal markers for complex disorders like cancer while
pairwise correlations can miss due to noise introduced
by many false pairwise positive correlations.

Moreover, we observe that joint correlation also yields
significant gene enrichment values in other pathways,
such as the actin cytoskeleton, Alzheimer’s disease
and melanoma. The overlapped gene set in actin
cytoskeleton has been implicated in prostate cancer [10,
25]. It has been found that there is an inverse
association between Alzheimer’s disease and cancer
presence [3]. Nead et al., [11] demonstrate an as-
sociation between the use of androgen deprivation
therapy (ADT) in the treatment of prostate cancer

42

Table 2: Summary of GSEA results of pairwise
correlated gene sets with comparison to KEGG gene
sets.

Description p-value
FDR

q-value
Ribosome 2.58e−64 4.8e−62

Focal adhesion 1.09e−40 1.02e−38

Cytokine cytokine receptor
interaeraction

6.39e−31 3.96e−29

Regulation of actin cytoskeleton 2.91e−24 1.35e−22

Pathways in cancer 6.51e−24 2.42e−22

Chemokine signaling pathway 2.14e−23 6.65e−22

Hematopoietic cell lineage 4.92e−23 1.31e−21

Ecm receptor interaction 9.21e−22 2.14e−20

Cell adhesion molecules cams 9.36e−21 1.93e−19

Oxidative phosphorylation 2.05e−16 3.81e−15

and an increased future risk of Alzheimer’s disease.
There also exists an association between prostate cancer
and malignant melanoma, that is men with prostate
cancer have a significantly increased risk of malignant
melanoma [21]. In summary, the results suggest that
complex processes and disorders such as prostate cancer
and melanoma are governed through nontrivial gene
regulations. Joint correlation has the potential to
identify such relationships.

Next, we focus on the genes found by our method
belonging to the prostate cancer pathway. Some of
the genes in this set are SOS1, CREB1 and RB1.
Among them, SOS1 is overexpressed in prostate cancer
epithelial from African American men [22]. CREB1 is
a critical driver of pro-survival, cell cycle and metabolic
transcription program, and it has been found that
its target gene panels predict prostate cancer recur-
rence [20]. In castration-resistant prostate cancer,
genomic loss of RB1 is the most frequent cell cycle aber-
ration [14]. As a result, RB1 status can be a predictive
biomarker to hormonal blockade and cytotoxic taxane
therapy.

Finally, we investigate RB1 gene, one of the fre-
quently targeted genes we found. To do this, we build
RB1 association network by linking pairs of genes which
jointly correlate with it. For instance, assume that gk
denotes a frequently targeted gene for which we build
an association network. Also assume that genes gi and
gj jointly correlate with gk. We construct two nodes;
one for gi and the other for gj and connect them with
an edge. We repeat this for all such pairs of genes gi
and gj . Figure 3 presents RB1 association network.
We observe that the association network contains one
hub node MED4. This hub node jointly regulates RB1
target with many other genes. Thus, these genes can be
considered as potential drug targets, as altering them
will influence target gene RB1 with a high likelihood.
When the transcription of any gene other than the
hub node MED4 changes, we expect to have little or

(a) RB1

Figure 3: RB1 gene’s association network.

no influence on the joint regulation of RB1 as MED4
jointly correlates with many other genes. Alteration of
MED4 on the other hand disrupts all potential joint
regulations of RB1 and thus has a higher likelihood to
alter the transcription of RB1. This is evidenced as it
has been found that RB1−/− cells cannot survive in the
absence of MED4 [5].

In summary, our proposed method has a great po-
tential to yield biologically significant, yet subtle as-
sociations, which cannot be revealed through tradi-
tional pairwise association studies, and finding joint
correlation of genes is a promising strategy to decipher
the functions of genes which are governed through
nontrivial interactions.

4 Conclusions

In this paper, we introduced the problem of searching
jointly correlated gene combinations. To the best of our
knowledge, this is the first computational study in this
direction. Finding joint correlation is computationally
much harder than the classical pairwise gene correlation
problem. The number of combinations for the classical
pairwise correlation problem is O(m2) while that for
joint correlation is O(m3). Exhaustively searching for
all jointly correlated gene combinations is infeasible.
For example, on a dataset with 800 genes, exhaustive
search took more than 10 hours, not to mention that
the entire human transcriptome has around 20,000
genes. We developed a novel method for searching such
combinations efficiently. This method uses three filters
to remove unnecessary gene combinations. Our exper-
iments demonstrated that our method could produce
accurate results in a short amount of time. For the
entire human transcriptome, our method finished in a
day. This shows the efficiency of our methods and its
applicability in a real large dataset. We also observed
that joint correlations yield biologically significant yet
computationally subtle relationships.

Acknowledgment

Publication of this article was funded by UF Health
Cancer Center Pilot Project #0012157 and NSF under
grant DBI-1262451.

43

References

[1] The cancer genome atlas homepage. http://cancergenome.
nih.gov. Accessed: 2016-05-23.

[2] Uri Alon, Naama Barkai, Daniel A Notterman, Kurt Gish,
Suzanne Ybarra, Daniel Mack, and Arnold J Levine. Broad
patterns of gene expression revealed by clustering analysis
of tumor and normal colon tissues probed by oligonucleotide
arrays. Proceedings of the National Academy of Sciences,
96(12):6745–6750, 1999.

[3] Maria I. Behrens, Catherine M. Roe, and John C. Morris.
Inverse association between cancer and dementia of the
alzheimers type. In Neurodegenerative diseases: From
Molecular Concepts to Therapeutic Targets, pages 111–120.
Nova Science Publishers, Inc, New York, 2005.

[4] S Debernardi, S Skoulakis, G Molloy, T Chaplin, A Dixon-
McIver, and BD Young. MicroRNA miR-181a correlates
with morphological sub-class of acute myeloid leukaemia
and the expression of its target genes in global genome-wide
analysis. Leukemia, 21(5):912–916, 2007.

[5] Catherine Dehainault, Alexandra Garancher, Laurent
Castéra, Nathalie Cassoux, Isabelle Aerts, François Doz,
Laurence Desjardins, Livia Lumbroso, Roćıo Montes de Oca,
Geneviève Almouzni, et al. The survival gene med4 explains
low penetrance retinoblastoma in patients with large rb1
deletion. Human molecular genetics, page ddu245, 2014.

[6] Marcel Dettling, Edward Gabrielson, and Giovanni
Parmigiani. Searching for differentially expressed gene
combinations. Genome Biology, 6(10):R88, 2005.

[7] Elisa Ferrari, Chiara Lucca, and Marco Foiani. A
lethal combination for cancer cells: synthetic lethality
screenings for drug discovery. European Journal of Cancer,
46(16):2889–2895, 2010.

[8] Audrey P Gasch, Paul T Spellman, Camilla M Kao,
Orna Carmel-Harel, Michael B Eisen, Gisela Storz, David
Botstein, and Patrick O Brown. Genomic expression
programs in the response of yeast cells to environmental
changes. Molecular Biology of the Cell, 11(12):4241–4257,
2000.

[9] Maya Kasowski, Fabian Grubert, Christopher Heffelfinger,
Manoj Hariharan, Akwasi Asabere, Sebastian M Waszak,
Lukas Habegger, Joel Rozowsky, Minyi Shi, Alexander E
Urban, et al. Variation in transcription factor binding among
humans. Science, 328(5975):232–235, 2010.

[10] Sarah K Martin, Marisa Kamelgarn, and Natasha Kypri-
anou. Cytoskeleton targeting value in prostate cancer
treatment. American Journal of Clinical and Experimental
Urology, 2(1):15–26, 2014.

[11] Kevin T Nead, Greg Gaskin, Cariad Chester, Samuel
Swisher-McClure, Joel T Dudley, Nicholas J Leeper, and
Nigam H Shah. Androgen deprivation therapy and future
alzheimers disease risk. Journal of Clinical Oncology,
34(6):566–571, 2016.

[12] Cancer Genome Atlas Research Network et al. The
molecular taxonomy of primary prostate cancer. Cell,
163(4):1011–1025, 2015.

[13] Sebastian Nijman. Synthetic lethality: general principles,
utility and detection using genetic screens in human cells.
FEBS Letters, 585(1):1–6, 2011.

[14] Daniel Nava Rodrigues, Gunther Boysen, Semini Sumana-
suriya, George Seed, Angelo M De Marzo, and Johann Bono.
The molecular underpinnings of prostate cancer: impacts
on management and pathology practice. The Journal of
Pathology, 2016.

[15] Eric E Schadt, John Lamb, Xia Yang, Jun Zhu, Steve
Edwards, Debraj GuhaThakurta, Solveig K Sieberts,
Stephanie Monks, Marc Reitman, Chunsheng Zhang,
et al. An integrative genomics approach to infer causal
associations between gene expression and disease. Nature
genetics, 37(7):710–717, 2005.

[16] RH Segman, N Shefi, T Goltser-Dubner, N Fried-
man, N Kaminski, and AY Shalev. Peripheral blood
mononuclear cell gene expression profiles identify emergent
post-traumatic stress disorder among trauma survivors.
Molecular Psychiatry, 10(5):500–513, 2005.

[17] Charles Spearman. ”general intelligence,” objectively
determined and measured. The American Journal of
Psychology, 15(2):201–292, 1904.

[18] Joshua M Stuart, Eran Segal, Daphne Koller, and Stuart K
Kim. A gene-coexpression network for global discovery of
conserved genetic modules. Science, 302(5643):249–255,
2003.

[19] Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha,
Sayan Mukherjee, Benjamin L Ebert, Michael A Gillette,
Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S
Lander, et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression
profiles. Proceedings of the National Academy of Sciences,
102(43):15545–15550, 2005.

[20] Benjamin Sunkel, Dayong Wu, Zhong Chen, Chiou-Miin
Wang, Xiangtao Liu, Zhenqing Ye, Aaron M Horning,
Joseph Liu, Devalingam Mahalingam, Horacio Lopez-
Nicora, et al. Integrative analysis identifies targetable
creb1/foxa1 transcriptional co-regulation as a predictor
of prostate cancer recurrence. Nucleic acids research,
44(9):4105–4122, 2016.

[21] Frederik B Thomsen, Yasin Folkvaljon, Hans Garmo, David
Robinson, Stacy Loeb, Christian Ingvar, Mats Lambe, and
Pär Stattin. Risk of malignant melanoma in men with
prostate cancer: Nationwide, population-based cohort study.
International Journal of Cancer, 2016.

[22] Olga A Timofeeva, Xueping Zhang, Habtom W Ressom,
Rency S Varghese, Bhaskar VS Kallakury, Kan Wang,
Youngmi Ji, Amrita Cheema, Mira Jung, Milton L Brown,
et al. Enhanced expression of sos1 is detected in
prostate cancer epithelial cells from african-american men.
International journal of oncology, 35(4):751, 2009.

[23] Chandra L Tucker and Stanley Fields. Lethal combinations.
Nature Genetics, 35(3):204–205, 2003.

[24] Yun Joo Yoo, Sun Ah Kim, and Shelley B Bull. Clique-
based clustering of correlated snps in a gene can improve
performance of gene-based multi-bin linear combination test.
BioMed research international, 2015, 2015.

[25] JS Zhang, A Gong, and CYF Young. ZNF185, an actin–
cytoskeleton-associated growth inhibitory LIM protein in
prostate cancer. Oncogene, 26(1):111–122, 2007.

[26] Chun-Hou Zheng, Lin Yuan, Wen Sha, and Zhan-Li Sun.
Gene differential coexpression analysis based on biweight
correlation and maximum clique. BMC bioinformatics,
15(Suppl 15):S3, 2014.

44

Analysis of Human Genes with Multiple Functions

Hisham Al-Mubaid
Dept. of Computer Science

Univ. of Houston - Clear Lake. Houston, USA.
 hisham@uhcl.edu

Abstract
Genes with multiple functions are very important in an
organism as they deliver essential roles. Studying and
understanding genes with multiple functions is an important
task that can help other problems like gene-disease
associations. In this paper, we study gene multifunctionality
of all genes in the human genome using the gene ontology
and gene functional annotations from GOA database. We
propose two gene multifunctionality scoring techniques
based on gene annotations from the molecular function mf
and biological process bp aspects. The proposed techniques
were examined in estimating and scoring multifunctionality
of all human genes, and evaluated the results using four
criteria: gene-disease associations; protein-protein
interactions PPI; gene studies with PubMed publications;
and using published known multifunctional gene sets. The
evaluation results confirm the validity and reliability of the
proposed methods. For example, the proposed methods
confirm that multifunctional genes tend to be associated
with diseases more than other genes, with significance
p<0.01, as also proved by previous studies. Moreover,
consistent with all previous studies, proteins encoded by
multifunctional genes, based on our method, are involved in
PPI interactions significantly more (p<0.01) than other
proteins.

1. Introduction
Studying and understanding the function, or set of functions,
that a gene is involved in is a central step in functional
genomics [1, 2, 16, 17, 26]. In particular, multifunctional
genes are important to study as they convey essential roles
in an organism [1, 26]. A gene is multifunctional if it is
involved in more than one distinct function in human body.
Studying and uncovering multifunctional genes is important
for various tasks like gene-disease associations, drug
discovery, and functional genomics studies.
In this paper, we study human genes in the entire human
genome to examine gene multifunctionality and identify the
most likely multifunctional genes. Determining if a gene is
multifunctional is not a trivial task as many genes can
conduct more than one functionality. A gene involved in two
functions may not be a multifunctional if the two functions
are not distinct (i.e., not diverse) enough [1]. In this work,
we use a computational methodology to determine whether

or not a gene is multifunctional with distinct functions.
Specifically, we present two scoring methods based on the
functional annotations of the gene from the Gene Ontology
(GO) for examining gene multifunctionality. We use the GO
annotations from the molecular function mf and biological
process bp aspects of GO. The proposed gene
multifunctionality scoring methods extract and examine all
paths between all mf and pb functions and processes that a
gene is annotated with. We examined the proposed methods
in scoring and estimating the multifunctionality of all genes
in the human genome. We evaluated the results with four
different criteria as compared with previous related work in
this problem. The four evaluation criteria are: –gene-disease
association; –protein-protein interactions PPI; –gene studies
and PubMed publications; and –using published sets of
confirmed multifunctional genes. The evaluation results of
our proposed methods are encouraging and prove that both
scoring methods are valid and reliable indicators of gene
multifunctionality. For example, the proposed methods
confirm that multifunctional genes tend to be associated
with diseases more than other genes, with significance
p<0.01, as also proved by previous studies. Moreover,
consistent with all previous studies, proteins encoded by
multifunctional genes, based on our method, are involved in
PPI interactions significantly more (p<0.01) than other
proteins.

2. Related Work
One of the most important aspects of multifunctional genes
that motivate more work is the gene-disease association.
Gene-disease association is significantly higher in
multifunctional genes compared to all genes as confirmed
by all previous studies in this domain [1–4, 8–10, 26].
Therefor the relationships of diseases and multifunctional
genes are signification and proved [1, 10, 26].
A multifunctional gene is a gene that is involved in several
functions and activities, including molecular and cellular
tasks, inside the cell [1-3, 8]. Pritykin, Ghersi, and Singh
(2015) presented a comprehensive study of genome-wide
multifunctional genes in human [1]. They found that
multifunctional genes are significantly more likely to be
involved in human disorders [1]. Also, they found that 32%
of all multifunctional genes produced by their method are
involved in at least one OMIM disorder, whereas the

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

45

fraction of other annotated genes involved in at least one
OMIM disorder is 21% [1, 7].
Ballouz, Pavlidis, and Gil (2017) studied various gene sets
for functional genomics and enrichment [17]. They found
that heavily functional genes are highly likely to appear in
many genomic study results [21]. They leave it as an ‘open
question’ to biologist to assess if their finding of gene
multifunctionality is a true biological property. Khan and
Kihara (2016) extracts a domain of features including GO,
protein-protein interaction, and more, to classify protein into
moonlighting (i.e. multifunctional) versus non-
moonlighting proteins [15]. Kim et al. (2017) in their
system, DigSee, found that genes that interact with more
genes in a PPI network are involved in more disease
categories than those with fewer neighbors in the protein
interaction network [25]

3. Methods for Gene Multifunctionality
The GO is highly regarded as the main source for gene
functional information and functional genomics [16, 26].
The proposed gene multifunctionality method is based on
the set of annotation terms from the GO for each target gene.
The structure of the GO can be used reliably as a function
for the relationships among the various functions encoded
in the ontology. For example, the path length between two
GO terms has been used extensively as a metric in
computing semantic similarity between genes [16, 20, 26].
A semantic similarity measure is a function that estimates
the similarity between two genes or two GO terms as a
numeric value [19, 20]. Moreover, many gene similarity
measures use the depth of the lowest common subsumer
(LCS) in computing gene similarity [19, 20]. In our
previous work, we investigated and explained the
relationship between GO annotation terms of a gene and
gene-disease relationship [16].
In this paper, we propose and present two methods derived
from the gene ontology for scoring gene multifunctionality.
Typically, the similarity between two genes is computed as
a function of the similarity between their annotation terms
from the Gene Ontology (GO) using the mf (or the bp)
aspect. That is, the similarity 𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔(𝑔𝑔1,𝑔𝑔2) between two
genes 𝑔𝑔1 and 𝑔𝑔2 can be a similarity function between the
annotations of 𝑔𝑔1 and 𝑔𝑔2:

𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔(𝑔𝑔1,𝑔𝑔2) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡(𝑡𝑡1𝑖𝑖 , 𝑡𝑡2𝑖𝑖)…………… (1)
where 𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔(𝑔𝑔1,𝑔𝑔2) is the similarity between genes 𝑔𝑔1and
𝑔𝑔2; and 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡(𝑡𝑡1𝑖𝑖 , 𝑡𝑡2𝑖𝑖) is the similarity between GO terms
𝑡𝑡1𝑖𝑖, 𝑡𝑡2𝑖𝑖 annotating 𝑔𝑔1and 𝑔𝑔2 respectively.
The gene ontology consists of 3 aspects: Molecular Function
mf, Biological Process bp and Cellular Component cc. Each
one of these aspects {mf, bp, cc} is a complete ontology in
itself [6, 16, 20, 26]. For gene multifunctionality it is normal
to rely only on mf and pb aspects.
Let 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) be the maximum path length between all
pairwise mf annotation terms of gene 𝑔𝑔𝑥𝑥; that is:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) = 𝑆𝑆𝑀𝑀𝑀𝑀
𝑡𝑡𝑥𝑥,𝑡𝑡𝑦𝑦∈𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓(𝑔𝑔𝑥𝑥)

𝑀𝑀𝑀𝑀(𝑡𝑡𝑥𝑥 , 𝑡𝑡𝑦𝑦) …….. (2)

where 𝑀𝑀𝑀𝑀(𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦) is the shortest path length between the two
GO terms 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑦𝑦, and 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓(𝑔𝑔𝑥𝑥) is the set of all GO mf
annotation terms (annotations) of gene 𝑔𝑔𝑥𝑥. For example, in
Figure 1, there are two different paths shown between
GO:0000001 and GO:0006996 one of them is of length 2
(through GO:0048308) and the second path is of length 3
(through the two GO terms GO:0048311 and GO:0007005).
The multifunctionality of a gene increases with the increase
in the distinctiveness (i.e., diversity) of the functions that the
gene in involved in [1, 3]. The path length between two mf
(or bp) annotation terms of a target gene can be utilized as
an indicator of the distinctiveness of the functions that the
gene is part of. Based on this, we employ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 as
defined in equation (2) as a multifunctionality scoring
method based on the max path length between the mf
annotation terms. Likewise, we compute multifunctionality
score based on bp annotation terms as:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝(𝑔𝑔𝑥𝑥) = 𝑆𝑆𝑀𝑀𝑀𝑀
𝑡𝑡𝑥𝑥,𝑡𝑡𝑦𝑦∈𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝(𝑔𝑔𝑥𝑥)

𝑀𝑀𝑀𝑀(𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦) …….. (3)

where 𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝(𝑔𝑔𝑥𝑥) is the set of all pb annotations of gene 𝑔𝑔𝑥𝑥.
In the biological process aspect (bp) of GO, each annotation
term is basically a node in the ontology graph and is a
biological functionality upheld by certain genes. When two
bp annotation terms (i.e., graph nodes) are far apart with
relatively large path length between them then we can
consider that these two terms represent two distinct (diverse)
biological functionalities. That is, our hypothesis is that, two
highly far apart bp annotation terms can be considered as
two distinct biological processes. Therefore, a gene
annotated with two such terms can be considered as
multifunctional.
The computations of multifunctionality scores with mf
annotations for human genes go through the algorithm
shown in Figure A1. This algorithm explains the steps for
the mf-based multifunctionality scoring, and the bp-based
scoring is computed similarly by replacing mf annotations
with bp annotations. For each gene, we extracted all its
annotation terms from the Gene Ontology Annotation GOA
database for human [26].
By considering only mf annotations we found a total of
~35,800 genes annotated with at least one mf terms. Overall,
there are ~4.3 mf terms annotated per gene. By considering
bp annotations in GOA, there is on average 5.2 bp terms per

Figure 1: a small part of the GO.

46

Algorithm 1: Compute multifunctionality scores for all genes
Input: -GOA_human: set of all human gene annotations.

-GO.obo:set of all gene ontology annotation terms with their
parents

Output: -Set {𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) }𝑔𝑔𝑥𝑥∈G : multifunctionality score for every
human gene based on mf annotations.

Algorithm:
(1) Create the set G
 1a) G = ∅ : let G be the set of all genes annotated in GOA_human
 1b) For each annotated gene 𝑔𝑔𝑖𝑖 from the set GOA_human:

i) 𝐺𝐺 = 𝐺𝐺 ∪ 𝑔𝑔𝑖𝑖 : add 𝑔𝑔𝑖𝑖 to G
(2) Create the set MF

2a) MF = ∅ : let MF be the set of all mf annotation terms in GO.obo
2b) For each mf annotation term 𝑡𝑡𝑖𝑖 in GO.obo:

i) 𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀 ∪ 𝑡𝑡𝑖𝑖 :add 𝑡𝑡𝑖𝑖 to MF along with its parents
(3) Create the set GOA_human_mf

3a) Extract all mf annotations from GOA_human and add them to
GOA_human_mf

(4) For each gene 𝑔𝑔𝑥𝑥 in the set G
4a) Extract the set 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓(𝑔𝑔𝑥𝑥) of all annotations of 𝑔𝑔𝑥𝑥 from

GOA_human_mf
4b) Set 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥)= 0
4b) If �𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓(𝑔𝑔𝑥𝑥)� < 2 go to step (4)
4c) For each pair 𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗 of annotation terms in 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓(𝑔𝑔𝑥𝑥):

 i) Compute the shortest path length 𝑀𝑀𝑀𝑀(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗) between pair 𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗
ii) If 𝑀𝑀𝑀𝑀�𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗� > 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) then set 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) = 𝑀𝑀𝑀𝑀(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗)

Figure A1: Algorithm for 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓() of all human genes

gene with a total of ~35,700 genes annotated with at least
one bp term. Among all genes with mf annotations (~35,800
genes) in GOA database, almost 42% of them (or 15,142
genes) are annotated with only one mf annotation term.
Clearly, each gene with only one mf term will have
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 = 0 (and similarly for bp). Therefore, in mf we
have 42% of the genes do not count in the computations of
the multifunctionality scoring method 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 . In the
human annotations in GOA, ~80% of the genes (= 28,904
genes) have 4 or fewer mf terms. Thus, we extracted all
genes from the GOA human annotation database. We
computed the maximum path length among all terms for
every gene as per our proposed technique. For evaluation,
we would like to verify the reliability of our
multifunctionality scoring techniques, MaxPLf and MaxPLp,
in estimating the whether or not a gene is multifunctional.
We could not find any gold standard dataset to evaluate our
methods. So, we used four criteria for multifunctionality [1,
26, 15]. These four criteria are: (1) Gene-disease association
is more in multifunctional genes compared with other non-
multifunctional genes; (2) Multifunctional genes are more
evolutionary conserved; (3) Multifunctional genes tend to
be highly studied with relatively higher number of
publications; and (4) Using previously tested and published
multifunctional gene sets as criteria to test our method.
We analyzed all human genes having mf annotations using
proposed 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) multifunctionality scoring system.
After computing 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) value for each gene, we
grouped all genes into clusters of 1000 genes in each cluster
after being sorted based on 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥); see Table 1.

Table 1: Average MaxPLf with clusters of 1000 genes
in each cluster.

After sorting all genes
based on MaxPLf()
(descending order)

mean
MaxPLf()

Top 1000 13.987
1001 – 2000 12.189
2001 – 3000 11.250
3001 – 4000 10.427
4001 – 5000 9.576
5001 – 6000 8.487
6001 – 7000 7.505
7001 – 8000 6.336
8001 – 9000 2.030
9001 – 10000 3.189
10001 – 11000 0.880
11001 – 12000 0.498
Lowest 1191 0

For example, as shown in Table 1, the top 1000 genes have
an average 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) of 13.99 whereas the next cluster
(next 1000 genes) have MaxPLf average of 12.19.
Criteria 1. Gene-disease associations:
One of the most important criteria of multifunctionality of a
gene is its disease associations [1-3, 16, 25, 26, 27]. That is,
multifunctional genes are more highly likely to be
associated with human diseases than non-multifunctional
genes [1, 16, 25]. We analyzed all human genes from the
GOA database and from OMIM morbid map for disease
information. We wanted to investigate if the number of
phenotypes, according to morbid map, exhibits any
meaningful relationship with our multifunctionality scoring
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(). The results are in Table 2 and illustrated in
Figure 2. As it is shown in both Table 2 and Figure 2, as the
MaxPLf increases the average number of associated
phenotypes increases; thus there is a clear strong correlation
between MaxPLf and average number of phenotypes. Hence,
our MaxPLf is a reliable indicator of multifunctionality of
genes. Next, we examined the behavior of MaxPLf with the
increase of phenotypes for all human genes and the results
are illustrated in Figure 3.
We repeated the same evaluation for MaxPLp, that is, using
bp annotations (instead of mf annotations). Table 3 and
Figure 4 show the correlation between MaxPLp and average
number of phenotypes for all human genes.
Next, we examined MaxPLp for each group of genes
associated with the same number of phenotypes and the
results are in Table 4. For example, there are 2572 genes
associated with only one phenotype and their average
MaxPLp is 11.22 whereas the group of genes associated with
exactly two phenotypes (648 genes) have an average
MaxPLp of 12.33; Table 4. We mention here that groups of
genes associated with 7 or more phenotypes are very small
and do not affect the results. For example, there are only 11
genes associated with 7 disease, and only 7 genes associated
with 8 diseases. Figure 5 shows the relationship of the
average number of phenotype for each value of MaxPLp.

47

Table 2: Average number of phenotypes for genes with
each value of MaxPLf

MaxPLf No. of genes Avg. of No. of
phenotypes

0 2630 0.23
1 244 0.26
2 490 0.27
3 467 0.37
4 557 0.36
5 578 0.36
6 890 0.30
7 831 0.41
8 1018 0.44
9 911 0.49

10 1148 0.46
11 1182 0.52
12 1057 0.49
13 512 0.68
14 475 0.68
15 126 0.77
16 53 0.66
17 10 1.10
18 11 0.73
19 1 0.00

Figure 2: from Table 2 above: average number of
phenotypes increases as a function of MaxPLf

Criteria 2. Protein-protein interactions:
Multifunctional genes are typically involved more than
normal in protein-protein interactions (PPI) [1, 22, 23, 25,
17]. We used this criterion in evaluating our proposed
multifunctionality methods. We retrieved and compiled PPI
data from the Hippie database [23-24]. The obtained data
include PPI data involving ~14,800 genes with a total of
~250K experimentally documented P-P interactions [22–
24]. We analyzed the average number of PPI’s that a gene
involved in with respect to both MaxPLf and MaxPLp and

there is a clear relationship as illustrated in Figure 6. These
results prove again that the proposed methods are in line and
consistent with this criteria for gene multifunctionality.

Criteria 3. Using PubMed publications as indicator of

highly studied:
It has been shown that multifunctional genes are highly
studied genes and have relatively more publications in the
biomedical literature [1, 21]. So, we use publication counts
of genes as a criteria of multifunctionality. That is,
multifunctional genes tend to have relatively higher number
of publications compared to all genes. We relied on PubMed
since it is the most comprehensive repository of biomedical
literature with more than 24 million citations and references
to articles (with abstracts, and some with full texts). We
analyzed number of publications related to each gene in
PubMed as it is published by NCBI/PubMed and freely
available with file name: gene2pubmed.gz, (link:
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA;downloaded Sept.2017). We
examined genes with our multifunctionality scores versus
number of publications. The analysis results shows a clear
straightforward proportionality between number of
publications and both scoring methods (MaxPLf and
MaxPLp) for all human genes as illustrated in Figure 7.

Criteria 4. Using published multifunctional genes:
We retrieved two lists of experimentally tested and known
multifunctional genes [1].
Source 1: http://moonlightingproteins.org/proteins/, which
includes 361 moonlighting proteins (74 for human).
Source 2: http://wallace.uab.es/multitask/ which includes
288 proteins (88 of them for human).
This test was not reliable as we are considering only 162 (74
from set1 and 88 from set2) human genes (out of ~35000
annotated genes); however, these genes exhibit higher
MaxPLf and MaxPLp values than expected by chance with
significance (p<0.01) confirming multifunctionality.

Figure 3: This figure shows that the MaxPLf of genes is

directly proportional with average no. of phenotypes.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 1011121314151617

Av
g.

 n
um

be
r o

f
ph

en
ot

yp
es

MaxPLf

0

5

10

15

20

0 0.3 0.4 0.5 0.7 1.1

M
ax

PL
f

Avg. no. of phenotypes

48

Table 3: For each value of MaxPLp this table shows how
many genes and the average number of phenotypes

MaxPLp No. of
genes

Avg. of No. of
phenotypes

0 1399 0.15
1 71 0.32
2 141 0.21
3 158 0.19
4 204 0.26
5 266 0.21
6 356 0.35
7 497 0.31
8 578 0.31
9 733 0.31

10 919 0.35
11 1319 0.32
12 1490 0.36
13 1541 0.45
14 1512 0.48
15 1166 0.58
16 725 0.64
17 455 0.85
18 217 0.76
19 113 0.73
20 13 1.00
21 2 3.00

Table 4: The average value of MaxPLp for seven groups
of genes where each group have the same number of
phenotypes.

No. of
phenotypes

No. of
genes

Avg. of
MaxPLp

0 10234 10.09
1 2572 11.22
2 648 12.33
3 226 12.96
4 84 13.67
5 51 13.86
6 29 15.45

Figure 4: The relationship between MaxPLp and

number of diseases for all human genes.

Figure 5: The relationship of the average number of

phenotype for each value of MaxPLp

Figure 6: Number of protein-protein interactions increases as
the gene multifunctionality score increase.

Figure 7: Analyzing number of PubMed publications

against multifunctionality scores with both
MaxPLf and MaxPLp for all human genes show
a direct proportional relationship.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
o.

 o
f p

he
no

ty
pe

s

MaxPLp

0

5

10

15

20

25

0.15 0.21 0.26 0.31 0.32 0.35 0.36 0.48 0.64 0.76 1

M
ax

PL
p

Avg. no. of phenotypes

0

20

40

60

80

100

120

140

1 4 7 10 13 16

N
o.

 o
f i

nt
er

ac
tio

ns

MaxPLf

MaxPL
p

0

50

100

150

200

250

300

350

N
o.

 o
f P

ub
M

ed
 Id

's

MaxPLf MaxPLp

49

4. Discussion
The results in Table 2 (and Figure 2) confirm that there is a
direct proportional relationship between gene
multifunctionality scores and the number of diseases
associated with gene. For example, genes with MaxPLf =2
(490 genes) have on average 0.27 associated diseases
whereas genes with MaxPLf =3 (467 genes) are on average
associated with 0.37 diseases; and this is significant p<0.01
(using hypergeometric test). Also, the average number of
phenotypes for 1182 genes with MaxPLf of 11 is 0.52, and
when the MaxPLf increases to 13 the average number of
phenotypes increases to 0.68 (Table 2) which is significant
result (p<0.01).
We observed that for genes with one phenotype (2442
genes) the average MaxPLf is 7.40 whereas for those genes
with 2 phenotypes the average MaxPLf increases to 8.39 and
this is significant with p<0.01; as follows:

No. of phenotypes No. of genes Avg. MaxPLf
1 2442 7.40
2 619 8.39

Similarly, for MaxPLp, we see that the 10234 genes
associated with 0 phenotypes have MaxPLp average of
10.09, and for the genes associated with one phenotype
(2572 genes) the value of MaxPLp increases to 11.22 (as
shown below) which is significant p<0.01.

No. of phenotypes No. of genes Avg. MaxPLp
0 10234 10.09
1 2572 11.22

Regarding number of publications, criteria 3, we confirmed
that as our multifunctionality score of a gene tend to
increase, the number of PubMed publications related to the
gene also increases as illustrated in Figure 7. We should
mention here that higher number of publications implies that
the gene is highly studied [1]. One of the main reason of
being highly studied is the gene is highly likely associated
with one or more diseases. We should mention here that
there are genes with fairly high number of publications but
with low (≤ 7) multifunctionality score for which reason we
relied on the aggregate averages. For example, considering
genes with MaxPLp of 12; their average number of PubMed
publications is ~133; when we increase the score to 14 the
average increases to ~181 and this is significant (p<0.01).
Finally, if we consider a multifunctional every gene with
MaxPLp≥15, we get 2691 multifunctional genes (genes
having MaxPLp of 15 or more). Among these 2691 genes,
we found 46% (or 1231 genes) of them are also mf
multifunctional with mf annotations only using threshold
Tf=10 (MaxPLf ≥ 10), and this is significant p<0.01 with
hypergeometric test.

5. Conclusion
For future studies of this research, we would like to
investigate the number of maximum path lengths between
the annotations of the target gene. For instance, consider the
following case: If 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) = 16 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓�𝑔𝑔𝑦𝑦� =
16 but 𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) = 1 while 𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓�𝑔𝑔𝑦𝑦� =
 3, where 𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) is the number of paths with max
length. In this case, both genes 𝑔𝑔𝑥𝑥 and 𝑔𝑔𝑦𝑦 have MaxPLf of
16 but this MaxPLf of 16 occurs and repeated three times in
gene 𝑔𝑔𝑦𝑦 and once in 𝑔𝑔𝑥𝑥 making 𝑔𝑔𝑦𝑦 more multifunctional.
In addition, in the future work in this direction, we would
like to investigate a multifunctionality score (mfs) that relies
on both mf and bp annotations normalized by some
maximum value, e.g. fp, as follows:

𝑆𝑆𝑚𝑚𝑚𝑚(𝑔𝑔𝑥𝑥) =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚(𝑔𝑔𝑥𝑥) + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑔𝑔𝑥𝑥)

𝑚𝑚𝑀𝑀

References

[1] Y. Pritykin, D. Ghersi, M. Singh. Genome-Wide Detection
and Analysis of Multifunctional Genes. PLOS
Computational Biology, October 5, 2015

[2] Van de Peppel J, Holstege FCP (2005) Multifunctional
genes. Molecular Systems Biology 1: 1–2. doi:
10.1038/msb4100006, 2005.

[3] I. Khan, Y. Chen, T. Dong, Hong X, Takeuchi R, et al.
(2014) Genome-scale identification and characterization
of moonlighting proteins. Biology Direct 9: 30. doi:
10.1186/s13062-014-0030-9 PMID: 25497125, 2014.

[4] Becker E, Robisson B, Chapple C, Guénoche A, Brun C
(2012) Multifunctional proteins revealed by overlapping
clustering in protein interaction network. Bioinformatics
28: 84–90. PMID: 22080466, 2012.

[5] Ashburner et al. Gene Ontology: tool for the unification of
biology (2000) Nat Genet 25(1):25-9. Online at Nature
Genetics.

[6] The Gene Ontology Consortium. Gene Ontology Consortium:
going forward. (2015) Nucl Acids Res 43 Database issue
D1049–D1056. Online at Nucleic Acids Research, 2015.

[7] Online Mendelian Inheritance in Man, OMIM. McKusick-
Nathans Institute of Genetic Medicine, Johns Hopkins
University (Baltimore, MD), May 2016. World Wide Web
URL: http://omim.org/

[8] Hernández S, Ferragut G, Amela I, Perez-Pons J, Pinol J, et
al. (2014) MultitaskProtDB: a database of multitasking
proteins. Nucleic Acids Research 42: D517–D520. doi:
10.1093/nar/gkt1153. pmid:24253302, 2014.

[9] Mani M, Chen C, Amblee V, Liu H, Mathur T, et al. (2015)
Moonprot: a database for proteins that are known to
moonlight. Nucleic Acids Research 43: 2015.

[10] A. Day, J. Dong, V. A. Funari, B. Harry, S.P. Strom, D.H.
Cohn, and S. F. Nelson. Disease Gene Characterization
through Large-Scale Co-Expression Analysis. PLoS ONE
Vol.4, Issue 12, 2009.

[11] J. Gillis, P. Pavlidis (2013) Assessing identity, redundancy
and confounds in gene ontology annotations over time.
Bioinformatics 29: 476–482. doi:
10.1093/bioinformatics/bts727, 2013.

50

[12] M. Salathe M, Ackermann M, Bonhoeffer S The effect of
multifunctionality on the rate of evolution in
yeast. Molecular Biology and Evolution 23, 2006.

[13] W.T. Clark, Radivojac P (2011) Analysis of protein function
and its prediction from amino acid sequence. Proteins:
Structure, Function, and Bioinformatics 79, 2011.

[14] J. de Peppel and F. CP Holstege. Multifunctional genes.
Molecular Systems Biology 1: 1-2, 2005.

[15] I. K. Khan, and D. Kihara. Genome-scale prediction of
moonlighting proteins using diverse protein association
information. Oxford 2016.

[16] H. Al-Mubaid et. al. Assessing Gene-Disease
Relationship with Multifunctional Genes Using GO.
Proc. of IEEE AICCSA 2016.

[17] Gillis J., Pavlidis P. The impact of multifunctional genes on
‘guilt by association’ analysis. PloS One. Vol.6 no.2,
2011; 6:e17258.

[18] NCBI. Clearing Up Confusion with Human Gene
Symbols & Names Using NCBI Gene Data, USA.

[19] K. Glass and M. Girvan. Finding New Order in
Biological Functions from the Network Structure of
Gene Annotations. PLoS Comput Biol. 11(11): 2015.

[20] A. Nagar and H. Al-Mubaid. A Hybrid Semantic
Similarity Measure for Gene Ontology Based On
Offspring and Path Length. Proc. of IEEE CIBCB-
2015 IEEE Conf. on Computational Intelligence in
Bioinformatics and Comp. Biology, 2015. DOI:
10.1109/CIBCB.2015.7300290.

[21] Sara Ballouz, Paul Pavlidis, and Jesse Gillis. Using
predictive specificity to determine when gene set analysis
is biologically meaningful. Nucleic Acids Res. 2017; 45(4):
e20.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389513/

[22] H. Zhou and J. Skolnick. A knowledge-based approach for
predicting gene–disease associations. Bioinformatics. 2016;
32 (18): 2831–2838.

[23] Schaefer MH, Fontaine JF, Vinayagam A, Porras P, Wanker
EE, Andrade-Navarro MA. HIPPIE: Integrating protein
interaction networks with experiment based quality scores.
PLoS One. 2012; 7(2):e31826.

[24] Hippie PPI database http://cbdm-01.zdv.uni-
mainz.de/~mschaefer/hippie/

[25] J. Kim, J-j Kim, and H. Lee. An analysis of disease-gene
relationship from Medline abstracts by DigSee. Scientific
Reports; 2017. 7: 40154. DOI: 10.1038/srep40154

[26] H. Al-Mubaid et. al. Determining Multifunctional Genes
and Diseases in Human Using Gene Ontology. Proceedings
of 9th Int'l Conf on Bioinformatics and Computational
Biology BICOB-2017, Honolulu, USA, March 2017.

[27] Singh-Blom UM, Natarajan N, Tewari A, Woods JO,
Dhillon IS, et al. (2013) Prediction and Validation of Gene-
Disease Associations Using Methods Inspired by Social
Network Analyses. PLOS ONE 8(9), 2013.

51

Selection of Informative Genomic Regions for Closely Related Isolates
and Construction of their Phylogeny

Anindya Das and Xiaoqiu Huang
Department of Computer Science, Iowa State University

Ames, IA, 50010, USA
(anindya, xqhuang)@iastate.edu

Abstract

Building a phylogenetic tree for a number of species
is a very important step towards understanding the
evolutionary history of those species. If some of these
species are hundreds of times more closely related than
others, then the subtree(s) (or clade) of more closely
related species may have a very low level of resolution
and may not accurately represent their evolutionary
history. Identification of the informative regions con-
taining important variations in the genome of those
species is important in constructing their evolutionary
history. Here we introduce a novel approach for
selecting informative regions in an effort to construct
a phylogenetic tree of these closely related subspecies
(isolates) with high resolution. This approach is based
on the observation that the likelihood of informative
columns are sensitive to changes in the tree topology.
We also propose a method for identifying clades with
low resolution in the tree using branch lengths and like-
lihoods. We show that reconstructed phylogenies from
the informative columns (identified by our method) are
more accurate for the closely relates isolates than the
phylogenies constructed from the whole alignment.

keywords: Maximum Likelihood, Phylogenetic Tree,
Resolution of Tree, Informative Regions of Alignment.

1 Introduction

Inference of phylogeny from nucleotide or protein
sequences of a number of species has been studied
extensively for a long time. Distance methods (e.g.
Neighbor-Joining [17]) and maximum parsimony meth-
ods [20] have been applied for building phylogenetic
trees. As distance methods are more efficient, trees
constructed by these methods are often used as an
initial tree in other methods. Maximum likelihood [3]
and Bayesian inference [16] are two commonly used
methods where a mathematical model of substitution
like Jukes-Cantor (JC69) [9], F84 [4] or the General
Time-Reversible model (GTR) [21] is applied. Multiple

studies [7, 10, 14] have shown that maximum likelihood
methods produce accurate trees. Therefore, maximum
likelihood trees are frequently used to derive the phy-
logenetic relationships among species. Programs like
PhyML [6], RAxML [19], and MEGA [11] have been
developed to construct maximum likelihood trees from
sequence data.

A tree constructed by the maximum likelihood ap-
proach is built from a multiple sequence alignment.
Sometimes one or more groups of isolates contain all the
variations in a small region of the whole alignment. As
a result, those isolates are so close that their phylogeny
is considered unresolved in one study [18]. It has been
shown that small regions or few columns of the align-
ment can significantly affect the resolution and topology
of a particular clade [18, 2]. Therefore, identifying those
small regions in the alignment is helpful in constructing
their phylogeny. Determining the influence of an outlier
site (or column) [2] on the phylogeny has been studied
by removing the column from the alignment and by
constructing topology and likelihood from the resulting
alignment. Tens of thousands of microbial genome
sequences are publicly available. Some of them have an
extremely low rate of single nucleotide polymorphism
(SNP), e.g., one SNP in a million base pairs [1]. On
a data set of 101 whole genome sequences with low
pairwise SNP rates, existing programs were able to infer
up to 71% of the clade structure [1]. To the best of
our knowledge, none of the exsiting programs has been
designed to handle whole genome sequences with both
high and low SNP rates.

In a common approach to constructing a phylogenetic
tree of isolates, multiple gene datasets for the isolates
are selected based on human knowledge, each gene
dataset is used to build a gene tree, and the gene
trees are reconciled to obtain a specie tree [5]. This
approach has been used for isolates that are not highly
similar. Note that isolates with an extremely low
SNP rate are identical in sequences over most loci.
We take a complementary approach by eliminating
human involvement in deciding which genome regions
are selected. Our approach uses computational and

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

52

statistical techniques to decide which genome positions
are informative for which part of the species tree. Below
we describe a method for identifying a group of isolates
with low resolution using informative columns. Then
we reconstruct the phylogeny (cladistic relationship) of
those closely related isolates using informative columns.
Results from our method on simulated data show that
the trees constructed from the whole alignment are less
accurate than the trees constructed from informative
alignment columns for the closely related isolates.

2 Methodology

We address the problem of constructing a phyloge-
netic tree of isolates by building an unrooted bifurcating
tree [3] from a multiple alignment of genome sequences
of the isolates. An important feature about the multiple
genome alignment is that the rate of substitution be-
tween some genome sequences can be hundreds of times
smaller than that between other genome sequences in
the alignment. Below we first describe a method for
selecting informative regions for a group of isolates and
then we present a method for detecting subtrees of
isolates with low resolution.

2.1 Detection of Informative Regions

There are well-known programs for building a tree
from an alignment using the maximum likelihood ap-
proach. Our method begins with one of such programs.
First, a maximum likelihood tree T is created using
RAxML from a given multiple sequence alignment
S. The program seeks to find a tree with maximum
likelihood. The likelihood of a tree with respect to
the given alignment is the product of the likelihood
with respect to each column in the alignment. The
likelihood value of each column of the alignment can
also be computed using this program for any given tree.
We use the following idea to evaluate the importance of
a column:

If a column is informative for a particular clade, then
there must be a significant change in the likelihood
value of that column with respect to a nonrepresentative
topology for that clade.

We use the following two methods for generating
these nonrepresentative topologies:

(1) Performing the nearest neighbor interchange (NNI)
operation [12, 22] on any edge (in the clade)
connecting two non-leaf nodes

(2) Randomly permuting the isolates so that it creates
a random distribution of the isolates in the clade

Let N be the number of isolates in a clade. We can

generate 2 nonrepresentative topologies by applying the
NNI operation on each of the N − 3 edges connecting
two non-leaf nodes. We also generate k (k ≤ N)
random permutations of those isolates. Then we find
the maximum deviation of likelihood for a column with
respect to these nonrepresentative topologies.

An example of deviation of likelihood values for one
informative column and one noninformative column
is shown in Table 1. Here, T is the maximum
likelihood tree (representative topology) constructed
from an alignment S and TNNI is the nonrepresentative
topology generated by an NNI operation on one edge of
T . We can observe that the deviation of likelihood of
the informative column is 19.56 times that of the non-
informative column with respect to this NNI operation.

Table 1: Deviation of Likelihood for Alignment S
Log Likelihood

Informative Noninformative
Column Column

T −5.661510 −1.867485
TNNI −7.524911 −1.962215

Deviation 1.853401 0.09473

Now we need to check whether this deviation is
statistically significant or not. We introduce the
concept of noise alignment to make this decision. The
noise for a particular column is generated through a
random permutation (different from the alignment S)
of the rows. Thus we choose a random permutation of
rows for each column to form a noise alignment S′. We
do not expect a large difference between the deviation
of likelihood values for informative and non-informative
columns with respect to S′.

For example, we can look at the deviation of likeli-
hood values in Table 2 for the informative and nonin-
formative columns (presented in Table 1) with respect
to noise alignment S′. Both T and TNNI are the
same trees mentioned in Table 1. Here, the difference
between the deviation of likelihood values for the
informative and noninformative columns is not very
large. Moreover, the deviation of likelihood for the
noninformative column with respect to S shown in
Table 1 is also close to the values of deviation shown in
Table 2. We formulate the following criteria to select
informative columns based on these observations:

If a column generates a significantly higher deviation
in likelihood value than the average deviation of the
columns when they are subjected to a noise alignment
(i.e. the p-value of the deviation of a column computed
from the distribution of deviations with respect to noise
is less than the significance level α), then we classify
that column to be informative for a clade.

53

Table 2: Deviation of Likelihood for Noise Alignment
Log Likelihood

Informative Noninformative
Column Column

T −6.974545 −1.839750
TNNI −6.953124 −1.795106

Deviation 0.021421 0.044644

The key steps of our algorithm for selecting infor-
mative columns for N taxa from an alignment S are
summarized below. Here, T is the maximum likelihood
tree constructed from S and L is the number of columns
in S.

(1) A set Tn of nonrepresentative phylogenies is con-
structed, which contains k trees generated by
random permutation of N taxa and 2 ∗ (N − 3)
trees generated by NNI operation on T .

(2) A noise alignment S′ is generated from S.

(3) The maximum deviation of likelihood value of each
column over |Tn| nonrepresentative phylogenies
with respect to S′ is computed. These values of
maximum deviation for each column form the noise
distribution.

(4) The maximum deviation of likelihood value of each
column over |Tn| nonrepresentative phylogenies
with respect to S is computed. If the maximum
deviation of likelihood of a column is statistically
significant with respect to the noise distribution,
then this column is selected as informative.

Here, steps 3 and 4 are the dominating steps of the
algorithm. In both steps, we compute the deviation
for each of the L columns in the alignment S with
respect to |Tn| nonrepresentative topologies generated
from T . Computing the likelihood value of a column
with respect to a topology t requires a traversal over t,
which requires O(N) operations because of 2 ∗ N − 1
nodes in the tree. Now, |Tn| = 2 ∗ (N − 3) + k,
where we choose k ≤ N . Therefore, the complexity
of this algorithm is O(L ∗ N2). As the complexity
of this algorithm is linear in terms of the number of
columns in the alignment, this method is efficient on
large alignments.

2.2 Selection of Clades with Low
Resolution

We use a likelihood based method for selecting clades
with low resolution in the tree T . For each edge
connecting two non-leaf nodes with at least 4 taxa as

each of their descendants, we can form two components
by removing the edge. We consider each component as a
clade. Then for each clade, if the number of informative
columns (identified by the method described earlier)
is less than a certain threshold, then that clade is
considered to have low resolution in the tree.

We have also used a heuristic based on the distri-
bution of branch lengths to make this step faster. If
the average branch length of one clade is less than the
average branch length of the tree, then we consider this
clade to be a candidate for having low resolution. Thus
we can avoid finding informative columns for every
clade in the tree.

2.3 Reconstruction of the Phylogeny of
Closely Related Isolates

After the identification of closely related isolates with
low resolution, we form a multiple sequence alignment
Sc for those closely related isolates. Then we construct
a phylogeny Tc from Sc using RAxML. Then we
find informative columns and construct a phylogeny
Tci (tree of closely related isolates from informative
columns).

3 Results

Our results are divided into two parts. First, we show
that our method produced a tree with high resolution
from a large sequence alignment of 11 Fusarium iso-
lates. Then we show that our method produced a more
accurate tree of closely related isolates on simulated
data. We have used 0.01 for the significance level α on
both real and simulated data.

3.1 Real Data

We used a sequence alignment of 11 Fusarium isolates
[8] that cause diseases in soybean. The maximum
likelihood tree in Figure 1 was constructed by RAxML.

Here the clade containing 4 F. virguliforme isolates
has low resolution. Our method for selecting clades
with low resolution correctly identified this group of
F. virguliforme isolates. Then we applied the likeli-
hood based column selection method to identify 319
informative columns from the alignment of 137,718
columns. Then we reconstructed their phylogeny using
these columns with high resolution (Figure 2).

3.2 Simulated Data

We used the Seq-Gen program [13] to generate a
large number of sequence alignments for 8 species (or
taxa) from the tree with two groups in Figure 3. Each

54

Figure 1: The maximum likelihood tree of 11 Fusarium
Isolates from an alignment of 137,718 columns

Figure 2: The maximum likelihood tree of 4
F. virguliforme Isolates from an alignment of 319
informative columns

Figure 3: The topology used to generate the sequences
for all cases

Figure 4: Maximum Likelihood Tree of 8 taxa
constructed by RAxML from an alignment of 4, 000, 000
columns with R set to 5000

group consists of 4 isolates. The data show a scenario
where the species in each group have little variations
among themselves (about 100 − 1000 informative sites
in an alignment of 4 or 5 million columns), but any
two isolates from different groups have many variations
(20% of the total alignment). The generalized time-
reversible process (GTR) model [21] was used as the
nucleotide model of substitution to generate these
nucleotide sequences.

We used alignments of 2 different lengths: 4 and 5
million columns. Let R denote the ratio of the number
of informative columns between taxa from different
groups to the number of informative columns between
two taxa from the same group. For each of the two
alignment lengths, we used 4 different values of R: 1000,
2000, 5000 and 10, 000. For each of these 8 data types,
1000 alignments of that type were generated. On each
of these alignments, a tree like the one in Figure 4 was
constructed by RAxML.

Figure 4 shows two groups of taxa with low resolution.

55

Our method for selecting taxa with low resolution was
applied on this tree. It correctly identified the two
groups for all the alignments.

Then our method for finding informative columns
from the alignment was used for these closely related
taxa. A large percentage of informative columns
within those groups were identified by our method.
The average number of columns (over 1000 alignments
and 2 groups with low resolution for each alignment)
identified as informative are listed in Table 3. We know
the number of columns generated by Seq-Gen for each
of those groups. The percentages indicate the fraction
of those columns identified as informative.

Table 3: Number (Percentage) of Informative Columns
Value of R Length of the Alignment

4, 000, 000 columns 5, 000, 000 columns
1000 623 (77%) 730 (73%)
2000 297 (74%) 386 (77%)
5000 127 (79%) 148 (74%)
10000 53 (66%) 77 (77%)

Then the phylogeny of those closely related taxa
was constructed from the alignment consisting of only
informative columns. For all the alignments, the
reconstructed phylogeny correctly grouped Taxon01
with Taxon02, Taxon03 with Taxon04, Taxon05 with
Taxon06, and Taxon07 with Taxon08.

We computed the Robinson-Foulds distance [15] of
the trees Tw (constructed from the whole alignment)
from the tree in Figure 3. We also computed the
same distance for reconstructed trees from informative
columns (Tr). The average distances over 1000 align-
ments for 8 data types are presented in Table 4.

Table 4: Robinson-Foulds Distance of Trees Built from
Whole Alignment (Tw) and from Informative Columns
(Tr)

Value of R Length of the Alignment
4, 000, 000 columns 5, 000, 000 columns
Tw Tr Tw Tr

1000 3.998 0 3.998 0
2000 3.998 0 3.996 0
5000 3.982 0 3.994 0
10000 3.986 0 3.996 0

From Table 4, we can conclude that the trees con-
structed from the whole alignment have a Robinson-
Foulds distance of 4 for most of the alignments. The
evolutionary history presented in the phylogeny con-
structed from the whole alignment does not completely
agree with the tree used to generate the alignment. If
we identify informative columns for the closely related

taxa and reconstruct the phylogeny of those groups
using only informative columns, we get the trees with
a Robinson-Foulds distance of 0 from the tree used to
generate the alignment.

4 Conclusion

Sequence-based methods for constructing phylogeny
of many species have been widely used to understand
the evolutionary relationships among them. Sometimes
one or more specific regions for some species contain
more variations than other parts of the genome [8].
Detection of these regions and identification of the
species (with variations among themselves in a small
part of the genome) is important for constructing
the representative history of evolution. We have
demonstrated that our method works properly for
identifying such clades with low resolution in the tree
on both real and simulated data. And our method
selected many informative columns for those clades.
Our method for finding informative columns does not
require repeated construction of maximum likelihood
trees from the whole alignment. Due to its linear
complexity in the length of the alignment, our method
is efficient in finding informative columns from large
alignments.

All the instances of simulated data presented in
this paper are built from the tree in Figure 3. This
tree has a simple structure where each subtree with
low resolution contains only 4 isolates. Besides this
simple structure, our method is expected to work on a
complex branching structure of many subtrees, where
the main branches connecting the subtrees have high
resolution but each subtree has low resolution. This
complex structure is expected to cause difficulty to
existing methods based on maximum likelihood and
parsimony. We are currently working on generating
simulated datasets from such a complex structure and
on obtaining results on the performance of our method
and existing methods.

In this work, we have assumed that closely related
isolates have a single history of evolution, i.e. all in-
formative columns support one history. In future work,
we will address a problem in which informative columns
support different histories of evolution. Construction
of multiple trees for different genome regions from
informative columns is useful in revealing the different
evolutionary histories of these genome regions.

References

[1] Johanne Ahrenfeldt, Carina Skaarup, Henrik
Hasman, Anders Gorm Pedersen, Frank Møller

56

Aarestrup, and Ole Lund. Bacterial whole
genome-based phylogeny: construction of a new
benchmarking dataset and assessment of some
existing methods. BMC Genomics, 18(1):19, Jan
2017.

[2] Avner Bar-Hen, Mahendra Mariadassou, Marie-
Anne Poursat, and Philippe Vandenkoornhuyse.
Influence function for robust phylogenetic re-
constructions. Molecular biology and evolution,
25(5):869–873, 2008.

[3] Joseph Felsenstein. Evolutionary trees from
dna sequences: a maximum likelihood approach.
Journal of molecular evolution, 17(6):368–376,
1981.

[4] Joseph Felsenstein and Gary A Churchill. A hidden
markov model approach to variation among sites in
rate of evolution. Molecular biology and evolution,
13(1):93–104, 1996.

[5] Pawel Górecki and Oliver Eulenstein. Refining
discordant gene trees. BMC Bioinformatics,
15(13):S3, Nov 2014.

[6] Stéphane Guindon, Jean-François Dufayard, Vin-
cent Lefort, Maria Anisimova, Wim Hordijk, and
Olivier Gascuel. New algorithms and methods
to estimate maximum-likelihood phylogenies: as-
sessing the performance of phyml 3.0. Systematic
biology, 59(3):307–321, 2010.

[7] Stéphane Guindon and Olivier Gascuel. A simple,
fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood. Systematic
biology, 52(5):696–704, 2003.

[8] Xiaoqiu Huang, Anindya Das, Binod B Sahu,
Subodh K Srivastava, Leonor F Leandro, Kerry
ODonnell, and Madan K Bhattacharyya. Identi-
fication of highly variable supernumerary chromo-
some segments in an asexual pathogen. PloS one,
11(6):e0158183, 2016.

[9] Thomas H Jukes, Charles R Cantor, HN Munro,
et al. Evolution of protein molecules. Mammalian
protein metabolism, 3(21):132, 1969.

[10] Mary K Kuhner and Joseph Felsenstein. A
simulation comparison of phylogeny algorithms
under equal and unequal evolutionary rates.
Molecular biology and evolution, 11(3):459–468,
1994.

[11] Sudhir Kumar, Glen Stecher, and Koichiro
Tamura. Mega7: Molecular evolutionary genetics
analysis version 7.0 for bigger datasets. Molecular
biology and evolution, 33(7):1870–1874, 2016.

[12] G William Moore, M Goodman, and J Barnabas.
An iterative approach from the standpoint of the
additive hypothesis to the dendrogram problem
posed by molecular data sets. Journal of
Theoretical Biology, 38(3):423–457, 1973.

[13] Andrew Rambaut and Nicholas C Grass. Seq-gen:
an application for the monte carlo simulation of
dna sequence evolution along phylogenetic trees.
Bioinformatics, 13(3):235–238, 1997.

[14] Vincent Ranwez and Olivier Gascuel. Quartet-
based phylogenetic inference: improvements
and limits. Molecular biology and evolution,
18(6):1103–1116, 2001.

[15] David F Robinson and Leslie R Foulds. Com-
parison of phylogenetic trees. Mathematical
biosciences, 53(1-2):131–147, 1981.

[16] Fredrik Ronquist, Maxim Teslenko, Paul Van
Der Mark, Daniel L Ayres, Aaron Darling,
Sebastian Höhna, Bret Larget, Liang Liu, Marc A
Suchard, and John P Huelsenbeck. Mrbayes 3.2:
efficient bayesian phylogenetic inference and model
choice across a large model space. Systematic
biology, 61(3):539–542, 2012.

[17] N Saitou and M Nei. The neighbor-joining method:
a new method for reconstructing phylogenetic
trees. Molecular Biology and Evolution, 4(4):406–
425, 1987.

[18] Xing-Xing Shen, Chris Todd Hittinger, and
Antonis Rokas. Contentious relationships in
phylogenomic studies can be driven by a handful of
genes. Nature Ecology & Evolution, 1:0126, 2017.

[19] Alexandros Stamatakis. Raxml version 8: a
tool for phylogenetic analysis and post-analysis
of large phylogenies. Bioinformatics, 30(9):1312–
1313, 2014.

[20] David Swofford and Douglas P.. Begle. PAUP:
Phylogenetic Analysis Using Parsimony, Version
3.1, March 1993. Center for Biodiversity, Illinois
Natural History Survey, 1993.

[21] Simon Tavaré. Some probabilistic and statistical
problems in the analysis of dna sequences. Lectures
on mathematics in the life sciences, 17(2):57–86,
1986.

[22] Michael S Waterman and Temple F Smith. On the
similarity of dendrograms. Journal of Theoretical
Biology, 73(4):789–800, 1978.

57

A Data-driven Biomarker Computational Model for Lung Disease Classification

David Gnabasik and Gita Alaghband

Computer Science and Engineering, University of Colorado Denver

Denver, CO USA

(David.Gnabasik, Gita.Alaghband)@ucdenver.edu

Abstract

We develop a data-driven computational model that

reliably classifies individual patient into one of 7 non-

overlapping lung disease clinical types within our dataset:

healthy non-smokers, smokers diagnosed with and without

chronic obstructive pulmonary disease (COPD),

adenocarcinoma, squamous cell carcinoma, cystic fibrosis,

and acute lung injury. Panels of 12 cytokine blood serum

biomarker measurements precisely classify both known and

unknown patients into one of these distinct clinical types.

Our model classifies clinical types and patients directly from

the conditional relationships of noisy, incomplete, and

variable protein concentration measurements, including

outliers. Biomarker concentration measurements induce

discrete state variables through a binning algorithm that

exposes the conditional relationships and dependencies

among the concentration data. A unique application of an

XOR operation on the state space extracts the patterns

identifying the set of distinctive features for each clinical

type. Our model builds a discrete topological structure from

a baseline data set, and is developed using several novel

schemes designed specifically for this analysis. The result is

a multidimensional space representing a characteristic set of

states within each clinical type population.

Keywords: cytokine proteomic biomarkers; computational

model; lung disease.

1 Introduction

According to the American Lung Association, an
estimated 158,080 Americans are expected to die from lung
cancer in 2016 [1]. The 7 lung diseases analyzed here
account for some of the most frequent forms of lung disease,
with COPD as the fourth leading cause of death in the United
States [2]. Respiratory diseases are of multiple origin, and
the selected clinical types cover a wide spectrum of
suspected causes. More accurate and cost-effective diagnosis
is needed so that people with lung diseases are accurately and
cost-effectively diagnosed and then treated accordingly,
given that Guarascio et al declare that not enough is known
regarding ideal therapy selection [3].

The use of protein-based biomarkers of lung disease is
rapidly advancing, as reviewed by Jun-Chieh et al [4], but
reliably measuring proteomic biomarker concentrations is

difficult due to technical and biological variation, their wide
dynamic range of concentrations and numerous post-
translational modifications [5]. Despite these variations, we
have developed a data-driven Biomarker Computational
Model for Lung Disease Classification (BCM-LDC) that
reliably distinguishes among various clinically diagnosed
lung disease types within our dataset. BCM-LDC
hypothesizes that biomarker interactivity induces a
distinctive set of host-response protein concentration values
for each clinical type, and that certain concentration patterns
revealed by these proteins remain characteristically
invariant.

BCM-LDC uses a data-driven, supervised-selection
learning model; that is, constrained by the limited amount of
training data, the model enumerates all possible
combinations of biomarker state spaces, then selects that
space which most accurately classifies the data into their
known clinical types.

In the background §2, we review the suitability of
cytokine proteins as host-response biomarkers, the sources
of analyzed data, and the difficulties in modeling biological
variation given the constraints governing the model,
including the issues of overfitting and working within a high-
dimensional parameter space. The computational model §3
describes how protein concentrations are topologically
modeled and analyzed. §4 presents the experimental results.
§5 describes several validation studies, and §6 concludes the
paper.

2 Background

2.1 Host-Response Biomarkers

We investigate whether targeted protein variables act as

disease state signals due to the existence and modulating

strength of their relative and mutual effects upon each other.

Our data-driven computational model, BCM-LDC,

classifies clinical types and patients directly from the

marginal and conditional relationships of biomarker

concentration measurements. BCM-LDC selects the unique

set of biomarkers – given a small number of biological and

statistical assumptions – whose protein host-response

topology corresponds to a patient’s clinical type. BCM-

LDC represents a space of concentration distributions built

upon computable discrete states which classifies patients

into clinical types, despite significant data variation.

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

58

Cytokine proteins are secreted by components of the

adaptive immune system, and they act as effectors and

modulators of lung tissue inflammatory response [6]. The

12 baseline cytokine biomarkers used in this study {EGF,

IFNG, IL1A, IL1B, IL2, IL4, IL6, IL8, IL10, MCP1, TNFA,

VEGF} (EGF: epidermal growth factor; IFNG: interferon γ;

IL: interleukin; MCP: monocyte chemo-attractant protein;

TNF: tumor necrosis factor; VEGF: vascular endothelial

growth factor) were chosen because of their known

sensitivity in host-response to various lung diseases [7], so

that concentrations of circulating cytokines in blood serum

may be associated with lung disease survival [8].

2.2 Data Sources

BCM-LDC is constructed using host-response cytokine

biomarker concentration data from 343 patients given to us

in standard units of pico-grams 1012 grams per milliliter

(pg/ml). Any other data sets obtained from the literature –

such as Healthy Serum – are standardized to these units.

This baseline data set includes 7 clinical types from which

the 12 protein biomarkers are measured. The number of

patients per clinical type ranges from 24 to 56 (see Table 4).

The Q=12 baseline biomarkers {EGF, IFNG, IL1A, IL1B,

IL2, IL4, IL6, IL8, IL10, MCP1, TNFA, VEGF} measured

from each patient’s blood serum are chosen because of their

known or suspected relationship to lung disease. Two

specimens are collected from each patient at the same time,

and these two specimens are averaged over each biomarker

to provide a single biomarker panel of 12 measurements per

patient, except in cases of missing data. Each of the 343

patients are expertly diagnosed as belonging to only one of

7 lung-related clinical types 𝑪𝒕, 𝟏 ≤ 𝒕 ≤ 𝟕 adenocarcinoma,

squamous cell carcinoma, never smokers, smokers with

chronic obstructive pulmonary disease (COPD), smokers

without COPD, acute lung injury, or cystic fibrosis [9]. We

then sequestered a random 10% of these baseline data for

subsequent model validation, leaving 310 patients to train to

model. There are 659 missing biomarker measurements out

of a possible 𝟑𝟏𝟎 ∗ 𝟏𝟐 = 𝟑𝟕𝟐𝟎 (82.3% complete) for a

total of 3061 measured values. Only 39 of the 343 patients

(11.4%) have all 12 biomarker measurements, but 85.4%

have 9 or more biomarkers. A total of 17.7% biomarker

values are missing from the baseline data set. The mode of

the measurements per patient panel is 10. The mean is 9.84.

No data was interpolated or averaged to fill in missing data.

Standard protein 2-D gel electrophoresis assay

techniques are used to consistently collect homogeneous

blood serum specimens. The first five data sets are all from

the same unpublished set of experiments

[Acknowledgement A] conducted at laboratories at the

University of Colorado Health Sciences Center (UCHSC).

The last two data sets, cystic fibrosis and acute lung injury,

are from different experiments although the wet-lab

protocols and analytics are performed in the same way as

the first five data sets [Acknowledgement B]. To minimize

batch effects, both laboratories incorporated a standard

sample in each electrophoresis gel which was subsequently

subtracted during analysis, and both used the Cy2 channel

from each gel to normalize spot intensities and for

automated matching between gels. All patients underwent

expert pathology review and have been histologically

assigned to one and only one clinical type, provided with the

original data sets. The small error bars in Figures 2 and 3

below suggest these data were produced precisely and with

quantitative accuracy.

There are many more data values than targeted variables,

the 12 biomarkers, which avoids the issue of overfitting. We

are working directly with precise concentrations of secreted

proteins expressed in blood serum. Even though differences

have been uncovered in protein expression between normal

and diseased tissues that may have specificity for different

tumor types [10], tissue extraction is both costly and

invasive. We justify our sampling strategy because it is non-

invasive, generates a large set of data with quantitative

accuracy involving a small number of targeted variables,

and works with a homogeneous composition indicative of

the entire organism.

During our initial experiments, we found that any

method based upon averaging – such as logistic regression,

cosine similarity, or the machine learning Classify function

in Wolfram Mathematica© v11.1 – did not classify the

baseline clinical types with a sufficient degree of accuracy.

Therefore, our subsequent work focused on developing a

computational model that processed the entire set of

individual concentration values and not just population

averages.

3 Computational Model Details

BCM-LDC hypothesizes that interactivity among the
biomarkers induces a distinctive concentration distribution
as conditioned by the relative concentrations of the other
biomarkers. A binning algorithm discretizes the
concentration values of every combination of paired
biomarkers variables into fixed-sized bins that produces a
characteristic multidimensional state space for each clinical
type. The binning algorithm is designed to produce both
occupied and empty discrete bin states, what we call a
discrete topological structure (DTS). The bin state pattern
that best distinguishes among the clinical type populations is
computed by an XOR operation on each possible state space,
which also extracts the set of distinctive variable bin states
for each clinical type. The distinctive bin state space is then
used to assign new patients into one population type given a
patient’s set of biomarker concentration values. BCM-LDC
is briefly presented below.

3.1 Formulating the Computational Model

Our goal is to develop a model that represents the
conditional relationships of expressed host-response
biomarkers. The first problem is to discretize the biomarker
concentration values for every clinical type – paired
biomarker combination CBr, producing a set of bin sizes and
number of bins (Wr, Nr, 1 ≤ r ≤ R). A CBr is defined as the

59

aggregate concentration data from each of these pairs of
biomarkers within each clinical type. Each clinical type has
77 different combinations of pairs of biomarkers, including
pairs of the same biomarker. The binning algorithm bin size
computation maximizes the number of occupied bins Ô (O-
hat), separating concentration data values by the highest
possible resolution, while minimizing the number of gaps or
empty bins Õ (O-tilde) where no data values reside. Empty
bins are considered non-permissible data states. BCM-LDC
computes a different total number of bins (states) Nr, and bin
size Wr, for each combination CBr. The model computes the
probability of each concentration data point belonging to its
bin within each CBr combination.

3.2 Formulating the Discrete Topological

Structure (DTS)

The interactive relationships between each pair of

biomarkers {B1, B2} are represented by three types of

probability. The model computes the pair’s joint occurrence

matrix MC-joint – the probability that biomarker B2 measured

at concentration [c2] occurs at the same time biomarker B1

is measured at concentration [c1]. The model also computes

their conditional probabilities where, given concentration

measurement [c1] for B1, how likely is the measured

concentration [c2] for B2. Call this matrix Mβ. The model

uses marginal probabilities to represent the influence of

individual biomarkers – the probabilities of various

concentration values of a subset of biomarker variables

without reference to the values of the other variables being

considered. Call this matrix Mα. These three types of

computed probability taken together express the mutual

interactivity and distribution of the biomarker concentration

measurements to reveal concentration patterns characteristic

of each clinical type. We equate these probability concepts

to a discrete topological structure (DTS) matrix with

equation 1. A data-driven DTS matrix is computed for each

CBr. and the matrix (i.e., the specific set of paired

biomarkers) that produces the most accurate set of patient

classifications per clinical type is designated MC for that

population.

In equation 1, MC-joint is the population joint occurrence
matrix, 1 is a complete matrix of ones (not the identity

matrix), Mα is the α interaction matrix of marginal
probabilities, and Mβ is the β interaction matrix of
conditional probabilities for the clinical type. The DTS
equation is implemented in terms of matrices of conditional
and marginal probabilities involving bivariate pairs of
biomarkers, each of which are indexed by their respective set
of discrete bin states as computed by the binning algorithm.
Pseudo-code for the binning algorithm is given in Algorithm
1 below, where Dr refers to as the combined set of observed
concentration data values within each CBr, for a specific
clinical type and biomarker pair {Bi, Bj}.

Algorithm 1: Pseudo-code for the Bin-Min-Max algorithm.

Inputs: Dr: set of concentration data for given CBr ;

maxNbins: max number of bins. Outputs: returns Wr, Nr
1. foreach combination Dr = { D(Bi), D(Bj) }
2. # Initialize number of bins (Nr), bin step

size (binInc), bin size (Wr), number of

empty bins (emptyBins), tmp = 0.

3. Nr ← binInc ← √maxNbins
4

4. Wr ← |max(Dr) - min(Dr)| / Nr
5. emptyBins ← Count_Empty_Bins(Dr, Nr, Wr)
6. result ← |Wr - loge(emptyBins)|
7. while (result < tmp and Nr < maxNbins -

binInc) do

8. Nr ← Nr + binInc
9. Wr ← |Max(Dr) - Min(Dr)| / Nr
10. emptyBins ← Count_Empty_Bins(Dr, Nr, Wr)
11. tmp ← result
12. If (emptyBins > 0) result ← |Wr -

loge(emptyBins)|) else result ← 1

13. end while
14. Return (Wr, Nr)
15. end foreach

The output of the Max-Bins-Min-Empty-Bins binning
algorithm is a bin size Wr and the number of bins Nr for each
clinical type – paired biomarker combination CBr. Each
value in a set of combined concentration values is assigned
to a single bin, but multiple concentration values can be
assigned to the same bin, as plotted in Figure 1 for
Adenocarcinoma biomarkers {Bi = IFNG, Bj = IL1A}. The
top 2 [c] rows in Figure 1 refer to their actual concentration
values measured in pg/ml. These [c]values are mapped to
specific bin states in the Bin Intervals row. Many of the [c]
values are grouped in the first few bins. The first 6 states are
labeled numerically, and bin 5 is the first empty bin out of

60

the 23 bins. Bins 1 through 4 illustrate the joint probabilities
of IL1A and IFNG values occupying the same state.
Additional details for computing each DTS matrix are given
in the next section.

3.3 Computing the DTS Matrix MC

BCM-LDC computes the population joint probabilities
for Dr for each clinical type Ct, combination CBr ∈ Ct,
biomarker Bi ∈ CBr, bin b from 1 to Nr using equation 2,
where Gb is the number of [c] values of Bi in bin b. The result
Pi is the vector of probabilities for observing the biomarker
concentrations in each bin, oftentimes zero. A bin probability
equals the number of concentration values Gb grouped in
each bin divided by |Dr| so that the sum of probabilities over
the set of bins is 1.

The population joint occurrence matrix MC-joint is

computed by multiplying each bin probability Pi for
biomarker Bi with each bin probability Pj for biomarker Bj,
where Bi is indexed by i from 1 to the number of bins NBi for
biomarker Bi and Bj is indexed by j from 1 to the number of
bins NBj for biomarker Bj. Equation 3 multiplies two vectors
(one row vector and one column transposed) together
element-wise as an outer product to form a 2-dimensional
matrix for that biomarker combination of Bi and Bj. The
dimensions of MC-joint, one for each CBr, is NBi x NBj. Bins 1
through 4 in Figure 1 illustrate joint occurrence values
greater than zero.

The population marginal distributions Mi-marg and Mj-

marg. are computed by equations 4 and 5.

The α interaction matrix Mα – the matrix from equation

1 with dimensions NBi x NBj – is composed as the

transposition of Mi-marg repeated NBj times. The population

conditional probability matrix MC-cond for a pair of

biomarkers {Bi, Bj} – one per CBr – is computed as an

element-by-element matrix division in equation 6.

The β interaction matrix Mβ is defined in equation 7 as Pi

divided element-wise by Pj (from equation 2).

Equation 1, derived from equations 2–7, computes a

DTS matrix MC for each CBr that represents the conditional

probability relationship between all pairs of biomarkers

within each population. Each CBr combination has a

characteristic vector of occupied bin states Ô and empty bin

states Õ out of a possible number of bins Nr as calculated

by the binning algorithm. Each CBr combination now

composes an object with the following properties, which

will be used to find out the set of distinguishing biomarkers

per clinical type:

• clinical type population Ct,

• biomarker pair {Bi, Bj},

• bin size Wr,

• number of bins Nr,

• bin state vector [Pi, Ô, Õ, Gb],

• set of observed concentration values Dr,

• matrices MC, MC-cond, MC-joint, MC-marg, Mα, Mβ.

The main advantage of using calculated DTS values
instead of raw concentration [c] values is the normalization
of scale. Figure 2 plots all biomarker concentration
measurements for clinical type Adenocarcinoma, covering a
wide range of scales. Figure 3 plots the corresponding
Adenocarcinoma DTS values. The binning algorithm
calculates the DTS values to all lie within one order of
magnitude for every clinical type, and the DTS values are
more regularly spaced.

Figure 2: All 12 biomarker Adenocarcinoma [c] values.

Figure 3: All 12 biomarker Adenocarcinoma DTS values.

61

3.4 Distinguishing Biomarkers

To reveal the distinguishing biomarkers for each clinical
type, BCM-LDC forms a coordinate system of the bin state
probability values and the DTS values per biomarker instead
of comparing concentration values. The bin states are
transformed to matrix form to expose their characteristic and
distinguishing states. These integer matrices are constructed
by first standardizing the bin state probability and DTS
values. The probability values are multiplied by 100 and
rounded to integers as percent values along the x-axis to form
a standard 100 cells. The corresponding DTS values are
raised as exponents to the natural logarithm and rounded to
integers, standardizing the y-axis to 256 cells, and starting
from the upper left corner. This forms a cellular structure
where a whole integer in a cell indicates the presence of a
probability–DTS value and 0 otherwise. An element-by-
element XOR operation between the cellular structures of
any two clinical types of the same biomarker reveals which
clinical type probability–DTS bin values are unique between
those two clinical types. An elaboration of this logic obtains
the complete list of distinguishing bin states of the same
biomarker among all clinical types. The objective is the same
– to identify those matrix cells that are occupied by one and
only one clinical type for that biomarker, as described next.

BCM-LDC replaces the occupied matrix integer values
with unique 2n clinical type identifiers (e.g.,
Adenocarcinoma: 21=2), and then adds every matrix together
per biomarker so that each matrix cell contains zero, one, or
more than one clinical type identifier. An element-by-
element log2 operation that returns a whole integer identifies
a single clinical type occupying that cell. This method
depends upon the fact that a binomial coefficient (m choose
n) (mod 2) is computable using an nXORm operation. Figure
4 plots the integer matrix for biomarker IFNG for all clinical
types, where Adenocarcinoma is distinguished by 3 (red)
circled cells. The (blue) circled value of 34=2+32 indicates
that both Adenocarcinoma and Smokers without COPD
(25=32) exist in the same cell.

Figure 4: Partial integer matrix for biomarker IFNG for all 7 clinical types.

The 12 individual integer matrices produced for each
clinical type can be consolidated into 3 dimensions to plot
their distinguishing biomarkers with respect to the
aforementioned probability cell and DTS cell states. Figure
5 plots the distinguishing probability cell and DTS cell states

of all the clinical types together. We observe that the range
of probability values is low in the Probability dimension – no
single biomarker overwhelms any of the others in terms of
frequency. It is also clear that the DTS coordinate effectively
separates out the clinical types. Interestingly, Never Smokers
(blue) displays the most variation among all the clinical types
– one is “normal” in a wide variety of states.

4 Experimental Results

Table I lists the common distinguishing biomarkers per
clinical type over the 10-fold cross-validation study (see
§5.1).

Figure 5: Clinical types distinguished by Probability and DTS states.

TABLE I. DISTINGUISHING BIOMARKERS PER CLINICAL TYPE IN THE

PROBABILITY – DTS DIMENSIONS.

Clinical Type

Classification Ct

N Distinguishing

Biomarkers

Patient

Counts

Total

Bins
At

Adenocarcinoma 6: IL1B IL4 IL6 IL8

MCP1 VEGF

53 444 0

Squamous 6: IL1B IL2 IL8 IL10

MCP1 TNFA

44 1664 0

Never Smokers 4: EGF IFNG TNFA
VEGF

55 624 3

Smokers with

COPD

4: EGF MCP1 TNFA

VEGF

49 492 0

Smokers without
COPD

2: EGF VEGF 53 386 0

Acute Lung

Injury

12: EGF IFNG IL1A

IL1B IL2 IL4 IL6 IL8

IL10 MCP1 TNFA
VEGF

62 572 0

Cystic Fibrosis 1: IL1A 27 360 0

62

5 Validation Studies

We can now assign an unknown patient sample z to a
known clinical type by computing the patient’s DTS matrix
Mz and comparing it to every MCt. Comparing Mz to every
MCt uses a fitness function (equation 8) that decides which
clinical type is closest to the unknown sample state.

Assigning a unique bin number and bin probability for
each sample biomarker value simply involves looking up the
corresponding bin number in the known population
probability list for that biomarker. The probability of a
sample’s concentration value is the expected probability of
its assigned bin.

5.1 10-Fold Cross-Validation

We conducted a 10-fold cross-validation study on the

343 baseline patients, where 10% of the samples were

randomly extracted 10 times using SQL Server’s NewID

function and then running BCM-LDC over each of the

different data partitions. Those distinguishing biomarkers

that were present in every one of the 10 runs per clinical type

are listed in Table I, column 2. The total number of incorrect

baseline patient assignments At over the 10 runs is given in

the column 5. Three Never Smokers baseline patients over

the 10 runs were incorrectly assigned, of which 2 were the

same sample. We account for these incorrect assignments by

the large variation present in the Never Smokers patients (see

the last part of §3.4) and not by missing biomarker values.

During the same 10-fold cross-validation, each of the

10% sequestered (33) patients were correctly assigned to

their respective clinical types with the exception of one (the

same) Cystic Fibrosis patient assigned as Acute Lung Injury

twice. We account for this incorrect assignment by the tiny

sample size of the sequestered Cystic Fibrosis patients,

which was the smallest to begin with.

5.2 Healthy Serum Validation

Whereas the baseline clinical types were collected by
standard 2-D PAGE gel electrophoresis protocols,
measurements from 144 “Healthy Serum” serum samples
were taken from a different sampling protocol and
experimental design (Luminex® fluorescent bead-based
immunoassay [11]). Data was not collected for the EGF or
IL2 biomarkers, but included the other 10 biomarkers. When
processed along with the baseline data sets, all samples were
correctly assigned to their Healthy Serum clinical type.

6 Conclusions

We have developed a computational model, BCM-

LDC, that reliably distinguishes among 7 given lung

pathologies by assigning biomarker concentration values to

discrete states despite significant data variation and

technical challenges. BCM-LDC distinguishes the set of

biomarker variables that uniquely characterize the clinical

types under analysis. The source data – concentration values

of host-response serum cytokines – serve as adequate

biomarker variables. Excluding Cystic Fibrosis and

Smokers without COPD, there is no single biomarker pair

that distinguishes among all clinical types, though

EGF~VEGF does for 4 types. The minimal biomarker pairs

that distinguish among the remaining 5 clinical types are

{EGF~TNFA or EGF~VEGF or TNFA~VEGF} and

{IL1B~IL8 or IL1B~MCP1 or IL8~MCP1}. Whereas the

distinguishing biomarkers extracted are data-driven, patient

samples are classified into their single clinical type with

reliability greater than 99%.

The Discrete Topological Structure computational

model distinguishes among the clinical type populations by

discretizing concentrations values to populate only certain

bin states. The resulting DTS model simplifies the high-

dimensional biomarker concentration space so that some

distinguishing features of the lung disease space are

revealed.

ACKNOWLEDGMENTS

A. We thank Dr. M. Duncan of USHSC for providing us

with 5 / 7 original unpublished data sets.

B. We thank Dr. Paul Bunn of USHSC for providing us

with 2 / 7 original unpublished data sets.

REFERENCES

[1] Lung Cancer Fact Sheet from the American Lung Association.
Available at http://www.lung.org/lung-health-and-diseases/lung-
disease-lookup/lung-cancer/resource-library/lung-cancer-fact-
sheet.html (Nov. 2016)

[2] P.T. Reid, J.A. Innes. "Respiratory disease", In: Walker BR, Colledge
NR, Ralston SH, Penman ID, eds. Davidson's Principles and Practice
of Medicine. 22nd ed. Philadelphia, PA: Elsevier Churchill
Livingstone; chap 19. (2014)

[3] A.J. Guarascio, S.M. Ray, C.K. Finch, T.H. Self. "The clinical and
economic burden of chronic obstructive pulmonary disease in the
USA", ClinicoEconomics and Outcomes Research. Jun 17;5:235-45.
(2013)

[4] J.T. Jun-Chieh, C. DeCotiis, A.K. Greenberg, W.N. Rom, "Current
Readings: Blood-Based Biomarkers for Lung Cancer", Semin Thorac
Cardiovasc Surg. (2013) Winter; 25(4): 328–334.

[5] K. Chandramouli, P-Y Qian, "Proteomics: Challenges, Techniques
and Possibilities to Overcome Biological Sample
Complexity",Human Genomics and Proteomics, vol 2009, 239204.

[6] R. Sivangala, G. Sumanlatha. "Cytokines that Mediate and Regulate
Immune Responses", Austin Publishing Group (2015). Innovative
Immunology. Available: www.austinpublishinggroup.com/ebooks

[7] L. Enewold et al, "Serum concentrations of cytokines and lung cancer
survival in African Americans and Caucasians", Cancer Epidemiol
Biomarkers Prev. 2009 Jan;18(1):215-22.

[8] C. A. Dinarello, "Proinflammatory Cytokines", Chest 2000;118;503-
508.

[9] J. Subramanian, R. Govindan, "Lung Cancer in Never Smokers: A
Review", Journal of Clinical Oncology 25 (5): 561–70. (2007)

[10] M.R. Mehan, D. Ayers et al, "Protein Signature of Lung Cancer
Tissues", PLoS ONE7(4): e35157. (2012)

[11] Biancotto A, Wank A, Perl S, Cook W, Olnes MJ, et al. "Baseline
Levels and Temporal Stability of 27 Multiplexed Serum Cytokine
Concentrations in Healthy Subjects", PLoS ONE 8(12): e76091.
doi:10.1371/journal.pone.0076091 (2013)

63

A Multiscale Model Explains the Circadian Phase Dependent Firing Pattern
Variations in Suprachiasmatic Nuclei and the Occurrence of Stochastic Resonance

Shiju S and K Sriram
Center for Computational Biology, Indraprastha Institute of Information Technolgy-Delhi

NewDelhi,110020, India
(shijus, sriramk)@iiitd.ac.in

Abstract

We perform multiscale model simulations to study the
role of slow varying mammalian circadian oscillations (in
hrs) and Gaussian noise in modulating the rapidly varying
firing patterns (in ms) exhibited by the ionic channels
of suprachiasmatic nuclei under DD (constant darkness)
conditions. Hodgkin-Huxley model near subcritical Hopf
bifurcation exhibits noise-induced firing patterns and
these patterns, modulated by slow varying circadian gene
regulatory network, are highly circadian phase dependent.
The simulated firing patterns are also very close to the
experimentally observed patterns with a firing rate of 3-10
HZ during subjective day and 0-3 HZ during subjective
night. Further, for certain noise intensity, the model’s
response is maximal, a characteristic feature of stochastic
resonance, but surprisingly, we observe it only at certain
circadian phases. This is the first instance where it is shown
that the slow-varying gene regulatory circadian oscillation
along with noise modulates the firing patterns of fast
varying voltage gated channel as observed in experiments
and exhibits stochastic resonance only in certain circadian
phases.

Keywords: Stochastic resonance, multiscale model,
circadian firing patterns, signal to noise ratio

1 Introduction

In mammals, Suprachiasmatic nuclei (SCN) is the master
oscillator with ≈20000 neurons that exhibit endogenous
oscillations with a period close to 24h in gene expres-
sion under constant DD conditions [1]. On the other
hand, SCN neurons also fire spontaneously due to the
opening and closing of ionic channels but with varying
frequencies during the 24h cycle. It is well known that
electrophysiological properties of neurons are controlled
by ionic channels, which in turn depends on the conduc-
tance of ionic current. The mean value of conductance
varies in a circadian manner [2]. During subjective day,
firing frequencies in the range between 3-10 Hz reaches
the maximum, while during subjective night, the firing

frequency reaches a nadir that ranges between 0-3 Hz [3].
Presently, the mechanism responsible for modulation of
firing pattern variations during the 24h cycle is not known
and importantly, the bonafide circadian genes like per1/2,
Bmal1, Cry1/2, Rev-Erbα responsible for interacting with
the ionic channels in SCN is not fully elucidated. However,
recently, Jones et al. [3] reported that the gene per1 plays
an important role in modulating the firing rate rhythm in
SCN neuron. Therefore, we intend to examine the following
questions through multiscale model simulations; (i) How
slow varying gene regulatory network (GRN) of circadian
rhythm of 24 h modulate the fast varying firing patterns (0-
10 HZ) of voltage gated channels in SCN (ii) What is the
role of noise in modulating the firing patterns in SCN and
(iii) How the interplay of noise, slow varying GRN and fast
varying ionic channels contribute to different firing patterns
during the subjective day and night in circadian systems.

In this work, an attempt has been made to provide plausi-
ble explanation for the above questions by building a multi-
scale model and interestingly, we also study the role of noise
in providing optimal firing response in a circadian phase-
dependent manner by invoking the concept of stochastic
resonance (SR), a paradigm concept in a noise-induced
phenomena wherein the presence of noise enhances the
quality and detection of weak signals and has a wide range
of application particularly in neuronal system. The response
of a nonlinear system to noise reaches a maximum for an
optimum value of noise intensity is the typical characteristic
feature of stochastic resonance. Benzi et al. [4] first showed
the SR phenomenon in a dynamical system subjected to both
periodic and random perturbation, however, noisy nonlinear
systems can display SR even in the absence of external
forcing signal [5, 6], called coherence resonance (CR).

Further, we also show through in-silico multiscale model
simulations that for the choice of optimal noise intensity,
the simulated firing patterns in SCN closely follow the
experimental results of Jones et al. [3] and importantly, for
a particular circadian time exhibits stochastic resonance.
Interestingly, this is the first instance wherein the interplay
of different natural signals with two varying time scales
emanating from a single neuron in the presence of noise
that arises due to random opening and closing of voltage

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

64

gated channels are used to explain the modulation of firing
patterns.

2 Methodology

2.1 Two models with different timescales

We choose two models that have disparate time scales in
SCN: (i) a variant of Hodgkin-Huxley (HH) model built
by Diekman et al. [7] specifically for SCN neurons and
we use this model to capture the dynamics of firing rates
in SCN (Figure 1). This model has a timescale in the
order of milliseconds (ms) and this model is a slow-fast
system with voltage having a slow timescale while the gating
variables have a fast timescale. (ii) Gene regulatory model of
Goodwin type captures the dynamics of mRNA and proteins
and has a time scale in the order of hours. We couple
both these models of disparate timescale unidirectionally
with per1 mRNA regulating specific ion channels in the HH
model. This is the forcing term of our model. We also
add delta-correlated Gaussian noise to the HH model and
determine the noise intensity for which SNR is maximum.
We describe below in detail the two models, simulations,
and validation with the experimental data.

Figure 1: Schema of multiscale SCN model. GRN is
based on the Goodwin oscillator model, where the clock
concentration varies in circadian manner with a period close
to 24 h. The slow varying GRN (in the left column) drives
the fast varying electrophysiological HH model, which is
below the threshold and in steady state (in the middle
column), generates action potential in the presence of noise
with a period close to millisecond scale (in the last right
column). Note that the firing pattern is highly circadian
phase dependent and it is shown here for CT0, 6, 12 and
18 hrs.

2.2 Electrophysiological model of SCN

The current balance equation of SCN by Diekman et
al. [7] is provided below, and to this we add Gaussian noise.

C
dV
dt

=Iapp− INa− ICaL− ICaNonL− IKCa− IK−leak

− INa−leak +D∗w (1)

where V and C are the membrane potential and capacitance
respectively, and Iapp, INa, ICaL, ICaNonL, IKCa, IK−leak,
and INa−leak are the external, sodium, leakage calcium,
non-leakage calcium, calcium activated potassium, leakage
potassium, and leakage sodium currents respectively. Here
w is the Gaussian white noise with zero mean and unit vari-
ance. D is the intensity of noise, which has the dimension
of current. Here we assume that w represents the com-
bined stochastic activity of the ion channels on the voltage
dynamics of the SCN neuron. Remaining equations are
same as that appeared in the original model [7]. Parameter
values used for simulations are also the same as that of
in the original model [7] except that gNa−leak = 0.052nS,
gKCa = 180nS, gK−leak = 0.15nS and τs = 0.01ms.

2.3 GRN model of SCN

The GRN model is a Goodwin type oscillator [8] con-
sists of the dynamical variables per1 mRNA (MP), PER1
protein (P) and phosphorylated PER1 protein (Pp). The
model describes the production of mRNA and protein, their
degradation and importantly, to oscillate a delayed-negative
feedback of phosphorylated protein is integrated to describe
the negative regulation of transcription rate and it is given
by Hills equation. These equations are highly nonlinear in
nature. The full GRN model is given as follows:

dMP

dt
=a(

0.001nc

0.001nc +Pnc
p
−MP) (2)

dP
dt

=a(MP−P) (3)

dPp

dt
=a(P−Pp) (4)

There are two parameters in the above coupled set of
nonlinear equations; the scaling parameter a (= 4.46E-8)
and the Hills coefficient nc (= 9). The model exhibits limit
cycle oscillations with a period of 23.6 h and this is taken to
be the free-running period of mammalian SCN neuron [1]
for all the simulations.

3 Simulation results

3.1 Coherence resonance in HH model of
SCN without periodic forcing by GRN

Codimension-1 bifurcation diagram for the membrane
potential V as a function of gNa−leak is conducted in the
absence of noise (D = 0, Figure 2). As gNa−leak increases
the stable steady state becomes unstable through subcritical
Hopf bifurcation, where the stable steady state is surrounded
by the unstable limit cycle, which in turn is surrounded by a
stable limit cycle. Further increase in gNa−leak leads to a loss
of periodic orbits through supercritical Hopf bifurcation that

65

has unstable steady state surrounded by stable limit cycle.
To simulate the noise induced firing of action potential in
our model, we choose a subthreshold value of gNa−leak =
0.052 that exhibits only stable steady state. Addition
of noise provides a transition of the system from steady
state to limit cycle oscillations randomly thus producing
the train of action potential. The maxima between two
spikes is the interspike interval (ISI) and the histogram of
the ISI’s for all the spikes gives rise to Interspike interval
histogram (ISIH). This is done for various noise intensities
D, numerical integration has been carried out in Xppaut [9]
using stochastic Euler’s method [10] with the integration
time step ∆t = 0.02ms and the resulting ISI histograms are
shown in Figure 3A. For a low value of D, the time taken
by the membrane potential to cross the activation threshold
of firing is large and hence the number of spike around the
mean interspike interval (ISI) is small. With the increase in
the noise intensity, membrane potential quickly crosses the
activation threshold and as a consequence, the frequency of
the ISI peak increases.

Figure 2: Codimension-1 bifurcation diagram of HH model
with gNa−leak as the bifurcation parameter. For lower
values of gNa−leak the system is in the stable steady
state (Red lines, SS). As gNa−leak increases oscillations
appears via subcritical Hopf bifurcation (HB1). Black
lines are the unstable steady state (US), blue circles are
unstable oscillation amplitude (UO), and green circles are
stable oscillations amplitude (SO). Sustained oscillations
disappeared via supercritical Hopf bifurcation (HB2) and the
system enters the stable steady state. Xppaut [9] was used
for simulating the bifurcation diagram.

To measure the system’s response to noise, power spectral
density (PSD) of the membrane potential, V was computed
by averaging out 25 runs of the firing patterns of membrane
potential with a duration of 5 min using fast Fourier trans-
form. The averaged PSD is further smoothed by applying
Savitzky-Golay filtering method with 100 number of points

using MATLAB®(’sgolay’). The height of the peak in
the power spectra is very small for lower values of noise
intensity (Figure 3 B, D = 1, black curve). With the increase
of noise intensity height of the power spectral peak increases
and starts to saturate. To characterize the system response,
we compute the measure of signal to noise ratio (SNR)
defined in [5] as

βs =HQs, Qs =
ωp

∆ω
(5)

where H is the height of the peak, ωp is the frequency
at which peak occurs and ∆ω is the width of the peak at
half maximum height. SNR for different noise intensity is
shown Figure 3C, coherence resonance occurs at optimum
noise intensity (D = 2), where system response is maximum
and further increase in noise, SNR starts to decrease. Even
though there is a shift in the peaking frequency in power
spectra, frequency variation in firing pattern is very less.
Hence the coherence resonance is not sufficient to induce
experimentally observed circadian variation of firing rate at
SCN.

Figure 3: ISIH, PSD, and SNR for HH model without
forcing. (A) ISIs are not randomly distributed, most firing
periods are near the intrinsic periods of the model (≈ 200ms)
but the number of spike increases with increase in the
noise intensity. (B) Averaged power spectra of membrane
potential for different noise intensity. Height of the spectra
increases with increase in D and saturated for higher values.
Smooth PSD curve is obtained by applying Savitzky-Golay
filtering method with 100 number of points. (C) The
SNR is calculated from power spectra using the equation 5.
SNR reaches a maximum then decreases, characteristics of
stochastic resonance.

66

3.2 Role of slow frequency circadian GRN in
regulating firing frequency variations:
Multiscale Coupled oscillator model

Now we introduce the slow forcing signal of the gene
regulatory network, namely the clock variable Mp that
regulates the HH model through the conductance of sodium
leak (gNa−leak) variable as follows:

gNaleak = gNaleakpp
MPNormalized +gNaleakbase

where gNaleakpp
= 0.032nS, gNaleakbase

= 0.02nS,
and MPNormalized is the normalized value of MP

(MPNormalized =
MP−MPmin

MPmax−MPmin
). The value of gNa−leak is

varied in near the subcritical Hopf bifurcation. This
circadian coupling with the conductance generates a
subthreshold circadian rhythmicity on membrane potential
in the absence of noise (D = 0) as shown in Figure 4A.

Figure 4: Simulations of the firing pattern in coupled GRN-
HH-noise model. (A) Only subthreshold oscillations are
observed in the absence of noise. (B-E) Noise-induced
subthreshold oscillation that produces spikes at different
circadian time. For the same noise intensity system shows
different firing rates at various circadian phases. Black
broken lines indicate the activation threshold of the HH
model.

We examine the effect of noise at different circadian
phases and the corresponding firing patterns for the noise
intensity D = 3. Instead of performing stochastic simulation
over continuous 24 h, we simulated the model only for
desired circadian phases (CT0, 6, 12, and 18). At a
particular circadian phase, we first set the integration time
step to 0.02ms and run the system without adding the
noise for one second. We then add the noise and perform
the stochastic simulation for the desired time duration.
Summary of the procedure for solving multiscale coupled

oscillatory model is given in algorithm 1. The firing patterns
recordings (5s in duration) at desired circadian times (CTdes)
CT0, CT6, CT12, and CT18 are shown in Figure 4B-E. CT6
is the peaking time of GRN component MP which is the
mid of subjective day and CT18 is the subjective night. The
number of spikes at CT18 is less compared to CT6, and this
indicates that the firing frequency is less during subjective
night compared to the subjective day as observed in the
experiments. This important result indicates clearly that the
slow varying circadian rhythm regulates the firing patterns.

Algorithm 1: Solve the multiscale coupled oscillatory
model at desired circadian time to get the firing patterns
Input: multiscale coupled oscillatory model
Input: Gaussian noise w
Input: noise intensity D
Input: step size (∆t), ∆t1, ∆t2 (∆t1� ∆t2)
Input: window size (window) which compute
from experiments
Input: desired circadian time, CTdes

If CT ≤CTdes

∆t = ∆t1
D = 0

}

else if CT >CTdes & CT < (CTdes +window)
∆t = ∆t2
D > 0

}

end if
v′ = f (v)+D∗w ——— (I)
print firing pattern according to (I)

Figure 5: ISIH for GRN-HH-noise model. ISIs are
randomly distributed at CT0, CT12, and CT18 for D = 2 (A)
and D = 4 (B). At CT6 most of the firing periods is regular
and concentrate near the intrinsic period.

ISIH for two other D values (D = 2,4) at different cir-
cadian phases are shown in Figure 5, and clearly, it un-
veils the difference in ISI distribution over the circadian
time. Membrane voltage firing periods show a spread of
distribution at CT0, CT12, and CT18, whereas a narrow
distribution is exhibited at CT6, while the firing periods at
CT6 are distributed near the intrinsic period of the system.

67

The value of conductance gN−leak is also very near to Hopf
bifurcation point at CT6 so that the HH system crosses
the threshold easily and results in a narrow and high ISI
distribution. However, when the gN−leak value is far away
from Hopf bifurcation point at CT0, CT12, and CT18 and
hence the activation time is large resulting a wide and short
ISI distribution.

3.3 Validation with experimental data

In order to verify the simulated firing data with experi-
mentally observed circadian firing rate in SCN, we compute
the firing frequency at different circadian time for different
noise intensities. The results are shown Figure 6, which
displays a clear circadian variation in the firing rates. During
the subjective day, firing rates are between 3-10 Hz while
during the subjective night it is found to be in the range 0-
3 Hz under DD conditions. This is in excellent agreement
with the experimental observation of Jones et al [3].

We also compute the power spectral density (PSD) of the
membrane potential for various noise intensity at different
circadian time, and the results are shown in Figure 7.
Power spectral density of the membrane potential V was
computed by averaging out 25 runs of the firing patterns
of membrane potential with a duration of 5 min using fast
Fourier transform. The height of the peak at CT6 increases
with increase in noise intensity and the height starts to
saturate and width of the peak increases for higher values
of D (Figure 7B). Importantly, this trend is not observed at
CT0, CT12, and CT18 (Figure 7A, C, D).

Figure 6: Circadian variation of firing frequency. Firing
rates show circadian variation that is in good agreement with
the experimental results [3]. CT6 is the peaking time of
GRN component MP which is the mid of subjective day
and CT18 is the subjective night. On each box, the central
mark indicates the median, and the top and bottom edges of
the box indicates the 75th and 25th percentiles, respectively,
and the outliers are plotted individually using the red ‘+′

symbol.

We also quantify the system’s response to noise at dif-
ferent circadian phases for which we calculate the SNR
from power spectral density (Figure 8). At CT6, the model
exhibits stochastic resonance for the optimum value of noise
intensity D = 2 and at CT12 stochastic resonance occur for
D = 4. We did not observe stochastic resonance at CT0 and
CT18 for any value of D and presently we do not know why
this the case. Taking together, the effect noise in SCN are
circadian phase dependent and we speculate that stochastic
resonance is circadian phase dependent because, at CT6, the
peak time of the oscillator during the subjective day is close
to the bifurcation point, whereas at other phases it is far away
from the bifurcation point.

Figure 7: PSD for GRN-HH-noise model. With the increase
of noise the height of the peak increases (A,C,D). However,
at CT6 for a high value of noise, the growth of the height
saturates and width of the peak increases (B).

Figure 8: SNR for GRN-HH-noise model. At all circadian
phases system did not exhibit stochastic resonance. (A, D)
At CT0 and CT18, SNR increases with increase in the noise
intensity, where gNa−leak value is far from the bifurcation
point. (B, C) At CT6 and CT12 SNR is maximal for some
value of noise intensity, exhibit stochastic resonance.

68

4 Conclusion

Previous studies have shown that the firing rate at SCN
exhibit circadian rhythm with a period close to 24 h [3,
11]. However, the origin of firing pattern variations during
subjective day and night are not known. Mechanisms of
mutual regulation of slow varying gene regulatory networks
and fast varying ionic channels in SCN are still under study
and therefore, hardly there are any strong experimental
evidence exists to understand the origin of firing pattern
variations. Though channel noise plays an important role in
inducing action potentials, this is inadequate to explain firing
pattern variations that occur selectively at one frequency
during day and night in a circadian phase dependent manner.
We speculated and showed through multiscale simulations
the role of noise and the slow varying circadian gene
regulatory network in modulating the firing rates at different
circadian phases by building coupled nonlinear ODE model
that incorporates both GRN and electrophysiological part
of SCN. Importantly, we find that the noise induced firing
rate is circadian phase dependent, and the firing rate is
higher/lower during subjective day/night respectively. This
is also in excellent agreement with the experimental ob-
servations. From the dynamical system point of view,
we hypothesize that the firing is rapid during subjective
day because the peaking of per gene occur during the
subjective day which in turn takes the ionic channel close
to the bifurcation point and thereby facilitates noise induces
coherent firing pattern. On the other hand, when per
concentration during subjective night is at nadir/trough the
ionic channel is far away from the bifurcation point and
therefore, firing rate is subdued and noisy. We have also
not looked into the role of window-size and the window-
size we took is based on the experimental data and in this
window-size, only during certain circadian phase, stochastic
resonance is seen. Presently, we do not have any explanation
why stochastic resonance is seen only in select circadian
phases and not in other phases. We intend to look into
this aspect closely in the future work. We are particularly
interested in modeling the firing pattern variations from the
morning and evening oscillator point of view for which the
mathematical model of morning and evening oscillators are
already studied detail [12]. In future, we would also like
to extend this work further to study thoroughly the role of
stochastic resonance in circadian rhythms.

Acknowledgment

This work is supported by the DST cognitive neuroscience
grant, SR/CSI/299/2012 (awarded to KS) from the Depart-
ment of Science and Technology, INDIA.

References

[1] J. S. Takahashi, “Transcriptional architecture of
the mammalian circadian clock,” Nature Reviews
Genetics, vol. 18, pp. 164–179, 2016.

[2] Z. G. Jiang, Y. Yang, Z. P. Liu, and C. N.
Allen, “Membrane properties and synaptic inputs of
suprachiasmatic nucleus neurons in rat brain slices,”
The Journal of Physiology, vol. 499, no. 1, pp. 141–
159, 1997.

[3] J. R. Jones and D. G. McMahon, “The core clock gene
per1 phases molecular and electrical circadian rhythms
in SCN neurons,” PeerJ, vol. 4, p. e2297, 2016.

[4] R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism
of stochastic resonance,” Journal of Physics A:
mathematical and general, vol. 14, no. 11, p. L453,
1981.

[5] H. Gang, T. Ditzinger, C. Ning, and H. Haken,
“Stochastic resonance without external periodic force,”
Physical Review Letters, vol. 71, no. 6, p. 807, 1993.

[6] A. S. Pikovsky and J. Kurths, “Coherence resonance
in a noise-driven excitable system,” Physical Review
Letters, vol. 78, no. 5, p. 775, 1997.

[7] C. O. Diekman, M. D. Belle, R. P. Irwin, C. N.
Allen, H. D. Piggins, and D. B. Forger, “Causes
and consequences of hyperexcitation in central clock
neurons,” PLoS Computational Biology, vol. 9, no. 8,
p. e1003196, 2013.

[8] B. C. Goodwin, “Oscillatory behavior in enzymatic
control processes,” Advances in Enzyme Regulation,
vol. 3, no. Supplement C, pp. 425 – 437, 1965.

[9] B. Ermentrout, Simulating, analyzing, and animat-
ing dynamical systems: a guide to XPPAUT for
researchers and students. SIAM, 2002.

[10] P. Kloeden and E. Platen, Numerical Solution
of Stochastic Differential Equations. Stochastic
Modelling and Applied Probability, Springer Berlin
Heidelberg, 2011.

[11] C. S. Colwell, “Linking neural activity and molecular
oscillations in the SCN,” Nature Reviews Neuro-
science, vol. 12, no. 10, pp. 553–569, 2011.

[12] S. Shiju and K. Sriram, “Hypothesis driven single
cell dual oscillator mathematical model of circadian
rhythms,” PloS one, vol. 12, no. 5, p. e0177197, 2017.

69

cMutant : A Web Server and Compute Pipeline for Exploring the
Effects of Amino Acid Substitutions via Rigidity Mutation Maps

Hunter Read, Kyle Daling, Connor Freitas, Filip Jagodzinski*
Western Washington University
Bellingham, WA, 98225, USA

filip.jagodzinski@wwu.edu

Abstract

Pharmaceutical companies rely on the ability to
analyze the effects of protein mutations to develop
medicines for treating a variety of diseases. Although
mutagenesis experiments performed in a physical pro-
tein can provide insights about the role of a single
amino acid, such experiments are laboriously difficult
and may require months of wet lab work. Consequently
conducting exhaustive mutagenesis screens which in-
volve mutating all residues to all other amino acids,
is impractical. To help guide such wet lab experiments,
computational approaches are available, but most do
not permit an exhaustive screening of all residues
and their impact on a protein when mutated. For
this work we have integrated into a compute pipeline
and server our in silico mutation analysis method for
quickly generating protein variants. We leverage a
quick computational algorithm to assess the rigidity of
the wild type and mutants, and use the results to infer
which residues are most sensitive to an amino acid sub-
stitution. Our server and pipeline leverage concurrency
principles permitting an exhaustive screening of all
mutations for all residues in a protein in as little as a few
minutes. We report here on the performance and utility
of the pipeline, and present a case study to highlight
the utility of Mutation Maps generated by our server,
cMutant, available at https://cmutant.cs.wwu.edu/.

Introduction

Experimentalists mutate and analyze proteins to de-
velop better medicine for treating a wide range of
diseases [27]. Conducting mutation analyses in a
physical protein can require months of wet-lab work,
with the aim to provide information to help engineer
pharmaceutical drugs targeting specific proteins [22].

A variety of computational approaches and in silico
protein mutation analysis tools aim to provide a screen
to help guide wet lab experimentalists where they
might focus their attention for conducting mutagenesis
experiments on physical proteins. The majority of most

existing screening software tools permit exploring the
effect of only a single mutation at one specific residue
in a protein, while the few approaches that permit
exhaustive in silico studies for a protein have a variety
of limitations due to their dependencies on homology
or energetics data that may not always be available.

In our previous work [7, 2], we have motivated the use
of a fast combinatorial approach called rigidity analysis,
in combination with our custom in silico mutation
engine for generating mutant structure files, in assessing
the effects of amino acid substitutions.

For this work, we present a compute pipeline and
publicly available server, cMutant, that relies on con-
currency principles to greatly reduce the runtime of per-
forming an exhaustive mutation screen for all residues
in a protein. We reduce the runtime of in silico muta-
tion experiments from days to hours – and sometimes
to minutes. We achieve such a speedup by executing
our pipeline concurrently on multiple cores available
on our server. To permit a user to perform a visual
inspection of the effects of the exhaustive mutation
experiments, we generate a mutation map which is
presented via a graphical user interface, and which is
stored in a database for future retrieval. The utility
of our mutation maps we have demonstrated in our
previous work [28].

Related Work

To help complement and inform wet lab work, various
modeling and computational methods, including some
available via web servers, are available. They strive
to predict the effects of mutations. Early algorithms
ranged from those that searched for best side-chain
conformations as a measure of the impact of a muta-
tion [6, 16, 25], to those that relied on heuristic energy
functions [10, 19]. Yet others relied on large data sets of
homologous proteins [30, 3, 31]. More recently, machine
learning (ML) approaches have gained notoriety, with
some having high prediction rates upwards of 80% [4,
14, 17, 20]. However, the energy-, homology- and ML-
based approached have several limitations. Many of

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

70

5. Pebble Game
Algorithm output

6. Prediction which atoms and
residues are in rigid clusters

1. Stabilizing Interactions 2. Identify Rigid Units 3. Build Molecular Model 4. Associated Graph

Input PDB structure Rigidity Prediction

Figure 1: Rigidity analysis involves modeling a
biomolecule as a mechanical model, which is analyzed
using an efficient pebble game algorithms. The results
are used to infer the rigid and flexible regions of a
biomolecule.

them are dependent on large data sets [21, 32], some
require costly energy calculations [5, 24, 26], and others
still are dependent on free energy calculations as well
as access to propensity tables [23], data which is not
always available, or which is computationally costly to
calculate.

In our previous work, we developed several compu-
tational approaches for quickly generating large data
sets of in silico mutants. Incipient experiments enabled
mutating a residue to only one of Alanine, Glycine, or
Serine [15], but more recently our mutation software has
been expanded to permit in silico mutating a residue
to all possible other amino acids [2].

To help reason about the effects of mutations, we
take an approach that does not rely on propensity
tables, costly energy calculations, nor is dependent on
homology data. Instead we rely on a fast combinatorial
approach for assessing the rigidity of a protein [9,
13]. In rigidity analysis, atoms and their chemical
interactions are used to construct a mechanical model.
A graph is constructed from the model, and pebble
game algorithms [12] are used to analyze the rigidity
of the associated graph. The results are used to infer
the rigid and flexible regions of the protein (Figure 1).

Rigidity Distance

In this work cMutant compares the rigidity analysis
results of the wild type (WT), non-mutated form of
a protein, to the rigidity analysis results of the mutant.
This builds on our previous work [1, 8], in which
we developed and utilized aRDWT→mutant rigidity
distance metric to quantitatively assess the impact of
mutating a residue to one of the other 19 naturally
occurring amino acids:

RDWT→mutant :
∑i=LRC

i=1 i× [WTi −Muti]

where WT refers to Wild Type, Mut refers to mutant,

W
ild

	T
yp
e	
(W

T)
m
ut
an

t

Step	1

Step	2Mutant

Step	2WT

Rigid	Cluster	Size
(number	of	atoms)

Count

4 1

1 1

Rigid	Cluster	Size
(number	of	atoms)

Count

4 1

3 1

1 1

=	2

Mutant	Rigid	Cluster	Size	Distribution

Wild	Type	Rigid	Cluster	Size	Distribution

Ri
gi
di
ty
	A
na

ly
sis

Ri
gi
di
ty
	A
na

ly
sis

Figure 2: Comparing the rigid cluster distributions
(sizes and counts) for the Wild Type and Mutant
structures enables assessing quantitatively the effect of
an amino acid substitution via the Rigidity Distance
RDWT→mutant metric.

LRC is the size of the Largest Rigid Cluster (in atoms).
Each successive summation term of the RDWT→mutant

metric calculates the difference in the count of a specific
cluster size, i, of the wild type and mutant, and weighs
that difference by i (Sample in Figure 2).

Server & Software Design

Our contributions for this work includes a concurrent
implementation of our mutation and analysis software
and the auto-generation of mutation maps [28] to aid
in the visual analysis of an exhaustive mutation screen.
In this section we describe the server and compute
pipeline, as well as the analysis methodology that
culminates in a mutation map.

Overview

cMutant offers features that are not available via
other tools and web services. Upon invocation, the
server generates all mutant structures as asked-for by
the user via the front-end. The infrastructure leverages
principles from concurrency theory to vastly reduce
the execution time needed for conducting exhaustive
mutation experiments. cMutant offers a graphical
user interface (GUI), that enables a user to view all
mutations via a mutation map which permits a user
to investigate individual point mutations and download
specific results. The system design is summarized in
Figure 3.

Back-End Infrastructure

The computational infrastructure integrates a variety
of our in-house custom software, as well as off-the shelf

71

Figure 3: cMutant includes front-end (GUI) and back-
end functionality, enabling a user to interface with our
custom mutation and analysis software.

and freely available tools. These include KINARI [9]
and ProMuteHT[2], along with SCWRL [18]. The
pipeline is invoked when a user interacts with the GUI
to specify the PDB ID (protein structure file), along
with parameters designating which residues are to be
mutated. Use of concurrency principles enabled by the
threading capabilities of the multi-core server allows for
each unique in silico point mutation to be invoked in
a separate thread. The count of threads is limited by
the number of available processors, and the output data
files of each experiment are stored to files locally on the
server for archiving and retrieval by the user.

The back-end infrastructure performs concurrent ex-
ecution of KINARI and proMuteHT for quickly gener-
ating and processing of a large set of protein mutants
(Table 1). cMutant is able to decrease exhaustive
protein mutation run times by a factor equal to that
of the number of cores available on the server, with
additional speed-up obtained through allowing muta-
tions to take advantage of the pipelining ability of the
CPU architecture. Each experiment requires analyzing
the wild type protein once, before any in silico protein
mutations are performed. This first step is not run
concurrently. Run-times were determined by clock time
at initialization of the compute pipeline through execu-
tion of all intermediate steps, until pipeline termination
resulting in a mutation map.

Front-End Infrastructure

The front-end GUI of cMutant includes an Experi-
ment (and Results) section. There users specify ex-
periment parameters, and view results as they become

Table 1: Run-times (minutes) for threaded (thread) and
serial (ser) invocations of cMutant, and speedup ratios
(sr) resulting from use of concurrency. # res=num. of
residues; # muts=num. mutants generated.

PDB File # res # muts thread ser sr
1PLW 5 100 0.65 4.37 6.72
1DPK 20 400 3.32 22.7 6.84
2LK0 30 600 7.35 45.3 6.16
1HN3 40 800 10.8 65.4 6.06
1YUG 50 1000 19.2 103 5.39
5NHQ 71 1420 36.9 190 5.15
1A1Z 83 1660 63.7 301 4.72
1HHP 99 1980 95.9 426 4.44

available. A Retrieve Experiments section permits
retrieving data from past computation runs, as well as
viewing the current server load.

The Experiment section offers a GUI (Figure 4)
with options for a user to:

(1) specify a PDB ID for which a mutation screen is
to be performed

(2) which residues to mutate (an all option is available
for designating an exhaustive screen)

(3) specifying what each selected residue(s) should
be mutated to, for which an all options is also
available.

Figure 4: cMutant’s GUI offers the option to specify an
exhaustive mutation screen, or to mutate a subset of
the residues (range of residues). Each selected residue
can be mutated to all other possible amino acids, or a
custom subset (mutation targets).

72

When an experiment is initiated, a user is provided
with an alphanumeric experiment ID which can be used
for later retrieval of the experiment data which is stored
to a database.

Server-side technologies such as NodeJS and Ex-
pressJS provide the functionality for transmitting data
between the back-end software and GUI. As data
is being generated by the multiple threads that are
invoked, the results are displayed and updated in real
time. Communication between the cMutant pipeline
and GUI is accomplished by using the in-memory data
structure store Redis.

The Result pane presents a Mutation Map, which
is a heat map generated from the distance metric
values (See section Rigidity Distance) computed for
each residue that was mutated. A full explanation can
be found in [28]. The color in each cell in a Mutation
Map corresponds to a rigidity distance, which is a
measure, based on the rigid clusters of the mutant and
wild type. A user can mouse-over a specific cell in the
Mutation Map to view the rigidity distance score for
that residue, or to download the data for that specific
in silico mutation. A rigidity distance far greater or far
less than zero indicates that the mutant is structurally
vastly different than the wild type, while a rigidity
distance score near zero specifies that the wild type
and mutant are structurally similar, as inferred using
the rigidity cluster data. The magnitude of the rigidity
distance can be used to indirectly infer the magnitude
of the impact of an amino acid substitution.

Figure 5: Mutation Maps : for each residue number
(y-axis), a color at each target residue (x-axis) specifies
the rigidity distance metric score for a mutation.

A sample Experiment results pane, for experiment
ga5a0maq, is shown in Figure 5. That mutation map
is for an exhaustive in silico mutation screen for the
30-residues PDB file 2LK0, which is the structure of
a RanBP2-type zinc finger of RBM5. A dynamically
updated color legend indicates that a red cell has a high
rigidity distance, while a blue cell has a low rigidity
distance score, and that the average, minimum, and
maximum Rigidity Distance scores are 40, -126, and

164. Most telling in the Mutation Map for 2LK0 is
that specific residues upon their in silico mutation to
certain residues yield very low (highly negative), or
very high (highly positive) rigidity distance scores. A
very low rigidity distance score for a residue’s mutation
to a specific amino acid indicates that that mutation
results in a mutant that has far more large rigid clusters
than the WT. Such a mutation can be inferred to be
stabilizing. The converse is true for very high positive
rigidity scores. In the case of 2LK0, using the Mutation
Map, the blue spots identify that residues 7, 9, 14, 21,
24, 27, and 30, have strong stabilizing effects on the
protein as inferred using rigidity analysis.

Case Study, 1HHP

To assess the speed and usefulness of cMutant, we
exhaustively in silico mutated all residues of PDB
structure 1HHP, which is the monomeric form of the
99 amino acid HIV-1 Protease. A zoomed in portion
(residues 15 to 40) of the Mutation Map for 1HHP is
shown in Figure 6.

Figure 6: Zoomed in Mutation Map for 1HHP, residues
15-40. Residues 22-26, as well as 28, and 30 and 31 are
especially sensitive to mutations as evidenced by the
red Rigidity Distance scores for nearly all mutations
performed at those residues.

Residues 24-26 of HIV-1 Protease constitute a cat-
alytic triad, the active site of the protein, on which
a host of wet lab experiments have been conducted
and for which there is a lengthy literature [11, 29].
The residues near the active site of HIV-1 Protease
are known to be critical to the protein’s function,
and indeed are highly resistant to mutations. Specific
residues at those locations must be present in order for
the protein to perform its catalytic function. As a first
proof-of-concept result, we consider it encouraging that
cMutant identified those residues near the active site
as being least resistant to mutations, because in silico

73

mutations performed on them in nearly all cases highly
disrupted the protein’s structure. See [28] for a more
detailed example of the utility and use, including a box
plot analysis, of Mutation Maps.

Future and On-Going Work

Future and-going work on cMutant involves three
main avenues, including 1) improving the server’s
speed by leveraging additional concurrency principles,
2) adding additional front-end GUI features, and 3)
assessing and improving the accuracy of the predictions
doled up by the Mutation Map. In our most recent
work, we have developed machine learning models
capable of predicting at up to 80% accuracy the effect
of mutations [8]. That predictive capability is being
integrated into cMutant.

For improving the GUI, we are developing addi-
tional UI elements to allow the user to quickly access
important trends and details of the results from a
computation experiment run. In addition to the mutant
and WT structure files, along with the rigidity data,
for each cell in a Mutation map that can be currently
downloaded, we aim to integrate a protein viewer
visualization engine that will color code the 3-D surface
of a protein to display rigidity metrics of those residues
on the surface.

A current limitation of the server is that it is able
to perform exhaustive mutation screens for single chain
proteins only. Current work in our lab has culminated
in an improved mutation engine, ProMuteHT, which is
being integrated into the cMutant pipeline allowing it
to reason about any protein in the PDB.

For further validation of the use of Mutation Maps
beyond what we have reported previously [28], we are
correlating our rigidity distance scores for point mu-
tations against ∆∆G data attained from experiments
on physical proteins, which gives empirical evidence
of the effects of mutations. We are tallying Pearson
Correlation coefficients, and aim to supplement the
Mutation Map data with that information.

Conclusions

We have developed a compute pipeline and server,
cMutant, for performing a rigidity-based mutation
screen that exhaustively generates and analyzes all
possible mutant structures with a single amino acid
substitution. We achieve fast run-times by leveraging
concurrency principles, and also generate a Muta-
tion Map which aids in a visual analysis enabling
identification of residues that are highly sensitive to
mutations. We present a case study for HIV-1 Protease,

and correlate our interpretation of the analysis of the
Mutation Map with known biological properties of the
protein’s active site.

Acknowledgments

HR designed and deployed the database, and devel-
oped the pipeline enabling the rigidity and proMuteHT
software to run concurrently. KD developed the web
server code used for serving the GUI and transmitting
data to it. CF designed the results page and mutation
map functions. FJ supervised the work. All authors
contributed to writing the manuscript.

References

[1] E. Andersson, R. Hsieh, H. Szeto, R. Farhoodi N.
Haspel, and F. Jagodzinski. Assessing how multiple
mutations affect protein stability using rigid cluster
size distributions. In Computational Advances in
Bio and Medical Sciences (ICCABS), 2016 IEEE 6th
International Conference on, pages 1–6. IEEE, 2016.

[2] Erik Andersson and Filip Jagodzinski. ProMuteHT:
A high throughput compute pipeline for generating
protein mutants in silico. In Proceedings of the
8th ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics, pages
655–660. ACM, 2017.

[3] Jeffrey R Brender and Yang Zhang. Predicting
the effect of mutations on protein-protein binding
interactions through structure-based interface profiles.
PLoS Comput Biol, 11(10):e1004494, 2015.

[4] J. Cheng, A. Randall, and P. Baldi. Prediction
of protein stability changes for single-site mutations
using support vector machines. PROTEINS: Structure,
Function, and Bioinformatics, 62:1125–1132, 2006.

[5] Y Dehouck, JM Kwasigroch, M Gilis, and Rooman
M. Popmusic 2.1: a web server for the estimation of
protein stability changes upon mutation and sequence
optimality. BMC Bioinformatics, 12, 2011.

[6] R.L. Jr. Dunbrack and M. Karplus. Conformational
analysis of the backbone-dependent rotamer prefer-
ences of protein sidechains. Nature Structural Biology,
1:334–340, 1994.

[7] I. Streinu F. Jagodzinski, J. Hardy. Using rigidity
analysis to probe mutation-induced structural changes
in proteins. Journal of Bioinformatics, Computational
Biology, 10:1242010–1242027, 2012.

[8] Roshanak Farhoodi, Max Shelbourne, Rebecca Hsieh,
Nurit Haspel, Brian Hutchinson, and Filip Jagodzinski.
Predicting the effect of point mutations on protein
structural stability. In Proceedings of the 8th
ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics, pages
247–252. ACM, 2017.

74

[9] N. Fox, F. Jagodzinski, and I. Streinu. KINARI-Lib:
a C++ library for pebble game rigidity analysis of
mechanical models. In Minisymposium on Publicly
Available Geometric/Topological Software, Chapel Hill,
NC, USA, June 2012.

[10] D. Gilis and M. Rooman. Predicting protein
stability changes upon mutation using database-
dervied potentials: Solvent accessibility determines
the importance of local versus non-local interactions
along the sequence. Journal of Molecular Biology,
272(2):276–290, 1997.

[11] Viktor Hornak, Asim Okur, Robert C Rizzo, and
Carlos Simmerling. Hiv-1 protease flaps spontaneously
open and reclose in molecular dynamics simulations.
Proceedings of the National Academy of Sciences of the
United States of America, 103(4):915–920, 2006.

[12] D.J. Jacobs and B. Hendrickson. An algorithm for
two-dimensional rigidity percolation: the pebble game.
Journal of Computational Physics, 137:346–365, 1997.

[13] D.J. Jacobs, A.J. Rader, M.F. Thorpe, and L.A.
Kuhn. Protein flexibility predictions using graph
theory. Proteins 44, pages 150–165, 2001.

[14] F. Jagodzinski, B. Akbal-Delibas, and N. Haspel.
An evolutionary conservation & rigidity analysis
machine learning approach for detecting critical
protein residues. In CSBW (Computational Structural
Bioinformatics Workshop), in proc. of ACM-BCB
(ACM International conference on Bioinformatics and
Computational Biology), pages 780–786, September
2013.

[15] F. Jagodzinski, J. Hardy, and I. Streinu. Using
rigidity analysis to probe mutation-induced structural
changes in proteins. Journal of Bioinformatics and
Computational Biology, 10(3), 2012.

[16] J Janin and S Wodak. Conformation of amino acid
side-chains in proteins. J Mol Biol, 125(3):357–386,
Nov 1978.

[17] Lei Jia, Ramya Yarlagadda, and Charles C Reed.
Structure based thermostability prediction models for
protein single point mutations with machine learning
tools. PloS one, 10(9):e0138022, 2015.

[18] Georgii G Krivov, Maxim V Shapovalov, and Roland L
Dunbrack. Improved prediction of protein side-chain
conformations with scwrl4. Proteins: Structure,
Function, and Bioinformatics, 77(4):778–795, 2009.

[19] C. Lee and M. Levitt. Accurate prediction of
the stability and activity effects of site-directed
mutagenesis on a protein core. Nature, 352:448–451,
1991.

[20] Yunqi Li and Jianwen Fang. Prots-rf: a robust
model for predicting mutation-induced protein stability
changes. PloS one, 7(10):e47247, 2012.

[21] Majid Masso and Iosif I Vaisman. Auto-mute: web-
based tools for predicting stability changes in proteins
due to single amino acid replacements. Protein
Engineering Design and Selection, 23(8):683–687, 2010.

[22] Tatiana Maximova, Ryan Moffatt, Buyong Ma, Ruth
Nussinov, and Amarda Shehu. Principles and overview
of sampling methods for modeling macromolecular
structure and dynamics. PLoS computational biology,
12(4):e1004619, 2016.

[23] Caitlyn L McCafferty and Yuri V Sergeev. In silico
mapping of protein unfolding mutations for inherited
disease. Scientific Reports, 6:37298, 2016.

[24] Vijaya Parthiban, M. Michael Gromiha, and Dietmar
Schomburg. Cupsat: prediction of protein stability
upon point mutations. Nucleic Acids Research,
34(suppl 2):W239–W242, 2006.

[25] J.W. Ponder and F.M. Richards. Tertiary templates for
proteins: Use of packing criteria in the enumeration
of allowed sequences for different structural classes.
Journal Molecular Biology, 193:775–791, 1987.

[26] Lijun Quan, Qiang Lv, and Yang Zhang. Strum:
structure-based prediction of protein stability
changes upon single-point mutation. Bioinformatics,
32(19):2936–2946, 2016.

[27] Boris Reva, Yevgeniy Antipin, and Chris Sander.
Predicting the functional impact of protein mutations:
application to cancer genomics. Nucleic acids research,
39(17):e118–e118, 2011.

[28] Michael Siderius and Filip Jagodzinski. Mutation
sensitivity maps: Identifying residue substitutions that
impact protein structure via a rigidity analysis in silico
mutation approach. Journal of Computational Biology,
25(1):89–102, 2018.

[29] Sergio Filipe Sousa, Bruno Tamames, Pedro Alexan-
drino Fernandes, and Maria Joao Ramos. Detailed
atomistic analysis of the hiv-1 protease interface. The
Journal of Physical Chemistry B, 115(21):7045–7057,
2011.

[30] C.M. Topham, N. Srinivasan, and T. Blundell.
Prediction of the stability of protein mutants based
on structural environment-dependent amino acid sub-
stitutions and propensity tables. Protein Engineering,
10(1):7–21, 1997.

[31] C.L. Worth, R. Preissner, and L. Blundell. Sdm-a
server for predicting effects of mutations on protein
stability and malfunction. Nucleic Acids Research,
39(Web Server Issue):W215–W222, 2011.

[32] Hongyi Zhou and Yaoqi Zhou. Distance-scaled, finite
ideal-gas reference state improves structure-derived
potentials of mean force for structure selection and
stability prediction. Protein science, 11(11):2714–2726,
2002.

75

Integration of Biomedical Big Data Requires Efficient Batch Effect Reduction

Jane Synnergren
Systems Biology Research Center

University of Skövde
SE-541 28, Skövde, Sweden

jane.synnergren@his.se

Nidal Ghosheh
Systems Biology Research Centre

University of Skövde
SE-541 28, Skövde, Sweden

nidal.ghosheh@his.se

Pierre Dönnes
SciCross AB

Gothia Science Park
SE-541 23, Skövde, Sweden

pierre@scicross.com

Abstract

Efficiency in dealing with batch effects will be the

next frontier in large-scale biological data analysis,
particularly when involving the integration of different
types of datasets. Large-scale omics techniques have
quickly developed during the last decade and huge
amounts of data are now generated, which has started to
revolutionize the area of medical research. With the
increase in the volume of data across the whole spectrum
of biology, problems related to data analytics are
continuously increasing as analysis and interpretation of
these large volumes of molecular data has become a real
challenge. Tremendous efforts have been made to obtain
data from various molecular levels and the most recent
trends show that more and more researchers now are
trying to integrate data of various molecular types to
inform hypotheses and biological questions. Tightly
connected to this work are the batch-related biases that
commonly are apparent between different datasets, but
these problems are often not tackled. In present study the
ComBat algorithm was applied and evaluated on two
different data integration problems. Results show that the
batch effects present in the integrated datasets efficiently
could be removed by applying the ComBat algorithm.

1. Introduction

Effective integration and analysis of high-throughput

data are expected to deliver novel clinical insights and
promising therapeutic options. However, technical
variation inherent in these datasets makes the integration
task problematic and dealing with technical heterogeneity
or batch effects during data integration has proven to be a
real challenge [1]. Nevertheless, to combine datasets
without adjusting for batch effects is in general
inappropriate with risks of misinterpretation of results.
Given the large amount of data that are generated daily
and that need to be considered synergistically instead of
independently, batch-effect mitigation is foreseen to
become the next big challenge in mega biological data
analysis. Without effective management, it is impossible
to take full advantage of the vast amount of information
already available, and use it synergistically for building

better classifiers, performing better functional analysis,
and producing clinically useful outcomes [1].

1.1. Sources of batch effects

Systematic non-biological differences between
different datasets are commonly referred to as technical
variation, also termed “batch effects” [2]. There are many
different sources of variations in biomedical data,
regardless if dealing with large-scale or small-scale
datasets. Many different platforms are available for data
generation and different techniques are used. However,
the lack of standardization makes it challenging to
compare and integrate data from the different technologies
due to the introduced platform-dependent systematic
variation. Several studies have demonstrated that pooling
data derived from different platforms is a complex task
with numerous pitfalls. In addition to platform variation
there are also other factors known to introduce systematic
variation for example analysis conducted at different sites,
by alternating personnel, differences in experiments,
reagents, instruments, and lots, or simple day-to-day
variation, and all these are well-known factors that
inevitably result in introduction of batch differences [1, 2].

1.2. Microarray data

 The microarray technology has been extensively used
for genome-wide gene expression analysis for almost two
decades now and is a well-established, cost-effective,
high-throughput technology that makes it possible to
measure the expression levels of thousands of genes
simultaneously, and thus offers an efficient way to
generate a snapshot of the entire transcriptome [3]. The
workflow of a microarray transcription analyses in itself
consists of multiple steps such as RNA extraction,
labeling, hybridization, washing, and scanning, and each
of these steps is a potential risk of introducing variation in
the data. I addition, several different microarray platforms
are commercially available, and these differ with respect
to for example the fabrication methodologies and length
of the oligonucleotide probes. There are huge amounts of
microarray data available in public biological databases
such as ArrayExpress [4] and GEO database [5]. To fully
utilize these enormous resources effective and reliable

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

76

methods for both normalization and reduction of batch
effects are required, which manage to reduce the non-
biological variation while maintaining the true biological
differences in the data. Although newer techniques such as
next generation sequencing in many cases now are
replacing the microarray technology, microarrays are still
routinely used in many different types of large-scale
analysis due to its well-established nature, cost-
effectiveness, and the availability of extensively
developed analysis frameworks [6].

1.3. The need for integration of datasets

The rapid development of advanced techniques for

generation of biomedical big data has turned life science
research into a data driven field. The generation of data is
no longer a challenge and terabytes of data can be
produced at relatively low investment costs. The data
available in public biological databases for peer
researchers to use in their research increases rapidly and
constitute a valuable resource, which also facilitates larger
meta-studies in which many datasets are integrated and
used in combination. The term data integration refers to
the situation where, for a given system, multiple sources
(and possible types) of data are available and we want to
study them integratively to improve knowledge discovery
[7]. Integration of gene expression data obtained from
multiple experiments provides opportunities to increase
the statistical power of the analyses since commonly,
these datasets in isolation are characterized by a low
number of samples and a high number of variables. Thus,
integrating several smaller datasets theoretically boosts
power and better reflects the underlying population.
However, proper integration requires resolving the
technical heterogeneity, including batch effects.

1.4. Batch effects reduction methods

Several batch effect correction algorithms are available
but there is still limited knowledge about effective batch
effect mitigation, and new batch effect-associated
problems are still emerging [1]. These include false effects
due to misapplying batch effect correction algorithms and
positive bias during model evaluations. Depending on the
choice of algorithm and experimental setup, biological
heterogeneity can be mistaken for batch effects and
wrongly removed [1]. The batch reduction methods can be
classified based on their area of use. In the simple linear
models a biological feature is modeled as a linear
combination of class and batch effects. Examples of
simple linear model methods are mean-scaling and zero-
centering. Another class of methods are the ones that use
Bayesian inference to estimate biological features in a
batch, e.g. the ComBat method which applies the
empirical Bayes approach [8]. These two classes of
methods described above require that all known batch

factors are specified to make a reliable batch effect
estimation. In contrast to these methods other approaches
use the full data matrix for estimation of batch-related
against class-related variation. Examples of methods in
this class are the Surrogate Variable Analysis (SVA) and
the Removed Unwanted Variation (RUV) methods. The
SVA method first requires the specification of the class
factor and assumes that consistent sources of variation not
associated with the class factor are likely associated with
some unknown batch factor. The method then estimates
the batch effect via singular value decomposition and
removes the batch effect from data using regression [9].
The RUV method is similar to SVA, but incorporates
information from endogenous control genes or i.e.
housekeeping genes, which are expected to be unaffected
by class effects and therefore used to estimate batch
effects [10]. However, specifying housekeeping genes can
be controversial and, in some cases, so-called
‘housekeeping genes’ are directly related to disease or
tissue specific expression and therefore inappropriate to
use for batch effect estimations [1].

1.5. The ComBat algorithm

In the present study the ComBat algorithm has been

used for batch effects reduction and this method is based
on the empirical Bayes (EB) method. EB methods are
robust for adjustment of batch effects in data whose batch
sizes are small and is very appealing in various microarray
problems because of their ability to robustly handle high-
dimensional data with small sample sizes. These methods
are typically designed to “borrow information” across
genes and experimental conditions in hope that the
borrowed information will lead to better estimates or more
stable inferences [8]. The EB methods have usually been
designed to stabilize the expression ratios for genes with
very high or very low ratios, stabilize gene variances by
shrinking variances across all other genes, possibly
protecting their inference from artifacts in the data [8].

Systematic batch biases common across genes are
incorporated in making adjustments, assuming that
phenomena resulting in batch effects often affect many
genes in similar ways, for example with increased
expression or higher variability. The ComBat method
estimates the model parameters that represent the batch
effects, by “pooling information” across genes in each
batch to “shrink” the batch effect parameter estimates
toward the overall mean of the batch effect estimates
across all genes. These EB estimates are then used to
adjust the data for batch effects, providing more robust
adjustments for the batch effect on each gene [8]. The
method is divided into three steps, (i) standardization of
the data, (ii) estimation of EB batch parameters using
empirical priors, and (iii) batch effect adjustment, as
described in detail in [8].

77

1.6. Perspectives of omics data integration

As compared to studies of a single omics type, multi-
omics data offers the opportunity to better understand the
flow of information that for example underlies various
diseases. Integrating omics datasets are thus expected to
provide additional guidance in e.g. personalization of
treatments [11]. Moreover, multi-omics data provides
promising opportunities to increase the understanding of
the regulatory mechanisms in the cells and the functions
of genes and proteins. However, standardized methods for
performing multi-omics data integration is still in its
infancy. Due to the high level of complexity of these
datasets, multi-omics data integration is considered one of
the major future challenges in this era of precision
medicine [11]. Integrative omics approaches often rely on
a “holistic” view, which attempts to interrogate a
sufficiently large number of individuals and incorporate
the many sources of variability into statistical models [12].
Thus, a crucial aspect for success of integrative omics
studies is the availability of large datasets of various
molecular types, and high-throughput techniques for
large-scale data generation have made collection of such
data feasible. In this context appropriate batch effect
reduction methods that also can handle different types of
data (genomics, transcriptomics, proteomics, and/or
metabolomics) will be critical for proper multi-omics data
integration.

2. Methods

 In this paper we applied the ComBat algorithm and
investigated the performance of this method for removal
of batch effects in two different study setups. In these
setups the combination of multiple datasets was required
in order to perform the subsequent expression analysis. In
the first dataset, the batches of data were generated at
different time points but with the same molecular
technique. In the second study design, different molecular
techniques were used to generate the two batches of data
and they were also generated at different time points.

2.1 The cardiac biopsy study

 This study extends our previous work on cardiac
biopsies where transcriptional profiling of biopsies from
two different cardiac locations of five different male
patients that were under cardiac surgery was performed
[13]. The purpose of that study was to investigate
differences in gene expression between left ventricular
(LV) and right atrial (RA) cardiac tissue. Interesting
transcriptional differences between these two locations
were reported and next step was to extend this study to
also include female patients to be able not only to analyze
location dependent transcriptional differences but to
explore putative differences related to the gender of the

patient as well. Thus, the same experimental setting was
repeated on five additional female patients resulting in
two datasets from paired biopsies from the LV and the
RA. Transcriptional analysis was performed on the biopsy
samples using the whole transcript Gene ST 1.0 arrays
(Affymetrix, www.affymetrix.com). Since the same
technical platform was used for both these experiments,
minimal variability attributed to technical aspects was
expected. However, the experiments were performed at
different time point and slightly different procedures were
applied for the cDNA synthesis. These differences, or the
fact that the experiments were run at different time points,
or a combination of both, introduced large batch effects
that complicated the downstream bioinformatics analysis
of the data. In this study design the known putative batch
effects were differences in time point for performance of
the wet-lab experiments and slightly different procedure
for the cDNA synthesis. Quality control of the datasets
revealed large batch effects that needed to be adjusted for.

2.2 The hepatic differentiation study

 In the second study design data from hepatic
differentiation of human pluripotent stem cells (hPSCs)
was analyzed with respect to transcriptional patterns
during human hepatic development. The main study
included cells harvested at defined time points during the
differentiation of the hPSCs towards the hepatic lineage
[14, 15]. Four different time points were sampled
including day 0, day 5, day 14, day 25, and two reference
samples from adult liver tissue (AL) where included as
controls. The differentiation experiments were repeated
for six different stem cell lines, and for each cell line,
duplicated samples were analyzed. No fetal liver (FL)
samples were available for the project by the time of the
transcriptional analysis. However, FL would have been a
relevant control since the stem cell derived hepatocytes
are known to have an immature phenotype. To still be able
to benchmark the hPSC-derivatives to control samples
from FL and AL for assessment of their maturation, a
public dataset generated with the Illumina platform were
downloaded and merged with our Affymetrix dataset.
Expectedly, a strong batch effect was observed due to the
issue of different technical platforms, which are known to
have large affects on the gene expression measurements.
Thus, the known putative batch effects were different
technical platforms and differences in time point for the
performance of the experiments.

2.3 Merging of datasets

 The merging of the cardiac biopsy dataset was
performed on probe set ID since identical arrays were
used to generate both the input datasets. In total 33,297
probe sets were included in the merged dataset. For the
hepatic differentiation study the merging of datasets was

78

performed on gene symbol since that was the common
identifier across the two datasets. In total of 12,921 unique
gene symbols were common across both the input datasets
in this study design.

Figure 1: Boxplot of the expression range of the arrays in the merged
dataset from the cardiac biopsy study before batch effect reduction. Blue
boxes represents arrays from the male patients and yellow boxes
represent data from the female patients.

2.4 QC analysis of the merged datasets

 The expression range, the distribution of data, and the
correlation between samples in the merged datasets were
explored using boxplots and hierarchical clustering, and
significant batch effects were observed in both the cardiac
biopsy dataset and in the hepatic differentiation dataset.
Fig. 1 and Fig. 2 illustrates identified differences between
the two batches in the cardiac biopsy study and in Fig. 3
and Fig. 4 differences between the two different array
platforms in the hepatic differentiation study design are
shown.

2.5 Batch effect reduction using ComBat

 To facilitate modeling of the batch effect two
overlapping samples across both batches were used in
each of the study designs. In the cardiac biopsy study two
identical RNA samples were added to the global
transcriptional experiments and used as overlapping
samples when applying the ComBat algorithm. The batch
factor specified as input to the algorithm was the two
different transcriptional experiments, one including
cardiac biopsies from male patients and the other one
including cardiac biopsies from female patients. For the
hepatic differentiation study no overlapping RNA samples
were available but samples from AL were available in
both the input datasets, and although these samples were
not from identical biological material they still represented
similar tissue material. Thus, the two AL control samples

in the differentiation dataset were defined as overlapping
samples and used by the ComBat algorithm for modeling
of batch differences. The batch factor specified as input to
the algorithm was difference of technical platforms.

Figure 2: Hierarchical clustering before reduction of the batch effect.
The clustering shows two distinct clusters reflecting that the time point
of the experiment represents the main transcriptional difference in this
merged dataset.

Figure 3. Boxplot showing the expression range of the arrays in the
merged dataset from the hepatic differentiation study before the batch
effect reduction. Green boxes represents arrays from the Affymetrix
platform and orange boxes represent data generated with the Illumina
platform. Notice the big platform related differences in the first quartile
of the data.

F_
LV
_1
35

F_
LV
_1
23

F_
LV
_1
24

F_
LV
_1
26

F_
LV
_1
27

F_
R
A_
13
5

F_
R
A_
12
3

F_
R
A_
12
4

F_
R
A_
12
6

F_
R
A_
12
7

M
_L
V_
14
2

M
_L
V_
14
4

M
_L
V_
15
1

M
_L
V_
16
9

M
_L
V_
17
0

M
_R
A_
14
2

M
_R
A_
14
4

M
_R
A_
15
1

M
_R
A_
16
9

M
_R
A_
17
0

0

2

4

6

8

10

12

14

Before batch effect reduction - cardiac biopsies

M
_L
V
_1
51

M
_L
V
_1
42

M
_L
V
_1
69

M
_L
V
_1
44

M
_L
V
_1
70

M
_R
A
_1
70

M
_R
A
_1
44

M
_R
A
_1
51

M
_R
A
_1
42

M
_R
A
_1
69

F_
LV
_1
23

F_
LV
_1
26

F_
LV
_1
27

F_
LV
_1
35

F_
LV
_1
24

F_
R
A
_1
23

F_
R
A
_1
35

F_
R
A
_1
27

F_
R
A
_1
24

F_
R
A
_1
26

0.
00

0.
02

0.
04

0.
06

0.
08

Before batch effect reduction - cardiac biopsies

hclust (*, "complete")
correlation

H
ei
gh
t

A
S
03
4_
d0

S
A
12
1_
d0

S
A
18
1_
d0

C
6b
_d
0

P
11
01
2_
d0

P
11
02
5_
d0

A
S
03
4_
d5

S
A
12
1_
d5

S
A
18
1_
d5

C
6b
_d
5

P
11
01
2_
d5

P
11
02
5_
d5

A
S
03
4_
d1
4

S
A
12
1_
d1
4

S
A
18
1_
d1
4

C
6b
_d
14

P
11
01
2_
d1
4

P
11
02
5_
d1
4

A
S
03
4_
d2
5

S
A
12
1_
d2
5

S
A
18
1_
d2
5

C
6b
_d
25

P
11
01
2_
d2
5

P
11
02
5_
d2
5

A
L_
79
6

A
L_
52
9

FL
_8
w
_3
d

FL
_9
w

FL
_1
1w
.1
d

FL
_1
2w
.1
d

FL
_2
1w

A
L_
21
w
_d
1

A
L_
22
y

A
L_
23
y

A
L_
28
y

A
L_
31
y

A
L_
34
y

A
L_
35
y

A
L_
38
y

0

2

4

6

8

10

12

14

Before batch effect reduction - hepatic differentiation

79

Figure 4. Hierarchical clustering before reduction of the batch effect.
The dendrogram shows two distinct clusters reflecting that experimental
platform is the main difference in this merged dataset since the two AL
samples (AL_796 and AL_529) that where run on the Affymetrix
platform clustered with the stem cell derivatives instead of with the other
AL samples.

3. Results

Results from this study demonstrated that the ComBat

algorithm managed to reduce the batch effects present in
the two study designs explored in this work. Both these
study designs contained merged large-scale omics data,
and represent two different sources of batch effects that
commonly are faced in various types of omics data
analysis. In the first example the data generation were
divided into two experimental runs, with the risk of
introduction of batch effects in the merged dataset. The
second situation represents batch effects that source from
adding extra samples needed in subsequent downstream
analysis. In our case the purpose with adding data was to
add specific control samples to a present dataset by
utilizing data from a public database.

3.1 Results from the cardiac biopsy dataset

The boxplots and the hierarchical clustering after
applying the ComBat algorithm to the merged cardiac
biopsy dataset show that the main proportions of batch
effects successfully were eliminated and the merged
datasets demonstrate similar distribution of the expression
range across all arrays. As shown in the boxplot in Fig 5

the distribution of the expression values are now at similar
range for all the included arrays in this merged dataset.
Notably, also the data points in the first quartile and in the
fourth quartile (those data points that fall outside the
boxes) show highly similar expression range across all the
arrays. And the median value for each array harmonized
across the merged experiment. A hierarchical clustering of
the adjusted data showed that the reduction of batch
effects did not eliminate true biological differences since
the known differences between the LV and the RA are
still preserved in the data. This is demonstrated by the
grouping of samples according to tissue location as shown
in Fig. 6.

Figure 5. Boxplot showing the expression range of all the arrays in the
merged dataset of cardiac biopsies. The major visible batch effects are
now removed from the dataset.

3.2 Results from the hepatic differentiation
dataset

Also for the hepatic differentiation dataset the

elimination of batch effects was successful although the
variation of the values in the fourth quartile was slightly
higher for the FL samples as shown in the boxplot in Fig
7. A putative explanation is that this may reflect a true
biological variation that perhaps can be addressed to the
different developmental weeks of the embryo from which
the FL samples were derived. After reduction of the batch
effect between the technical platforms an biologically
relevant grouping from the hierarchical clustering was
achieved which showed a perfect classification of the
different groups of samples in the merged dataset as
illustrated in Fig 8.

FL
_2
1w

A
L_
21
w
_d
1

FL
_9
w

FL
_8
w
_3
d

FL
_1
1w
.1
d

FL
_1
2w
.1
d

A
L_
31
y

A
L_
35
y

A
L_
23
y

A
L_
38
y

A
L_
22
y

A
L_
28
y

A
L_
34
y

A
L_
79
6

A
L_
52
9

S
A
12
1_
d0

S
A
18
1_
d0

C
6b
_d
0

A
S
03
4_
d0

P
11
01
2_
d0

P
11
02
5_
d0

S
A
12
1_
d5

S
A
18
1_
d5

C
6b
_d
5

P
11
01
2_
d5

A
S
03
4_
d5

P
11
02
5_
d5

S
A
12
1_
d2
5

S
A
18
1_
d2
5

C
6b
_d
25

P
11
01
2_
d2
5

A
S
03
4_
d2
5

P
11
02
5_
d2
5

S
A
12
1_
d1
4

S
A
18
1_
d1
4

P
11
02
5_
d1
4

P
11
01
2_
d1
4

A
S
03
4_
d1
4

C
6b
_d
14

0.
0

0.
2

0.
4

0.
6

Before batch effect reduction - hepatic differentiation

hclust (*, "complete")
correlation

H
ei
gh
t

F_
LV
_1
35

F_
LV
_1
23

F_
LV
_1
24

F_
LV
_1
26

F_
LV
_1
27

F_
R
A
_1
35

F_
R
A
_1
23

F_
R
A
_1
24

F_
R
A
_1
26

F_
R
A
_1
27

M
_L
V
_1
42

M
_L
V
_1
44

M
_L
V
_1
51

M
_L
V
_1
69

M
_L
V
_1
70

M
_R
A
_1
42

M
_R
A
_1
44

M
_R
A
_1
51

M
_R
A
_1
69

M
_R
A
_1
70

2

4

6

8

10

12

14

After batch effect reduction - cardiac biopsies

80

Figure 6. Hierarchical clustering after batch effect reduction resulted in
more biologically relevant groups in the cardiac biopsy dataset. Two
distinct clusters based on localization of the analysed biopsies rather than
the gender were generated.

Figure 7. Boxplot showing the expression range of all the arrays in the
merged dataset of hepatic differentiation, including the samples from FL
and AL for benchmarking.

Figure 8: Hierarchical clustering of samples in the hepatic
differentiation study after successful reduction of the batch effect
introduced in the merged dataset. Perfectly biologically relevant
grouping was achieved after the batch effect adjustment.

4. Discussion and conclusion

Huge quantities of global omics datasets are now

routinely generated and the amount of available
biomedical big data is increasing exponentially. If utilized
in an optimal way the availability of these vast data
provides an incredible resource that will likely
revolutionize the area of medical research. Moreover, the
increasing number of data repositories for storage of
biomedical big data greatly facilitates various types of
meta-studies, in which many different datasets can be
merged and analyzed in combination. However,
combining data from multiple experiments and sources,
generated using different platforms and molecular
techniques are not trivial and increases the risk to
introduce batch effects in the merged datasets as well.
Putative batch effects that may have been introduced
during data integration processes needs to be identified
and corrected for before performance of the subsequent
downstream data analysis. However, there is always a risk
that during elimination of batch effects, true biological
variation is also mistakenly removed. Thus, more
investigations are needed to evaluate and compare
different approaches for reducing batch effects introduced
during data integration.

In this study the ComBat algorithm has been applied

on two types of study designs representing two common
batch effect issues in omics data analysis. Results from

F_
LV
_1
23

F_
LV
_1
26

M
_L
V
_1
51

M
_L
V
_1
42

F_
LV
_1
27

M
_L
V
_1
69

F_
LV
_1
24

M
_L
V
_1
70

F_
LV
_1
35

M
_L
V
_1
44

F_
R
A
_1
23

F_
R
A
_1
27

M
_R
A
_1
70

M
_R
A
_1
42

M
_R
A
_1
44

M
_R
A
_1
51

F_
R
A
_1
24

F_
R
A
_1
26

F_
R
A
_1
35

M
_R
A
_1
69

0.
01
0

0.
02
0

0.
03
0

0.
04
0

After batch effect reduction - cardiac biopsies

hclust (*, "complete")
correlation

H
ei
gh
t

A
S
03
4_
d0

S
A
12
1_
d0

S
A
18
1_
d0

C
6b
_d
0

P
11
01
2_
d0

P
11
02
5_
d0

A
S
03
4_
d5

S
A
12
1_
d5

S
A
18
1_
d5

C
6b
_d
5

P
11
01
2_
d5

P
11
02
5_
d5

A
S
03
4_
d1
4

S
A
12
1_
d1
4

S
A
18
1_
d1
4

C
6b
_d
14

P
11
01
2_
d1
4

P
11
02
5_
d1
4

A
S
03
4_
d2
5

S
A
12
1_
d2
5

S
A
18
1_
d2
5

C
6b
_d
25

P
11
01
2_
d2
5

P
11
02
5_
d2
5

A
L_
79
6

A
L_
52
9

FL
_8
w
_3
d

FL
_9
w

FL
_1
1w
.1
d

FL
_1
2w
.1
d

FL
_2
1w

A
L_
21
w
_d
1

A
L_
22
y

A
L_
23
y

A
L_
28
y

A
L_
31
y

A
L_
34
y

A
L_
35
y

A
L_
38
y

0

5

10

15

After batch effect reduction - hepatic differentiation
S
12
1_
d5

S
18
1_
d5

P
25
_d
5

A
03
4_
d5

C
6b
_d
5

P
12
_d
5

A
03
4_
d0

C
6b
_d
0

P
12
_d
0

P
25
_d
0

S
12
1_
d0

S
18
1_
d0

FL
_w
21
_a

FL
_w
21
_b

FL
_w
9

FL
_w
12

FL
_w
8

FL
_w
11

A
L_
35
y

A
L_
31
y

A
L_
26
y

A
L_
28
y

A
L_
22
y

A
L_
29
y

A
L_
38
y

A
L_
23
y

A
L_
34
y

S
12
1_
d2
5

S
18
1_
d2
5

C
6b
_d
25

P
12
_d
25

A
03
4_
d2
5

P
25
_d
25

P
25
_d
14

P
12
_d
14

A
03
4_
d1
4

C
6b
_d
14

S
12
1_
d1
4

S
18
1_
d1
40.
0

0.
2

0.
4

0.
6

0.
8

1.
0 After batch effect reduction - hepatic differentiation

hclust (*, "average")
corD

H
ei
gh
t

81

our work demonstrated that the ComBat algorithm could
successfully reduce the observed batch effects in both the
merged datasets while at the same time preserving the true
biological variation. The importance of correction for
batch effects before continuing with the downstream
analysis has also been emphasized by the results from the
hierarchical clustering analysis, where improved
biologically relevant groupings were achieved after the
batch effect reduction was performed.

In conclusion, the results from this study demonstrate
the applicability of the ComBat method to correct for
various types of batch effects introduced during merging
of large-scale omics data. Through this work the
importance of exploring expression range and data
distribution after merging of large–scale datasets has been
highlighted.

Acknowledgments

This work was supported by the University of Skövde,

Sweden, under grants from the Knowledge Foundation
[2014/0301].

5. References

[1] W. W. B. Goh, W. Wang, and L. Wong, "Why

Batch Effects Matter in Omics Data, and How to
Avoid Them," Trends Biotechnol, vol. 35, pp.
498-507, Jun 2017.

[2] T. Han, C. D. Melvin, L. Shi, W. S. Branham, C.
L. Moland, P. S. Pine, et al., "Improvement in the
reproducibility and accuracy of DNA microarray
quantification by optimizing hybridization
conditions," BMC Bioinformatics, vol. 7 Suppl 2,
p. S17, Sep 06 2006.

[3] M. J. Larsen, M. Thomassen, Q. Tan, K. P.
Sorensen, and T. A. Kruse, "Microarray-based
RNA profiling of breast cancer: batch effect
removal improves cross-platform consistency,"
Biomed Res Int, vol. 2014, p. 651751, 2014.

[4] N. Kolesnikov, E. Hastings, M. Keays, O.
Melnichuk, Y. A. Tang, E. Williams, et al.,
"ArrayExpress update--simplifying data
submissions," Nucleic Acids Res, vol. 43, pp.
D1113-6, Jan 2015.

[5] R. Edgar, M. Domrachev, and A. E. Lash, "Gene
Expression Omnibus: NCBI gene expression and
hybridization array data repository," Nucleic
Acids Res, vol. 30, pp. 207-10, Jan 01 2002.

[6] B. Ulfenborg, A. Karlsson, M. Riveiro, C.
Ameen, K. Akesson, C. X. Andersson, et al., "A
data analysis framework for biomedical big data:
Application on mesoderm differentiation of
human pluripotent stem cells," PLoS One, vol.
12, p. e0179613, 2017.

[7] D. Gomez-Cabrero, I. Abugessaisa, D. Maier, A.
Teschendorff, M. Merkenschlager, A. Gisel, et
al., "Data integration in the era of omics: current
and future challenges," BMC Syst Biol, vol. 8
Suppl 2, p. I1, 2014.

[8] W. E. Johnson, C. Li, and A. Rabinovic,
"Adjusting batch effects in microarray expression
data using empirical Bayes methods,"
Biostatistics, vol. 8, pp. 118-27, Jan 2007.

[9] J. T. Leek and J. D. Storey, "Capturing
heterogeneity in gene expression studies by
surrogate variable analysis," PLoS Genet, vol. 3,
pp. 1724-35, Sep 2007.

[10] J. A. Gagnon-Bartsch and T. P. Speed, "Using
control genes to correct for unwanted variation in
microarray data," Biostatistics, vol. 13, pp. 539-
52, Jul 2012.

[11] Y. Hasin, M. Seldin, and A. Lusis, "Multi-omics
approaches to disease," Genome Biol, vol. 18, p.
83, May 05 2017.

[12] S. Huang, K. Chaudhary, and L. X. Garmire,
"More Is Better: Recent Progress in Multi-Omics
Data Integration Methods," Front Genet, vol. 8,
p. 84, 2017.

[13] J. Asp, J. Synnergren, M. Jonsson, G. Dellgren,
and A. Jeppsson, "Comparison of human cardiac
gene expression profiles in paired samples of
right atrium and left ventricle collected in vivo,"
Physiol Genomics, vol. 44, pp. 89-98, Jan 18
2012.

[14] N. Ghosheh, B. Kuppers-Munther, A. Asplund, J.
Edsbagge, B. Ulfenborg, T. B. Andersson, et al.,
"Comparative transcriptomics of hepatic
differentiation of human pluripotent stem cells
and adult human liver tissue," Physiol Genomics,
vol. 49, pp. 430-446, Aug 1 2017.

[15] N. Ghosheh, B. Olsson, J. Edsbagge, B. Kuppers-
Munther, M. Van Giezen, A. Asplund, et al.,
"Highly Synchronized Expression of Lineage-
Specific Genes during In Vitro Hepatic
Differentiation of Human Pluripotent Stem Cell
Lines," Stem Cells Int, vol. 2016, p. 8648356,
2016.

82

Predicting Pathways from Untargeted Metabolomics Data

Daniel Salinas and Brendan Mumey
Gianforte School of Computing

Montana State University
Bozeman, MT, USA

{daniel.salinas@msu, mumey@cs}.montana.edu

Ronald K. June
Mechanical & Industrial Engineering

Cell Biology & Neuroscience
Montana State University

Bozeman, MT, USA
rjune@montana.edu

Abstract

We propose an approach for predicting active pathways
from untargeted metabolomics data by minimizing the num-
ber of pathways needed to fully explain the features of
the data. The approach was tested on data taken from
cells infected with yellow fever virus and compared with
alternative approaches from literature. Our methodology
yielded predictions that were validated by data separate
from metabolomics and were a more complete description
of the infection phenotype. We also introduce an alterna-
tive formulation that would allow leveraging the retention
time information provided by liquid chromatography-mass
specrometry.

1 Introduction

Untargeted metabolomics is a useful tool in providing
an unbiased representation of cell metabolism. However,
to match current metabolic models, spectra resulting from
metabolomics must be mapped to known metabolites. These
metabolites yield insight into which metabolic pathways are
active and indicate the functional state of the cell.

Obtaining metabolite identities from spectra has become
a bottleneck in metabolomics studies, requiring further ex-
periments to verify metabolite identities before pathway ac-
tivities can be deduced. There can be thousands of features
that require identification, creating the need for approaches
that can automate either active metabolic pathway inference
or metabolite identification.

2 Related Work

We give a brief overview of pathway enrichment analysis
from metabolomics data. Assessing enrichment directly, i.e.
without mapping the spectral features to metabolites prior
to analysis, is a relatively recent development. Previously,
enrichment analyses had been developed for other “-omics”
data or required metabolites rather than spectra as input. An
overview of these is given in [12].

To the best of our knowledge, mummichog [7] has become
the standard approach to pathway enrichment analysis from
LC-MS (liquid chromatography coupled to mass spectrom-
etry) data. First, LC-MS data is obtained using a wide
range of mass-to-charge ratios to capture as many features
as possible. A subset of those features is then identified as
differing significantly between the experimental and control
groups. The authors of [7] denote this subset Lsig, and the
full feature set Lref. Samples from Lref are then used to
estimate the likelihood that a pathway will contain features
if the samples are of size |Lsig|. Over many samples, a
distribution is generated that can then be used to gauge
which pathways have an abnormally large intersection with
Lsig. These are the enriched pathways.

A recent approach, PIUMet, infers metabolites from un-
targeted LC-MS spectra using a prize-collecting Steiner
tree [6]. This is an optimization problem on a graph,
where the solver must select a set of edges to form trees
that connect prize nodes while minimizing the total edge
cost. From an input of LC-MS features, PIUMet defines
the problem by letting the prize nodes of the graph be
the m/z values of features, connecting them via a network
of proteins and metabolites. Specifically, there is are
nodes for each metabolite and protein, and edges between
a protein-protein or protein-metabolite pair exist if there is
evidence they interact. Edge costs represent the confidence
of the interaction, with a higher cost representing a lower
confidence. The optimal set of trees with respect to cost and
penalty represent active pathways. We refer the reader to [9]
for further details. We briefly discuss PIUMet in §7.

3 Problem Definition

Inferring active pathways from untargeted metabolomics
requires reconciling the LC-MS data, consisting of a set
of mass-to-charge ratio and retention time pairs, to the
model, a collection metabolites connected by reactions in
pathways. Metabolites must, either implicitly or explicitly,
be matched with mass-to-charge ratio (also denoted m/z
value) and retention time pairs. Our approach matches
the metabolites implicitly, by selecting the minimal set of

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

83

pathways that contain enough metabolites with the observed
mass-to-charge ratios to represent the different retention
times observed.

We will refer to this problem as the Minimum Pathway
Cover problem and abbreviate it as MPC. We define MPC in
terms of pathways, LC-MS data and retention times. Here
we note that MPC is an instance of a more general prob-
lem that can be adapted to leverage data about metabolite
properties if it is available. We explain this problem and its
applications in §9.

To define MPC, let

• Z be the set of observed m/z values, and

• R be the set of observed retention times.

The LC-MS data is therefore a subset X ⊆ Z ×R. Note
that there is often a tolerance associated with m/z values;
in enrichment analyses it is common to consider m/z values
that differ by less than 10 p.p.m. the same value. In this
case, Z would be a set of m/z value intervals. More details
are given in §6. The model consists of

• a set M of metabolites,

• a mapping m : M → Z, where m(tj) = zi iff
metabolite tj has m/z value zi, and

• a collection of pathways P ⊆ 2M, where 2M is the
powerset of M.

A set of pathways C ⊆ P is capable of generating X if

⋃

p∈C
{m(tj) | tj ∈ p} = Z.

MPC finds the smallest C that generates X with enough
metabolites to cover (see Fig. 1) the distinct retention times.
Let c(zi) be the number of distinct retention times observed
to occur with zi in the data,

c(zi) =
∣∣{rk | (zi, rk) ∈ X}

∣∣.

Given C ⊆ P , the metabolites matched to zi by C are

⋃

p∈C
m−1(zi) ∩ p.

For all zi ∈ Z, the number of metabolites matched to zi
must be at least the number of distinct retention times for zi:

c(zi) ≤
∣∣∣∣
⋃

p∈C
m−1(zi) ∩ p

∣∣∣∣.

4 Implementation

MPC can be encoded as an integer linear program (ILP).
The variables of the ILP are defined by letting

• x be a binary vector of length |P |, and

• for each zi ∈ Z, ci be a binary vector of length |M|.

We use x and the collection of ci to encode a valid solution
C. We assign each p ∈ P an index n and let x be a
binary representation of C, where xn = 1 if pn ∈ C and
0 otherwise. We assign each metabolite t ∈ M an index j
and let cij = 1 if tj ∈ pn, pn ∈ C, and m(tj) = zi. We let
cij = 0 otherwise.

Given these variables, the ILP representation of MPC is:

min
x
||x||1 (1)

cij ≤
∑

{n | pn∈P,tj∈pn}
xn ∀i, j (2)

c(zi) ≤
∑

{j | tj∈M }
cij ∀i (3)

xn ≤ cij if tj ∈ pn,m(zi) = tj (4)

(1) sets as the objective the minimizing of the number of
pathways in C by minimizing the sum of the xn. Since xn is
a binary vector, this is equivalent to minimizing the number
of xn with value 1. Constraint (2) ensures that cij = 0
unless some pathway pn that contains metabolite tj has been
chosen as part of C. Note that all cij are binary variables,
so even if multiple pathways in C assign metabolite tj to
zi the value of cij is at most 1 in that case; it is 0 if no
such pathways are part of C. Constraint (3) sets the lower
bound on the number of metabolites assigned to zi to the
number of distinct retention times observed for that m/z
value. Constraint (4) ensures that if pathway pn contains a
metabolite tj that has m/z value zi, then whenever pathway
pn ∈ C (i.e. whenever xn = 1), metabolite tj is assigned to
zi (i.e. cij = 1). The ILP was solved using CPLEX [5].

5 Experiments

We tested our approach on previously published data ob-
tained from monocyte-derived dendritic cells (moDC) stim-
ulated by yellow fever virus (YF-17D vaccination strain).
This data was chosen because (i) the presence of key
metabolites was verified by tandem mass spectrometry,
and (ii) gene expression analysis with direct measurement
confirmed the occurrence of phenotypes associated with
YF-17D infection, and (iii) it was analyzed in-depth with
mummichog by its authors [7].

The moDCs were infected, mock-infected, or used as
baseline controls. Metabolome samples were taken at 0,

84

6, and 24 hours. LC-MS was full-scan (m/z between 85
and 2000) using a reverse phase C18 column, and samples
were ionized using positive electrospray ionization. [11,
7] Tandem mass spectrometry was performed using LTQ-
FTMS. Features associated with infection were identified by
comparing the intensities of features in infected samples at
6 h. to intensities of those features in both mock-infected
samples (also 6 hours post mock infection) and baseline con-
trols (0 hours) and selecting those that differed significantly.
Those features significantly different (according to Student’s
t-test) between the infected samples and both the baseline
controls and the mock-infected samples were selected for
pathway enrichment analysis. A comprehensive description
of significant features detection, from the statistical methods
used to the LC-MS extraction, can be found in [7].

Figure 1: Heatmap illustrating the m/z each pathway covers.
Rows correspond to patwhways and columns to m/z values.
If a pathway can cover an m/z value that square is black, and
white otherwise. Rows and columns clustered by similarity.

Experiments were run using the pathways in the model
used in [7] to prevent the comparison of MPC to mummichog
from being affected by model discrepancies. A heatmap
showing the coverage of each pathway to the m/z values in
X is shown in 1 As mentioned, X was chosen to be the
features deemed significantly different between the infected
and non-infected groups. At p = 0.05, this consists of 601
features (m/z value and retention time pairs). Pathways were
obtained using the “human model mfn” model provided
with version 1.0.5 of mummichog. Also provided with
the software are a mapping from metabolites to masses
and a function that generates m/z values resulting from the
ionization process from a base mass. These were used to
define m : M → Z. The mapping c : Z → N was defined

using X as described in §4, except in those cases where
∣∣m−1(zi)

∣∣ <
∣∣{rk | (zi, rk) ∈ X}

∣∣,
i.e. there were more retention times associated with zi in the
data than metabolites in the model that could map to zi. In
these cases, |m−1(zi)| was used as the lower bound c(zi).

6 Results

MCP identified a total of 43 active pathways. Infec-
tion with YF-17D is known to induce cellular stress re-
sponse, namely, interleukin cytokines (IL)-12p40, IL-6, and
interferon-α via toll-like receptors (TLRs) 2, 7 , 8 and 9.
[10] Viral infection may trigger the production of nitric
oxide from arginine precursors as a defense mechanism,
activated via TLRs. [8] Infection also causes nucleotide
synthesis as part of viral replication. Confirmation of
these processes was obtained from measurements inde-
pendent of metabolomics [7]. The presence of IL-6 was
confirmed via direct measurement. Negative feedback of
nitric oxide synthesis was detected by direct measurement.
Downregulation of glutathione synthesis was detected by
transcriptomics. Tandem mass spectrometry confirmed the
presence of, among others, arginine, citrulline, AMP, GMP,
glutamate, xanthine, inosine, glutathione, GMP, and GSSG.

These measurements confirm the correctness of path-
ways in C. For example, the “Aspartate and arparagine
metabolism” pathway covers m/z values corresponding to
arginine, citrulline, AMP, glutathione, and GSSG; this path-
way, along “Purine metabolism” (covers m/z values of
inosine and xanthine) contain a network of reactions that
synthesize, from arginine, glutathione and purine precur-
sors. Additionally, citrulline is a by-product of nitric
oxide synthesis. While both of these pathways are in
mummichog’s enriched set, MCP allowed for the inclusion
of pathways ancillary, but important, to these processes. For
example, including the pentose phosphate pathway, as it is in
MCP, gives a likely explanation of how fatty acid synthesis
factor NADPH is regenerated. [3] Fatty acid synthesis is an
important response to infection in dendritic cells, as cytokine
production demands a larger endoplasmic reticulum and a
larger Golgi apparatus. [4] Indeed, many other the pathways
found by MCP were parts of fatty acid metabolism.

A comparison summary is given in Table 1. The statistics
used for comparison come from [7] and accompanying
supplementary material Dataset S1 and Table S1. Solving
MPC resulted in 43 pathways identified as active, in contrast
to mummichog’s 21. Of these, 14 were common to both
approaches. The greater number of pathways generated
by MPC is expected. MPC requires, via lower bounds
c(zi), that all features that can be explained by the model
be explained by choosing a relevant pathway. However,
mummichog’s more conventional enrichment analysis iden-
tifies as active pathways only those that have a statistically

85

anomalous presence of m/z values in the significantly dif-
ferent feature list. The full set of 7995 features observed
in all samples is used to derive an empirical distribution
on the presence of features in each pathway. This set of
features, denoted Lref, contains the set of 601 significantly
different features, referred to as Lsig. The distribution
is generated by selecting samples of 601 features from
Lref. A variant of Fisher’s exact test is then used to,
for each pathway, record a p value corresponding to the
likelihood that this pathway has the observed overlaps with
Lsig and the sample from Lref under the null hypothesis
that there is no relationship between a metabolite being
present in the pathway and whether it belongs to Lsig
or the sample from Lref. This method is adapted from
[2]. Over multiple samples from Lref, a distribution of p
values is observed. Those pathways with p values below
some threshold are deemed active. This distribution is
necessary to detect significant pathways. A study we ran
(not shown for conciseness) using Fisher’s exact test with
random metabolite assignments from possible biological
candidates to m/z showed low significance for all pathways
(pathways had many elements from Lref even if they had
elements from Lsig). We refer the reader to [7] for more
details.

Table 1: Approach Summary
mummichog MPC

Total pathways 21 43
Unique pathways 7 29
m/z matched 132 188
m/z matched per pathway (avg.) 6.29 4.37
Metabolites per feature (avg.) 1.71 1.34

Some features in Lsig may therefore be left unexplained
by the pathways selected by mummichog. Specifically, these
are features corresponding to metabolites found only in
those pathways that relate to Lsig and Lref to similar degree,
i.e. the features that correspond to metabolites only found
in pathways whose p value is not low enough. This was
observed empirically in the number of features matched. In
Dataset S1, 330 m/z values are given metabolite predictions
based on the pathways selected. Of these 330 values, 138
belong to features in Lsig. The number of features matched
by MPC is the sum of the lower bounds c(zi), in this case
192; these features have 188 distinct m/z values. Note that
this is not 601, as might be expected, since c(zi) is often
zero: there are no metabolites in the model that correspond
to the given mass. Enforcing full coverage of features
where possible, MPC will tend to select more pathways than
mummichog and match more features.

We also observed that, on average, fewer metabolites were
assigned per mass by solving MPC when compared to mum-
michog. Comparing the number of metabolites assigned per
m/z value shows that, though the distributions are similar,

Metabolites per MZ

D
en

si
ty

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

A) MPC

Metabolites per MZ

D
en

si
ty

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

B) Mummichog

Figure 2: Distribution of the number of metabolites assigned
to m/z values for A) MPC and B) mummichog. MPC tends
to assign less overall.

the fraction of m/z that match to a single metabolite is higher
for MPC than for than for mummichog. (Fig. 2) This is
expected if we consider that c(zi) = 1 in the majority of the
cases. This means that there was a single feature observed
per m/z value and so MPC only requires a single metabolite
assignment to be satisfied. Interestingly, the majority of
these one-to-one masses are m/z values that are contained in
pathways unique to MPC. When considering only those m/z
values that are common to both approaches, the distributions
are more similar. Since pathways are considered enriched
only if they have a relatively high number of metabolites
from Lsig, mummichog will tend to explain only those
m/z values that occur in groups. Enrichment also has the
implication that if a group of metabolites from Lsig tends to
repeat throughout the pathways in the model, the pathways
that contain them will all be reported as active. This can
be observed when comparing the average overlap within
pathways in MCP (Fig. 3) to that within the enriched
pathways (Fig. 4). Pathways in mummichog tend to
overlap more with each other, both when comparing masses
explained and metabolites in those pathways.

7 PIUMet

We also include PIUMet results with some caveats. First,
we limit our discussion to m/z value matching to metabo-
lites. PIUMet is a pathway inference, rather than pathway
enrichment, tool. As such, the pathways returned are net-
works of proteins and metabolites and may not correspond
to known catabolic or anabolic pathways or may match
pathways ambiguously. Second, the algorithm was run
from the PIUMet website[1], forcing the use of the PPMI

86

Average Intersection

F
re

qu
en

cy

0.00 0.10 0.20

0
5

10
15

20

A) M/Z Values

Average Intersection

F
re

qu
en

cy

0.00 0.04 0.08

0
2

4
6

8

B) Metabolites

Figure 3: Average size of the intersection of a pathway
selected by MCP with another selected by MCP, where a
pathway is either A) a set of m/z values or B) a set of
metabolites.

Average Intersection

F
re

qu
en

cy

0.00 0.10 0.20 0.30

0
1

2
3

4
5

6

A) M/Z Values

Average Intersection

F
re

qu
en

cy

0.00 0.04 0.08 0.12

0
1

2
3

4
5

6

B) Metabolites

Figure 4: Average size of the intersection of a pathway
selected by MCP with another selected by mummichog,
where a pathway is either A) a set of m/z values or B) a
set of metabolites.

network, a different model than the one used throughout the
rest of this paper.

The prize wi of each feature zi in Lsig was defined as

wi = − log pi, (5)

where pi is the p value obtained from the t-test measuring
the significance of the difference in zi between the infected
cells and the other two groups. This definition of wi is

used in [9]. All other parameters were left as the defaults
provided by the website.

The metabolites inferred by PIUMet and confirmed by
tandem mass spectrometry include GSSG, citrulline, and
xanthine, PIUMet output includes a top metabolite match
for each m/z value. Of these 103 metabolites, 36 were also
inferred by MCP. These include metabolites in pathways
shared by all approaches (e.g. Methionine and cysteine
metabolism, Pyrimidine metabolism). Overall, PIUMet
matched more m/z values (257) to metabolites than MCP
or mummichog, though this is likely due to its use of a larger
model (114,100 vs. 3,565). Considering all possible (927)
matches returned by PIUMet emphasizes this difference
as each m/z value is assigned 3.6 metabolites on average,
compared to the 1.71 and 1.34 by mummichog and MCP,
respectively. Despite the much larger number of possible
matches, the intersection with the metabolites assigned by
MCP increases only to 62. We conclude that PIUMet shows
its ability to formulate de novo pathways, while agreeing
with established literature.

8 Conclusions

We have shown that choosing the smallest set of path-
ways capable of producing the spectral features observed in
untargeted metabolomics data from cells infected with YF-
17D yields pathways consistent with known phenotypes of
infection. We introduced this problem as Minimum Pathway
Cover and show it can be solved by solving an integer linear
program using CPLEX, a popular optimization suite. Setting
a requirement for full coverage explains those features that
would be ignored by enrichment analyses, and requiring a
minimal set of pathways reduces the ambiguity in the results
by selecting fewer metabolites per feature observed. These
potentially ignored features also related metabolic pathways
known to be active during infection. These initial results
encourage further investigation into which combinations of
data and metabolic network topologies will cause either
MCP or enrichment analyses to be more effective.

9 Future Work

To allow comparison to mummichog, we have considered
selecting a cover as an assignment of metabolites to m/z
values. However, setting lower bounds c(zi) allows for a
mapping of metabolites to features. For example, if c(zi) =
2, then two features (zi, r1), (zi, r2) with distinct retention
times r1 6= r2 were observed in the data set X . Then,
knowing C has pathways with at least two metabolites with
m/z value zi, an attempt may be made to map metabolites to
either (zi, r1) or (zi, r2).

However, metabolites with similar chemical properties
will elute at the same time, meaning that multiple metabo-

87

lites may correspond not only to the same m/z value but to
the same (zi, rk) pair. In these cases, even though more than
c(zi) metabolites may be mapped to c(zi), not all the rk
have been covered. However, with an alternative definition
of MCP we may address the problem.

MCP may be defined in generic terms. Since this is
a variant of the Set Cover problem, we will denote this
generic version Color Set Cover and abbreviate it CSC. We
let Z,R,M be generic sets and P ∈ 2M be a set of subsets
of M. LetX ⊆ Z×R be the problem input. In terms of Set
Cover, X is the universe and P is the family of sets a cover
will be selected from. In ordinary Set Cover, P ∈ 2Z and a
cover C ⊆ P is selected such that

⋃

p∈C
p = {zi | (zi, rk) ∈ X} = Z.

In CSC, the mapping m : M→ Z determines whether a set
p ∈ P covers a value in X . As in §3, p covers zi ∈ Z if
p contains an element tj ∈ M such that m(tj) = zi. We
denote M as the set of colors. Choosing a cover therefore
implicitly assigns a set of colors to each zi. Moreover, CSC
imposes a further constraint on C, namely that the number
of colors assigned to each to each zi be greater than or
equal to the number of rk paired with it in X . We have,
for MCP, chosen the sets Z, R, and M as described in §3.
To address the problem of multiple metabolites having the
same retention time, we let Z be the set of m/z values as
before, but change R and M. We let R be retention time
classes and M classes of metabolites, both determined by
the LC-MS method. For example, HILIC columns separate
metabolites according to polarity. Then, we can label each
metabolite with an element tj ∈M, where metabolites have
the same label tj if their polarity is very similar. Set R
could be the set of retention times, or it could be a set of
non-overlapping retention time ranges observed in the data
(e.g. R = { 100-120, 50-70}). While it may be intuitive
to let R = M, letting them be different allows us to select
the appropriate number of metabolites with distinct retention
times while not assigning them to any particular range of
retention times, since the retention time of a metabolite is
very difficult to predict a priori. Once a cover is obtained,
the metabolite classes may be sorted according to polarity
and a tentative feature matching be obtained. We plan to
implement this strategy in future studies.
Acknowledgment: This work was funded by NSF-CMMI
1554708 and NSF-ABI 1542262.

References

[1] Fraenkel lab – piumet. http://fraenkel-nsf.
csbi.mit.edu/piumet2/. Accessed: 2018-01-
18.

[2] G. F. Berriz, O. D. King, B. Bryant, C. Sander, and
F. P. Roth. Characterizing gene sets with funcassociate.
Bioinformatics, 19(18):2502–2504, 2003.

[3] M. Cortese, C. Sinclair, and B. Pulendran. Translating
glycolytic metabolism to innate immunity in dendritic
cells. Cell metabolism, 19(5):737–739, 2014.

[4] B. Everts, E. Amiel, S. C.-C. Huang, A. M. Smith,
C.-H. Chang, W. Y. Lam, V. Redmann, T. C. Freitas,
J. Blagih, G. J. Van Der Windt, et al. Tlr-driven
early glycolytic reprogramming via the kinases tbk1-
ikk [epsiv] supports the anabolic demands of dendritic
cell activation. Nature immunology, 15(4):323–332,
2014.

[5] IBM. ILOG CPLEX Optimization Studio, 2017.

[6] D. S. Johnson, M. Minkoff, and S. Phillips. The prize
collecting steiner tree problem: theory and practice. In
SODA, volume 1, page 4, 2000.

[7] S. Li, Y. Park, S. Duraisingham, F. H. Strobel, N. Khan,
Q. A. Soltow, D. P. Jones, and B. Pulendran. Predicting
network activity from high throughput metabolomics.
PLoS computational biology, 9(7):e1003123, 2013.

[8] S. M. Morris Jr. Arginine: master and commander
in innate immune responses. Sci Signal, 3(135):e27,
2010.

[9] L. Pirhaji, P. Milani, M. Leidl, T. Curran, J. Avila-
Pacheco, C. B. Clish, F. M. White, A. Saghatelian, and
E. Fraenkel. Revealing disease-associated pathways
by network integration of untargeted metabolomics.
Nature methods, 13(9):770–776, 2016.

[10] T. Querec, S. Bennouna, S. Alkan, Y. Laouar,
K. Gorden, R. Flavell, S. Akira, R. Ahmed, and
B. Pulendran. Yellow fever vaccine yf-17d activates
multiple dendritic cell subsets via tlr2, 7, 8, and
9 to stimulate polyvalent immunity. Journal of
Experimental Medicine, 203(2):413–424, 2006.

[11] Q. A. Soltow, F. H. Strobel, K. G. Mansfield, L. Wacht-
man, Y. Park, and D. P. Jones. High-performance
metabolic profiling with dual chromatography-fourier-
transform mass spectrometry (dc-ftms) for study of the
exposome. Metabolomics, 9(1):132–143, 2013.

[12] J. Xia and D. S. Wishart. Metpa: a web-
based metabolomics tool for pathway analysis and
visualization. Bioinformatics, 26(18):2342–2344,
2010.

88

Automated Biomedical Text Classification with Research Domain
Criteria

Mohammad Anani and Indika Kahanda
Gianforte School of Computing, Montana State University

Bozeman, Montana, 59717, USA
mohammad.anani@student.montana.edu

indika.kahanda@montana.edu

Abstract

Research Domain Criteria (RDoC) is a recently in-
troduced framework for accurate diagnosis of mental
illness. Developing a method to automate the process
of labeling biomedical articles with RDoC constructs
is highly useful to advance research efforts in the
area of mental illness. Therefore, this study focuses
on exploring the feasibility of developing a tool for
this purpose. Using a gold-standard dataset of about
40,000 Medline abstracts annotated with 26 RDoC
constructs, we model this both as a binary and a
multilabel classification problem, to perform document
classification using several supervised learning algo-
rithms. We use a simple bag-of-words model with
standard preprocessing steps such as stemming and
stop words removal. According to a performance
evaluation obtained through 5-fold cross validation,
we observe that overall, multilabel Artificial Neural
Networks classifier performs best with an excellent
average AUROC of 96% across all the constructs.
Interestingly, all the binary classifiers also show a very
high-level of performance. However, the cohort of
binary classifiers take significantly longer times to train
compared to their multilabel counterparts, showing the
utility of modeling this as a multilabel problem. This
is the first study that focuses on predicting RDoC
constructs for biomedical literature.

keywords: Research Domain Criteria, mental illness,
machine learning, document classification, Artificial
Neural Networks, Support Vector Machines.

1 Introduction

Research Domain Criteria (RDoC) is an under-
development framework for a more effective
classification of mental illness, introduced by The
National Institute of Mental Health (NIMH) [9].
Current clinical approaches to mental illness
classification such as ICD-10 [12] and DSM-V [2]

are primarily dependent on the signs and symptoms,
which tend to overlook the underlying mechanisms
of brain disorders [5]. Therefore, they fail to yield
results similar to those found in recent developments
in genetics and neuroscience. The RDoC approach
employs more comprehensive measures taking into
account neuroscience of the brain, molecular biology,
and behavioral science, among many others, to analyze
mental disorders [8].

Figure 1: A part of the Positive Valence Systems
domain. The term specificity increases downward.
Level 1 and Level 2 constructs are depicted in blue and
green, respectively.

The National Institute of Mental Health has de-
veloped a matrix for aggregating RDoC data1. The
rows of the RDoC matrix represent different con-
structs/categories of mental illness, while the columns
represent different methods or units of analysis (such
as molecules and cells) used to measure the extent to
which a patient can be diagnosed with certain RDoC
categories. These constructs (39 in total) are grouped
into five different domains of interest, where each
domain contains a number of constructs that are closely
related. For example, Reward Learning construct in the
Positive Valence Systems domain refers to “a process
by which organisms acquire information about stimuli,

1https://www.nimh.nih.gov/research-priorities/rdoc/

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

89

actions, and contexts that predict positive outcomes,
and by which behavior is modified when a novel reward
occurs or outcomes are better than expected.”. Part
of the Positive Valence Systems domain is depicted
in Figure 1. The content of this matrix is manually
updated periodically by domain experts.

In order to facilitate mental illness research and
advance the expansion and/or refinement of the RDoC
framework, all existing biomedical documents need to
be curated with RDoC concepts. Given how expensive
manual curation of articles is, the ability to automat-
ically curate biomedical articles with RDoC concepts
will be crucial [6]. Therefore, in this study, we tackle
this problem with natural language processing (NLP)
and Machine Learning (ML) techniques to conduct
document classification experiments in order to ex-
amine the feasibility of automating this task. We
model this task as a supervised learning problem in
which biomedical article abstracts are used as examples
and the class labels are the RDoC constructs. We
apply several popular supervised learning algorithms
to this data and demonstrate their high-level perfor-
mance in both binary and multi-label classification
settings. To the best of our knowledge, this is the
first study on automated prediction of RDoC constructs
for biomedical literature. The outcomes of this study
have implications for the various groups including
psychiatrists as well as other practitioners who are
interested in automated tools for RDoC.

Although there are no previous attempts at auto-
mated biomedical text classification with RDoC data,
there has been many prior studies on performing doc-
ument classification with similar types of data and
ontologies [4, 11, 7, 15, 14]. Some of these studies
include biomedical text classification on data from the
TREC 2005 Genomics track with an SVM classifier us-
ing bag-of-words and biological entity names as features
[4]. Also, text classification based on journal names
for a dataset of biomedical articles was performed by
Mishra et al. [11], using an SVM classifier with features
based on concept graphs, which have the advantage
of containing the semantic relationships between the
features. In other similar tasks, authors used Naive
Bayes classifiers with a simple bag-of-words represen-
tation, in addition to sentiment analysis features and
chi-squared feature selection [7] to determine whether
a thread in an online health forum needs moderators’
assistance. Similarly, Wang et al. [15] uses Naive
Bayes to determine the relevancy level of articles to im-
mune epitopes. Most interestingly, tagging biomedical
articles with Medical Subject Headings (MeSH) terms
was attempted with deep learning elsewhere [14], where
a convolutional neural network (CNN) was used to
achieve a significant improvement over other traditional

approaches.

The rest of the paper is organized as follows: Section
2 describes the data, features and models used as well
as the experimental setup. Section 3 discusses the
key observations from the experiments, and Section 4
presents conclusions and future directions.

2 Methodology

2.1 Data

As mentioned above, we formulate the task of auto-
mated text classification with RDoC as a supervised
learning problem. We obtained a labeled data set of
42,936 Medline abstracts manually curated by human
curators at National Alliance on Mental illness (NAMI)
Montana. Each one of these has been manually labeled
with at least one of 26 RDoC concepts used for this
study; about 5% of the abstracts are annotated to
more than one construct. A list of RDoC constructs
is indexed in Table 1, showing the number of articles
for each construct and to which domain each construct
belongs. Some of the figures in later sections will refer
to the constructs by their indices in Table 1.

2.2 Preprocessing and Features

We apply three basic steps to preprocess our dataset:
1) Stemming, 2) Removing Stop words, and 3) Remov-
ing non-ASCII characters. These steps help reduce
the dimensionality of the feature space. Stemming
combines different variants of each word into one
standard form. Stop words is a small set of very
common terms that is removed due to their limited
information nature.

After performing the preprocessing steps, we trans-
form our datasets using a bag-of-words model, where
each feature indicates the presence of a word in a pre-
defined vocabulary. In our case, the vocabulary is all
the unique words in our dataset.

2.3 Models

Given that 5% of the abstracts in our dataset are
annotated to more than one label, we attempt to solve
this problem using both (a) binary classification and
(b) multilabel classification approaches. In the first
stage, we apply five supervised learning algorithms: 1)
Artificial Neural Networks (ANNs), 2) Support Vector
Machines (SVMs), 3) Logistic Regression (LR), 4)
Decision Trees (DTs), and 5) Naive Bayes (NB). In this
initial set of experiments, we use the aforementioned
algorithms to perform the binary and multilabel tasks
and assess their effectiveness to consider them for

90

Domain Index Construct Level # Articles

Negative Valence Systems

1 Potential Threat 1 1,919
2 Sustained Threat 1 1,949
3 Loss 1 1,900
4 Frustrative Nonreward 1 2,153

Positive Valence Systems

5 Approach Motivation: Effort Valuation/Willingness to Work 2 241
6 Approach Motivation: Expectancy Reward/Prediction Error 2 595
7 Approach Motivation: Action Selection/Preference Based Decision Making 2 302
8 Initial Responsiveness to Reward Attainment 1 513
9 Sustained Longer Term Responsiveness to Reward Attainment 1 1,891
10 Reward Learning 1 1,904
11 Habit 1 2,055

Cognitive Systems

12 Attention 1 2,017
13 Perception 1 2,996
14 Declarative Memory 1 2,134
15 Language 1 2,001
16 Cognitive Control 1 2,266
17 Working Memory 1 2,011

Social Processes

18 Affiliation and Attachment 1 2,436
19 Social Communication 1 1,962
20 Perception and Understanding of Self: Agency 2 1,018
21 Perception and Understanding of Self: Self Knowledge 2 2,049
22 Perceptions and Understanding of Others: Animacy Perception 2 309
23 Perceptions and Understanding of Others: Action Perception 2 2,103
24 Perceptions and Understanding of Others: Understanding Mental States 2 560

Arousal and Regulatory Systems
25 Circadian Rhythms 1 2,966
26 Sleep Wakefulness 1 3,581

Table 1: Summary of RDoC data used in this study. The constructs are grouped by domain to show related concepts.
Level 2 constructs are more specific, while level 1 construct are more general.

further analysis.

2.4 Model and Feature Selection

The second stage of this process is to take the
best multilabel classifiers, selected after conducting
the paired t-tests, and optimize their performance
using feature and model selection. Outcomes of this
stage demonstrates a more genralizable accuracy of our
models.

We perform a comprehensive grid search, based on
feature transformers, as well as learning algorithms
parameters. A subset of these parameters that will
likely influence the performance is chosen. These
parameters include:

• Features: {Bag-of-Words n-gram range:((1,1),
(1,2), (1,3))}
• ANN : {Activation function:(relu, tanh, logistic),

Network Architecture: ((5,2),(10,3))}
The n-gram range specifies the minimum and maximum
of how many words represent a single feature. For
example, (1,2) indicates that the features will be single
and two word features. Obviously, this option can
increase the feature space significantly. Therefore, we
limit the feature size to the 125,000 most occurring
features.

The parameters of the learning algorithm that were
selected are three different activation functions and two
different network architectures for ANNs. The first
number in network architecture options represents the
number of hidden units in each hidden layer, while the
second number gives the count of the hidden layers in
those networks. We perform a grid search with this
set of parameters in a five-fold nested cross validation
setting to report on the optimized performance of the
tuned classifiers.

2.5 Experimental Setup and
Evaluation

We evaluate the performance of each classifier using
their AUROC (Area Under the Receiver Operating
Characteristic Curve) scores [3] averaged over a 5-
fold cross validation setting [1]. Ideal performance
corresponds to a score of 1, while the performance of a
random classifier corresponds to a score of 0.5. In order
to compare the overall performance of the classifiers, we
use the Macro AUROC score, which is defined as the
AUROC score averaged across the RDoC constructs.

In addition to this, we apply a paired t-test between
each pair of the 5 multilabel classifiers, and report the
p-values of each comparison.

We use linear kernels with SVMs in this study

91

because in a preliminary experiment we observed that
Gaussian kernels take at least five-fold the training
time of linear kernels while producing very similar
performance to linear kernels (data not shown). All
the learning algorithms were trained and evaluated
using scikit-learn toolkit [13]. All the experiments were
executed on a machine running Fedora Linux operating
system with Inter Xeon 3.7 GHz processor.

3 Results and Discussion

We note that except for the ANNs, the binary classi-
fiers considerably outperform their multilabel counter-
parts (Figure 2). Although these results suggest using
binary classifiers is better suited for this problem, they
will be very limited in how much they can improve. On
the other hand, multilabel classifiers have the capability
to learn the inter-relationships between different labels,
which puts them at an advantage with regards to
optimizing their performance with model tuning. Also,
using a stack of binary classifiers will not be nearly as
time-efficient as the multilabel ones (Figure 3). And
when it comes to multilabel classifiers, ANN is the
clear winner, which significantly outperforms all other
classifiers (Table 2). Based on the above observations,
we used ANN multilabel classifiers for the rest of our
experiments and analysis.

Another key observation is that, the less frequent
a label (i.e. construct) is, the easier for the ANN
classifiers to make predictions for it (Figure 4). We can
see that the least frequent constructs (i.e. in the range
0-1000) in Figure 4 correspond directly to those that
are more specific (i.e. level 2) in Figure 5. Thus, the
specificity of terms can explain the seemingly counter-
intuitive results presented in Figure 4, noting that
abstracts labeled with more specific constructs likely
have more specific information in them which makes
it relatively easier to learn than the more general (i.e.
level 1) constructs.

Category SVM LR DT NB

ANN 8.96E-05 1.12E-04 1.00E-09 2.29E-09
SVM - 4.52E-01 3.96E-08 3.77E-04
LR - - 3.49E-08 1.92E-04
DT - - - 7.20E-05

Table 2: P-values obtained through two-tail paired
t-tests for all the multilabel classifiers pairs. ANN:
Artificial Neural Networks, SVM: Support Vector
Machines, LR: Logistic Regression, DT: Decision
Trees, and NB: Naive Bayes. We use 0.05 as our
alpha/significance level.

As mentioned earlier, in order to obtain more general-
izable and robust performance, we carried out a nested

Figure 2: Macro averaged Area Under Receiver
Operating Characteristic curve (AUROC) scores for
binary and multilabel classifiers. ANN: Artificial
Neural Networks, SVM: Support Vector Machines, LR:
Logistic Regression, DT: Decision Trees, and NB: Naive
Bayes.

Figure 3: Runtime for each binary and multilabel
classifier. ANN: Artificial Neural Networks, SVM:
Support Vector Machines, LR: Logistic Regression, DT:
Decision Trees, and NB: Naive Bayes.

cross validation procedure with model selection using
multilabel ANNs (Figure 6). The individual AUROCs
for all constructs surpass 90% AUROC. The following is
the most frequently used parameter combination during
this process: n-gram range - (1,2), activation function
- relu and architecture - (10,3).

Similarly, an analogous experiment was performed
with separate ANN classifiers trained for each of the five
domains (i.e. domain specific classifiers), to determine
if performance for some domains can be further im-

92

Figure 4: Scatter plot showing Area Under Receiver
Operating Characteristic curve (AUROC) scores for
different ranges of article counts for the binary and
multilabel Artificial Neural Networks (ANN) classifiers.

Figure 5: Scatter plot showing Area Under Receiver
Operating Characteristic curve (AUROC) scores by
level of constructs for the binary and multilabel
Artificial Neural Networks (ANN) classifiers.

proved with such approach (Figure 7). Although, using
domain specific classifiers for this task did not present
an overall improvement, it did provide improvements
in some of the individual constructs, most of which lie
under the cognitive systems domain (constructs 12-17).
However, performance of few of the other constructs
declined (e.g. Reward Learning).

4 Conclusions and Future Work

In this work, we perform the first study on document
classification with RDoC constructs. Thorugh a series

of experiments we demonstrate that overall, applying
text classification with RDoC concepts in biomedical
articles is very viable alternative to manual curation.
Although this work employs standard methods to the
problem, the excellent results indicate that automat-
ing this process can be accomplished, which can aid
researchers interested in studying mental disorders from
the RDoC vantage.

One of the interesting results was that the more
specific RDoC concepts (i.e. level 2) were easier to
predict, even though they appear significantly less
frequently. We expect that the same difficulty in
identifying the general constructs (i.e level 1) affected
the manual curation of these articles.

There is still a considerable room for improvement
with regards to this problem. First, we plan to improve
our models by introducing task-specific engineered fea-
tures. As reported elsewhere [15], using less strict
stemming, and adding MeSH [10] terms could improve
the performance of the classifiers. Other types of
features that have the potential to improve the RDoC
classification problem include using a set of elements
from the RDoC matrix, molecules for instance, as
features, which is similar to what was done elsewhere
[4]. In addition, we will consider formulating this
task as a structured prediction problem, given the
hierarchical structure of the RDoC framework.

Furthermore, we aim to expand this study and
explore the feasibility of developing a complete biocu-
ration pipeline for RDoC. Given the high performance
of the ANNs, we plan to incorporate neural networks
with deep architectures and word/sentence/paragraph
embeddings which would likely further improve the
overall performance. It would also be very interesting
to apply a topic modeling technique to identify a list
of words/topics that can be used as features to further
improve the performance.

5 Acknowledgements

The authors would like to thank Matt Kuntz from
the National Alliance on Mental Illness (NAMI) Mon-
tana for providing the manually curated gold standard
dataset of labeled Medline abstracts.

References

[1] Sylvain Arlot and Alain Celisse. A survey of cross-
validation procedures for model selection. arXiv
preprint arXiv:0907.4728, 2009.

[2] American Psychiatric Association et al. Diagnostic
and statistical manual of mental disorders (DSM-
5 R©). American Psychiatric Pub, 2013.

93

Figure 6: Optimized performance for multilabel
Artificial Neural Networks (ANN) classifier showing the
Area Under Receiver Operating Characteristic curve
(AUROC) for each of the 26 RDoC constructs.

Figure 7: Optimized performance with separate
multilabel Artificial Neural Networks (ANN) classifiers
for each domain showing the Area Under Receiver
Operating Characteristic curve (AUROC) for each of
the 26 RDoC constructs.

[3] Viv Bewick, Liz Cheek, and Jonathan Ball. Statis-
tics review 13: Receiver operating characteristic
curves. Critical Care, 8(6):508, Nov 2004.

[4] Aaron M Cohen. An effective general purpose
approach for automated biomedical document clas-
sification. AMIA Annual Symposium proceedings.
AMIA Symposium, 2006:161–5, 2006.

[5] Bruce N Cuthbert. The RDoC framework:
facilitating transition from ICD/DSM to dimen-
sional approaches that integrate neuroscience and

psychopathology. World Psychiatry, 13(1):28–35,
2014.

[6] Lynette Hirschman et al. Text mining for the
biocuration workflow. Database, 2012:bas020,
2012.

[7] Jina Huh et al. Text classification for assisting
moderators in online health communities. Journal
of Biomedical Informatics, 46(6):998–1005, dec
2013.

[8] Thomas Insel et al. Research Domain Criteria
(RDoC): Toward a New Classification Framework
for Research on Mental Disorders. American
Journal of Psychiatry, 167(7):748–751, jul 2010.

[9] Thomas R Insel. The NIMH research domain
criteria RDoC project: precision medicine for
psychiatry. American Journal of Psychiatry,
171(4):395–397, 2014.

[10] Carolyn E Lipscomb. Medical subject headings
MeSH. Bulletin of the Medical Library Association,
88(3):265, 2000.

[11] Meenakshi Mishra, Jun Huan, Said Bleik, et al.
Biomedical text categorization with concept graph
representations using a controlled vocabulary. In
Proceedings of the 11th International Workshop on
Data Mining in Bioinformatics - BIOKDD ’12,
pages 26–32, New York, New York, USA, 2012.
ACM Press.

[12] World Health Organization. The ICD-10 classifica-
tion of mental and behavioural disorders: clinical
descriptions and diagnostic guidelines, volume 1.
World Health Organization, 1992.

[13] F. Pedregosa et al. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[14] Anthony Rios and Ramakanth Kavuluru. Con-
volutional neural networks for biomedical text
classification. In Proceedings of the 6th ACM
Conference on Bioinformatics, Computational
Biology and Health Informatics - BCB ’15, pages
258–267, New York, New York, USA, 2015. ACM
Press.

[15] Peng Wang, Alexander A Morgan, Qing Zhang,
Alessandro Sette, and Bjoern Peters. Automating
document classification for the Immune Epitope
Database. BMC Bioinformatics, 8(1):269, jul 2007.

94

The Flashing-Decision-Trees: Towards an Intelligent Seizure Prediction System

Arwa Ali Al-Rubaian
Computer Science Department, College of

Computer and Information Science, King Saud
University

Riyadh, Saudi Arabia
aalrubaian@ksu.edu.sa

Ghada Badr

IRI -The City of Scientific Research and
Technological Science Applications

Alex, Egypt
badrghada@hotmail.com

Abstract

 Epileptic seizures are abnormal discharges of
neuronal populations causing sudden disturbances in the
brain’s cerebral electrical activities. The electrical activity
of the brain is measured via sensors placed on the scalp, or
implanted on the brain tissue that produce a stream of non-
stationary Electroencephalography (EEG). Epileptic
seizures are well known to have high inter and intra-patient
variability, making their classification via EEG a complex
task.

The aim of this research is to design and develop a real-
time seizure prediction model (Flashing Decision Trees)
that is capable of identifying seizures before their onset. The
Flashing-Decision-Trees classification model for EEG data
(FDT-EEG) diminishes the classification errors that are
caused by the intra-patient variability of the seizure patterns
by exploiting and adapting two bio-inspired metaheuristics,
namely the genetic algorithm and the firefly optimization at
different stages of the proposed model.

Keywords: Seizure detection, Epilepsy,
Electroencephalography (EEG), Bio-inspired
metaheuristics, firefly optimization, genetic
algorithm.

1 Introduction

Epilepsy is one of the prevalent and diverse neurological

disorders affecting people of all ages. Approximately 50
million people worldwide are diagnosed with epilepsy, in
which 30% of these patients don’t respond to medication
[1]. Epilepsy is a chronic disorder of the brain characterized
by recurrent unprovoked seizures. A seizure can be defined
as a brief episode of uncontrolled excessive activity of a part
or all of the central nervous system that may cause abnormal
movements or behavior sometimes accompanied by loss of
conscious [2]. These unpredictable seizures are a major
source of anxiety for individuals with epilepsy due to the

possibility of experiencing injuries or even life-threating
situations if an episode strikes in the middle of a critical
daily life activity such as driving or swimming. As a result,
many researchers devoted their efforts toward evaluating
seizures and predicting its occurrences, with the motivation
that any system capable of predicting the occurrence of
seizures in advance can improve the therapeutic treatments
and improve the quality of epilepsy patients’ life by helping
them to adjust their preventive behavior.

Electroencephalography (EEG) is the recording of
electrical activity along the scalp. It is the most convenient
technique for predicting epileptic seizure episodes [3].

In this research, we propose a novel self-learnable seizure
prediction system capable of discovering on-line patient
specific classification models. The learning phase of the
model uses two bio-inspired metaheuristics, namely the
genetic algorithm [4] and the firefly optimization algorithm
[5] that both have been adapted to fit the classification task.

The remaining of this paper is organized as follows: The
following section describes the methodology and the basic
algorithm of the proposed model. Section three summarizes
the experimental results. The last section concludes our
work.

2 Methodology

 In this section we explain the Flashing-Decision

Trees algorithm, which is an adaptable self-learnable
classification model that has the required intelligence to
produce patient specific classifiers capable of predicting
epileptic seizures before their occurrence. The proposed
approach solves both the problem of intra-patient variability
and the class imbalance problem resulting in a more accurate
classifier. Moreover, the pre-processing, feature extraction,
and classification process uses techniques having minimal
time complexity, allowing the classifier to provide results in
real-time.

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

95

2.1 Data Acquisition

The Intracranial EEG (iEEG) data used in this study was
recorded from five epileptic canines with naturally
occurring generalized seizures. The dogs were maintained
on anti-epileptic medications during this study. The
recorded signals were read and transmitted by an implanted
mobile intracranial EEG monitoring devices.

Figure1. Approximate placement of the 16 implanted electrodes
[6]

The implanted telemetry device contains a bilateral of 16
electrodes arranged in a set of two strips of 4 electrodes that
were placed on either side of the cortex. All iEEG data was
recorded at 400Hz. The electrodes placement is illustrated
in Figure1.

The data is sequentially recorded and organized into 600
-second data segments, each segment belonging to a single
seizure stage. Expert readers annotated the entire iEEG data.
Provided preictal segments cover one hour preceding the
seizure onset, leaving out a 5 minute horizon directly before
the seizure to ensure that seizures can be predicted with
enough time for the subject to take appropriate action.

This dataset was developed by the University of
Pennsylvania and the Mayo Clinic and is freely available on
the iEEG portal.[6]

Several clinical studies have highlighted the high
similarities between the symptoms and underlying nature of
elliptical episodes experienced by dogs and humans[7-9].
Due to the limited and restricted availability of annotated
human EEG signals, we used the elliptical canines for the
proof of concept.

2.2 Feature Extraction

First, the iEEG stream was segmented using a 200-
second sliding window. Each window was preprocessed in
three different ways:

Differential Window:

To remove artifacts, a low pass Gaussian filter with a

frequency equal to the EEG sampling frequency was applied
separately on every channel of the raw EEG signals. Then,
the second derivate of each channel was calculated
separately using a normalization factor of 1/1000.

Fourier Transformation:

Fourier transformation was applied on each channel
separately. It is clearly evident that the similarity between
all EEG signals tends to increase as they reach their Direct
Current (DC) component, making the higher frequencies
more descriptive. Thus to decrease the dimensionality only
d largest frequencies where used to extract the feature vector
(where d is a design parameter that have been set to provide
the maximum efficiency).

Wavelet Transformation:

Wavelets are mini waves that tend to fade to zero. The
concept was first introduces by Haar in the early 1900s [10].
Adeli et. [11] Observed that the Daubechies order 4-wavelet
is the most suitable mother wavelet for EEG analysis. In our
research, continuous wavelet transformation was applied
separately on every channel, using the Daubechies order 4-
wavelet as mother wavelet.

Second, three feature vectors (one for each preprocessing
method) was created. Each feature vector consists of
appropriate statistical measures measured over each sliding
window.

A genetic-based feature selection approach adopted from
the work proposed by Oluleye B. etc. [4] is then used to
choose the most significant features for the current patient
from each class of features.

2.3 Classification Model

The C4.5 algorithm [12] is used to construct three
different rule-based classification models, each using a
single subset of features obtained from the genetic
algorithm. The single decision trees are formulated as a
decision forest, which is then combined and reduced to a
single classification tree using a firefly optimization
algorithm that is adapted to suit the classification task.

2.4 The firefly optimization phase

The firefly optimization algorithm (FA) [5] is a
population-based algorithm that mimics the flashing and
communication behavior of fireflies. In the simulating
algorithm, every firefly represents a full decision tree and a
potential classification model. The amount of light produced
by the firefly is proportional to its fitness function.

96

Fitness	(FFi)	=	accuracyRatio	x	(#	true	positive	
+	#	true	negative)/	total	number	of	instances	+	

#true	positive/	number	of	preictal	x	
sensitivityRatio	

(1)

The fitness function in our proposed model is given by
equation (1) in which a higher ratio is assigned to the
accuracy. The accuracy and sensitivity ratios are randomly
selected at each iteration with restricting the sensitivity
ration to be in the range [0, 0.4] and the accuracy ratio to be
the complement of the sensitivity ratio calculated as: 1 –
sensitivity ratio.

Fireflies are attracted, and thus move towards brighter
fireflies. The amount of light a firefly perceives is inversely
proportional to the distance between the two fireflies, due to
natural phenomena of light loss as it travels through a
horizon. The base algorithm is listed in Algorithm1 .[5]

Algorithm 1: Firefly optimization
generate initial population of
fireflies xi(i=1,2,3,...,n)
while (t < MaxIterations)  

Measure and update the light
intensity of all fireflies.

  Sort the fireflies (descending
order) based on their light
intensity

 for i=1:n (all fireflies)
 for j=1:n (all fireflies)  

 if (LightIntensityi <
LightIntensityj –
Distance(fireflyi, fireflyj)
&& fireflyi has moved <
maxAllowedMovment)

 Move fireflyi towards
fireflyj
 End If
 End for j
 End for i
End while
Rank all fireflies and find the best
solution

Finally, upon termination of the firefly algorithm the
firefly having the highest fitness is announced as the
resulting combined decision tree and is then used to classify
new data instances into interictal or preictal signals.

3 Experimental Setup

Experiments were conducted on all five subjects of
the dataset explained in section 2.1. Two thirds of each
subject’s EEG stream is used for training the model and the
remaining third is reserved as a blind testing sample. The
performance measures are based on ten different executions.
All classifiers used in the comparison are given the same
feature set (chosen by the genetic algorithm) as an input.

4 Experimental Results

Compared to other work in the literature the Flashing-
Decision Trees algorithm for EEG signals (FDT-EEG) have
proven its effectiveness in balancing the sensitivity and
specificity ratios regardless of how great the imbalance
between the classes was in the original data. Although the
work proposed by An.J etc. [10] selects a poor sample of the
data consisting of 5 hours of preictal recordings along with
equal duration of interictal data (i.e balancing the classes
prior to the learning phase), and the FDT-EEG uses the
entire recordings consisting of 5 hours of preictal signals and
75 hours of interictal data, the results are almost comparable.
The FDT-EEG model was able to tackle the class imbalance
problem; providing even better overall accuracy, and falling
back by around only 10% in sensitivity.

Moreover, various experiments conducted on the same data
set have proven that given a feature set, the FDT-EEG model
constructs a more balanced and effective model than its
benchmark competitors: The Weka implementation of the
C4.5 decision tree based classifier allowing pruning with a
confidence factor of 0.25 [12] and the Weka implementation
of the cost sensitive support vector machine classifier LIB-
SVM with a Radial Basis Function kernel of degree 3 [14].
Performance measures including accuracy, sensitivity, and
specificity detailed in Table 1 have been used to compare
these models.

Table 1 Performance comparison of the FDT-EEG with
benchmark classifiers

Subject Classifier Accuracy Sensitivity Specificity

 Dog 1

C4.5 88.89% 0.00% 93.33%
SVM 95.24% 0.00% 100%

FDT-EEG
(Best) 88.49 % 20.83 % 91.88 %

FDT-EEG
(Average) 87.66 % 10.83 % 91.50 %

 Dog 2

C4.5 92.82% 21.43% 98.80%
SVM 92.27% 0.00% 100%

FDT-EEG
(Best) 82.32 % 33.33 % 86.43 %

97

FDT-EEG
(Average) 83.02 % 16.90 % 88.56 %

 Dog 3

C4.5 93.78% 0.00% 98.47%
SVM 95.24% 0.00% 100%

FDT-EEG
(Best) 92.46 % 16.67 % 96.25 %

FDT-EEG
(Average) 91.49 % 9.03 % 95.62 %

 Dog 4

C4.5 85.60% 8.08% 95.15%
SVM 89.04% 0.00% 100%

FDT-EEG
(Best) 86.27 % 21.21 % 94.28 %

FDT-EEG
(Average) 84.46 % 13.23 % 93.23 %

 Dog 5

C4.5 91.46% 26.67% 95.78%
SVM 93.75% 0.00% 100%

FDT-EEG
(Best) 92.08 % 66.67 % 93.78 %

FDT-EEG
(Average) 91.88 % 41.67 % 95.22 %

The final classification accuracy of the produced model is
highly dependent on the used feature vector. In which the
FDT-EEG heuristically selects an optimal highly
descriptive, patient specific feature vector using the genetic
algorithm. Moreover, the simple IF- THEN representation
of the final model adds understandability to it, and allows
the justifiability of the classification results.

5 Conclusion

In this research we proposed a novel seizure prediction
system (FDT-EEG) that combines metaheuristics namely,
the genetic algorithm and the firefly optimization algorithm
along with the rule-based classifier to produce an intelligent
classification model capable of transferring and customizing
a base classification model into patient specific classifiers,
diminishing the classification error caused by the broad
intra-patient variability of the seizure patterns. Several
modifications were applied on both metaheuristics to fit
their purpose in the proposed model. Results and
observations prove the effectiveness of the proposed model
in the classification of class imbalanced problem especially
when the minor class is of much more importance, as in the
problem of seizure prediction.

As for future work, The Flashing-Decision-Trees
classification can be enhanced in several ways. We would
like to investigate the effect of changing the formulation of
the initial population of the firefly optimization step making
it consist of initial decision trees constructed from a single
rule. We would also like to investigate the possibility of
using other linear bimodal feature selection methods and

bivariate features such as pearson correlation that may
provide better description of the preictal signals.

Obtaining real clinical data from epileptic patients and using
it to evaluate the performance of the FDT-EEG model, and
measure its applicability in remote health care is of high
interest, and is among the near future plans.

References

1. W. H. Organization, “WHO | Epilepsy,” 2015.  
2. “Epilepsy Information Page: National Institute of

Neurological Disorders and Stroke (NINDS).”
 [Online]. Available:
http://www.ninds.nih.gov/disorders/epilepsy/epilepsy.ht
m. [Accessed: 19-Oct-  2015].  

3. “Types of Seizures | The Johns Hopkins Epilepsy
Center.” [Online]. Available:
 http://www.hopkinsmedicine.org/neurology_neurosur
gery/centers_clinics/epilepsy/seizures/types/.
 [Accessed: 19-Oct-2015].  

4. B. Oluleye, A. Leisa, and D. Dean, “A Genetic
Algorithm-Based Feature Selection,” Br. J. Math.
 Comput. Sci., vol. 5, no. 4, pp. 899–905, 2014.  

5. X. Yang, “Firefly Algorithms for Multimodal
Optimization,” pp. 169–178, 2009.  

6. “iEEG portal.”  
7. Berendt, M., Gulløv, C. H., Fredholm, M. (2009) Focal

epilepsy in the Belgian shepherd: evidence for simple
Mendelian inheritance. Journal of Small Animal Practice
50, 655-661

8. Weissl, J., Hülsmeyer, V., Brauer, C., et al. (2012)
Disease progression and treatment response of idiopathic
epilepsy in Australian Shepherd dogs. Journal of
Veterinary Internal Medicine 26, 116-125

9. Uriarte A, Maestro Saiz I. Canine versus human
epilepsy: are we up to date? J Small Anim Pract
2016;57:115–121.

10. C. Charles K., An Introduction to Wavelets. Academic
Press, San Diego, 1992.  

11. H. Adeli, Z. Zhou, and N. Dadmehr, “Analysis of EEG
records in an epileptic patient using wavelet  transform,”
vol. 123, pp. 69–87, 2003.

12. H. Du, Data Mining Techniques and Applications An
Introduction. Cengage Learning, 2010.    

13. J. An, A. Bearman, and C. Dong, “Predicting Seizure
Onset in Epileptic Patients Using Intracranial EEG
Recordings.”

14. C. Chang, C. Lin, LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and
Technology, vol. 2, 2011.

98

K-means-based Feature Learning for Protein Sequence Classification

Paul Melman and Usman W. Roshan
Department of Computer Science, NJIT

Newark, NJ, 07102, USA
pm462@njit.edu, usman.w.roshan@njit.edu

Abstract

Protein sequence classification has been a major
challenge in bioinformatics and related fields for some
time and remains so today. Due to the complexity
and volume of protein data, algorithmic techniques
such as sequence alignment are often unsuitable due
to time and memory constraints. Heuristic methods
based on machine learning are the dominant technique
for classifying large sets of protein data. In recent years,
unsupervised deep learning techniques have garnered
significant attention in various domains of classification
tasks, but especially for image data. In this study, we
adapt a k-means-based deep learning approach that was
originally developed for image classification to classify
protein sequence data. We use this unsupervised
learning method to preprocess the data and create
new feature vectors to be classified by a traditional
supervised learning algorithm such as SVM. We find
the performance of this technique to be superior to
that of the spectrum kernel and empirical kernel map,
and comparable to that of slower distance matrix-based
approaches.

keywords: Protein classification, Unsupervised learn-
ing, K-means

1 Introduction

Identifying protein functionality is one of the prin-
ciple challenges of modern biological sciences. While
there do exist precise alignment techniques such as
Smith-Waterman [15], due to their highly complex
structures and behaviors, modeling large sets of pro-
teins using deterministic methods is impractical, if
not impossible, with currently available technology.
Therefore, we must rely on heuristic techniques for
analyzing proteins. One way to elucidate the behavior
of a protein is to compare it to proteins with known
properties, via protein classification [14].

Over the course of evolutionary history, genes and
proteins with similar functionality diverge due to the
accumulation of mutations. As a result, analogous

proteins may become difficult to recognize. Through
the use of machine learning techniques, it is possible to
find relationships between protein sequences that would
otherwise be obscured.

2 Related Work

K-means is a clustering algorithm that is used to
partition points into k clusters based on the nearest
cluster mean, or centroid [10]. The use of K-means
clustering in image classification is based upon the
principle of representation learning. An image is broken
up into fragments by a sliding window, and these
fragments, along with fragments of all the other images
in the dataset, are then clustered by similarity. The
centroids of the clusters represent features learned from
the images, such as corners or diagonal lines. A new
feature vector representation of the original image can
then be created based on the presence or absence of
the various features [3] [4]. This technique has been
successfully employed in image classification tasks such
as distinguishing between bacterial colonies of different
species or identifying weeds [6] [17].

3 Methodology

3.1 Data & Materials

The data we use in this study originate from the
SCOP, CATH, COG, and 3PGK protein datasets [2]
[11] [18] [13]. The datasets and classification tasks were
obtained from the Protein Classification Benchmark
collection [16]. There are a total of 3242 classification
tasks across all the datasets. For the SVM classifier we
use the Scikit-learn Python library[12]. See Table 1 for
details.

The 3PGK dataset, which consists of sequences of
3-phosphoglycerate kinase from various species, has 10
tasks that consist of classifying sequences into kingdoms
based on phyla.

The SCOP dataset has three standard classification
task categories: Classification of sequences into super-

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

99

Table 1: Datasets

Dataset # seqs average # frags tasks task types
seq len (len 14)

3PGK 131 411 52137 10 1
CATH95 11373 150 1562581 1414 8
SCOP95 11944 173 1916986 1629 6

COG 17973 373 6467745 189 2

families based on families (246 tasks), classification
into folds based on superfamilies (191 tasks), and
classification into structural classes based on folds (377
tasks). There are also three 5-fold cross validation task
sets. The first consists of 98 superfamilies with five
random splits each of training and test data where the
positive examples come from one superfamily and the
negative examples are taken from all other superfamilies
for 490 total tasks. The same 5-fold split technique was
used for 58 folds for 290 total tasks, and for 7 structural
classes for 35 total tasks.

The CATH dataset has four standard classification
task categories: Classification into homology groups
based on similarity groups, with 165 tasks; classification
into topology groups based on homology groups (199
tasks), classification into architecture groups based on
topology groups (297 tasks), and classification into
structural classes based on architecture groups (33
tasks). There are also four 5-fold cross validation task
sets: By homology (375 tasks), by topology (235 tasks),
by architecture (95 tasks), and by structural class (15
tasks).

The COG dataset has two types of classification task.
In the first task category, the positive training sets
consist of prokaryote protein sequences representing a
particular biological function (COG), and the positive
test sets consist of eukaryote protein sequences rep-
resenting the same COG. The negative training set
consists of sequences representing other COGs. There
are a total of 117 tasks of this type. The second
category involves separating proteins belonging to the
kingdom Archaea from proteins belonging to any other
kingdom. There are 72 of these tasks.

These datasets also came with published benchmarks
that were computed by creating all against all BLAST
and Smith-Waterman distance matrices and an SVM
classifier.

3.2 Empirical and Spectrum Kernels

The first baseline method we use for this study is the
empirical kernel map. For this we use 3364 reference
protein sequences from the seed pairwise alignments in
PREFAB 4.0 [7]. The feature vector for each protein in
the dataset is created by aligning it to each reference

protein using BLAST [1]. Each dimension of the
final vector is the BLAST score of the alignment to a
different reference protein; therefore, the feature vector
for each protein has 3364 dimensions.

The second baseline we use is the spectrum kernel,
which creates a feature vector by counting the number
of occurrences of every possible amino acid triplet in
each sequence [9]. Both the spectrum kernel and
empirical kernel methods used an SVM classifier [5].

3.3 String-based K-means Feature
Learning

In this method we first produce fragments of every
protein sequence in a given dataset using a sliding
window approach (see Figure 1). We then cluster all
fragments using a string-based k-means (see number
of fragments in each dataset in Table 1). To compute
the centroid of each cluster, we find the mode of each
character position across all the fragments in that
cluster (Figure 2).

To compute the distance from a fragment to a
centroid we examine two different measures. First, we
use Hamming distance, where we compare the fragment
and centroid at each character position and count the
number of mismatches. A larger count represent more
dissimilar strings and therefore a greater distance. The
second distance measure we examine is based on the
BLOSUM62 matrix, which is derived from empirical
observations of amino acid substitution probabilities
[8]. The distance is represented by the negative of
the BLOSUM62 alignment score of the two strings.
The negative is used so that this algorithm optimizes
for the minimization of the distances between points
(fragments) and their nearest centroids, just as the
traditional K-means algorithm does.

Figure 1: An example of the fragmentation process with
fragment length 4 and a stride of 1.

To create a feature vector from the clusters, we use
a method that is a cross between the triangle encoding
and hard encoding schemes employed by Coates, Ng,
and Lee [4], as described in Equation (1). For each
fragment, we create a vector with k dimensions, where
k is the number of clusters. For the feature f that
corresponds to the index of the nearest centroid, the

100

Figure 2: The centroid sequence is created by taking
the mode character at each position.

Algorithm 1: String K-means Pseudocode

choose k random fragments as starting centroids
while i = 0; i < max iter; i+ + do

for Each fragment do
Find distance to each centroid
Assign to closest centroid

for Each cluster do
Calculate new centroid

if No change in centroids then
Break

value is set to the mean of the distance to that centroid
plus the mean of the distance to all centroids; for all
other features, the value is set to zero to create a
sparse vector with k dimensions. The vectors for all the
fragments of a protein sequence are then sum-pooled to
create the final feature vector for the sequence (Figure
3).

fk(x) =

{
µ(z) + zk if k = arg minj‖c(j) − x‖22
0 otherwise

(1)

where zk = ‖x− c(k)‖2.

We then train a linear support vector machine clas-
sifier on the feature vectors of the training dataset and
evaluate it on the test dataset. This is done for each
task in each task category based on the cast matrices
obtained from the benchmark database.

4 Results

4.1 Comparison of Parameters

We ran the deep K-means algorithm with 2000, 4000,
8000, and 16,000 clusters on the CATH dataset (Figure
4) and with 2000 and 8000 clusters on COG (Figure 11).
The results show a trend of improvement as the number
of features increases. We also found that fragment
length had little impact (Figure 5). These effects
mirror those of Coates, Lee, and Ng [4]. However,
unlike in Coates and Ng’s later analysis of the K-means
method for image classification, we did not experience

Figure 3: An illustration of how the feature vectors are
created. Hamming distance and hard encoding are used
in this example.

problems with imbalanced or empty clusters [3]. We
found that fragments became well distributed across
clusters without the need for any additional processing
(Figure 13). Additionally, we found that BLOSUM
distance was superior to Hamming distance (Figures
6 and 7). Clustering made up most of our run time
and, as expected, run time is longer for larger datasets
(Table 2).

Figure 4: Effect of number of features (centroids) on
CATH data.

4.2 Comparison to other Methods

We found that our K-means feature learning method
outperformed the empirical and spectrum kernels on
nearly every category of tasks. With 16,000 clusters,
the K-means approach outperformed the empirical
kernel map and the spectrum kernel on every task in

101

Figure 5: Effect of number of fragment length on CATH
data.

Figure 6: Effect of Hamming distance vs. BLOSUM
distance on 3PGK.

Figure 7: Effect of Hamming distance vs. BLOSUM
distance on CATH.

Table 2: Runtimes for clustering on Intel Xeon E5-2630-
v4 with 20 cores.

Dataset time (minutes)
3PGK (600 clusters) 4
CATH (16k clusters) 799
SCOP (16k clusters) 1068
COG (8k clusters) 4493

Table 3: Average areas under the ROC curve for various
methods. BLAST and SW are all vs. all BLAST and
Smith-Waterman distance matrices classified with SVM

Dataset K-means Empirical Spectrum BLAST SW
3PGK 0.964 0.906 0.887 0.919 0.923
CATH 0.870 0.819 0.847 0.860 0.924
SCOP 0.842 0.810 - 0.841 0.896
COG 0.949 0.910 0.944 0.923 0.931

CATH, and outperformed the all against all BLAST
matrix on all the standard classification task sets,
while under-performing slightly on the cross-validation
sets (Figure 9). Our method also outperformed the
empirical kernel on both COG sets and all but one
SCOP sets (Figure 10), and beat the spectrum kernel
on the Eukaryotes-Prokaryotes COG task set (Figure
11). Overall, our method had a higher average ROC
AUC than all other methods on the 3PGK (Figure 8)
and COG datasets, and beat all methods but all-vs-
all Smith-Waterman alignment on CATH and SCOP
(Table 3).

5 Discussion

Our K-means-based representation learning method
performs on par with state of the art protein classifica-
tion techniques. Overall, our method tends to outper-
form established methods on the standard protein clas-
sification tasks in the CATH and SCOP datasets, which
generally seem to be more difficult by virtue of the
lower performance by all methods, while slightly under-
performing against BLAST similarity matrix methods
on the 5-fold cross validation tasks (Figures 9 and
10). Our method under-performed against Smith-
Waterman similarity matrices on CATH and SCOP, but

Table 4: Wilcoxon p-values for CATH. K-means
performs significantly better than the spectrum kernel
and empirical kernel map.

CATH 16k clusters Spectrum Empirical
16k clusters - 0.008 <0.0001
Spectrum 0.008 - 0.003
Empirical <0.0001 0.003 -

102

Figure 8: Comparison of K-means to empirical kernal
map, spectrum kernel, and BLAST similarity matrix on
3PGK data.

Figure 9: Comparison of K-means to empirical kernal
map, spectrum kernel, and BLAST similarity matrix on
CATH data.

outperformed them on COG and 3PGK. This may be
due to the higher average sequence length of COG and
3PGK (as seen in Table 1).

Our method also shows promise in its ability to
generalize. Despite low similarity between the CATH
and COG sequence data, the features learned from the
COG data were nearly as useful in learning to classify
CATH proteins as features learned from CATH proteins
(Figure 12). This suggests that the features being
learned are generic protein features, though further
testing is required to establish just how general they are.
When applied to image data, K-means-based feature
learning is able to learn generic visual features such
as corners or lines or a particular orientation [4]. In
principle, the same should be possible for proteins.

Furthermore, our method has potential utility for

Figure 10: Comparison of K-means to empirical kernal
map and BLAST and Smith-Waterman similarity
matrices on SCOP data.

Figure 11: Results on COG data.

Figure 12: Comparison of classification performance
on CATH dataset of centroids trained on CATH vs.
centroids trained on COG.

103

Figure 13: Distribution of 3PGK fragments across 600
clusters.

protein alignment as well. It may be possible to use
it to classify and rank alignments to find the best ones.

Our code for fragmenting, clustering, and classifying
protein sequences is available at https://web.njit.

edu/~usman/kmeans_fl_protein/

6 Acknowledgment

We thank the NJIT Academic and Research Comput-
ing Systems Group (ARCS) for their support in running
experiments for this study.

References

[1] Stephen F Altschul et al. “Basic local alignment
search tool”. In: Journal of molecular biology
215.3 (1990), pp. 403–410.

[2] Antonina Andreeva et al. “SCOP database
in 2004: refinements integrate structure and
sequence family data”. In: Nucleic acids research
32.suppl 1 (2004), pp. D226–D229.

[3] Adam Coates and Andrew Y Ng. “Learning
feature representations with k-means”. In: (2012),
pp. 561–580.

[4] Adam Coates, Andrew Ng, and Honglak Lee. “An
analysis of single-layer networks in unsupervised
feature learning”. In: (2011), pp. 215–223.

[5] Corinna Cortes and Vladimir Vapnik. “Support-
vector networks”. In: Machine learning 20.3
(1995), pp. 273–297.

[6] Murat Dundar et al. “Simplicity of kmeans versus
deepness of deep learning: A case of unsupervised
feature learning with limited data”. In: (2015),
pp. 883–888.

[7] Robert C Edgar. “MUSCLE: multiple sequence
alignment with high accuracy and high through-
put”. In: Nucleic acids research 32.5 (2004),
pp. 1792–1797.

[8] Steven Henikoff and Jorja G Henikoff. “Amino
acid substitution matrices from protein blocks”.
In: Proceedings of the National Academy of Sci-
ences 89.22 (1992), pp. 10915–10919.

[9] Christina Leslie, Eleazar Eskin, and William
Stafford Noble. “The spectrum kernel: A string
kernel for SVM protein classification”. In: (2001),
pp. 564–575.

[10] Stuart Lloyd. “Least squares quantization in
PCM”. In: IEEE transactions on information
theory 28.2 (1982), pp. 129–137.

[11] Frances Pearl et al. “The CATH Domain Struc-
ture Database and related resources Gene3D and
DHS provide comprehensive domain family infor-
mation for genome analysis”. In: Nucleic acids
research 33.suppl 1 (2005), pp. D247–D251.

[12] F. Pedregosa et al. “Scikit-learn: Machine Learn-
ing in Python”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825–2830.

[13] J Dennis Pollack, Qianqiu Li, and Dennis K Pearl.
“Taxonomic utility of a phylogenetic analysis
of phosphoglycerate kinase proteins of Archaea,
Bacteria, and Eukaryota: insights by Bayesian
analyses”. In: Molecular phylogenetics and evolu-
tion 35.2 (2005), pp. 420–430.

[14] Rabie Saidi, Mondher Maddouri, and Engelbert
Mephu Nguifo. “Protein sequences classification
by means of feature extraction with substitution
matrices”. In: BMC bioinformatics 11.1 (2010),
p. 175.

[15] Temple F Smith and Michael S Waterman. “Iden-
tification of common molecular subsequences”.
In: Journal of molecular biology 147.1 (1981),
pp. 195–197.

[16] Paolo Sonego et al. “A protein classification
benchmark collection for machine learning”.
In: Nucleic Acids Research 35.suppl 1 (2006),
pp. D232–D236.

[17] JingLei Tang et al. “Weed identification based
on K-means feature learning combined with con-
volutional neural network”. In: Computers and
Electronics in Agriculture 135 (2017), pp. 63–70.

[18] Roman L Tatusov et al. “The COG database: an
updated version includes eukaryotes”. In: BMC
bioinformatics 4.1 (2003), p. 41.

104

Protein Mutation Stability Ternary Classification using Neural
Networks and Rigidity Analysis

Richard Olney,1 Aaron Tuor,2 Filip Jagodzinski1 and Brian Hutchinson1,2

1Western Washington University, Bellingham, WA, USA
2Pacific Northwest National Laboratory, Seattle, WA, USA

{filip.jagodzinski, brian.hutchinson}@wwu.edu

Abstract

Discerning how a mutation affects the stability of
a protein is central to the study of a wide range of
diseases. Machine learning and statistical analysis
techniques can inform how to allocate limited resources
to the considerable time and cost associated with wet
lab mutagenesis experiments. In this work we explore
the effectiveness of using a neural network classifier to
predict the change in the stability of a protein due to
a mutation. Assessing the accuracy of our approach
is dependent on the use of experimental data about
the effects of mutations performed in vitro. Because
the experimental data is prone to discrepancies when
similar experiments have been performed by multiple
laboratories, the use of the data near the juncture
of stabilizing and destabilizing mutations is question-
able. We address this later problem via a systematic
approach in which we explore the use of a three-way
classification scheme with stabilizing, destabilizing, and
inconclusive labels. For a systematic search of potential
classification cutoff values our classifier achieved 68
percent accuracy on ternary classification for cutoff
values of -0.6 and 0.7 with a low rate of classifying
stabilizing as destabilizing and vice versa.

Introduction

Performing an amino acid substitution in a protein may
induce a structural change that can have wide ranging
effects on the protein’s function. Discovering which
mutations are destabilizing and which are stabilizing
provides insights into many types of disorders, such as
sickle cell anemia [16] and some types of cancer [7],
and is important for understanding communicable and
highly mutable diseases (e.g. HIV [9], influenza [17]).

In vitro experiments are necessary to determine how
a mutation affects a protein’s function. However, these
experimental efforts come at considerable time and cost,
as a single mutagenesis experiment followed by X-ray
crystallography work may require weeks of wet lab

work. Moreover, because each residue in a protein can
in principle be one of 20 naturally occurring amino
acids, the set of all possible mutations is vast, so
computational tools for screening likely candidates for
investigation in a wet lab setting are desired.

We explore the use of a neural network classifier
for automatic inference of the effects of mutations.
The ground truth, obtained from wet lab experiments
recorded in the Protherm database [15], is in the form
of change of the Gibbs Free Energy (∆∆G) indicating
whether a mutation is destabilizing (negative ∆∆G)
or stabilizing (positive ∆∆G). Typical approaches
either predict the ∆∆G value given a specified mutation
(regression) [3, 6], or predict whether a mutation is
stabilizing or destabilizing (binary classification) [3].

Here we deal with ternary classification in which a
third “inconclusive” class is introduced. That class is
important because all available ∆∆G data is from wet-
lab work, and as with any physical experiment, there
is the chance of some inherent error. The use of a
∆∆G value close to 0 might cause a classifier to mis-
classify a stabilizing mutation as destabilizing or vice
versa, if indeed the reported true label is erroneous.
Mislabeled data is detrimental to training a model,
so we systematically performed many computational
experiments, testing the range of indeterminate values
to find an optimal inconclusive range for ∆∆G.

We trained deep neural network classification models
across a systematic search of the ∆∆G cutoff space.
Using the results of these experiments we generated
confusion matrices in order to assess the utility and
classification performance for each cutoff range. We
found several interesting trends and potential cutoff
ranges, which we present here via case studies.

Related Work and Motivation

The use of experimental stability data (∆∆G) is
prevalent in research that aims to offer computa-
tional techniques for assessing the effects of muta-
tions [14, 4, 12]. An often-cited source is the ProTherm

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

105

∆∆G lower val ∆∆G upper value Num Entries
-10 10 4184
-1 1 2157

-0.5 0.5 1364
-0.1 0.1 390

Table 1: Distribution of ∆∆G values among ProTherm
entries for which stabilizing information is available

database [15]. It provides information about the
proteins, mutations performed, wet lab conditions, and
stability measurements for 25,820 mutation experi-
ments reported on in the literature. Of those ProTherm
entries for which stability data is provided, the ∆∆G
values range from about -10 kCal/mol (indicating a
strongly destabilizing mutation), to approximately +10
kCal/mol (strongly stabilizing). The single inflection
value of zero ∆∆G designates that point on the real
number line where the effect of a mutation changes from
stabilizing to destabilizing.

In Table 1 we show the count of entries in ProTherm
for three separate ranges of ∆∆G values. Of the 4,184
entries with ∆∆G ranges between -10 and 10 kCal/mol,
1,364 of them are in the range [−0.5,+0.5]. Thus, a
large portion of ProTherm entries are for values where
experimental errors or instrument discrepancies might
mean that a recorded stabilizing mutation is indeed
destabilizing, and vice versa. It is for this reason
that experimental data for ∆∆G values in the range
[−0.5,+0.5] is often not used.

In addition, there are a number of entries in the
ProTherm database where identical experiments per-
formed by different labs have recorded opposite (stabi-
lizing versus destabilizing) results. Two examples :

• Cold shock Protein, ProTherm Entries 21797 and
21839, ∆∆G = -0.05 and +0.7, respectively

• Myoglobin Sperm Whale, ProTherm Entries 2092
and 2814, ∆∆G = -0.9 and + 0.1, respectively

The use of ∆∆G data, therefore, as values for
assessing and training a predictive model, must be done
with care. For this reason, we report the predictive
power of our machine learning model in the context of
a systematic approach of varying the ∆∆G values des-
ignating boundaries between three classification labels.

Methodology

Here we summarize rigidity analysis and describe
how we generate features and labels for training our
neural network classifier machine learning model, and
the experiment setup for evaluating the model.

(a) Cartoon (b) Rigidity Analysis

Figure 1: Rigidity analysis (PDB 1HVR) identifies rigid
clusters. Orange is the largest cluster with 1,371 atoms.

Rigidity Analysis

To help reason about the effects of mutations, we
take an approach that relies on a fast algorithm for
assessing the rigidity of a protein [8, 11]. In rigidity
analysis, atoms and their chemical interactions are used
to construct a mechanical model, a graph is constructed
from the model, and pebble game algorithms [10] are
used to analyze the rigidity of the associated graph.
The results are used to infer the rigid regions of the
protein (Figure 1). We rely on the KINARI rigidity
software for performing rigidity analysis [8].

Mutants, Rigidity Distance

To generate in silico mutant structures corresponding
to the mutation data in ProTherm, we used our
ProMuteHT [2] software. In this study, we rely on
the rigidity analysis results of the wild type (non-
mutated protein), and a mutant, to assess the effects
of a mutation. In our previous work [1, 6], we
used an RDWT→mutant rigidity distance metric to
quantitatively assess the impact of mutating a residue
to one of the other 19 naturally occurring amino acids:

RDWT→mutant :
∑i=LRC

i=1 i× [WTi −Muti]

where WT refers to Wild Type, Mut refers to mutant,
and LRC is the size of the Largest Rigid Cluster (in
atoms). Each term of the summation RDWT→mutant

metric calculates the difference in the count of a specific
cluster size, i, of the wild type and mutant, and weighs
that difference by i.

Wet Lab Mutation Data – ∆∆G

Labels (∆∆G) and metadata (pH, temperature, etc.)
of mutations were retrieved from the ProTherm [15]
database of mutation experiments. The rigidity fea-
tures for each mutant and wild type were generated by
rigidity analysis using the KINARI software. A total
of 2, 072 data points from ProTherm meet the criteria

106

Figure 2: The form of a feature vector as input
to the DNN. It consists of experiment meta data,
such as Solvent Accessible Surface Area (SASA), pH,
and temperature, concatenated with the rigid cluster
frequencies of both wild type and mutant proteins.

for our experimental setup (i.e., single chain proteins,
single mutations, any value of ∆∆G). The input to
our model is shown in Figure 2. The data set of 2,072
proteins is split into a training set of 1,438 proteins for
fitting a classifier, a development set of 324 proteins
for finding the best neural network configuration, and
a test set of 310 proteins to test generalization error.

Deep Neural Network Classifier

A deep neural network (DNN) classifier is a param-
eterized function mapping a real valued vector to a
probability distribution over a set of classes. We model
the probability distribution over classes of mutation as
stabilizing, destabilizing, or inconclusive, as a function
of the rigidity analyses and experimental conditions,
using a DNN with L hidden layers, h(1),h(2), . . . ,h(L).
This neural network classifier takes as input a feature
vector x (Fig. 2) which we alternatively denote as as
h(0). The classifier outputs a probability vector p ∈ R3,
the elements of which are calculated as:

pk =
exp(ok)∑3
j=1 exp(oj)

, where (1)

o = Uh(L) + a and (2)

h(`) = f(W(`)h(`−1) + b(`)). (3)

where hidden activation function f is one of three non-
linear functions operating elementwise on matrices; the
hyperbolic tangent function (tanh), the logistic sigmoid
function, or the rectified linear unit function (ReLU).
The trainable parameters are the L hidden weight
matrices (W), L bias vectors (b), and the output layer
weights and bias U and a.

All model parameters were trained with the Adam
optimization algorithm [13], a variant of stochastic
gradient descent. The training loss is the cross-entropy
between the true distribution as determined by incon-
clusive bounds and the DNN’s predicted distribution.

The DNN hyper-parameters are model choices which
cannot be learned via the training data through gra-
dient descent. They are instead selected by evaluating
models on the held out development set which is distinct
from the training data and the testing set. The model

choices we select in this fashion are the number of
hidden layers, the size of each hidden layer (dimensions
of the weight matrices W), the hidden activation
function, and finally, the mini-batch size and learning
rate used in stochastic gradient descent optimization.

We developed and trained our model architecture
using the Tensorflow [5] Python library. Due to the
small data set and GPU acceleration for computation,
it takes under a minute to train a typical model.

Class Labels

As already mentioned, the ∆∆G values in ProTherm
– especially those near zero – must be used with caution.
To help determine which range of ∆∆G values should
delimit stabilizing, destabilizing, and inconclusive mu-
tations, we employed a principled approach by training
models across a systematic set of different inconclusive
ranges to train the best predictive model.

Class labels are represented as probability distribu-
tions over the three classes, i.e. real valued vectors in
R3 that contain non-negative values and sum to one. A
label for ∆∆G classification has one element as 1 and
the other elements are zero. So, [1 0 0]T corresponds
to a ∆∆G score which is negative and outside the range
of indeterminacy (a destabilizing mutation), [0 1 0]T

corresponds to an inconclusive ∆∆G score inside the
range of indeterminacy, and [0 0 1]T corresponds
to a ∆∆G score which is positive and outside the
range of indeterminacy (a stabilizing mutation). To
make a prediction from our model’s predicted class
distribution, p, we pick the most probable index.

Our ultimate goal is to find a pair of ∆∆G values for
which a model can be trained to correctly predict the
true labels that those cutoffs would create. For example
if the ∆∆G value of an experiment is reported to be -
0.8, and our model’s ∆∆G cutoffs were -0.6 and 0.7,
the true label for that mutation would be destabilizing
and a correct prediction from our model would also be
destabilizing. For our best model, predictions should
match true labels as closely as possible.

Experimental Setup

In order to assess our model’s effectiveness at clas-
sification for different inconclusive bounds, we trained
100 DNN models with random hyper-parameter con-
figurations (the same configurations were used for all
cutoff ranges). We normalized ∆∆G by dividing all
values by 10, and executed a triangular grid search of
cutoff ranges equivalent to -2.0 to 2.0, stepping by 0.1,
in unnormalized ∆∆G, for a total of 820 cutoff ranges.
All 100 hyper-parameter configurations were assessed
for each range, for a total of 8,200 configurations.

107

Figure 3: Test set confusion matrix for cutoffs -0.5, 0.5.

Confusion Matrices

For each of the 820 cutoff ranges, we identified the
DNN model which achieved the best development set
accuracy, and generated a confusion matrix for those
model’s predictions on the held out test set. Confusion
matrices are a method of visualizing the performance
of the classification algorithm. They contain the same
classes on the vertical and horizontal axis, with the
vertical axis indicating true labels for each class and the
horizontal axis indicating the model’s class predictions.
Figure 3 is the confusion matrix generated by the classic
heuristic for inconclusive ∆∆G of -0.5 to 0.5. The
darker the color the more predictions fall into that
intersection of true label and predicted label. A perfect
classification model would have predictions only in the
top left, center, and bottom right squares.

In addition to the standard metrics of a model’s
accuracy in predicting the correct class, the confusion
matrices offer insights in cases when a model is mis-
classified. They allow us to assess Type I and Type II
errors, false positive and false negative classifications,
and also permit seeing how those incorrect classifica-
tions are being classified. This additional information
enables assessing whether a particular mis-classification
is more detrimental than another. For instance it may
be better if a model is less accurate overall, but predicts
very few unstable mutations as stabilizing and vice
versa, but has a slightly higher than ideal tendency to
label mutations as inconclusive.

Results and Discussion

Table 2 reports hyper-parameters as well as several
performance metrics for our models. The confusion
matrices shown in Figures 3–6 further elucidate these
models’ performances.

Figure 4: Test set confusion matrix for cutoffs -2.0, -1.9.

Figure 5: Test set confusion matrix with an unrealistic
inconclusive range (-2.0,2.0) where most mutations are
labeled as inconclusive.

We first note that when the vast majority of the
∆∆G values fall within a single region determined
by the cutoff boundaries, a classification model can
trivially achieve high accuracy by learning to predict
the majority class. However, labels thus determined
may be impractical for scientific pursuits. These
situations are characterized by a high proportion of
data points which fall into the majority class giving a
high majority class accuracy (macc), which is indicated
in Table 2. One such example is given in Figure 4 which
has a small range of indeterminacy, [−2,−1.9], with a
large negative offset. For these bounds, macc = 91%,
with only 6 inconclusive examples and 21 destabilizing
examples. We can see from the confusion matrix that all
examples were predicted as stabilizing mutations giving
a 91% accuracy which amounts to a clearly unhelpful
classifier. Another example of ill-conditioned labeling is
shown in Figure 5. In this case the indeterminate range
is ostensibly too large, [−2, 2] as the model has learned
to classify most examples as inconclusive.

108

Hyper-parameters Range Metrics

Model mb lr hs nl ha L U loss acc macc ratio

Figure 3 64 0.01 689 1 sigmoid 0.5 0.5 0.96 0.54 0.36 1.51
Figure 4 64 0.01 63 1 sigmoid -2.00 -1.9 0.29 0.91 0.91 1.00
Figure 5 32 0.09 854 3 ReLU -2.0 2.0 0.31 0.92 0.92 1.0
Figure 6 64 0.07 361 1 sigmoid -0.5 0.7 1.15 0.61 0.48 1.28
Figure 7 128 0.01 604 1 sigmoid -0.4 0.4 0.84 0.60 0.37 1.61

Table 2: Configuration and results for case study models. mb denotes minibatch size; lr denotes learning rate; hs
denotes hidden layer size; nl denotes number of layers; ha denotes hidden activation function; L and U denote lower
and upper cutoff ranges; loss denotes average test set cross-entropy between true and predicted values; acc denotes
accuracy; macc denotes majority class accuracy; ratio is acc/macc.

Figure 6: Test set confusion matrix for cutoffs -0.5 and
0.7, where false positive and false negative errors (top-
right and bottom-left, respectively) are minimized.

Figure 3 shows performance for ternary classification
using the traditional ∆∆G range for exclusion of
examples, [−0.5, 0.5]. If we exclude the somewhat
innocuous mistakes of examples which are incorrectly
classified as inconclusive, along with the examples
labeled as inconclusive which would be excluded in
the traditional approach in the first place, and attend
only to egregious mis-classification of stabilizing as non-
stabilizing and vice-versa we achieve a 92.2% accuracy.
From this method of preference, running counter to
common practice, the optimal ranges for excluding
∆∆G are not necessarily centered on zero.

For instance, based on this criterion of binary pre-
dictions within the ternary classification schema, the
best cutoff classification range from our experiments is
shown in Figure 6 with an inconclusive range [−0.5, 0.7],
giving a 94.4% accuracy for the binary subset classifi-
cation task. On the same test set, for the ternary task,
that model achieved an accuracy of 61%. Upon initial
assessment this performance does not seem great on
its own, but we are more concerned with the model’s
classification of a destabilizing mutation as a stabilizing

Figure 7: Test set confusion matrix for cutoffs -0.4 and
0.4, where the ratio of accuracy to majority class is
maximized.

one, and vice versa, than we are of it mis-classifying
an inconclusive mutation. In this case we see that
for this cutoff range the model yields impressive mis-
classification rates of 2% for destabilizing to stabilizing
and 4% for stabilizing to destabilizing. Such low rates
of mis-classification across the inconclusive zone help
motivate these findings and suggest that this range is a
potentially good ∆∆G cutoff set.

On the other hand, another promising criterion for
optimal cutoff is be the ratio of accuracy (acc) to
majority class accuracy, ratio = acc

macc
, also displayed in

Table 2. For any acceptable model this value should be
greater than 1, with larger values being better. Figure 7
shows performance for a model with inconclusive range
[−0.4, 0.4] and a significantly higher ratio value than
the traditional cutoff

Conclusion and Future Work

As an extension on our prior work we were interested
in assessing the potential of a deep neural network

109

for classifying the effects of mutations. We performed
a systematic search of the ∆∆G classification cutoff
ranges in order to assess the potential viability of a
deep neural network ternary classification approach to
predicting of mutation affects. Rather than simply
accept the general heuristic for classification boundaries
of stabilizing, destabilizing or inconclusive, we strove for
a more systematic approach. While our findings suggest
that the heuristic of -0.5 to 0.5 is not a poor choice by
any means, we proposed some compelling arguments for
choosing other ranges as boundary conditions for ∆∆G
values, namely it is most important to minimize false
positive and false negative rates on the ternary task,
and maximizing the ratio of accuracy to majority class
accuracy are both more important metrics to consider
besides accuracy.

For future work we plan to develop robust algorithmic
approaches to assess the likely cutoff ranges in ML-
based models. We are currently in the development of
an end-to-end differentiable approach to jointly learn
an optimal cutoff range alongside DNN parameters,
as opposed to relying on a parameter sweep as in
the current work. Also, expanding our data set with
additional mutation ∆∆G data – data for proteins with
multiple mutations – will likely enhance the DNN’s
learning and ultimately increase accuracy. We also
hope to expand our study into other machine learning
algorithms.

Acknowledgments

The authors would like to thank the Nvidia corpora-
tion for donating a Titan Xp GPU used in this research.

References

[1] E. Andersson, R. Hsieh, H. Szeto, R. Farhoodi N.
Haspel, and F. Jagodzinski. Assessing how multiple
mutations affect protein stability using rigid cluster size
distributions. In Proc ICCABS, pages 1–6, 2016.

[2] E. Andersson and F. Jagodzinski. ProMuteHT : A high
throughput compute pipeline for generating protein
mutants in silico. In Proc. CSBW, 2017.

[3] Emidio Capriotti, Piero Fariselli, and Rita Casadio. I-
mutant2. 0: predicting stability changes upon mutation
from the protein sequence or structure. Nucleic acids
research, 33(suppl 2):W306–W310, 2005.

[4] Chi-Wei Chen, Jerome Lin, and Yen-Wei Chu. iStable:
off-the-shelf predictor integration for predicting protein
stability changes. BMC bioinformatics, 14(2):S5, 2013.

[5] Mart́ın Abadi et al. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[6] Roshanak Farhoodi, Max Shelbourne, Rebecca Hsieh,
Nurit Haspel, Brian Hutchinson, and Filip Jagodzinski.
Predicting the effect of point mutations on protein
structural stability. In Proc. ACM-BCB, pages 247–
252, 2017.

[7] Maria E Figueroa, Omar Abdel-Wahab, Chao Lu,
Patrick S Ward, Jay Patel, Alan Shih, Yushan Li, Neha
Bhagwat, Aparna Vasanthakumar, Hugo F Fernandez,
et al. Leukemic IDH1 and IDH2 mutations result in a
hypermethylation phenotype, disrupt TET2 function,
and impair hematopoietic differentiation. Cancer cell,
18(6):553–567, 2010.

[8] N. Fox, F. Jagodzinski, and I. Streinu. KINARI-Lib:
a C++ library for pebble game rigidity analysis of
mechanical models. In Minisymposium on Publicly
Available Geometric/Topological Software, Chapel Hill,
NC, USA, June 2012.

[9] Jianglin He, Sunny Choe, Robert Walker, Paola
Di Marzio, David O Morgan, and Nathaniel R Landau.
Human immunodeficiency virus type 1 viral protein R
(Vpr) arrests cells in the G2 phase of the cell cycle
by inhibiting p34cdc2 activity. Journal of virology,
69(11):6705–6711, 1995.

[10] D.J. Jacobs and B. Hendrickson. An algorithm for
two-dimensional rigidity percolation: the pebble game.
Journal of Computational Physics, 137:346–365, 1997.

[11] D.J. Jacobs, A.J. Rader, M.F. Thorpe, and L.A.
Kuhn. Protein flexibility predictions using graph
theory. Proteins 44, pages 150–165, 2001.

[12] Shuli Kang, Gang Chen, and Gengfu Xiao. Robust
prediction of mutation-induced protein stability change
by property encoding of amino acids. Protein
Engineering, Design & Selection, 22(2):75–83, 2008.

[13] Diederik Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[14] Tanja Kortemme and David Baker. A simple physical
model for binding energy hot spots in protein–protein
complexes. PNAS, 99(22):14116–14121, 2002.

[15] MD Shaji Kumar, K Abdulla Bava, M Michael
Gromiha, Ponraj Prabakaran, Koji Kitajima, Hatsuho
Uedaira, and Akinori Sarai. Protherm and pronit:
thermodynamic databases for proteins and protein–
nucleic acid interactions. Nucleic acids research,
34(suppl 1):D204–D206, 2006.

[16] Graham R Serjeant and Beryl E Serjeant. Sickle cell
disease, volume 3. Oxford university press New York,
1992.

[17] Novel Swine-Origin Influenza A H1N1 Virus and
Investigation Team. Emergence of a novel swine-origin
influenza a (h1n1) virus in humans. New England
Journal of Medicine, 2009(360):2605–2615, 2009.

110

Analysis of Energy Landscapes for Improved Decoy Selection in
Template-free Protein Structure Prediction

Nasrin Akhter1 Amarda Shehu1,2,3,‡
1Dept. of Computer Science, 2Dept. of Bioengineering, 3School of Systems Biology,

George Mason University, Fairfax, VA 22030
‡Correspondence: amarda@gmu.edu

Abstract
Decoy selection is the task of automatically

extracting near-native structures from an ensemble
of low-energy structures generated in silico by a
template-free method. Current research shows that
discriminating by energy misses near-native structures
and allows the inclusion of too many non-native struc-
tures. The predominant strategy is to ignore energy
and cluster structures by their similarity, offering the
top-populated clusters as prediction. In this paper we
show that energy can improve accuracy in decoy se-
lection when its inclusion is carried out under the en-
ergy landscape view. Specifically, we identify basins
in the energy landscape and demonstrate basin selec-
tion schemes to outperform clustering. The results are
promising and point to further directions of research
for improving decoy selection and decoy generation.

1 Introduction

The three-dimensional structure of a protein is
central to its biological activities in the cell. The native
structure to which the chain of amino acids constitut-
ing a protein molecule folds determines to which other
molecules the protein sticks and how stably it does
so [2]. With protein structure governing recognition
events, there is a growing need in the post-genomic
era for computational methods to predict native struc-
tures of millions of uncharacterized protein-encoding
gene sequences [1].

Template-free methods play an important role
in determining native protein structures [9]. They
operate in the absence of a template structure and
generate many low-energy structures (decoys) of a
given protein sequence under the umbrella of stochas-
tic optimization. Popular methods include Rosetta [6],
Quark [16], and others (e.g, based on evolutionary
computation [11, 12]). After generating decoys, one
needs to conduct decoy selection; the goal is to auto-
matically extract from the generated ensemble of de-
coys, those that are near-native. In a true blind pre-
diction setting, the true native structure is absent.

Decoy selection remains a challenging problem in
computational structural biology. Setting an energy

threshold either misses near-native structures or al-
lows the inclusion of too many non-native ones. The
predominant strategy is to organize decoys by their
structural similarity via clustering. The premise is
that structures most similar to others in a dataset are
more likely to be drawn from the region containing
the native structure. Once clustering has been per-
formed, the top k clusters, with common values of
k varying from 1 to 10, are typically offered as the
ones possibly containing the unknown native struc-
ture [8]. This strategy has varied success, and its util-
ity is tightly related to the quality of decoy generation
in the first place [8]. Recent, complementary lines of
research on decoy selection utilize machine learning
models trained on expert-constructed structural fea-
tures [10] or discriminate by protein-specific scoring
functions [5]. Currently, these lines of research suffer
from model transferability.

In this paper we show that energy is an important
aspect that can be leveraged to improve accuracy in
decoy selection. We show that the inclusion of energy
needs to be carried out in the context of the energy
landscape probed by the ensemble of decoys generated
by a template-free method. Specifically, utilizing spa-
tial data analytics, we identify basins in the energy
landscape and propose selection schemes that prove
superior to clustering. Our evaluation is stringent and
relies not only on the percentage of near-native struc-
tures contained in the top k basins or clusters, but on
the purity, which operationalizes the idea of minimiz-
ing the presence of false positives in what is offered
as prediction. The results are promising and point
to further directions of research not only for further
improving decoy selection but even the computational
methods generating decoys in the first place.

2 Method

A molecular energy landscape is a fitness land-
scape. A fitness landscape consists of a set X of points,
a notion N (X) of neighborhood, distance, or accessi-
bility on X, and a fitness function f : X → R≥0 that
assigns a fitness to every x ∈ X. The neighborhood
function N : X → P(X) assigns neighbors N (x) to

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

111

every x ∈ X. In molecular modeling problems, points
x ∈ X correspond to structures of a molecule, and the
fitness function measures the internal energy of a struc-
ture. The concept of fitness landscapes originated in
theoretical biology more than eighty years ago [15] but
has since become a useful construction in many scien-
tific disciplines, from the physics of disordered systems
such as spin-glasses, molecular biology [3], character-
ization of optimization problems in AI [14], and the
broader study of complex systems [13].

A fitness landscape can be high-dimensional and
multimodal. It may contain many local structures,
such as basins and basin-separating barriers. In
molecular landscapes, a basin corresponds to a long-
lived, thermodynamically-stable or semi-stable struc-
tural state of a molecule [3]. The native state of a
protein is a basin, though it may not be the deepest
one due to artifacts in the current functions designed
to measure the internal energy of a protein structure.
For this reason, the focus of the rest of the activities
is on extracting basins from the landscape probed by
a decoy sampling method during decoy generation.

2.1 Elucidating Basins via Graph Embed-
dings of Landscapes

The notion of a basin is tied to a local, focal opti-
mum: a local optimum in the landscape is surrounded
by a basin of attraction, which is the set of points on
the landscape from which steepest descent/ascent con-
verges to that focal optimum. In molecular landscapes,
the focus is on local minima. In lieu of observing
a molecule rearranging itself (hopping between struc-
tures) and reaching a local minimum, one can enrich
the landscape with connectivity information to iden-
tify focal minima and their basins.

Consider an ensemble of decoys Ω generated by a
decoy sampling method. The decoys can be embedded
in a nearest-neighbor graph (nngraph) G = (V,E) as
follows. The vertex set V is populated with the decoys;
that is, V ← Ω. The edge set E is then populated
by inferring the neighborhood structure of the land-
scape. Given a selected distance function measuring
the distance between two decoys, each vertex u ∈ V is
connected to other vertices v ∈ V if d(u, v) ≤ ε, with ε
being a user-defined parameter. A small ε may result
in a disconnected graph in the presence of non-uniform
sampling of the landscape. This can be remedied by
increasing ε or the number of nearest neighbors of u.

Designing an effective distance function for
molecular structures remains an open problem. The
root-mean-squared-deviation (RMSD) is commonly
used. To remove differences due to rigid-body mo-
tions, the RMSD is reported after an optimal super-
imposition that returns the least RMSD (lRMSD) [7].
To reduce computational costs, the decoys can first be

superimposed onto some arbitrarily-chosen reference
one, and then only RMSD is used to determine the
distance between any two decoys to populate E.

The resulting nngraph can now be analyzed to
detect local minima. Let u ∈ V , and let v ∈ N(u),
where N(u) denotes the neighborhood of u. u is a
local minimum if ∀v ∈ V f(u) ≤ f(v). Each local min-
imum becomes a focal minimum of some basin. The
rest of the vertices are assigned to basins as follows.
First, each vertex u is associated a negative gradient
estimated by selecting the edge (u, v) that maximizes
the ratio [f(u)−f(v)]/d(u, v). Then, from each vertex
u that is not a local minimum, the negative gradient
is iteratively followed (i.e., the edge that maximizes
the above ratio is selected and followed) until a local
minimum is reached. Vertices that reach via this pro-
cess the same local minimum are assigned to the basin
associated with that minimum.

2.2 Characteristics of Basins for Selection
and Evaluation

For the purpose of identifying the basin that rep-
resents the native state among many others possibly
revealed by the above analysis, a detailed description
is needed in terms of basin characteristics that can
help discriminate among basins. We consider three:
size, depth, and persistence. Basin size refers to the
number of decoys assigned to the same basin. Basin
fitness/energy is measured via the fitness/energy of its
focal minimum. Basin persistence is a concept used in
spatial statistics in the context of filtering out basins
attributed to noise in fitness functions [4]. Specifically,
the persistence of a basin B is f(saddle)− f(B), where
f(B) refers to the fitness of B. A (pseudo-)saddle
is identified as a vertex u from which the iterative
process of following the negative gradient, described
above, leads to the focal minimum of B but has a
neighbor v with f(v) < f(u) from which the iterative
process leads a different local minimum. Effectively,
persistence measures how shallow a basin is. In spatial
statistics, a persistence threshold p thresh can be spec-
ified as a way of retaining only basins with persistence
above p thresh (merging those with lower persistence
into the surviving basins).

For the purpose of evaluation, two more charac-
teristics can be associated with each basin. The first
measures the extent to which a basin captures the na-
tive state. For a protein with a known native struc-
ture, all decoys with lRMSD within a user-set thresh-
old dist thresh can be deemed to be near-native (thus,
populate the native state). Given a basin B, n(B)
measures the percentage of near-native decoys in the
ensemble Ω that are in B. Effectively, this measures
the proportion of true positives. One can trivially in-
crease this by increasing the size of a basin. When

112

filtering out basins by persistence, smaller basins get
merged into larger ones and can trivially increase the
proportion of true positives in the larger basins. How-
ever, what is more important in a selection strategy is
to identify basins with a low number of false positives.
For this purpose, we associate a purity p with each
basin and define it as the proportion of near-native
decoys relative to the size of a basin (thus, penalizing
large basins with many false positives).

Implementation Details We use the Structural
Bioinformatics Library (SBL) [4] to organize a decoy
ensemble Ω into basins. We initialize ε to be 1Å, and
increase the number of nearest neighbors (per the con-
formational analysis protocol in SBL) until the nn-
graph is connected. For the purpose of analysis, we
vary p thresh ∈ [1, 10], but uniformly on all test cases,
low persistence values ∈ [1, 3] result in better basins
(according to our evaluation metrics).

Experimental Setup Leader clustering is used as
the baseline; decoys are shuffled and then either form
a new cluster (becoming its representative) or are
assigned to the first cluster whose representative is
within εÅ. The dist thresh parameter for determina-
tion of near-native conformations is set on a per-case
basis, as there are difficult proteins on which Rosetta
does not get close to 3Å of the native structure. If
the lowest lRMSD (over all decoys), which we refer to
as min dist ≤ 1, dist thresh is set to 2. Otherwise,
dist thresh is set to the minimum value that results
in a nonzero number of near-native decoys populating
the largest-size cluster. Two basin selection strategies
are proposed and compared to leader clustering and
each-other. First, basins are sorted by their size, and
the top three basins are considered for selection. Al-
ternatively, basins are sorted by size, and the the top
ten basins are sorted by their energy; the top three
basins in this sorted order are then considered for se-
lection. The evaluation is based on the proportion of
true positives (n) and purity (p).

Twelve proteins of different folds and lengths have
been selected as test cases, listed in Table 1. They rep-
resent easy, medium, and difficult cases for Rosetta.
The Rosetta abinitio protocol is used to generate
decoys for each protein sequence. While Rosetta de-
velopers argue for a decoy ensemble to be between 10-
20K, we generate around 50, 000 decoys per protein so
that dataset size is not an issue for decoy selection.

3 Results

Two sets of results are related. First, we provide
visualization of the three top clusters and basins (un-
der each selection strategy) over the generated decoys.
Second, we provide a summary comparative analysis
that evaluates the three selection strategies.

Table 1: Testing Dataset
PDB
ID

Fold Length |Ω| min dist
(Å)

1ail α 70 53, 568 0.50
1dtdb α+ β 61 57, 839 0.51
1wapa β 68 51, 841 0.56
1tig α+ β 88 52, 099 0.60
1hz6a α+ β 64 57, 474 0.72
1c8ca β 64 53, 322 1.08
2ci2 α+ β 65 52, 220 1.21
1bq9 β 53 53, 663 1.30
1fwp α+ β 69 53, 133 1.56
1sap β 66 51, 209 1.75
2h5nd α 123 51, 475 2.00
1aoy α 78 52, 218 3.26

3.1 Visualizing Top Clusters and Basins

Fig 1 selects two test cases and shows decoys gen-
erated for each of them as two-dimensional dots, with
the x axis tracking the lRMSD of each decoy from
the known native structure, and the y axis tracking
the Rosetta score12 (all-atom) energy (measured in
Rosetta Energy Units – REUs). Decoys belonging to
a cluster or a group are colored in red, green, or blue,
so as to visualize the top three clusters and basins (un-
der each basin selection strategy).

Fig 1 indicates that the protein with known native
structure under PDB id 1dtb is a trivial case for decoy
selection, as the top three clusters capture the major-
ity of the near-native conformations. The top three
basins under each selection strategy capture similar
regions of the decoy space. The protein with known
native structure under PDB id 1fwp presents a more
difficult case. The top three clusters have many decoys
with large lRMSDs from the native (low purity). The
purity of the top three basins, when selecting by size
or selecting by size and energy, is much higher.

A detailed comparative visualization of the top
three basins in each basin selection strategy is shown
for four more proteins in Fig. 2. Fig. 2 shows that se-
lecting basins by size and then energy results in the
top three basins better discriminating against non-
native decoys. Even in cases that seem challenging
for basin selection (the proteins with native structure
under PDB ids 2ci2 and 1aoy), sorting basins both by
size and energy results in purer basins. These graphi-
cal results suggest that not ignoring focal energy in the
selection scheme may prove promising, and the com-
prehensive analysis over all test cases, detailed below,
supports this conclusions.

3.2 Summary Comparative Analysis

Table 2 compares the three selection strategies as
follows. It considers the scenario where G1−x groups

113

1dtdb 1fwp

Figure 1: Visualization of the three largest clusters
(top panel) versus the three largest basins (middle
panel) and the three largest and lowest-energy basins
(bottom panel) for two selected proteins with known
native structures under PDB ids 1dtdb and 1fwp. De-
coys are plotted by their lRMSD from the native struc-
ture and their Rosetta score12 all-atom energy.

of decoys are offered as prediction in a decoy selec-
tion setting. Based on the selection strategy, a group
indicates a cluster or a basin. For instance, C1−x indi-
cates that the top (largest) x clusters are selected and
evaluated. Similarly, B1−x indicates that the top x
basins (under each ordering, size only, or size and en-
ergy) are selected and evaluated. Table 2 limits x = 3
and shows the percentage of near-native conformations
and the purity in each setting; note that the purity of
G1−x is determined by merging all decoys in G1−x. In
addition, the relative size of each G1−x (proportional
to |Ω|), is shown for reference.

Table 2 allows reaching a few conclusions. First,
there are proteins on which a clustering-based selection
strategy does well in terms of purity (1dtdb, 1wapa,

1hz6a, size 1hz6a, size+energy

1sap, size 1sap, size+energy

2ci2, size 2ci2, size+energy

1aoy, size 1aoy, size+energy

Figure 2: Visualization of the three largest basins
(left) and the three largest and lowest-energy basins
(right) for four more selected proteins (indicated by
the PDB id of their native structure). Decoys are plot-
ted by their lRMSD from the native structure and their
Rosetta score12 all-atom energy.

1tig, and 2ci2). On these 4 cases, at least one basin
selection strategy does similarly well. On 7/12 cases,
clustering is outperformed by both selection strategies
in terms of purity (1ail, 1hz6a, 1c8ca, 1bq9, 1fwp,
1sap, 1aoy), particularly when restricting to the top

114

or top two clusters/basins. By achieving higher pu-
rity, the basin selection strategies confer higher likeli-
hood that drawing at random from them will result in
a near-native decoy (rather than a false positive). The
results in Table 2 also show that considering energy in
the basin selection strategy does not result in lower pu-
rity; instead, in 8/12 cases, selecting by both size and
energy results in higher or same purity over selecting
only by size (B1−3 in 1ail, 1dtdb, 1c8ca, 2ci2, B1−2

and B1−3 in 1bq9, B1−2 and B1−3 in 1hz6a, B1−2 and
B1−3 in 1sap, and B1−2 and B1−3 in 1aoy).

4 Conclusion
The results presented here suggest that basins in

the energy landscape probed by a template-free struc-
ture prediction method hold promise for automatically
detecting near-native structures of a protein. While
energy is often ignored in favor of structural similarity
in decoy selection, the presented work indicates that
energy can be reliably employed to organize structure
data into basins. The results support that selection
of basins is more effective than selection of clusters
for decoy selection. Considering not just the size but
also the energy of a basin is more effective in yield-
ing high-purity basins. This is an important contri-
bution of this paper, as it suggests a landscape-based
way of selecting decoys that lowers the number of false
positives (non-native decoys) reported. The presented
work opens many lines of enquiry regarding probing
additional characteristics of basins for selection and
extending the analysis to landscapes of reduced dimen-
sionality, as well as beyond structure prediction.

Acknowledgements
This work is supported in part by NSF Grant No.

1421001 and a Jeffress Memorial Trust Award. Com-
putations were run on ARGO, a research computing
cluster provided by the Office of Research Computing
at George Mason University.

References
[1] C. E. Blaby-Haas and V. de Crécy-Lagard. Min-

ing high-throughput experimental data to link
gene and function. Trends Biotechnol, 29(4):174–
182, 2013.

[2] D. D. Boehr and P. E. Wright. How do proteins
interact? Science, 320(5882):1429–1430, 2008.

[3] J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and
P. G. Wolynes. Funnels, pathways, and the en-
ergy landscape of protein folding: a synthesis.
Proteins: Struct. Funct. Genet., 21(3):167–195,
1995.

[4] F. Cazals and T. Dreyfus. The structural bioin-
formatics library: modeling in biomolecular sci-
ence and beyond. Bioinformatics, 33(7):997–
1004, 2017.

[5] J. He, J. Zhang, Y. Xu, Y. Shang, and D. Xu. Pro-
tein structural model selection based on protein-
dependent scoring function. Statistics and Inter-
face, 5:109–115, 2012.

[6] A. Leaver-Fay et al. ROSETTA3: an object-
oriented software suite for the simulation and
design of macromolecules. Methods Enzymol,
487:545–574, 2011.

[7] A. D. McLachlan. A mathematical procedure
for superimposing atomic coordinates of proteins.
Acta Crystallogr. A., 26(6):656–657, 1972.

[8] K. Molloy, S. Saleh, and A. Shehu. Probabilis-
tic search and energy guidance for biased de-
coy sampling in ab-initio protein structure pre-
diction. IEEE/ACM Trans. Bioinf. and Comp.
Biol., 10(5):1162–1175, 2013.

[9] J. Moult, K. Fidelis, A. Kryshtafovych,
T. Schwede, and A. Tramontano. Critical
assessment of methods of protein structure
prediction (CASP) round x. Proteins: Struct.
Funct. Bioinf., 82:109–115, 2014.

[10] S. C. Ngan, L. H. Hung, T. Liu, and R. Samu-
drala. Purely structural protein scoring functions
using support vector machine and ensemble learn-
ing. IEEE/ACM Trans Comput Biol, pages 1–14,
2016.

[11] B. Olson and A. Shehu. Multi-objective stochastic
search for sampling local minima in the protein
energy surface. In ACM Conf on Bioinf and Comp
Biol (BCB), pages 430–439, Washington, D. C.,
September 2013.

[12] B. Olson and A. Shehu. Multi-objective optimiza-
tion techniques for conformational sampling in
template-free protein structure prediction. In Intl
Conf on Bioinf and Comp Biol (BICoB), pages
143–148, Las Vegas, NV, 2014.

[13] S. Samoilenko. Fitness landscapes of complex sys-
tems: Insights and implications on managing a
conflict environment of organizations. Complex-
ity & Organization, 10(4):38–45, 2008.

[14] A. Shehu. Probabilistic search and optimization
for protein energy landscapes. In S. Aluru and
A. Singh, editors, Handbook of Computational
Molecular Biology. Chapman & Hall/CRC Com-
puter & Information Science Series, 2013.

[15] S. Wright. The roles of mutation, inbreeding,
crossbreeding, and selection in evolution. In Intl
Congress of Genetics, pages 356–366, 1934.

[16] D. Xu and Y. Zhang. Ab initio protein structure
assembly using continuous structure fragments
and optimized knowledge-based force field. Pro-
teins: Struct. Funct. Bioinf., 80(7):1715–1735,
2012.

115

Table 2: Comparison of cluster- and basin-selection strategies: The top G1−x groups of decoys selected from each
selection strategy, with x limited to 3, are analyzed. Recall that C1 refers to the top cluster selected by the cluster-
based strategy, whereas B1 refers to the top basin selected by a basin-based strategy. When analyzing B1−x, the
top x basins are merged. The analysis lists the percentage of near-native decoys (n), the purity (p), which is the
proportion of near-native decoys relative to the size of a group), and the relative size (s, which is proportional to
|Ω|) of each group (cluster or basin).

Cluster Size Basin Size Basin Size + Energy
C1 C1−2 C1−3 B1 B1−2 B1−3 B1 B1−2 B1−3

1ail (0.5Å)
n:12.1% n:93.2% n:93.2% n:47.2% n:48.4% n:48.4% n:1.2% n:48.4% n:61.9%
p:10.3% p:45.2% p:34.4% p:100% p:52.8% p:44.8% p:2.8% p:52.8% p:58.6%
s:7.4% s:13.1% s:17.5% s:3% s:5.8% s:6.9% s:2.8% s:5.8% s:6.7%

1dtdb (0.51Å)
n:99.5% n:99.5% n:99.5% n:85.3% n:95% n:95% n:85.3% n:95% n:95.9%
p:99.6% p:95% p:91.7% p:99% p:98.9% p:94.8% p:99% p:98.9% p:98.9%
s:22.8% s:23.9% s:24.7% s:19.7% s:21.9% s:22.9% s:19.7% s:21.9% s:22.1%

1wapa (0.56Å)
n:98.1% n:98.1% n:98.1% n:76.8% n:81.8% n:86.3% n:76.8% n:79.1% n:84.1%
p:98% p:88.2% p:81.4% p:98.9% p:98.8% p:98.7% p:98.9% p:98.9% p:98.8%
s:10.2% s:11.3% s:12.3% s:7.9% s:8.4% s:8.9% s:7.9% s:8.2% s:8.7%

1tig (0.6Å)
n:50.4% n:93.5% n:93.5% n:28.8% n:40.1% n:50.2% n:2.7% n:31.5% n:42.8%
p:94.5% p:94.8% p:80.2% p:100% p:99.6% p:99.7% p:88.4% p:98.9% p:98.8%
s:7.9% s:14.9% s:17.6% s:4.4% s:6.1% s:7.6% s:0.5% s:4.8% s:6.5%

1hz6a (0.7Å)
n:0.06% n:9.4% n:9.4% n:55.5% n:55.5% n:55.5% n:55.5% n:55.6% n:55.7%
p:0.07% p:7.1% p:5% p:85.5% p:50% p:39.3% p:85.5% p:66.6% p:55.7%
s:8.7% s:15% s:21.1% s:7.3% s:12.6% s:16% s:7.3% s:9.4% s:11.3%

1c8ca (1.1Å)
n:31.3% n:31.3% n:75.7% n:1.9% n:29.3% n:29.8% n:1.7% n:29.2% n:32.7%
p:7.8% p:6.6% p:13.9% p:4.2% p:36.1% p:26.5% p:10.1% p:55.2% p:53.4%
s:17.8% s:21% s:24.2% s:2% s:3.6% s:5% s:0.8% s:2.3% s:2.7%

2ci2 (1.2Å)
n:3% n:5.5% n:7.9% n:0.3% n:0.3% n:0.3% n:0.4% n:0.7% n:1.1%
p:100% p:95.4% p:95.6% p:47.2% p:23.6% p:15.9% p:100% p:68.9% p:76.9%
s:0.7% s:1.3% s:1.9% s:0.1% s:0.3% s:0.4% s:0.1% s:0.2% s:0.3%

1bq9 (1.3Å)
n:0% n:0% n:0% n:60% n:60% n:64% n:60% n:64% n:64%
p:0% p:0% p:0% p:15.5% p:7.9% p:5.9% p:15.5% p:9.2% p:6.5%
s:1.1% s:1.9% s:2.5% s:0.2% s:0.4% s:0.5% s:0.2% s:0.3% s:0.5%

1fwp (1.6Å)
n:99.9% n:99.9% n:100% n:5.6% n:9.1% n:10.7% n:3.5% n:3.7% n:9.3%
p:20.2% p:19.3% p:18.7% p:97.7% p:97.2% p:84.2% p:96.4% p:58.4% p:77%
s:3.7% s:6.1% s:7.5% s:0.3% s:0.5% s:0.7% s:0.2% s:0.4% s:0.7%

1sap (1.75Å)
n:0% n:61.9% n:72.1% n:0% n:32.4% n:51.4% n:32.4% n:51.4% n:51.4%
p:0% p:7.2% p:6.8% p:0% p:9.3% p:11.5% p:20.2% p:20% p:18.2%
s:12.5% s:19.9% s:24.4% s:4.4% s:8.1% s:10.3% s:3.7% s:5.9% s:6.5%

2h5nd (2.0Å)
n:0% n:0% n:34.2% n:0% n:0% n:16.1% n:0% n:0% n:16.1%
p:0% p:0% p:27% p:0% p:0% p:13.4% p:0% p:0% p:13.7%
s:0.2% s:0.4% s:0.5% s:0.3% s:0.4% s:0.5% s:0.1% s:0.4% s:0.5%

1aoy (3.26Å)
n:0% n:0.02% n:0.02% n:0% n:0.2% n:0.2% n:0.05% n:0.23% n:0.3%
p:0% p:0.13% p:0.09% p:0% p:4.9% p:3.4% p:3.5% p:6.9% p:6.1%
s:0.9% s:1.48% s:2.1% s:0.2% s:0.4% s:0.6% s:0.2% s:0.4% s:0.5%

116

Myocardial Infarction Detection using Multi Biomedical Sensors

Mohammad Mahbubur Rahman Khan Mamun and Ali T Alouani

Department of ECE, Tennessee Technological University

Cookeville, TN, 38505, USA

Mrkhanmamu42@students.tntech.edu

Abstract

Heart failure is one of the diseases that may require

frequent physician visit and checkups. Automatic

monitoring of specific biomedical signals and using signal

analysis techniques, one can assess the patient health

condition at his/her own residence and/or work in real

time.

In this paper, classification of myocardial infraction

condition was diagnosed using measurement from several

biomedical sensors by rule based hierarchal decision fusion

technique to provide a biomedical heart health assessment

technique. The proposed approach combined the progress

in signal analysis, sensor data fusion, and rule based simple

adaptive threshold decision to process the data in real time

and assesses the patient heart condition with low false

alarm rate.

Data from ECG, blood pressure (BP) and pulse

oximeter (SpO2) have been used for analysis and diagnosis.

Testing using biomedical data form 150 persons were

carried out with sensitivity, specificity and accuracy were

94.92%, 92.31% and 93.33% respectively. The Physoinet

ECG database was used for evaluation of the methods.

Keywords— Myocardial infarction, data fusion, simple

adaptive threshold method, blood pressure, SpO2.

1 INTRODUCTION

Given the high percentage of current elderly population

prone to hypertension and risky heart conditions (such as

heart attack), monitoring as well as analyzing real time

biomedical signals are needed to avoid unnecessary visits

to physician or emergency room. This would save time,

money, and the hassle of traveling to a physician due to

false alarm conditions.

During myocardial infarction, tissue death due to lack of

oxygen can eventually contribute to severe consequences if

supply of oxygen is not restored within 90 to 120 minutes

[1]. Many researchers studied heart disease classification

by improving Electrocardiogram signal analysis. In [2], a

method of combining ECG signal from Lead-I and arterial

blood pressure to detect premature supraventricular and

ventricular contractions (PSC and PVC) which are pre-

cursor of serious arrhythmia and other heart diseases. The

use of information from one lead gives only heart rate

which is not sufficient to detect complex heart diseases. A

self-administered functional health infrastructure for data

collection and storage using remote monitoring of vital

signs such as ECG, blood pressure, respiration, movement,

etc. has been proposed in [3]. This work was limited to

collection as well as storage of biomedical data and didn’t

involve processing the data in real time and had to deal

with the challenge of data security, storage, and retrieval.

With same limitation, [4] used stand-alone medical

wireless (or modified to become wireless) devices/sensors

to a cell phone using blue tooth communication.

 Wavelet transform was used to detect QRS complex

(main three deflection in every ECG wave) [5]-[6].

Rothwell et al. showed that the blood pressure variability

can be used as an independent variable for strong predictor

of ischemic stroke ,even after exclusion of previous stroke

patients it provided prediction of myocardial infarction,

angina, and heart failure[7] .With the invent of machine

learning algorithms, different feature types were used in

order to recognize abnormalities in ECG automatically. A

common shortcoming of all these approaches is that they

are computationally extensive and didn’t deal with

myocardial infarction detection [8] - [14]. Some recent

approaches were based on interval length, amplitude of

QRS complex, etc. for pattern recognition but their ability

to detect useful patterns decreased when the morphology of

the ECG changed [15] - [16]. Currently, most of the

methods used to detect potential heart attack scenarios

were done by a physician using physical examination

(heart rate and chest pain) with ECG or cardiac markers

from specific blood tests [17]. Research has been done to

perform automatic detection of heart arrhythmia or

comparatively simpler heart rhythm related abnormality by

analyzing the ECG signal but myocardial infarction

detection needs complex algorithm and additional

information from complimentary biomedical sensors to

perform robust diagnosis decisions.

In this paper, the goal is to use heterogeneous

complimentary biomedical sensors to automatically detect

symptoms of myocardial infarction. This automated

detection system should help the patient monitor his/her

heart condition remotely without rushing to hospital when

it is not necessary. In available research, arrhythmia or

irregular beat detection were done using ECG signal,

which were sufficient to provide heart rate. This work

goes beyond relying on heart beat detection only. It rather

attempts to detect/predict the symptom of heart attack. To

accomplish this goal, blood pressure and pulse Oximeter

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

117

measurements are proposed to complement the information

provided by the ECG signals.

2 PROPOSED HEART ATTACK

PREDICTION TECHNIQUE

For a potential MI patient the elevation of ST segment

(flat isoelectric section of the ECG between the end of the S

wave and start of T wave) is one of the first symptom which

comes with chest pain [18]. Another sign for MI can be

pathological Q wave which once starts to be visible and

doesn’t go away. The ECG findings of a pathological Q

wave include a Q wave with magnitude of > 25 percent of

QRS magnitude. High blood pressure (BP) has consistently

been associated with an increased risk of MI.Also the

control of hypertension with appropriate medication has

been shown to reduce the risk of MI significantly [19].To

develop a technique that has low probability of false alarms

for MI detection, Figure 1 shows a conceptual block

diagram of the whole process which includes data

acquisition, processing and decision making. Hemodynamic

parameters regulating the cardiovascular system are

strongly correlated [20].

Figure 1: Conceptual Block diagram of the ECG processing and decision
recommendation

Figure 2: a). RR interval from ECG. b) PP interval from pulse pressure c)

correlation between RR interval and PP interval.

Figure2 shows an example of such correlation, where RR

interval (the time between two consecutive R waves in

ECG measurement) from ECG and pulse pressure interval

are present on the left and correlation between those are on

the right.

2.1 ECG Sensor and Processing

MIMIC database [21] was used for testing; this database

contains multi-parameter recordings obtained from bedside

recording of patient. The database includes arterial blood

pressure, ECG signal and finger PPG signal with each

recording duration is 10 second with average 10 cycle. The

systole and diastole are covered 60mmHg to 150 mmHg

whereas the ECG was recorded with 500 samples/second

with 12-bit resolution [21]. A study using MRI to diagnose

myocardial infarction has shown that more emphasis on ST

segment depression could greatly improve the yield of the

ECG information in the diagnosis of myocardial infarction

(sensitivity increase from 50% to 84%) [23]. Pathological Q

wave indicates prior or current myocardial infarction, after

QT prolongation (measure of the time between the start of

the Q wave and the end of the T wave), hyper acute T

waves are the earliest-described electrocardiographic sign

of acute ischemia, preceding ST-segment elevation [23]. A

Matlab GUI was developed for convenience, to determine

the symptoms for myocardial infarction which runs through

the ECG signal beat by beat and extracts all necessary

features.

 Maintaining all required criteria, bi-orthogonal wavelet

is the most common choice for ECG signal analysis [22]

.Using temporal feature conservation ability of bi-

orthogonal wavelet transform, the features such as PQRST

peak and ST segments can be calculated. Wavelet transform

with features such as scale, transition, mother wavelet,

orthogonality can preserve both time and frequency domain

information at the same time with certain accuracy .The

shape of mother wavelet is very significant because there

should be maximum correlation between our signal of

interest (ECG) and mother wavelet. Using bi-orthogonal

wavelet transform, the signal can be decomposed into 4

scales ranging from 21 to 24. The larger scale relates to

lower frequency and smaller scale relates to higher

frequency components. Most of the energy of QRS

complex is found using 23 and 24 on the other hand the

noises such as electrical interference, muscle activity etc

remain in 21 and 22 level.

2.2 Blood Pressure and Pulse Oximeter

System

BP indicates the force of blood through the heart,

systolic pressure is when the when the blood ejects from

atrium or ventricle and diastole pressure is when atrium or

ventricle fills up with blood. On the other hand, the features

available in ECG also signify the contraction and expansion

of atrium & ventricle. Pressure generated by heart, duration

of systole, mean arterial pressure, pulse wave velocity,

pulse wave reflection and stiffness of the arterial vessels

118

influence the blood pressure. So, not only the systole-

diastole pressure point but also continuously recorded blood

pressure waveform should be analyzed for appropriate

representation of cardiac shock. In treated hypertensive

participants, the heart rate for systolic blood pressure with

potential myocardial infarction and stroke are less

pronounced than in participants without treated

hypertension [24].Hypertensive heart disease is the leading

cause of death from high blood pressure. Hypertension has

been shown to be related to risk factors for kidney failure,

heart failure, and myocardial infarction and stroke [25].

 Pulse Oximeter is a simple and low cost sensor which

provides measurement of oxygen level in blood. A

percentage over 95 indicates healthy body Oxygen

saturation. It can be lower than 93% due to respiratory

disease or congenital heart disease. Therefore, monitoring

blood saturation can be used as an indication of one of those

severe cardiovascular conditions. From pulse Oximeter

sensor, the irregular heart bit as well as reduction of oxygen

saturation in blood can be observed. Though oxygen

saturation is commonly used for monitoring critical patient,

in a study [26] baseline SpO2 provided reliable

information establishing the diagnosis and severity of acute

heart failure as a complication of acute myocardial

infarction with a warning cut-off value of <93 percent. The

use of pulse oximetry for diagnosis purposes may be

recommended when managing patient with risk of acute

myocardial infarction [26].

2.3 Decision Fusion from Sensor

A data fusion system must perform whether the data

presents different aspect of same event, its redundancy and

mismatch. Two mainstream data fusion techniques are,

rule-based decision making and fuzzy logic decision

making. Here we adopted the rule based approach by taking

into account measurements of ECG, blood pressure and

SpO2, these are fused to get more accurate estimation of

actual patient parameters and status. Fusion of multimodal

event can be modeled as multidimensional process as

below:

O(m) = [A(m) B(m) S(m)] (1)

Where m denotes the discrete time and A(m) , B(m) and

S(m) point to ECG measurement, Blood pressure

measurement and SpO2 level respectively in equation (1).

 A(m) = (a(m), a(m+1), a(m+2), a(m+3)..……) (2)

 B(m) = (b(m), b(m+1), b(m+2), b(m+3)..……) (3)

 C(m) = (c(m), c(m+1), c(m+2), c(m+3)..……) (4)

In equation (2) a(m) presents ECG measurement at (m)th

instant of time, b(m) refers blood pressure and c(m) the

SpO2 at mth instant respectively by equation (3) and (4).

 A(m) = [a1(m), a1(m+1), a1(m+2),),a2(m), a2(m+1),

a2(m+2),)] (5)

Here, a1(m) and a2(m) are two parameters of ECG features

extracted from processed ECG measurements at mth instant

in equation (5).

B(m) = [b1(m), b1(m+1), b1(m+2),),b2(m), b2(m+1),

b2(m+2),) ,b3(m), b3(m+1), b3(m+2),)] (6)

Here, b1(m) , b2(m) and b3(m) are systolic , diastolic and

mean pressure extracted from patients’ blood pressure

measurement as in equation (6).

 C(m) = [c1(m), c1(m+1), c1(m+2),)] (7)

Here, c1(m) presents the SpO2 measurement at mth as in

equation (7). Multiple measurements of same data can be

fused to yield single estimation which get rid of the erratic

measurement which is wayward than the average of other

data. Each feature from ECG measurement is analyzed

from several windows to use the competitiveness of

collected data. Another aspect of fusing is multimodal or

integration of overlapping data. In this case, each data

presents status of part of the total block. The different

sensors also provide complementary measurement. For

example, heart rate can be achieved from ECG as well as

SpO2.

Figure 3: Hierarchical level for data fusion

 Three hierarchical levels were used for data fusion as

mention in above figure. They are signal level data fusion,

feature level data fusion and decision level fusion. Signal

level considers the individual signal which provides similar

property of an event to deduce parameter. With data which

doesn’t provide similar property can be used in feature level

fusion to come up with a feature vector. Decision level

fusion is performed at the top level with either raw data or

feature vector to make higher level decision. A rule based

decision making implements series of yes/no to check

whether a particular condition is existing or not. Our

approach is more towards rule based approach and also

makes use of the prioritizing aspect of fuzzy logic too. Our

objective is to produce an early warning heart attack score

(EWHAS) to predict heart attack conditions before a

patient is admitted in a hospital. A new index is produced

that uses information from only the sensors needed for heart

attack prediction such as ECG, BP and oxygen saturation

are included.

During MI while the cell death occurs, the ST segment

of the ECG gets elevated which is a sufficient diagnosis to

start treatment [23]. Pathological Q wave indicates an

absence of electrical activity in an area of heart that can be

a result of minor myocardial infarction. After QT

prolongation, hyper acute T waves are the earliest-described

electrocardiographic sign of acute ischemia [26]-[27].

Hypertension, according to Framingham heart study

database, is the most common cause of heart failure [28].

Hypertension increases the risk of heart failure four to eight

119

fold [29]. A study suggests baseline SpO2 lower than 93%

can be considered a sign for acute heart failure (AHF) due

to myocardial infarction and the lower the SpO2 value, the

higher the probability and severity of AHF [30]. Patients

with low (<90%) SaO2 had higher rates of worsening heart

failure at 1 to 6 months and also higher rates of mortality,

SBP <120 mm Hg was associated with a statistically

significant increase in mortality at 1 to 6 months, so

combined low SaO2 and systolic blood pressure (SBP) had

a particularly strong prognostic implication [31].

Table 1: Feature weight distribution

Features/Measures
Feature

weight
Feature

weight

abnormal Q wave /Inverted

or hyper acute T Wave
1

abnormal QT interval 2

ST_Depressions/ST

elevation
4

Hypertension (systolic) 1 (140 -159) 2 (>160)

Hypotension (systolic) 1 (105-90) 2 (< 90)

oxygen saturation 1 (93 to 88) 2 (< 88)

 A sensitivity of 50% and specificity of 97% for AMI

were achieved with only the currently applied ST-segment

elevation criteria while adding the ST-segment depression

with elevation increased sensitivity for detection of AMI

from 50% to 84% [23]. So the highest weight was given to

ST-segment elevation and depression. In a number of

epidemiological studies, QT interval prolongation has been

associated with an increased risk of being markers of

ventricular hypertrophy or myocardial ischemia [32]. This

resulted in lower weightage of QT interval. After minor

myocardial infarction, people with consistent abnormal Q

wave with symptoms such as ST segment change are at 2.7

fold excess risk of coronary death compared to those who

have normalized ECG [33]. When an electrocardiogram

shows persistent T wave inversion along with ST elevation,

further ischemia may make the T wave inversion more

pronounced. The lower weight given by the decision system

to abnormal Q and T waves reflects their secondary

importance when compared to changes in the ST segment

[34].
Table 2: Local threshold for ECG features

High blood pressure increases the likelihood of MI, while

excessive drop of blood pressure will hamper coronary

perfusion severely introducing new acute coronary events

[34].Local decisions of individual sensors are fused by first,

for each feature of ECG, care is taken to ensure that an

abnormality in a feature appears at least in two consecutive

windows of ECG data to avoid false alarm. The final ECG

local decision consists of adding the weighted features as

shown in table 2. Second, the local decisions made by all

the sensors are fused to provide a global and final decision.

Figure 4: Flowchart for algorithm steps.

The rationale of the global decision uses the fact that prior

research reveals ST level is highly correlated with potential

heart attacks. However, relying on ST alone will not

prevent false alarm from occurring [23]. Table 1 contains

the weight assigned to different features used by the

decision system. While features from ECG are checked, the

weight from extracted features are saved into memory until

one finds any relevant reading beyond threshold from

blood pressure or oxygen saturation to confirm the potential

alert from ECG. Figure 4 provide a flow chart for automatic

monitoring and detection of heart health assessment.

3 Biomedical data analysis

Testing of the proposed index system was done using

biomedical data from 150 patients from MIMIC database,

by extracting necessary features for myocardial infarction.

The measurements are classified later using simple adaptive

threshold method. A Matlab GUI was developed to process

and display relevant features/information forms the

different sensors. In the raw ECG wave, the presence of

baseline wander and high frequency noise was evident.

Two median filters have been used to remove of the

baseline wander. The first median filters cancel the

prominent QRS complex and second median filter cancel P

peak. 21 to 24 level bi-orthogonal wavelet transform helps to

reduce high frequency noise. Understandably 24 levels have

been picked to extract R peak of ECG signal. To get an idea

about iso-scale line (ISO) and ST segment several other

points on ECG have to be extracted. P-point with K-point

constituted ISO line and J-point with T-point constructed

120

ST segments. Using the K and P point, the isoelectric line

(ISO) can be determined and using J and T point the ST

segment can be determined. If 95% of the beat shows ST

elevation, a conclusion can be drawn about accurate ST

elevation detection. ST depression and pathological Q wave

of an ECG signal can be determined.

Figure 5: Temporary ST Elevation in first two beats creating a false alarm.

Sometimes, ST elevation or depression or pathological Q

wave emerge from ECG signal but it does not stay for long.

It is necessary to calculate information from each beat and

compare whether the incident is consistent throughout the

ECG signal of just a onetime deflection. In figure 5, an

example is shown where the ST elevation happened

temporarily but it can be concluded as a false symptom of

MI.
Table 3: Threshold for decision fusion

The system also takes in to account Blood pressure

measurements and Oximeter readings to check whether the

readings are normal or abnormal. Such additional

information can provide significant insight about the

conformity of myocardial infarction.In table 3, the

thresholds for decision fusion have been provided. Oxygen

saturation decreases with the increase in severity of MI

condition and to compensate the ischemic region of heart,

heart rate increases as well [28]-[34], on the other hand

increase in systolic blood pressure directly relates to risk of

MI, stroke and even mortality [24] with the risk getting

higher with pressure getting in to different stage of

hypertension or hypotension. Thus the threshold values are

set similar way to the chronological importance of the event

occurs at onset of MI or potential MI. Here, measurement

of blood pressure, oximeter are denoted as c_bp and c_ox,

respectively. Also features from ECG such as ST

elevation/depression, hyper acute T wave and prolonged Q

wave are denoted by e, f and g, respectively.

4 Performance evaluation

Four common performance measures have been used to

assess the performance of the proposed automatic MI

monitoring system: specificity (true negative rate),

sensitivity (true positive rate), accuracy, and predictive

accuracy.
Table 4: Count of performance measures

Type

TP

(True

positive)

FN

(False

negative)

TN

(True

negative)

FP

(False

positive)

ECG single

feature
46 12 62 30

Fusion of all

sensor
56 3 84 7

Table 5: Assessment based on performance measures

Measures
Use multi

sensors

Using

only ECG

Performance

improvement

Sensitivity 94.92% 79.31% 15.60%

Specificity 92.31% 67.39% 24.92%

Accuracy 93.33% 72.00% 21.33%

Predictive

value (positive)
88.89% 60.53% 28.36%

Predictive

value (negative)
96.55% 83.78% 12.77%

Accuracy measures the probability of correctly

diagnosed both diseased and non-diseased persons in the

entire population used for testing. Positive predictive value

is probability of having positive detection of a diseased

person among all the positive result (including false

positive result) and negative predictive value is probability

of having correct negative detection of a healthy person

among all the negative result (including false negative

result).A population of 150 persons at rest has been

analyzed. The relevant data was obtained from physionet

database [21]. The performance of the proposed technique

is summarized in table 4 and 5. As shown in Table 5, with

only the ECG information, the decision algorithm is prone

to false negative and false positive which keeps the

sensitivity and specificity lower than acceptable range.

However, with the support of blood pressure and oximeter

sensor, the false negative and false positive count reduces

and sensitivity and specificity improve.

5 CONCLUSIONS AND FUTURE WORK

In this paper, the concept of using multiple

complementary biomedical sensors was proposed and

applied to MI disease detection. The performance

evaluation using 150 patients has shown significant

improvement in detecting MI with lower false alarm rate

when the proposed technique is used. Similar concept will

be used in the future to tackle diseases such as brain stroke.

A pre-requisite for proper use of heterogeneous multi

biomedical sensors is the ability to collect all the sensors

data at the same time. Toward this goal, a stand-alone

121

device that collects such data, perform real time diagnosis,

and communicate diagnosis results to the appropriate

personnel/facility as need is being developed.

References

[1] P.d. Chazal, M. O'Dwyer and R.B. Reilly, '"Automatic classification
of heartbeats using ECG morphology and heartbeat interval
features," IEEE Transactions on Biomedical Engineering, vol. 51,
no. 7, pp. 1196-1206.

[2] R. Palaniappan and S.M. Krishnan, '"Detection of ectopic heart
beats using ECG and blood pressure signals," 2004 International
Conference on Signal Processing and Communications, 2004.
SPCOM '04, pp. 573-576.

[3] N.H. Lovell, F. Magrabi, B.G. Celler, K. Huynh and H. Garsden,
'"Web-based acquisition, storage, and retrieval of biomedical
signals," IEEE Engineering in Medicine and Biology Magazine, vol.
20, no. 3, pp. 38-44.

[4] V. GAY and P. LEIJDEKKERS, '"A Health Monitoring System
Using Smart Phones and Wearable Sensors," International Journal
of Assistive Robotics and Mechatronics, vol. 8, no. 2, pp. 29-36.

[5] M. Vaessen, '"A QRS detection method using analog wavelet
transform in ECG analysis," Maastricht University, Department of
Mathematics, vol. 20.

[6] R. Schneider, A. Bauer, P. Barthel and G. Schmidt, '"Challenge
2006: QT interval measurement,", pp. 325-328.

[7] P.M. Rothwell, S.C. Howard, E. Dolan, E. O'Brien, J.E. Dobson, B.
Dahlöf, P.S. Sever and N.R. Poulter, '"Prognostic significance of
visit-to-visit variability, maximum systolic blood pressure, and
episodic hypertension," The Lancet, vol. 375, no. 9718, pp. 895-
905.

[8] Mackay, D. (1992). A practical Bayesian framework for
backpropagation networks. Neural Computation, vol. 4, p. 448-472.
82

[9] HU, Y. H., Palreddy, S., & Tompkins, W. J. (1997). A patient-
adaptable ECG beat classifier using amixture of experts approach.
IEEE Transactions on Biomedical Engineering, vol. 44, p. 891-900.

[10] Coast, D., & Stern, R. (1990). An Approach to Cardiac Arrhythmia
Analysis Using Hidden Markov Models, IEEE Transactions on
Biomedical Engineering, vol. 37, p. 826-836.

[11] Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., &
Sornmo, L. (2000). Clustering ECG complexes using hermite
functions and self-organizing maps. IEEE Transactions on
Biomedical Engineering, vol. 47, p. 838-848.

[12] Silipo, R., & Marchesi, C. (1998). Artificial Neural Networks for
Automatic ECG Analysis. IEEE Transactions on Signal Processing,
vol. 46, no. 5, p. 1417-1425.

[13] Thakor, N. V., & Zhu, Y. S. (1991). Applications of cardiac filtering
to ECG analysis: Noise cancellation and arrhythmia detection. IEEE
Transactions on Biomedical Engineering, vol. 39, no. 8, p. 785-794.

[14] Chang, W. H., Lin, K. P., & Tseng, S. Y. (1988). ECG analysis
based on Hilbert transform in ECG diagnosis. In Proceedings of
IEEE Engineering and Medical and Biological Society 10th Annual
International Conference, p. 36-37.

[15] Zhou, S. H., Rautaharju, P. M., & Calhoun, H. P. (1993). Selection
of a reduced set of parameters for classification of ventricular
conduction defects by cluster analysis. In Proceedings of Computers
in Cardiology, p. 879-882.

[16] Herrero, G. G., Gotchev, A., Christov, I., & Egiazarian, K. (2005).
Feature extraction for heartbeat classification using independent
component analysis and matching pursuits. In Proceedings IEEE
International Conference on Acoustics, Speech, and Signal
Processing, vol. 4, p. 725- 728.

[17] A.V. Chobanian, G.L. Bakris, H.R. Black, W.C. Cushman, L.A.
Green, J.L. Izzo Jr, D.W. Jones, B.J. Materson, S. Oparil, J.T.
Wright Jr, E.J. Roccella, Joint National Committee on Prevention,
Detection, Evaluation, and Treatment of High Blood Pressure.
National Heart, Lung, and Blood Institute and National High Blood

Pressure Education Program Coordinating Committee, '"Seventh
report of the Joint National Committee on Prevention, Detection,
Evaluation, and Treatment of High Blood Pressure," Hypertension,
vol. 42, no. 6, Dec, pp. 1206-1252.

[18] "Coronary Artery Disease - Heart Valve Disease", Heart-valve-
surgery.com, 2016. [Online]. Available: http://www.heart-valve-
surgery.com/coronary-artery-disease.php. [Accessed: 28- Nov-
2016]

[19] G. Antonakoudis, L. Poulimenos, K. Kifnidis, C. Zouras and H.
Antonakoudis, '"Blood pressure control and cardiovascular risk
reduction," Hippokratia, vol. 11, no. 3, Jul, pp. 114-119.

[20] G. Atanasova and M. Marinov, '"The pulse pressure amplitude as a
marker of myocardial infarction risk," Journal of Clinical and
Experimental Cardiology, vol. 4, pp. 251.

[21] "PhysioBank ATM", Physionet.org, 2017. [Online]. Available:
http://www.physionet.org/cgi-bin/ATM. [Accessed: 29- Apr- 2017]

[22] P. Jouck, '"Application of the Wavelet Transform Modulus Maxima
method to T-wave detection in cardiac signals," Maastricht
University Department of Mathematics and Maastricht
Instruments,(22), pp. 1-32.

[23] T.N. Martin, B.A. Groenning, H.M. Murray, T. Steedman, J.E.
Foster, A.T. Elliot, H.J. Dargie, R.H. Selvester, O. Pahlm and G.S.
Wagner, '"ST-Segment Deviation Analysis of the Admission 12-
Lead Electrocardiogram as an Aid to Early Diagnosis of Acute
Myocardial Infarction With a Cardiac Magnetic Resonance Imaging
Gold Standard," J.Am.Coll.Cardiol., vol. 50, no. 11, 9/11, pp. 1021-
1028.

[24] B.M. Psaty, C.D. Furberg, L.H. Kuller, M. Cushman, P.J. Savage,
D. Levine, D.H. O'leary, R.N. Bryan, M. Anderson and T. Lumley,
'"Association between blood pressure level and the risk of
myocardial infarction, stroke, and total mortality: the cardiovascular
health study," Arch.Intern.Med., vol. 161, no. 9, pp. 1183-1192.

[25] S.D. Pierdomenico, M. Di Nicola, A.L. Esposito, R. Di Mascio, E.
Ballone, D. Lapenna and F. Cuccurullo, '"Prognostic value of
different indices of blood pressure variability in hypertensive
patients," Am.J.Hypertens., vol. 22, no. 8, Aug, pp. 842-847.

[26] J. Masip, M. Gayà, J. Páez, A. Betbesé, F. Vecilla, R. Manresa and
P. Ruíz, '"Pulse oximetry in the diagnosis of acute heart failure,"
Revista Española de Cardiología (English Edition), vol. 65, no. 10,
pp. 879-884.

[27] "National Early Warning Score (NEWS) - MDCalc", Mdcalc.com,
2017. [Online]. Available: https://www.mdcalc.com/national-early-
warning-score-news. [Accessed: 29- Apr- 2017]

[28] G. Lip, D. Felmeden, F. Li-Saw-Hee and D. Beevers, '"Hypertensive
heart disease. A complex syndrome or a hypertensive
‘cardiomyopathy’?" Eur.Heart J., vol. 21, no. 20, pp. 1653-1665.

[29] W.B. Kannel, D. Levy and L.A. Cupples, '"Left ventricular
hypertrophy and risk of cardiac failure: insights from the
Framingham Study." J.Cardiovasc.Pharmacol., vol. 10, pp. S135-
S140.

[30] J. Masip, M. Gayà, J. Páez, A. Betbesé, F. Vecilla, R. Manresa and
P. Ruíz, '"Pulse oximetry in the diagnosis of acute heart failure,"
Revista Española de Cardiología (English Edition), vol. 65, no. 10,
pp. 879-884.

[31] O. Milo-Cotter, G. Cotter, E. Kaluski, M.M. Rund, G.M. Felker,
K.F. Adams, C.M. O'Connor and B.D. Weatherley, '"Rapid clinical
assessment of patients with acute heart failure: first blood pressure
and oxygen saturation--is that all we need?" Cardiology, vol. 114,
no. 1, pp. 75-82.

[32] J.J. Candil and C.M. Luengo, '"QT interval and acute myocardial
ischemia: past promises, new evidences," Revista Española de
Cardiología, vol. 61, no. 06, pp. 561-563.

[33] N.D. Wong, D. Levy and W.B. Kannel, '"Prognostic significance of
the electrocardiogram after Q wave myocardial infarction. The
Framingham Study," Circulation, vol. 81, no. 3, Mar, pp. 780-789.

[34] K. Channer and F. Morris, '"ABC of clinical electrocardiography:
Myocardial ischaemia," BMJ, vol. 324, no. 7344, Apr 27, pp. 1023-
1026.

122

Extracting Co-mention Features from Biomedical Literature for
Automated Protein Phenotype Prediction using PHENOstruct

Morteza Pourreza Shahri and Indika Kahanda
Gianforte School of Computing, Montana State University

Bozeman, MT 59717, USA
(mpourrezashahri, indika.kahanda)@montana.edu

Abstract

Human Phenotype Ontology (HPO) is a recently
introduced standard vocabulary for describing disease-
related phenotypic abnormalities in human. Since
experimental determination of HPO categories for hu-
man proteins is a highly resource-consuming task,
developing automated tools that can accurately pre-
dict HPO categories has gained interest recently. In
our previous work, we developed PHENOstruct, an
automated phenotype prediction tool that uses input
features generated from heterogeneous data sources in-
cluding standard bag-of-words features extracted from
biomedical literature. In this work, we introduce novel
co-mention features which are based on co-occurrences
of protein names and HPO terms within a specified
span of text. Our experimental results indicate that
utilizing co-mentions significantly improves the overall
performance and that the most effective span is the
paragraph-level. This is the first study that uses
a knowledge-based approach for generating literature
features for the task of automated protein phenotype
prediction. These findings have implications for practi-
tioners interested in developing automated biocuration
pipelines for phenotypes.

1 Introduction

Phenotypes can be described as any observable char-
acteristics of an organism which have fascinated re-
searchers’ interests since the relationship between a
gene and its phenotypic manifestation was discov-
ered [15]. The Human Phenotype Ontology (HPO)
provides a bioinformatics resource which offers a frame-
work for the analysis of phenotypic abnormalities as-
sociated with human disease [11]. HPO was origi-
nally populated based on databases, such as OMIM
(Online Mendelian Inheritance in Man) [6], which
contain information about rare diseases. Each single
protein is linked to a set of HPO terms based on
the diseases caused by mutation to the corresponding
genes. Currently, only a small portion of human

proteins (about 3,500) have HPO annotations, and
researchers believe there are more genes related to
human diseases (P. Robinson, personal communication,
July 12, 2014). Manually annotating proteins with
HPO categories through wet-lab experiments and/or
clinical studies is a highly-resource-consuming task, and
over the last few years there has been a growing interest
in developing automated tools to predict protein-HPO
term annotations [10, 12, 13, 19]. In fact, automated
protein-HPO term prediction was one of the tasks in
the recent CAFA challenge [7].

The HPO is composed of independent sub-ontologies
that describe various aspects of phenotypes [11]. The
main sub-ontology is Phenotypic abnormality and it
describes clinical abnormalities. The Mode of inheri-
tance sub-ontology describes phenotypes according to
inheritance patterns and contains terms such as Au-
tosomal dominant. The Mortality/Aging sub-ontology
similarly describes the age of death and contains terms
such as Neonatal death or Sudden death. Finally, the
Clinical modifier sub-ontology is composed of terms
such as Incomplete penetrance, and describes typical
modifiers of clinical symptoms [11]. Throughout this
paper, we use the terms Organ, Inheritance, and Onset,
for referring to the Phenotypic abnormality, Mode of
inheritance and Clinical modifier, respectively. Within
each sub-ontology, categories are arranged in a Directed
Acyclic Graph (DAG) structure.

In our previous work, we developed
PHENOstruct [10], which is the first computational
method for automated prediction of protein-HPO
terms. It uses a Structured Support Vector
Machine (SSVM) model for predicting hierarchically
consistent HPO labels. PHENOstruct employs several
heterogeneous data sources as input: protein-protein
interactions, disease variants, experimentally validated
functional annotations, and biomedical literature, and
uses protein-HPO term annotations extracted from the
HPO website as the class labels. PHENOstruct used
simple Bag-of-Words (BoW) features obtained from
the biomedical literature in which all words occurring
in the sentences that contain protein names are used as

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

123

features. However, this is a knowledge-free approach
in which information on actual phenotypes mentioned
in the literature is not utilized.

Over the last few years, there have been several other
automated protein-HPO term prediction tools [10, 12,
13, 19]. Notaro et al. [13] proposed a two-step method
that consists of a flat learning in the first step and a hi-
erarchical combination of the predictions in the second
step. Valentini et. al. presented a novel Hierarchical
Top-Down algorithm that assigns a single classifier to
each HPO term and based on the hierarchical structure
of DAG, it can correct the predictions [19]. Moreover,
Notaro et al. proposed an algorithm that exploits the
information from the ontology terms which specifies the
phenotype information related to each human gene [12].
However, none of these methods use literature as their
input while PHENOstruct extracts literature features
using a knowledge-free approach (i.e. BoW) as opposed
to a knowledge-based approach in which phenotype
information is also considered.

Undoubtedly, the most comprehensive resource on bi-
ological findings, including disease-related phenotypes,
is the biomedical literature. Therefore, extracting
bio-entities from literature and linking them to bio-
ontologies such as HPO has attracted interest within
the text mining community recently [5]. This approach
has high potential for exploiting the data from a
variety of patient reports, case studies, and controlled
trials [5]. In a related study, GOstruct 2.0 [9] utilized
a natural language processing (NLP) pipeline to suc-
cessfully exploit information on protein function (i.e.
Gene Ontology or GO terms [1]) from the literature.
Similarly, Funk et. al. [4] conducted a comprehensive
study on evaluating the usage of the literature feature
for the task of protein-GO term prediction. They, in
addition to simple BoW features, extracted protein
names and GO terms co-mentions (co-occurrences of
protein names and GO terms within a short span of
text) from biomedical literature, and demonstrated the
utility of a knowledge-based approach for that task.
Furthermore, in our previous work that uses the BoW
model with PHENOstruct, we found that the majority
of the most important tokens extracted from literature
(i.e. the tokens that were assigned the highest weights
in the trained SSVM) consist of names of proteins,
genes, and diseases [10]. This suggested that applying a
knowledge-based approach in extracting features would
be more effective for phenotype prediction. Moreover,
co-mentions have the added value that they are easy to
verify by a human curator [10].

In this work, we conduct the most comprehensive
evaluation of extracting literature features for the
task of protein phenotype prediction. We use a
knowledge-based approach and extract protein-

phenotype co-mentions (co-occurrences of protein
names and HPO terms within a specified span of
text) from an extremely large collection of biomedical
literature. Using the various co-mention features as
input to PHENOstruct, we demonstrate the utility
of this approach for the task of automated protein-
HPO term prediction. Outcomes of this study have
implications for the bio-curation community as well
as text mining practitioners interested in utilizing
literature for protein phenotype prediction.

The rest of the paper is organized as follows: Section
2 describes the co-mention features, the text mining
pipeline used for obtaining the said features as well
as the experimental setup, section 3 discusses the
key observations from the experiments, and Section 4
presents conclusions and future directions.

2 Methodology

2.1 Data

In this work, we use CAFA3 Targets
(http://biofunctionprediction.org) as the reference
set of input proteins. We use features generated
from protein-protein interactions (downloaded on
09-26-17), disease variants (downloaded on 07-05-17),
experimentally validated GO annotations (downloaded
on 07-21-17), as well as simple BoW features generated
from biomedical literature as input for PHENOstruct
(as described elsewhere [10]). Combination of variants,
protein-protein iterations and GO features is referred
to as VNG. In addition to the simple BoW features,
we introduce novel protein-HPO term co-mention
features as described below. We use UniProt synonyms
of proteins to improve the coverage when extracting
protein names from literature. In terms of labels, we
use protein-HPO term annotations extracted from the
HPO website on 07-18-17. Table 1 depicts the statistics
on the HPO labels used for this study. We ignored
Mortality/Aging sub-ontology in our experiments.

Table 1: Number of proteins, HPO categories, and
annotations.

Sub-ontology Proteins HPO categories Annotations

Organ 3,407 2,872 291k

Inheritance 3,049 15 10.3k

Onset 1,053 20 4.9k

2.1.1 Literature Features

We employed 27 million Medline abstracts and 1.6
million full text articles for obtaining the literature
features. We generated two different sets of literature

124

Table 2: Statistics of co-mentions extracted from both Medline and PubMed

Organ
Span Unique proteins Unique HPO terms Unique co-mentions Total co-mentions

Sentence-level 2,306 2,475 102,726 1,962,332
Paragraph-level 2,348 2,475 157152 7,292,398

Non-sentence-level 2,181 2,475 137,486 5,423,845

Inheritance
Span Unique proteins Unique HPO terms Unique co-mentions Total co-mentions

Sentence-level 1,710 12 5,029 100,086
Paragraph-level 1,763 12 5,930 370,656

Non-sentence-level 1,496 12 4,929 283,740

Onset
Span Unique proteins Unique HPO terms Unique co-mentions Total co-mentions

Sentence-level 399 16 1,126 14,965
Paragraph-level 511 16 1,948 74,602

Non-sentence-level 493 16 1,811 59,886

features: (1) Simple bag-of-words (BoW) features [10],
(2) co-mention features. Details of the feature genera-
tion is described below.

Figure 1: Overview of the NLP pipeline for extracting
features from the literature.

Bag-of-words Features

Bag-of-words (BoW) is a knowledge-free feature rep-
resentation which is broadly used in text mining ap-
plications. We retrieved all the sentences which had
an occurrence of a protein name as candidates and
extracted all the words in those sentences. For each
sentence, we first lowercased all the words in the
sentence and then removed the highly frequent words
(stop words). All the remaining words and their
counts were used as feature-value pairs. A protein is
represented as a vector of variables, each of which is
the count of that specific word.

Co-mentions Features

In this work, we introduce the novel protein-HPO
co-mention (CoM) features which are computed from
co-occurrences of the protein names and HPO terms
within a specified text span. Three text spans were
considered for obtaining co-mentions: sentence-level,
non-sentence-level and paragraph-level. Sentence-level
co-mentions (SCoM) occur in a single sentence and
paragraph-level co-mentions (PCoM) are proteins
and HPO terms which occur in a single paragraph
(i.e. across multiple sentences). Non-sentence-level
co-mentions (NSCoM) are obtained by subtracting
SCoMs from PCoMs. Note that SCoMs and NSCoMs
are proper subsets of PCoMs. Each protein is
represented by a vector in which all the HPO terms
co-occurred with the protein and their counts specify
the feature-value pairs. Statistics on these co-mention
features are given in Table 2.

Text Mining Pipeline

We developed the NLP pipeline shown in Figure 1
in order to obtain the BoW and CoM features. We
used NCBO Virtual Appliance from BioPortal [8, 14]
to extract all the phenotype names from the literature.
Protein name mentions were retrieved from the litera-
ture files using LingPipe [3] trained on GeneTag [18].
In our preliminary studies, we also considered other
alternatives to extract these entities such as OBO
annotator [17] and Bio-Lark CR [5] for extracting
phenotype names and GNormPlus [20] and ABNER [16]
for extracting protein names. However, most of these
systems were either difficult to access or did not provide
desirable results.

125

0.
5
0
0

0
.5

2
0

0.
54

0

0
.5

6
0

0.
58

0

0
.6

0
0

0.
6
20

0
.6

4
0

0.
6
60

0
.6

8
0

0.
7
00

0
.7

2
0

0.
7
40

0.
76

0

0.
7
80

0.
8
0
0

Baseline-SCoM

Baseline-NSCoM

Baseline-PCoM

BoW

SCoM

NSCoM

PCoM

VNG

VNG+BoW

VNG+SCoM

VNG+NSCoM

VNG+PCoM

VNG+SCoM+PCoM

VNG+BoW+SCoM

VNG+BoW+NSCoM

VNG+BoW+PCoM

VNG+BoW+SCoM+NSCoM

VNG+BoW+SCoM+PCoM

0.532
0.548
0.550

0.559
0.604

0.611
0.616

0.681
0.681

0.691
0.693
0.692

0.698
0.693
0.693
0.694

0.699
0.699

macro-AUC

Organ

0.
50

0

0
.5

20

0.
54

0

0.
56

0

0.
58

0

0.
60

0

0.
62

0

0.
64

0

0.
66

0

0.
68

0

0.
70

0

0.
72

0

0.
74

0

0.
76

0

0
.7

80

0.
80

0

Baseline-SCoM

Baseline-NSCoM

Baseline-PCoM

BoW

SCoM

NSCoM

PCoM

VNG

VNG+BoW

VNG+SCoM

VNG+NSCoM

VNG+PCoM

VNG+SCoM+PCoM

VNG+BoW+SCoM

VNG+BoW+NSCoM

VNG+BoW+PCoM

VNG+BoW+SCoM+NSCoM

VNG+BoW+SCoM+PCoM

0.577
0.635

0.622
0.598

0.622
0.645

0.653
0.700

0.664
0.723

0.734
0.744

0.738
0.724

0.739
0.744

0.738
0.740

macro-AUC

Inheritance

0.
50

0

0.
52

0

0.
54

0

0.
56

0

0.
58

0

0.
60

0

0.
62

0

0.
64

0

0.
66

0

0.
68

0

0
.7

0
0

0.
72

0

0
.7

4
0

0.
76

0

0
.7

80

0.
80

0

Baseline-SCoM

Baseline-NSCoM

Baseline-PCoM

BoW

SCoM

NSCoM

PCoM

VNG

VNG+BoW

VNG+SCoM

VNG+NSCoM

VNG+PCoM

VNG+SCoM+PCoM

VNG+BoW+SCoM

VNG+BoW+NSCoM

VNG+BoW+PCoM

VNG+BoW+SCoM+NSCoM

VNG+BoW+SCoM+PCoM

0.548
0.563

0.561
0.547

0.514
0.526

0.564
0.632

0.630
0.640

0.635
0.631

0.635
0.643

0.633
0.545

0.641
0.643

macro-AUC

Onset

Figure 2: PHENOstruct’s performance with different combinations of data sources (VNG: Variants+Network+GO).

126

2.2 PHENOstruct

As previously mentioned, PHENOstruct is the first
computational method for automated protein pheno-
type prediction problem [10]. It can capture infor-
mation from the inter-relationships between the HPO
labels and has the advantage of not having to train
multiple classifiers. Moreover, predicted labels are
hierarchically consistent. PHENOstruct employs a
Structured SVM model for HPO term prediction. For
each test protein provided to the trained model, it out-
puts a set of HPO labels and corresponding confidence
scores.

2.3 Experimental Setup

In order to establish baselines, we utilized the SCoMs,
NSCoMs, and PCoMs as the final predictions them-
selves (i.e. without any machine learning) along with
their associated frequencies as the confidence scores. As
mentioned before, PHENOstruct provides confidence
scores for each prediction. Considering the structure
of HPO, all HPO annotations and predictions are
expanded via the true path rule to the root node
of HPO. This rule states that any annotation to a
certain term implicitly indicates annotations to all its
ancestors. Macro-AUROC (Area Under the Receiver
Operative Curve) was used as the evaluation measure
for the predictions. We use a five-fold cross-validation
setting for all our experiments. Separate experiments
were carried out for each sub-ontology. In order to
compare the experiments, we compute p-values using
paired t-tests by considering only the leaves. All the
experiments were performed on a system running Linux
Fedora 26 with a 24-cores processor and 128 GB of
memory. The average running time for each experiment
on the Organ, Inheritance, and Onset sub-ontologies are
36 hours, 20 minutes, and 5 minutes, respectively. Note
that PHENOstruct is not compared to other protein-
phenotype prediction tools [10, 12, 13, 19] because of
the availability of only research-quality code.

3 Results and Discussion

In order to evaluate the effectiveness of the newly
introduced co-mention features, a set of ablation studies
were carried out by feeding different combinations of
features into PHENOstruct as input. Our experimental
results demonstrate that, when using individual co-
mention features as the input, the paragraph-level co-
mentions (PCoMs) provide the best performance in all
three sub-ontologies (see Figure 2). PCoMs consistently
beat SCoMs and NSCoMs for all three sub-ontologies.
These observations suggest that the paragraph level is

the span that is overall better if you are interested in
using a single set of co-mention features. Bada et al. [2]
describes that co-mentions do not necessarily occur in
the same sentence; this may be the justification for the
relatively superior performance of PCoMs.

Moreover, PCoMs by themselves consistently out-
perform BoWs in all three sub-ontologies suggest-
ing that knowledge-based approaches are better than
knowledge-free methods (P-values for Organ, Inher-
itance, and Onset are 7.8E-31, 7.6E-01, and 6.2E-
01, respectively). This observation is also true for
both SCoMs and NSCoMs in many of the cases.
Moreover, co-mention features combined with other
data sources give better performance compared to using
BoW features combined with other data sources.

Another key observation is that, as expected, SCoMs,
NSCoMs, and PCoMs outperform the baseline-SCoM,
baseline-NSCoM, and baseline-PCoM, respectively, in
both Organ and Inheritance sub-ontologies. However,
this is not the case in Onset sub-ontology; further
investigation is required for finding the underlying
reason.

Literature features by themselves provide lower per-
formance compared to when using them in conjunction
with other types of data sources. However, the best
performance in all three sub-ontologies is obtained by
using literature features along with other data sources
(P-values for Organ, Inheritance, and Onset are 1.7E-
61, 1.4E-01, and 2.4E-02, respectively). This suggests
literature features are highly complementary to other
data sources.

Regardless of the data sources/features used, align-
ing with our previous experimental observations [10],
PHENOstruct provides best performance in the Inher-
itance sub-ontology closely followed by the Organ sub-
ontology.

4 Conclusion and Future Work

In this work we conducted a comprehensive study on
evaluating a variety of literature features for the task
of protein phenotype prediction using PHENOstruct.
We demonstrate that knowledge-based features (i.e.
co-mention features) helps improve the overall perfor-
mance and are more effective than their knowledge-
free counterparts. Moreover, we find that paragraph
span best serves this purpose; PCoMs are the most
valuable source of information in comparison with the
other literature feature sets. However, we conclude that
using PCoMs as an individual data source does not
provide the best performance, and it needs to be used
as a complementary set of features to obtain the most
optimum performance.

127

This study opens up many other avenues for fu-
ture investigation. By carefully analyzing the the
performances of baselines, we notice that our NLP
pipeline is generating a large number of false positives
(data not shown). In other words, not every co-
occurrence of a protein and a phenotype represent a
valid relationship. Since our current work does not
consider the context surrounding these entity words,
the next step would be to develop a context-sensitive
co-mention filter/classifier for removing these false pos-
itives and improving the overall quality of generated
co-mentions. Moreover, this classifier by itself can serve
as an important component in a fully automated bio-
curation pipeline for phenotypes.

References

[1] Michael Ashburner et al. Gene Ontology: tool
for the unification of biology. Nature genetics,
25(1):25–29, 2000.

[2] Michael Bada, Dmitry Sitnikov, Judith A Blake,
and Lawrence E Hunter. Occurrence of gene
ontology, protein ontology, and ncbi taxonomy
concepts in text toward automatic gene ontology
annotation of genes and gene products. BioLink–
an ISMB Special Interest Group. Berlin, Germany:
Proceedings of BioLINK SIG, 2013:13–19, 2013.

[3] Bob Carpenter. LingPipe for 99.99% recall of gene
mentions. In Proceedings of the Second BioCreative
Challenge Evaluation Workshop, volume 23, pages
307–309, 2007.

[4] Christopher S Funk, Indika Kahanda, Asa Ben-
Hur, and Karin M Verspoor. Evaluating a variety
of text-mined features for automatic protein
function prediction with GOstruct. Journal of
biomedical semantics, 6(1):9, 2015.

[5] Tudor Groza et al. Automatic concept recognition
using the Human Phenotype Ontology reference
and test suite corpora. Database, 2015:bav005,
2015.

[6] Ada Hamosh, Alan F Scott, Joanna S Amberger,
Carol A Bocchini, and Victor A McKusick. Online
Mendelian Inheritance in Man (OMIM), a knowl-
edgebase of human genes and genetic disorders.
Nucleic acids research, 33(suppl 1):D514–D517,
2005.

[7] Yuxiang Jiang et al. An expanded evaluation
of protein function prediction methods shows
an improvement in accuracy. Genome biology,
17(1):184, 2016.

[8] Clement Jonquet, Nigam H Shah, and Mark A
Musen. The open biomedical annotator. Summit
on translational bioinformatics, 2009:56, 2009.

[9] Indika Kahanda and Asa Ben-Hur. GOstruct
2.0: Automated Protein Function Prediction for
Annotated Proteins. In BCB, 2017.

[10] Indika Kahanda, Christopher Funk, Karin Ver-
spoor, and Asa Ben-Hur. PHENOstruct: Pre-
diction of human phenotype ontology terms using
heterogeneous data sources. F1000Research, 2015.

[11] Sebastian Köhler et al. The Human Phenotype
Ontology in 2017. Nucleic Acids Research,
45(D1):D865–D876, 2017.

[12] Marco Notaro et al. Ensembling Descendant Term
Classifiers to Improve Gene–Abnormal Phenotype
Predictions. Proceedings of CIBB, page 1, 2017.

[13] Marco Notaro, Max Schubach, Peter N Robinson,
and Giorgio Valentini. Prediction of Human
Phenotype Ontology terms by means of hierar-
chical ensemble methods. BMC bioinformatics,
18(1):449, 2017.

[14] Natalya F Noy et al. Bioportal: ontologies and
integrated data resources at the click of a mouse.
Nucleic acids research, 37(suppl 2):W170–W173,
2009.

[15] Anika Oellrich et al. The digital revolution
in phenotyping. Briefings in bioinformatics,
17(5):819–830, 2015.

[16] Burr Settles. ABNER: an open source tool for
automatically tagging genes, proteins and other
entity names in text. Bioinformatics, 21(14):3191–
3192, 2005.

[17] Maria Taboada, Hadriana Rodŕıguez, Diego
Mart́ınez, Maŕıa Pardo, and Maŕıa Jesús Sobrido.
Automated semantic annotation of rare disease
cases: a case study. Database, 2014, 2014.

[18] Lorraine Tanabe, Natalie Xie, Lynne H Thom,
Wayne Matten, and W John Wilbur. GENETAG:
a tagged corpus for gene/protein named entity
recognition. BMC bioinformatics, 6(1):S3, 2005.

[19] Giorgio Valentini et al. Prediction of Human
Gene-Phenotype Associations by Exploiting the
Hierarchical Structure of the Human Phenotype
Ontology. In IWBBIO (1), pages 66–77, 2015.

[20] Chih-Hsuan Wei, Hung-Yu Kao, and Zhiyong Lu.
GNormPlus: an integrative approach for tagging
genes, gene families, and protein domains. BioMed
research international, 2015, 2015.

128

Dynamics of Hepatitis C Virus Infection

Fathalla A. Rihan1∗, Bassel F. Rihan2

1Department of Mathematical Sciences, College of Science, UAE University, Al-Ain 15551, UAE

2Faculty of Medicine, Ain Shams University, El-Abaseya, 11566, Cairo, Egypt

Abstract

Herein, we provide a mathematical model to inves-
tigate the dynamics of Hepatitis-C Virus (HCV)
replication, in presence of interferon-α (IFN) treat-
ment. We consider a fractional-order in the model
to represent the intermediate cellular interactions
and intracellular delay of the viral life cycle. We
analyze the steady states and dynamical behavior
of the model. We deduce a threshold parameter R0

(average number of newly infected cells produced
by a single infected cell) in terms of the treatment
efficacy parameter 0 ≤ ε < 1 and other parameters.
The suggested model has the ability to provide ac-
curate descriptions of nonlinear biological systems
with memory. The obtained results give an insight
to understand the dynamics of HCV infection.

Keywords: Mathematical modeling; Hepati-
tis C virus; Interferon-α; Viral dynamics;
Stability

MSC2010: 34, 34C, 34A08, 34C60, 92, 92C, 92C42

1 Introduction

Hepatitis C (HCV) is an infectious disease which
spreads through blood contact. It is estimated that
HCV has infected about 200 million individuals
worldwide [1]. About 50-80% of HCV infected
cases are chronic in nature [2]. Of these chronic
cases, about 10-20% develop into liver cirrhosis of
which, about 5% develop hepatocellular carcinoma
(HCC). The extend of prevalence of HCV varies
widely across geographical locations. In most
countries, the transmission of HCV occurs pri-
marily through injecting drug use (IDU), which is

∗Corresponding: frihan@uaeu.ac.ae (F.A. Rihan)

mainly associated with the sharing of contaminated
syringes/needles. Although evidence for risk of
HCV infection through sharing of other injecting
paraphernalia is increasing and giving rise to a
menace. The absence of reliable screening for HCV
amongst blood donors remains a major challenge in
combating the spread of the disease in the eastern
countries [3]. Geographically, HCV genotypes 1,
2, and 3 occur worldwide, whereas infection with
HCV genotypes 4 and 5 occurs mainly in Africa,
and HCV genotype 6 appears mainly in Asia
[4]. Many mathematical epidemic models quantify
the transmission of Hepatitis C among IDUs in
the population. These models provide alterna-
tive means to define the problems, organize our
the thoughts, understand the data, communicate,
test understanding, and help in predictions among
groups [5]. Now, there is a motivation for further
study of the dynamics and mathematical modeling
of hepatitis C virus in cellular level; See [6] and
references therein.

Mathematical models, using ordinary differential
equations with integer-order, have been proven
valuable in understanding the dynamics of hepatitis
C infections, in cellular level or in one host [7, 8].
Most of these models have been restricted to the
short-term dynamics of the systems. One of the
earliest models was proposed by Neumann et al. [9],
who examine the dynamics of HCV in presence of
Interferon-α (IFN-α) treatment. They find that the
primary role of IFN is in blocking the production of
virions from the infected hepatocytes. Dahari et al.
[7] in a subsequent and improved model, take into
account the homeostatic mechanisms for the liver
by incorporating a growth function.

However, classical mathematical models with
integer-orders ignore the intermediate cellular
interactions and memory effects. For example, the

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

129

kinetic of the viral decline in patients responding
to interferon-α is characterized by bi-phase shape
following a delay about 8-9 hours, likely to
be the sum of interferon-a pharmacokinetics and
pharmacodynamics as well as the intracellular delay
of the ciral life cycle [10]. Therefore, modeling
of the biological systems by fractional-order
differential equations has more advantages than
classical integer-order mathematical modeling, in
which such effects are neglected [11, 12].

Fractional order differential equations are natu-
rally related to systems with memory which exists
in most of biological systems [13, 14]. Also, they are
closely related to fractals [15], which are abundant
in biological systems. Fractional derivatives em-
body essential features of cell rheological behavior
and have enjoyed greatest success in the field of
rheology [16]. This is due to the fact that fractional
derivatives enable the description of the memory
and hereditary properties inherent in various cells
and processes. It has been deduced in [17] that
the membranes of cells of biological organism have
fractional order electrical conductance and then are
classified in groups of non-integer order models.
In this paper, we propose a system of fractional-
order differential equations (FODEs) for modeling
the dynamics of HCV to model as correctly as
possible the dynamics of the target cell population:
uninfected target cells, infected cells, and viral load
in presence of antiviral interferon-α drugs (IFN).
We assume here that the target cells of the model
are hepatocytes.

2 Mathematical Model of HCV

The model that we shall consider for HCV infection
is based on a three dimensional model given by
Dahari et al. [7] and model of Neumann et al. [9].
They assumed a simplified view of HCV infection
and describes the response to interferon therapy
through the coupled evolution of three populations:
the uninfected hepatocytes, the productively in-
fected hepatocytes, and the free HCV virions with
the following ordinary-differential equations

DH = s− µHH − k1V H,

DI = k′1V H − µII,

DV = µbI − µV V.

(1)

Figure 1: Schematic diagram showing the key-players in
HCV infection models. H(t) and I(t) represent target and
infected cells, respectively, and V (t) represents free virus.

Here D ≡ d

dt
, H = H(t) represents the concentra-

tion of uninfected (healthy) hepatocytes, I = I(t)
is the concentration of infected hepatocytes, and
V = V (t) is the concentration of free HCV at time
t. The model assumes that uninfected hepatocytes
are produced at a constant rate s, die at rate µH per
cell and are infected at constant rate k1. Infected
hepatocytes are lost at a rate µI per cell. The HCV,
V , is assumed to infect the hepatocytes at a rate k1,
thereby producing infected hepatocytes, I, and k′1
is the rate at which infected cells become actively
infected. Viral particles (virions) are produced at
rate µb per infected hepatocytes and cleared at rate
µV per virion.

We extend model (1) to include the logistic
proliferation of uninfected hepatocytes and include
fractional-order to the system to naturally relate
the system with memory which exists in viral life
cycle and time required for intracellular interac-
tions. The fraction-order is successful in describing
systems which have long-time memory and long-
range interaction of the disease [18]. The modified
model takes the form

Dα1H = s− µHH + rH

(
1− H + I

Hmax

)
− k1V H,

Dα2I = k1V H − µII,

Dα3V = (1− ε)MµbI − k1V H − µV V.

(2)

for 0.5 < αi ≤ 1, i = 1, 2, 3. In model (2),
we assume that the uninfected hepatocytes H
are being produced at a rate s and proliferate

130

logistically
(
1 − H + I

Hmax

)
at a rate r, accompanied

by a natural death rate of µH , and Hmax is the
maximum hepatocyte count in the liver. We assume
that the proliferation of infected cells is neglected,
and physiological conditions µHHmax > s, r > µH .
In the absence of any kind of treatment, the infected
hepatocytes produce HCV at a rate µb, which has
a clearance rate of µV . In this model, the impact of
antiviral interferon-α drugs (IFN) on the dynamics
of viral infection is considered by the coefficients
(1 − ε), where ε is the efficacy of IFN. The viral
production rate is then lowered by a fraction ε. µI is
a blanket death term for infected cells, to reflect the
assumption that we do not initially know whether
the cells die naturally or by bursting. Since M viral
particles are released by each lysing cell, this term
is multiplied by the parameter M to represent the
source for free virus (assuming a one-time initial
infection); See Figure 1. The initial conditions for
infection by free virus are H(0) = H0, I(0) = I0
and V (0) = V0.

When hepatitis C virus first infects a person, the
ensuing dynamics depend on the relative parameter
values (see Table 1). Since newly infected individ-
uals do not know that they are infected, we assume
there is initially no treatment (ε = 0). We might
expect several different scenarios: infection may
fade out without becoming established, infection
may spread with limited success and infect only
part of the liver, or infection may spread rapidly
and infect the whole liver. For untreated cronically
infected with HCV, the mean serum viral load is
approximately 3.5 × 106 IU/ml according to the
WHO HCV RNA standard [19].

To understand the dynamics of system under
acute infection correspond to each of these situa-
tions, it is helpful to walk through the stability of
the steady states. The boundedness of the solutions
is guaranteed by the following theorem.

Theorem 1 The system (2) has a unique solution
(H, I, V)T which remains in R3

+ and bounded by
Hmax; See [20].

2.1 Equilibria and local stability of model (2)

To evaluate the equilibrium points of system (2),
we put Dα1H(t) = Dα2I(t) = Dα3V (t) = 0.

This model admits two steady states, namely the
infection-free steady state E∗

0 = (H0, 0, 0), where

H0 = {r − µH + [(r − µH)2 + 4rsH−1
max]

1/2}/2rH−1
max, (3)

and the infected state, E+ = (H∗, I∗, V ∗), where

H∗ =
µV µI

k′1M(1− ε)µb − k1µI
, I∗ =

k′1H
∗V ∗

µI
,

V ∗ =
µI [(s + (r − µH)H∗)Hmax − rH∗2]

H∗[k′1rH
∗ − k1µIHmax]

.

(4)

The Jacobian matrix J(E0) for system (2) evaluated
at the uninfected steady state E0 is then given by

J(E0) =

−µH + r − 2rH0

Hmax
− rH0

Hmax
−k1H0

0 −µI k′1H0

0 M(1− ε)µb −(k1H0 + µV)

 . (5)

Let us introduce the following definition and
assumption to ease the analysis.

Definition 1 The basic reproductive number of the
virus R0 is defined as the average number of newly
infected cells produced by a single infected cell at the
beginning of the infection. The threshold parameter
R0 has the property that if R0 < 1, then the
endemic infected state does not exist, while if R0 >
1 the endemic infected state persists, where

R0 =
k′1µb(1− ε)MH0

µI(µV + k1H0)
. (6)

The uninfected steady state is asymptotically stable
if all of the eigenvalues λ of the Jacobian matrix
J(E0), given by (5), have negative real parts. The
characteristic equation det(J(E0)− I) = 0 becomes

(λ+ µH − r + 2rH0/Hmax)(λ
2 +Bλ+ C) = 0, (7)

where B = µI + kIH0 + µV , and C = µI(k1H0 +
µV) − k′1µb(1 − ε)MH0. Hence, the three roots of
the characteristic equation (7) are

λ1 = −µH + r − rH0/Hmax

≡ −
√
(r − µH)2 + 4rsH−1

max < 0, (8)

λ2,3 =
1

2
[−B ±

√
B2 − 4C].

Proposition 1 If R0 ≡ k′1µb(1− ε)MH0

µI(µV + k1H0)
< 1,

then C > 0 and the three roots of the characteristic
equation (7) will have negative real parts.

131

Table 1: Parameter definitions and values used in the model.
P Description Units Value Source

s Production rate of uninfected hepatocytes cell ml−1day−1 0.1 [7]

µH Natural death rate of rate of effector cells day−1 0.6 [7]

r Proliferation rate of uninfected hepatocytes day−1 0.05

Hmax maximum hepatocyte count in the liver cells ml−1 2× 106 [7]

k1 Infection rate of hepatocytes ml day−1 virions−1 0.08 [10]

k′
1 The rate o infected cells become infected ml day−1 virions−1 0.45

µI Natural death rate of infected cells day−1 0.28 [10]

µb Production rate of HCV by the infected cells cell −1day−1 1× 10−4

µV Clearance rate of HCV virions virgins day−1 2 ×10−2 [7]

M Source of free virus in the initial infection virion 200 [10]

ε The efficacy of IFN – 0 ≤ ε < 1 –

Assume that

R∗
0 =

k′1µbMH0

µI(µV + k1H0)
> 1 ≥ R0. (9)

Then, under the physiological conditions:
µHHmax > s, and r > µH , we arrive at the
following Remark [21].

Remark 1 In case of uninfected steady state E0,
we have three cases:

(i) If R0 < 1, the uninfected state is asymptot-
ically stable and the infected steady state E+
does not exist (unphysical). The efficacy of the

drug ε should exceed

(
1− 1

R∗
0

)
to eradicate

the virus.

(ii) If R0 = 1, then C = 0 and from (7) im-
plies that one eigenvalue must be zero and the
remaining two eigenvalues have negative real
parts. The uninfected and infected steady state
collide and there is a transcritical bifurcation,

and the efficacy threshold is ε∗ =
(
1− 1

R∗
0

)
.

(iii) If R0 > 1, then C < 0, and thus at least
one eigenvalue will be positive real root. Thus,
the uninfected state E0 is unstable and the
endemically infected state E+ emerges. The

efficacy ε does not exceed

(
1− 1

R∗
0

)
.

To study the local stability of the positive infected
steady states E+ for R0 > 1, we consider the

linearized system of (2) at E+. The Jacobian matrix
at E+ becomes

J(E+) =

−L∗ −rH∗/Hmax −k1H
∗

k′1V
∗ −µI k′1H

∗

k1V
∗ Mµb −(k1H

∗ + µV)

 .(10)

Here

L∗ = −[µH − r + k1V
∗ + r(2H∗ + I∗)/Hmax].

Then the characteristic equation of the linearized
system is

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0, (11)

a1 = µI + µV + k1H
∗ + L∗,

a2 = L∗(µI + µV + k1H
∗) + µI(µV + k1H

∗)− k21H
∗V ∗

− k′1H
∗(Mµb − rV ∗/Hmax),

a3 = k′1H
∗[k1MµbV

∗ − rµV V
∗/Hmax − L∗Mµb]+

L∗µI(µV + k1H
∗)− µIk

2
1H

∗V ∗.

The infected steady state E+ is asymptotically
stable if all of the eigenvalues have negative real
parts. This occurs if and only if Routh-Hurwitz
conditions are satisfied, i.e. a1 > 0, a3 > 0 and
a1a2 > a3.

3 Numerical Simulations

In this section, we carry out some numerical sim-
ulations to display the qualitative behaviours of
model (2) (see Figures 2–3), and fit model (2)

132

5

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(days)

V(
t)/

V(
0)

α=1
α=0.9
α=0.8

Figure 2: Numerical simulations of the HCV model (2)

that show a stable infected steady state E+, with different

fractional order α, with parameter values given in Table 1

and ε = 0.0 (R0 > 1).

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(days)

V
(t)

 /
V

(0
)

V(0)=3 cells ml−1

V(0)=2 cells ml−1

V(0)=1 cells ml−1

Figure 3: Simulations of the HCV model (2) which display

a stable infection-free steady state E0, with the same

parameter values of Figure 1 but with r = 0.1 (increasing

proliferation rate of the uninfected hepatocytes) and k1 =

0.01 (decreasing the infection rate of hypatocytes). A

complete recovery is obtained when R0 < 1.

6 8 10 12 14 16 18
0

0.5

1

1.5

Time (days, after treatment starts)

V
(t)

 (L
og

10
 C

op
ic

e/
m

l)

V(t)
HCV RNA data

Figure 4: Comparison of viral load data (squares) with

model predictions (2) for a case of HCV RNA decay

profile during antiviral therapy, INF-α [22]. The treatment

efficacy, as an estimate, ε = 0.950. Other parameter values

and estimates are given in the text.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Time (days, after treatment starts)

V
(t)

 (L
og

10
 C

op
ic

e/
m

l)

V(t)
I(t)
V(t)
HCV data

Figure 5: Comparison of viral load data with model

predictions for a case of HCV RNA persist (endermic)

steady state during INF-α therapy [22]. The treatment

efficacy, as an estimate, ε = 0.701.

133

to experimental data of HCV RNA replications
(see Figure 4– 5). The numerical simulations
confirm the theoretical results obtained in the above
sections. Figure 2 shows an asymptotically stable
infected steady state E+ for different values of
the fractional order and parameter values given in
Table 1, when R0 > 1. While, Figure 3 shows
a infection-free steady sate E0, when R0 < 1. A
complete recovery is obtained when R0 < 1. Before
treatment ε = 0, a steady state exists where viral
production is balanced by viral clearance and the
production of infected cells is balanced by their
loss. Uninfected hepatocytes are also in steady
state determined by the balance between their
production, death, and loss due to infection. We
notice that the smaller value of the fractional order
α the longer incubational period of the virus in the
beginning stage.

In Figure 4, we fit the model (2) to the exper-
imental data of Table 2, during antiviral therapy
(0 < ε < 1) for HCV infected patient. We
fixed all the parameters except P = [r, k1, µV , ε].
The rest of the parameter take the values s =
0.1 × 102, k′1 = 0.0103, M = 800, Hmax =
1.4 × 103, µH = 0.0107, µI = 0.31. Using least
squares approach, the unknown parameters are
P̂ = [0.0401, 0.017, 0.731, 0.601]. The reproductive
number for the best estimate and infection-free
steady state is R0 = 0.7654 < 1. The decay occurs
rapidly during the treatment and the efficacy of
treatment in blocking virion production ε = 0.950.
The simulation match with the viral-free steady
state E0. Figure 5 shows fitting the model (2) to the
real data of Table 3 for chronically infected patient,
during treatment. The parameter estimates with
such data are P̂ = [0.004, 0.021, 1.701, 0.502].

We employed the implicit Euler’s scheme to solve
the resulting biological (2). Interesting numerical
simulations of the fractional-order model (2), with
step-size h = 0.05 and 0.5 < α ≤ 1 and parameters
values given in the captions.

From the analysis and numerical approximation,
we arrive at the following Remark.

Remark 2 The presence of a fractional-order in
the model can lead to a notable increase in the
complexity of the observed behavior, as the solution
is continuously depends on all the previous states.
This confirms that the fractional-order plays the

role of memory and heredity [23].

4 Conclusions

In this paper, we developed a mathematical model
for hepatitis C dynamics to describe the inter-
actions between healthy liver cells H, infected
liver I, and virus load V . While the model is
overly simple in that it does not account for the
immune response to HCV infection, but it provides
a complex dynamics due to the fractional-order
derivative that considers the longer term behavior
of the HCV kinetics. The basic reproductive
number of the virus, R0, has been deduced in
understanding the persistence of viral infections.
If R0 < 1, the level of virus load and infected
cells will monotonically decrease and ultimately
be eliminated. However for R0 > 1 there will
be a chronic HCV infection. The higher the
reproductive number R∗

0, the higher treatment
efficacy ε is required in order to eradicate the virus.
When R0 < 1, the treatment efficacy ε greater than
(1− 1/R∗

0) leads to complete clearance of infection.

The model prediction is validated by fitting the
model to available data for HCV RNA production
for decay profile case and chronic infected case
during treatment with interferon-α. When R0 < 1,
the decay of the virion occurs rapidly during the
treatment and the estimated efficacy of the drug
(in blocking virion production) is ε = 0.950. While
for the chronic state R0 > 1, the estimated efficacy
parameter is ε = 0.701.

Acknowledgment

The work was funded by UAEU/SQU-2016 research
projects (UAE University).

References

[1] WHO Fact Sheet 164-Hepatitis C, www.who.
int.gate2.inist.fr/mediacentre/factsheets/
fs164/en/, Januray 31, 2014.

[2] B. Roe, W. Hall, Cellular and molecular inter-
actions in coinfection with hepatitis C virus and
human immunodeficiency virus, Expert Rev Mol
Med Oct 20 (2008).

134

Table 2: Hepatitides C verimemia within 14 days of treatment with interferon-α in a patient [9] (Case I).
Time (days) 1 2 3 4 5 6 7

log10 V̄ (t)/liver 8.5 8.6 8.5 10.7 10.5 7.2 4.1

Time (days) 8 9 10 11 12 13 14

log10 V̄ (t)/liver 3.5 2.6 1.6 0.7 0.6 0.4 0.3

Table 3: Hepatitides C verimemia within 25 days of treatment with interferon-α in a patient [9] (Case II).
Time (days) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

log10 V̄ (t)/liver 9.6 10.2 8.5 10.1 10.2 8.2 6.2 4.5 3.6 3.6 4.0 3.8 4.2 4.1

Time (days) 15 16 17 18 19 20 21 22 23 24 25

log10 V̄ (t)/liver 3.7 3.5 4.0 4.2 4.3 4.2 4.3 4.2 4.4 4.4 4.3

[3] A. Mukhopadhya, Hepatitis C in India, J. Biosci.
33 (4) (2008) 465–473.

[4] H. N. Afdhal, The natural history of hepatitis C,
Semin Liver Dis 24 (Suppl 2:38) (2004) 5, 6.

[5] A. Wasley, M. J. Alter, Epidemiology of hepatitis C:
geographic differences and temporal trends, Semin
Liver Dis 20 (1) (2000) 116.

[6] I. Ramirez, Mathematical Modeling of Immune
Responses to Hepatitis C Virus Infection, PhD
thesis: East Tennessee State University, 2014.

[7] H. Dahari, A. Lo, R. M. Ribeiro, A. S. Perelson,
Modeling hepatitis C virus dynamics: Liver
regeneration and critical drug efficacy, J. Theor.
Biol. 47 (2007) 371–381.

[8] A. S. Perelson, Modelling viral and immune system
dynamics (2002).

[9] A. U. Neumann, N. P. Lam, H. Dahari, D. R.
Gretch, T. E. Wiley, T. J. Layden, A. S. Perelson,
Hepatitis C viral dynamics in vivo and the antiviral
efficacy of interferon-α therapy, Science 282 (1998)
103–107.

[10] S. Zeuzem, E. Herrmann, Dynamics of hepatitis C
virus infection, Ann Hepatol. 1 Apr-Jun (2) (2002)
56–63.

[11] F. A. Rihan, Numerical modeling of fractional-
order biological systems, Abst. Appl. Anal. 2013
(2013) 11 pages.

[12] F. Rihan, S. Lakshmanan, A. Hashish,
R. Rakkiyappan, E. Ahmed, Fractional order
delayed predator-prey systems with holling type-ii
functional response, Nonlinear Dynamics 80 (1)
(2015) 777–789.

[13] F. A. Rihan, Current Topics in Salmonella and
Salmonellosis (Ed.: Mihai Mares): Dynamics of
Salmonella Infection, InTech, 2017.

[14] R. L. Magin, Fractional calculus models of complex
dynamics in biological tissues, Comput Math Appl
59 (2010) 1586–1593.

[15] A. Rocco, B. J. West, Fractional calculus and the
evolution of fractal phenomena, Physica A 265
(1999) 535.

[16] V. D. Djordjević, J. Jari, B. Fabry, J. J. Fredberg,
D. Stamenovi, Fractional derivatives embody es-
sential features of cell rheological behavior, Annal.
Biomed. Eng. 31 (2003) 692–699.

[17] K. S. Cole, Electric conductance of biological
systems, Cold Spring Harb Symp Quant Biol (1993)
107–116.

[18] E. Ahmed, H. A. El-Saka, On fractional order
models for hepatitis C, Nonlinear Biomed Phys
4 (1) (2010) 1–4.

[19] J. M. Pawlotsky, M. Bouvier-Alias, C. Hezode,
F. Darthuy, J. Remire, D. Dhumeaux, Standard-
ization of hepatitis C virus RNA quantification,
Hepatology 32 (3) (2000) 654–9.

[20] W. Lin, Global existence theory and chaos control
of fractional differential equations, J. Math. Anal.
Appl. 332 (2007) 709–726.

[21] F. A. Rihan, et al., Dynamics of hepatitis c virus
infection: Mathematical modeling and parameter
estimation, Math. Model. Nat. Phenom. 12 (5)
(2017) 33–47.

[22] H. Dahari, et al., Mathematical modeling of
primary hepatitis C infection: Noncytolytic clear-
ance and early blockage of virion production,
Gastroenterology 128 (2005) 1056–1066.

[23] F. A. Rihan, B. F. Rihan, Numerical modelling
of biological systems with memory using delay
differential equations, Appl. Math. & Inf. Sci. 9 (3)
(2015) 1615–1658.

135

Identifying Translated uORFs based on Sequence Features via Tree-based

Algorithms

Qiwen Hu1 and Steffen Heber2

1Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania

Philadelphia, PA, 19104, USA
2Department of Computer Science, North Carolina State University

Raleigh, NC, 27695, USA
qiwenhu@upenn.edu, sheber@ncsu.edu

Abstract

Upstream open reading frames (uORFs) are important

post-transcriptional regulatory elements that occur in 5’

untranslated region of mRNA molecules. Misregulation of

translated uORFs has been associated with important

diseases such as schizophrenia, bipolar affective disorder,

and cancer. It is known that mRNA sequence features such

as mRNA secondary structure and sequence context near

the start codon are often associated with uORF translation,

but details of the underlying mechanisms are still unclear.

In this paper, we have used tree based learning algorithms

in combination with ribosome profiling data generated

from Arabidopsis thaliana to identify sequence features

that are associated with translated uORFs. Using a

boosting tree and the identified features set, we were able

to predict 11962 translated uORFs, in 4152 genes. Our

approach can be used even if ribosome profiling data is not

available.

keywords: uORF translation, ribosome profiling, sequence
features, tree based algorithm

1 Introduction
Upstream open reading frames (uORFs) are important

post-transcriptional regulatory elements that occur in the 5’

untranslated region (UTR) of mRNA molecules. Studies

have shown that translated uORFs appear in a higher

frequency in genes with important regulatory roles, such as

growth factors and transcription factors [1], and that their

misregulation may lead to important diseases, including

schizophrenia, bipolar affective disorder, and cancer [2].

Although uORFs are prevalent in many organisms - about

50% of the genes in human and mouse, and about 40% of

the genes in Arabidopsis contain uORFs [3, 4], only few of

them are experimentally validated. The biological

functions and translational status of most uORFs are still

unclear.

In general, translated uORF sequences attenuate the

translation of the downstream main open reading frame,

but not all uORF sequences are translated [5]. It has been

shown that the sequence context near the start codon may

affect how ribosome recognize an uORF [6, 7], however
the details of the underlying mechanism are still unclear.

Several methods to identify translation initiation

sites, as well as translated open reading frames, including

translated uORFs, have been developed [8, 9]. In our

previous study, we have used ribosome profiling (ribo-seq)

data to identify a set of possible translated uORFs in

Arabidopsis thaliana [10]. Unfortunately, ~30% of genes

were not transcribed in our samples. As a consequence,

ribo-seq data is not available for these genes, and the

translational status of their uORFs is still missing.

In this paper, we use tree based learning algorithms to

identify sequence features that are associated with

translated uORFs. We show that these sequence features

can be used to predict translated uORFs without the use of

additional ribo-seq data. Using a boosting tree in

combination with the identified feature sets, we predict

11962 translated uORFs. We have compared our results

with previous studies: our predictions include 89% of the

reported, experimentally verified uORFs, and 84% of the

reported, conserved uORFs.

2 Methods

2.1 Sequence Preprocessing

We used ribosome footprints and the corresponding

RNA-seq data from a study in the model plant Arabidopsis

thaliana (NCBI accession number SRP056795) [11]. After

preprocessing, sequencing reads were aligned with the

Arabidopsis genome sequence (version TAIR10,

http://www.arabidopsis.org/) using Tophat and default

parameters [12]. Only reads with length in the range 25 –

40bp that mapped uniquely were considered for the

following analysis.

We have extracted uORF sequences using the same

method as described in [10]. Subsequently, we performed

an exhaustive search for all possible uORFs that start with

a start codon (ATG) in the 5’ UTR region and end with a

stop codon (TAG, TAA or TGA) in the same reading

frame. Finally, we assigned the aligned ribo-seq reads to

uORFs and transcript regions according to the TAIR10

gene annotation.

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

136

2.2 Ribosome Profiling Feature Generation

Ribosome profiling features were generated using the

distribution of ribo-seq reads around uORF regions.

Ribosomes have different moving patterns during

translation initiation, elongation and termination. The

moving patterns are reflected by the distribution of ribo-

seq reads in the corresponding regions of a translated

uORF. Therefore, a translated uORF should show

characteristic ribo-seq read distribution patterns.

We extracted 11 ribosome profiling features for each

uORF. Below is the description of each feature; more

details can be found in [10].

1. Distance from uORF to the nearest ribo-seq read

peak: distance.

2. Density ribo-seq reads in uORF region: density.

3. Maximum of ribo-seq read density in uORF region:

max_density.

4. Minimum of ribo-seq read density in uORF region:

min_density.

5. Ribo-seq read density in the region left of the uORF:

density_left.

6. Ribo-seq read density in the region right of uORF:

density_right.

7. Variance of the rib-seq read distribution in the uORF

region: var.

8. uORFscore: uorf_score. A measure of read

periodicity [13].

9. Ribo-seq read coverage of the first 3 codons in uORF

region: fn_cov.

10. Proportion of ribo-seq reads that are in the same

reading frame as the uORF: uorf_cov.

11. Ribo-seq read coverage in the uORF region: cov.

2.3 Feature Extraction

We generated an extensive list of features for each uORF

region. The features can be divided into two groups:

sequence related features and peptide related features.

Sequence related features include length of uORF

(length), relative position of uORFs (order), reading frame

of uORF with respect to the main ORF (rf), secondary

structure of uORF measured by minimum free energy

(mfe), length of 5’ UTR, coding sequence, and 3’ UTR,

distance between uORF start codon and translation

initiation site of the main ORF, distance between uORF

stop codon and translation initiation site of the main ORF,

an indicator variable to show if the uORF region overlaps

with other open reading frames, and 15 additional features

that describe the sequence context near the start codon.

Peptide related features focus on the protein product of

the uORF. Peptide related features include amino acid

composition of the uORF region, for example frequency of

each amino acid as well as frequencies of the amino acid

groups tiny, small, aliphatic, aromatic, nonpolar, polar,

charged, basic and acidic (35 features in total), molecular

weight (mw), isoelectric point (pi), hydrophobicity (hb),

instability index of the uORF peptide (ins) [14], protein

interaction index (bp) [15], and the codon adaptation index

of the uORF region (cai) [16].

2.4 Identification of uORF Translation

Pattern and Model Learning

To improve the reliability of our features and to reduce

noise, we have discarded all uORF regions that overlap

with other uORFs, resulting in a set of 3854 uORFs. We

then performed k-means clustering based on ribosome

profiling features on the remaining uORFs. To determine

the number of groups (k) in our uORF set we used the

average silhouette value [17].

Subsequently, we used tree-based learning to identify

characteristic sequence features in the different uORF

groups and to predict translated uORFs. Tree-based

learning algorithms have been successfully used for

various machine learning tasks, and they are known for

their accurate and robust performance, ease of

interpretation, and the ability of learning non-linear

relationships, see [18] for a detailed description. In our

study, we have compared the performance of decision trees,

random forests and boosting trees. A decision tree is a

classification algorithm in which internal tree nodes

represent attribute tests, edges correspond to test outcomes,

and leaf nodes correspond to classification results (in our

case the translation status of the uORF). Starting at the root,

each data point will traverse a path through the decision

tree until it reaches a leaf node where a prediction is made

[18]. Random forests and boosting trees are ensemble

approaches based on decision trees. A random forest uses

bootstrap resampling to grow multiple decision trees, and

combines their results [19]; boosting trees compute a

weighted mixture of decision trees [20].

We used 5-fold cross validation to measure the

performance of the different algorithms. The entire dataset

was divided into 2 parts: a training set and a testing set. For

each algorithm, the model was tuned in a 5-fold cross

validation experiment using training data only. The model

that performed best was applied to the test set.

3 Result

3.1 Ribosome profiling Features Show

Different Pattern among uORF Groups

We extracted a set of ribosome profiling features which

capture the moving pattern of translating ribosomes for all

non-overlapping uORFs, see section 2.2. Most of our

features are uncorrelated, or they show only a small

positive Pearson correlation value. Only one feature pair:

137

ribo-seq read coverage (cov) and ribo-seq read coverage of

the first 3 codons (fn) has a Pearson correlation coefficient

of 0.8. Subsequently, we performed k-means clustering

based on Euclidean distance to identify different ribosome

profiling feature pattern. Average silhouette value was

used to determine the number of groups (k) in the data. We

calculated the average silhouette value for different values

of k and found a clear drop at k=7 (figure 1), suggesting

k=6 as an appropriate choice.

Figure 1: Average silhouette value of our k-means

clustering for different values of k.

Figure 2 shows the different pattern of ribosome profiling

features in the 6 groups. Similar to our results in [10], the

ribosome profiling features show clear differences that

suggest the translation status of the corresponding uORFs.

The uORFs in cluster 1 and 2 have very few ribosome

profiling reads (the values of density, density_left and

density_right are small) in their uORF regions, larger

distance from the nearest density peak (dp) and a small

variance of their read distribution (var). This suggests that

ribosome profiling reads are neither accumulated at the

start codon nor in the main body of the uORF. Likely,

uORFs from these two groups are not translated.

The uORFs that belong to cluster 3, 5, or 6 have a

smaller distance from the nearest density peak (dp) and an

increased ribosome profiling read density (denisty) as

compared to the uORFs in clusters 1 or 2. However, their

read distribution has a small variance (var), which

indicates that reads occur only at one or few positions with

the uORF and do not show periodicity. This is inconsistent

with the characteristics of translated open reading frames

[9, 21].

Only the uORFs in cluster 4 show the characteristic

features of translated uORFs [9, 21], such as accumulation

of ribosome profiling reads at the start codon, high

uORFscore and read periodicity, and an increased read

density along the main body of the uORF (min_density >

0).

To further validate our results, we examined the

distribution of experimentally verified and conserved

uORFs that are expressed in our samples among the 6

groups (Figure 3). Consistent with ribosome profiling

feature pattern, most of the experimentally verified and

conserved uORFs are in cluster 4, only very few of them

located in other clusters.

In summary, our analysis of ribosome profiling feature

pattern, and the distribution of validated and conserved

uORFs suggests that most of the translated uORFs are

located in cluster 4.

Figure 2: ribosome profiling features in different groups

of our k-means clustering. The length of the bar indicates

the range of each feature in the cluster. The red dot in the

figure marks the mean value of a specific feature in the

entire dataset.

Figure 3: distribution of experimental verified and

conserved uORFs among the different groups. Cluster 6 is

not shown because there are no experimentally verified or

conserved uORFs in this cluster.

138

3.2 Sequence Features can be used to

Predict Translated uORFs

Based on our clustering analysis, we classified the uORF

sequences into two categories: translated uORFs (cluster 4)

and untranslated uORFs (the other clusters). To obtain

more reliable results, we also removed all uORFs with

length smaller than 6bps; it has been reported that such

small uORFs are less likely to be functional [22]. Finally,

we extracted 59 sequence features from each uORF region

(see methods).

To learn how well the extracted sequence features predict

uORF translation, we applied three tree-based

classification approaches (decision tree, random forest and

boosting tree). We consider the sequence features as

explanatory variables and the uORF translation status as

class label. We have measured model performance in a 5-

fold cross validation experiment using accuracy, precision,

recall, and F1-score. The different quality measures are

calculated as follows:

 Accuracy = (TP+TN)/(TP+FN+TN+FP),

 Precision = TP/(TP+FP),

 Recall = TP/(TP+FN),

 F1-score = 2TP/(2TP+FP+FN),

where TP, TN, FP, FN denote the number of true

positives, true negatives, false positives, and false

negatives.

Table 1 lists the performance of the three algorithms.

Random forest and boosting tree show similar results and

outperform a simple decision tree. To test the predictive

power of each algorithm, we also permutated the response

labels and recomputed the classifier performance; all

results dropped to a value around 0.5. We also provide the

performance of our previous, ribo-seq feature-based

algorithm [23]. Since this algorithm uses ribo-seq

information it performs better than our new algorithm.

However, it cannot be used in cases where ribo-seq data is

not available, for example in untranscribed genes.

3.3 Importance of Sequence Features for

the Prediction of uORF Translation

To investigate how our sequence features affect the

prediction of uORF translation, we calculated the

importance score of each sequence feature. The importance

score of a sequence feature is computed by subtracting the

out of bag error derived from data where the sequence

feature has been permuted from the out of bag error of the

original data, and averaging over all trees [19].

Figure 4 shows the 20 features with the highest

importance scores. The most important feature in our study

is the start position of the uORF (start) in the 5’UTR.

uORFs located at the beginning of the 5’UTR are more

likely to be recognized by ribosomes and trigger translation.

This is consistent with the findings of a previous study in

human [24]. Our list includes several other features that

have been reported in other studies about translation, for

example uORF length (length), secondary structure near

uORF region (measured by mfe), distance between uORF

and its main open reading frame (start_to_cds) and codon

usage (cai) in uORF region [6, 7, 25, 26]. Codon usage and

secondary structure are two important factors that

determine the translation efficiency of open reading frames

during initiation and elongation stages [25, 26].

Additionally, our list includes the length of 3’UTR (tutr),

molecular weight of the uORF peptide (mw), and length of

main open reading frames (cds). Interestingly, we also

found that amino acid composition (e.g. aromatic, aliphatic)

Table 1: Model performance of our algorithms. RF: random forest, DT: decision tree, BT: boosting tree, RS: the ribo-

seq feature based algorithm described in [26]. The number in the parentheses is the variance.

True data

 Algorithm Accuracy Precision Recall F1-score

RF 0.737 (6.4e-5)

0.759

(0.0018) 0.695 (0.0019)

0.725

(8.15e-5)

DT

0.686

(9.2e-4)

0.710

(0.0012)

0.648

(0.0098)

0.671

(5.3e-4)

BT

0.742

(3.2e-4)

0.764

(0.0019)

0.701

(4.9e-4)

0.730

(7.7e-5)

RS 0.9 0.95 0.87 0.91

Permutated data

 Algorithm Accuracy Precision Recall F1-score

RF

0.449

(9.5e-4)

0.457

(0.0034)

0.443

(0.0034)

0.440

(4.3e-4)

DT

0.486

(2.0e-4)

0.494

(7.3e-4)

0.386

(0.0017)

0.461

(7.7e-4)

BT

0.468

(6.4e-4)

0.475

(0.0026)

0.502

(0.0033)

0.482

(2.0e-4)

139

and frequency of specific amino acids (e.g. M and L)

impact our predictions.

Figure 4: Top 20 sequence features with the highest

importance score.

3.4 Genome-wide Identification of

Translated uORFs

We used a boosting tree, the classifier that performed

best in our evaluation, to predict translated uORFs in the

genome of Arabidospis thaliana. We re-trained the model

using the entire dataset. Model parameters were tuned in a

5-fold cross validation experiment via grid search. The best

performance was achieved for following parameter set:

iteration = 100, maximum tree depth maxdepth = 4, and

boosting shrinkage parameter nu = 0.1.

Table 2: conserved and experimentally validated uORFs

identified by our approach

Predict

ed Total Recall

Experiment

ally verified
17 19 89.47%

Conserved 58 69 84.06%

Our approach predicted 11962 translated uORFs in 4152

genes using sequence features only. About 12% of the

genes with predicted translated uORFs are untranscribed in

our samples. Our approach predicts 1500 translated uORFs

in these genes. A method which relies on ribo-seq

information would not be able to detect these uORFs. We

also compared our predictions with experimentally verified

and conserved uORFs [3, 27-29]. Our approach detects

89% of the experimentally verified uORFs and 84% of the

conserved uORFs (Table 2). Our previous ribo-seq feature-

based algorithm detects considerably less uORFs (75% of

the experimentally verified uORFs and 73% of the

conserved uORFs) [10].

4 Conclusion

In this paper, we have identified sequence features that

can be used to predict translated uORFs without the use of

additional ribo-seq information. Using a boosting tree

classifier in combination with the sequence features we

predicted 11962 translated uORFs in the genome of

Arabidopsis thaliana, promising candidates for future

functional analyses. We have compared our results with

previous studies: our predictions include 89% of the

reported, experimentally verified uORFs, and 84% of the

reported, conserved uORFs. Remarkably, our previous

ribo-seq feature-based algorithm detects a considerably

smaller percentage of these uORFs. We hypothesize that

this difference is caused by genes for which ribo-seq

information is not available (for example untranscribed

genes), or difficult to interpret (for example genes with

overlapping uORFs). However, not surprisingly, if

sufficient ribosome profiling information is available, our

previous ribo-seq feature-based algorithm performs better.

We plan to combine both approaches in future work.

5 Acknowledgment

Parts of this work were supported by the National

Science Foundation grant IOS1444561.

References

[1] Selpi, C. H. Bryant, G. J. Kemp, J. Sarv, E.

Kristiansson, and P. Sunnerhagen, "Predicting

functional upstream open reading frames in

Saccharomyces cerevisiae," BMC Bioinformatics, vol.

10, p. 451, 2009.

[2] C. Barbosa, I. Peixeiro, and L. Romao, "Gene

expression regulation by upstream open reading

frames and human disease," PLoS Genet, vol. 9, p.

e1003529, 2013.

[3] A. G. von Arnim, Q. Jia, and J. N. Vaughn,

"Regulation of plant translation by upstream open

reading frames," Plant Sci, vol. 214, pp. 1-12, Jan

2014.

[4] M. Matsui, N. Yachie, Y. Okada, R. Saito, and M.

Tomita, "Bioinformatic analysis of post-

transcriptional regulation by uORF in human and

mouse," FEBS Lett, vol. 581, pp. 4184-8, Sep 04

2007.

[5] D. R. Morris and A. P. Geballe, "Upstream open

reading frames as regulators of mRNA translation,"

Mol Cell Biol, vol. 20, pp. 8635-42, Dec 2000.

140

[6] A. G. Hinnebusch, "Molecular mechanism of

scanning and start codon selection in eukaryotes,"

Microbiol Mol Biol Rev, vol. 75, pp. 434-67, first

page of table of contents, Sep 2011.

[7] G. L. Chew, A. Pauli, and A. F. Schier,

"Conservation of uORF repressiveness and sequence

features in mouse, human and zebrafish," Nat

Commun, vol. 7, p. 11663, May 24 2016.

[8] C. Fritsch, A. Herrmann, M. Nothnagel, K.

Szafranski, K. Huse, F. Schumann, et al., "Genome-

wide search for novel human uORFs and N-terminal

protein extensions using ribosomal footprinting,"

Genome Res, vol. 22, pp. 2208-18, Nov 2012.

[9] N. T. Ingolia, L. F. Lareau, and J. S. Weissman,

"Ribosome profiling of mouse embryonic stem cells

reveals the complexity and dynamics of mammalian

proteomes," Cell, vol. 147, pp. 789-802, Nov 11 2011.

[10] Q. Hu, C. Merchante, A. N. Stepanova, J. M. Alonso,

and S. Heber, "Genome-Wide Search for Translated

Upstream Open Reading Frames in Arabidopsis

Thaliana," IEEE Trans Nanobioscience, vol. 15, pp.

148-57, Mar 2016.

[11] C. Merchante, J. Brumos, J. Yun, Q. Hu, Kristina R.

Spencer, P. Enríquez, et al., "Gene-Specific

Translation Regulation Mediated by the Hormone-

Signaling Molecule EIN2," Cell, vol. 163, pp. 684-

697.

[12] C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim,

D. R. Kelley, et al., "Differential gene and transcript

expression analysis of RNA-seq experiments with

TopHat and Cufflinks," Nat Protoc, vol. 7, pp. 562-

78, Mar 2012.

[13] A. A. Bazzini, T. G. Johnstone, R. Christiano, S. D.

Mackowiak, B. Obermayer, E. S. Fleming, et al.,

"Identification of small ORFs in vertebrates using

ribosome footprinting and evolutionary

conservation," EMBO J, vol. 33, pp. 981-93, May 02

2014.

[14] H. G. Boman, "Antibacterial peptides: basic facts and

emerging concepts," J Intern Med, vol. 254, pp. 197-

215, Sep 2003.

[15] K. Guruprasad, B. V. Reddy, and M. W. Pandit,

"Correlation between stability of a protein and its

dipeptide composition: a novel approach for

predicting in vivo stability of a protein from its

primary sequence," Protein Eng, vol. 4, pp. 155-61,

Dec 1990.

[16] P. Rice, I. Longden, and A. Bleasby, "EMBOSS: the

European Molecular Biology Open Software Suite,"

Trends Genet, vol. 16, pp. 276-7, Jun 2000.

[17] P. J. Rousseeuw, "Silhouettes: a Graphical Aid to the

Interpretation and Validation of Cluster Analysis,"

Computational and Applied Mathematics pp. 53-65,

1987.

[18] Y. Y. Song and Y. Lu, "Decision tree methods:

applications for classification and prediction,"

Shanghai Arch Psychiatry, vol. 27, pp. 130-5, Apr 25

2015.

[19] L. Breiman, "Random Forests," Machine Learning,

vol. 45, pp. 5-32, 2001/10/01 2001.

[20] Z. Tu, "Probabilistic boosting-tree: learning

discriminative models for classification, recognition,

and clustering," Tenth IEEE International Conference

on Computer Vision (ICCV'05) vol. 1, pp. 1589-1596

2005.

[21] N. T. Ingolia, "Genome-wide translational profiling

by ribosome footprinting," Methods Enzymol, vol.

470, pp. 119-42, 2010.

[22] M. Cvijovic, D. Dalevi, E. Bilsland, G. J. Kemp, and

P. Sunnerhagen, "Identification of putative regulatory

upstream ORFs in the yeast genome using heuristics

and evolutionary conservation," BMC Bioinformatics,

vol. 8, p. 295, 2007.

[23] Q. Hu, C. Merchante, A. N. Stepanova, J. M. Alonso,

and S. Heber, "Genome-Wide Search for Translated

Upstream Open Reading Frames in Arabidopsis

Thaliana," IEEE Transactions on NanoBioscience,

vol. 15, pp. 148-157, 2016.

[24] S. E. Calvo, D. J. Pagliarini, and V. K. Mootha,

"Upstream open reading frames cause widespread

reduction of protein expression and are polymorphic

among humans," Proc Natl Acad Sci U S A, vol. 106,

pp. 7507-12, May 5 2009.

[25] M. dos Reis, R. Savva, and L. Wernisch, "Solving the

riddle of codon usage preferences: a test for

translational selection," Nucleic Acids Res, vol. 32, pp.

5036-44, 2004.

[26] Y. Lavner and D. Kotlar, "Codon bias as a factor in

regulating expression via translation rate in the

human genome," Gene, vol. 345, pp. 127-38, Jan 17

2005.

[27] A. Imai, Y. Hanzawa, M. Komura, K. T. Yamamoto,

Y. Komeda, and T. Takahashi, "The dwarf phenotype

of the Arabidopsis acl5 mutant is suppressed by a

mutation in an upstream ORF of a bHLH gene,"

Development, vol. 133, pp. 3575-85, Sep 2006.

[28] F. Alatorre-Cobos, A. Cruz-Ramirez, C. A. Hayden,

C. A. Perez-Torres, A. L. Chauvin, E. Ibarra-Laclette,

et al., "Translational regulation of Arabidopsis

XIPOTL1 is modulated by phosphocholine levels via

the phylogenetically conserved upstream open

reading frame 30," J Exp Bot, vol. 63, pp. 5203-21,

Sep 2012.

[29] A. Wiese, N. Elzinga, B. Wobbes, and S. Smeekens,

"A conserved upstream open reading frame mediates

sucrose-induced repression of translation," Plant Cell,

vol. 16, pp. 1717-29, Jul 2004.

141

Scalable Approach to Data Driven Transcriptome Dynamics Modeling

Alexandr Koryachko, Samiul Haque, and Cranos Williams
Department of Electrical and Computer Engineering, NCSU

890 Oval Drive, 27606, Raleigh, USA
(akoryac, shaque2, cmwilli5)@ncsu.edu

Abstract

The evolving field of biological experimentation al-
lows for the collection of various types of data describing
different aspects of gene regulation inside a living
cell. However, most of the gene expression dynamic
modeling approaches limit their choice of data to a
time course, which leads to infeasible requirements on
the number of sampling time points to estimate the
multitude of biologically relevant parameters. Thus,
the model scope and parameter identifiability have to be
sacrificed to approximate transciptome dynamics based
on a typical number of time course samples. In this
paper, we propose a scalable framework for building
a model of transcriptome dynamics by aggregating a
collection of experimental data available and suggest
the types of additional experimentation to supplement
the time course efficiently. The described approach is
capable of increasing model descriptive and predictive
power when additional data become available.

keywords: Gene Expression, Mathematical Modeling,
Model Selection, Experimental Design, Nonlinear Dy-
namics, ODEs.

1 Introduction

Living organisms develop and respond to stimuli
through a set of regulations on a molecular level.
The regulation rules are hard-written in a genome
and implemented through the action of transcription
factors which modulate gene activity according to a
given condition. Various types of experiments are
performed to gain insight into that machinery to modify
organisms in novel and strategic ways. Transcriptome
abundance measurements are a widely utilized tech-
nique to estimate the change of gene activity over
time or under a condition of interest. Methods of
various complexity have been used to analyze the
transcriptome (gene expression) data [24, 13]. Out
of those methods the systems of Ordinary Differential
Equations (ODEs) present the most descriptive way of
representing transcriptome dynamics over time within
a cell.

Ordinary Differential Equations (ODEs) gain a grow-
ing interest as a tool for modeling gene expression
dynamics [24], yet a typical limitation of 2 to 8 time
samples per time course [29] is still a barrier for a wide
use in practical applications [2]. This limitation also
leads to formulation of phenomenological models like
linear models [4], Standardized Qualitative Dynamical
Systems (SQUAD) models [20], or nonlinear basis
functions models [8] with a small number of biologically
irrelevant parameters rather than using mathemati-
cal constructs based on molecular kinetics like in S-
Systems [23] or Hill-function kinetics based models [15].
Moreover, a wide range of proposed ODE structures for
modeling transcriptome activity makes the choice of an
appropriate mathematical representation challenging
due to a lack of specific requirements for experimental
data in the corresponding papers.

A number of studies have successfully applied ODEs
to model transcriptome dynamics given a sufficient
amount of information in terms of gene regulatory
network graph and/or the results of various types
of experiments which complemented the time course
data [9, 4, 31]. Despite the findings facilitated by
such modeling and the potential of building on previ-
ous results by collecting additional data, the cases of
gradual model evolution are rather an exception than a
rule. One such exception is the circadian clock effect
in plants, which has been the subject of a number
of ODE models [19, 18], continuously improved over
time by the addition of new feedback loops [17], post-
transcriptional and post-translational regulation [25],
and mutant expression data [26]. In each case the
addition of new data allowed for greater descriptive and
predictive power [3]. However, each iteration required a
reformulation of the previous model structure to incor-
porate new experimental results, making the process of
model improvement long and not intuitive.

In this paper, we propose a methodology for dynamic
model building which allows for a gradual increase
in model complexity when new experimental data
become available. In Section 2 we summarize the
commonly used ODE structures into levels of mathe-
matical complexity where each new level extends the

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

142

previous one based on additional data and propose the
types of experiments allowing for an efficient transition
between the levels. In Section 3 we propose criteria
for data sufficiency at a given level of model com-
plexity and an algorithm for aggregating the available
experimental datasets. Thus, the resulting model will
represent the outcomes of relevant experiments in a
set of uniquely identifiable parameters, provide insights
into transcriptome properties if the parameters are
biologically relevant, and allow for gene expression
predictions in a wide range of conditions combinations.

2 Model Formulation

2.1 Basic Model

Gene expression can be thought of as a balance
between the rate of gene transcription and the rate of
the corresponding mRNA degradation. Assuming both
rates constant at a steady state, one can model gene
expression dynamics with the following ODE:

dx

dt
= a− bx, (1)

where x represents gene expression, a represents the
transcription rate (a > 0), and b represents the
mRNA decay rate (b > 0). With a steady state
assumption (i.e. dx/dt = 0) only one gene expression
measurement xss would suffice to initiate the model
building process and estimate the ratio of the rates at
a steady state (a/b = xss).

Resolving between a and b requires additional experi-
mentation. Time course data, the most common source
of information in modeling approaches, can be used
for this purpose if it captures a sufficient amount of
gene expression dynamics. This scenario is rarely the
case due to the typical sparseness of biological data.
Zak et. al. proposed solving this problem by measuring
the decay rate separately [35]. Barenco et. al. obtained
direct mRNA decay rate measurements to constrain the
tumor suppressor transcription factor p53 model while
fitting it to the time course data [1]. Decay rate values
may also be available in the literature [22, 32]. However,
the reported values should be used with caution since
decay rates are known to be condition specific [6].
Moreover, most experimental protocols are invasive and
might heavily affect cellular physiology [21].

2.2 Transcription Factor Effect

Gene regulation in a cell is modulated through the
activity of transcription factors. Assuming that tran-
scription factors affect a common target gene x indepen-
dently, this modulation can be reflected in Equation (1)

as follows:

dx

dt
= af1(x1)f2(x2) · · · fR(xR)− bx, (2)

where a is a scaling coefficient, xr (r = 1, 2, . . . , R)
is the expression of one of R transcription factors
regulating x, and fr(xr) is the regulator influence
function which is equal to 1 when no regulation occurs,
greater than 1 for activators, and between 0 and 1 for
inhibitors. Influence function parameter estimation is
heavily affected by the ability to differentiate between
regulators’ expression patterns based on sparse and
noisy time course samples. Additional sampling time
points or replicates do not guarantee sufficient resolu-
tion improvements. Thus, time course data should be
supplemented with additional information to estimate
the influence coefficients. Experiments where target
expression is measured while regulator expression is
manipulated can reveal this information.

Regulator knock-out mutant experiments [36, 14] can
uniquely define a linear approximation of the influence
function fr(xr) = 1 + crxr. If transcription factor xr
is an activator with a measured wild-type expres-
sion xWT

r , then target gene expression measurements
in wild-type (xWT) and mutant (xMA) conditions allow
to approximate the regulator-target dependence with a
line (Figure 1A):

x = xMA +
xWT − xMA

xWT
r

xr,

which leads to a constant impact factor cAr approxima-
tion by associating xMA with the scaling coefficient a
and rewriting the dependence in a form of the linear
influence function:

f (lin)rA (xr) = 1 +
xWT − xMA

xWT
r xMA

︸ ︷︷ ︸
cAr

xr.

However, a linear construct is expected to approximate
the influence in a range that does not extend far
beyond the regulator’s wild type gene expression value.
Otherwise, unrealistically high target expression is
expected in case of activators and negative expression
in case of inhibitors.

Hill-function approximation [7, 15] presents another,
more biologically relevant, way of representing regulator
influence (Figure 1B):

x = xMA +
(
xmax − xMA

) xlr
xlr +Kl

= xMA · f (hill)rA .

Here the target expression value under activator’s
influence is bounded. The bound estimate xmax can

143

be obtained through overexpression experiments [27] if
the regulator’s overexpression value is at least several
fold larger than xWT

r . The dissociation constant
K can be estimated using knock-out mutant (xMA)
and overexpression (xmax) experiment values. The
regulator’s protein affinity l can be obtained through
additional experiments, for example, through fluores-
cence correlation spectroscopy in plants [5]. Hence,
each additional parameter in the regulator influence
function requires an experiment to estimate it.

0 WT
Regulator gene expression (xr)

0

Mutant
A

WT

Mutant
I

G
en

e
ex

p
re

ss
io

n
(x

)

A
f

(lin)
r = 1 + crxr

Sample
Activator (lin)
Inhibitor (lin)

0 WT Overexpression
Regulator gene expression (xr)

0

Mutant
A

min

WT

max

Mutant
I

G
en

e
ex

p
re

ss
io

n
(x

)

f
(hill)
rA = 1 +

!
xmax

xMA
! 1
" xl

r

xl
r + K l

B

Activator (hill)
Inhibitor (hill)

Figure 1: Influence function fr(xr) under (A) Linear
and (B) Hill-function approximation assumptions.

2.3 Condition Induced Effects

A host of transcriptome research studies are inter-
ested in mechanisms governing organism’s response
to a certain condition like biotic or abiotic stress in
plants [12] or pathogen infection in single cells or
animals [9, 34]. Equation (2) would be sufficient in
describing gene expression dynamics over time under
such condition if the full set of regulators is known,
which is almost never the case at the current stage.
Thus, the model has to account for unknown factors:

dx

dt
= afu(t)

R∏

r=1

fr(xr)− bx, (3)

where R is the number of known regulators, and
fu(t) is a function aggregating the currently unknown
influencing factors which change their activity under a

condition of interest. An example of such influencing
factor could be a change in a currently unknown
condition induced transcription factor which binds to
the target gene’s promoter. fu(t) takes positive values
and turns into 1 in wild-type conditions. The shape of
fu(t) can be obtained using Gaussian process approx-
imation [10]. Another approach would be to represent
the unknown effect as a continuous shift to a new
condition induced equilibrium:

u(t) = uT
1

(τ/t)
r

+ 1
, (4)

where uT represents an impact coefficient (uT > −1),
r quantifies how fast the transition between wild-type
and condition induced steady states occurs (r > 0),
and τ accounts for the transition delay (Figure 2).
Because u(t) turns to 0 when no condition is applied,
an adjustment fu(t) = 1 + u(t) is needed to represent
the unknown regulatory effect function. Parameters
shaping u(t) can be estimated by fitting the model to
time course data under wild-type and the condition of
interest.

0 =

t

0

 0.5 u
T

u
T

u(
t)

r = 0.3
r = 0.1
r = 1

Figure 2: Sigmoid function approximation of unknown
influencing factors effects. uT – scale coefficient, r –
rate coefficient , and τ – delay coefficient.

Additional experiments can help shaping the response
to different levels of the applied condition if the con-
dition levels are quantifiable and the sigmoid function
is used. In such case the parameters shaping u(t) are
affected by the condition level S. We will concentrate
on the condition dependence of the magnitude param-
eter uT while the condition dependence of other two
parameters from Equation (4) can be quantified in a
similar fashion.

Wild-type and condition induced gene expression
values allow for a linear approximation through a range
of condition levels, which might, in some cases, be
significantly far from reality. A more reliable approxi-
mation can be obtained by sampling gene expression at
intermediate condition levels. However, transcriptome
measurements are resource consuming, so the condition
levels should be chosen in an efficient manner to
produce maximum information with minimum exper-
imentation. If the organism of interest exhibits a

144

quantifiable change in size, shape, or other easily
accessible physiological parameters under the condition
of interest, a faster and less expensive procedure of
phenotyping can be used under a set of intermediate
condition levels (e.g. micronutrient content level or
pathogen load) to judge whether linear approximation
captures the condition effect. Phenotyping results can
also give clues on which condition levels to choose
for the consequent transcriptome measurement exper-
iments. Figure 3 shows a hypothetical example of
selecting the most informative sampling point and the
magnitude response function based on the results of
phenotyping experiments.

0 S
p

S
mCondition level (S)

0

u
T
 (S

m
)

u
T

Measured levels
Linear approximation
Phenotyping results
Proposed sample
Proposed u

T
(S)

Figure 3: Condition level effect dependence modeling.
Sm− measured condition level of the initial experiment,
Sp−proposed condition level for gene expression
measurements based on phenotyping experiments.

3 Model Fitting

Guidelines for the additional experimentation pro-
posed in the previous section illustrate ways for increas-
ing model complexity and, thus, its descriptive and
predictive power. However, determining whether the
collected data is sufficient for a given model complexity
and combining various types of datasets to train the
model are not trivial tasks considering that each type of
experimentation has an associated measurement noise.
We propose parameter identifiability analysis as a
criteria for data sufficiency when scaling a model up and
Bayesian inference for model parameter optimization.

3.1 Model Scalability Assessment

We require all parameters to be uniquely identifi-
able in the scaled up model representation to accept
it. A parameter is considered non-identifiable if any
deviation in its value produce an equally good model
fit through the corresponding adjustments in other
parameters. For example, any value of decay rate b
can be compensated with a corresponding value of the
transcription rate a in Equation (1) if xss is the only

non wild type measurement at hand. Thus, parameter
non-identifiability indicates a lack of data support for a
given model structure. Several methods such as Differ-
ential Algebra Identifiability of Systems (DAISY) [30],
Exact Arithmetic Rank (EAR) [11], and Profile Likeli-
hood (PL) [28] have been used to detect non-identifiable
parameters. Among these methods, PL is the only one
that relies on experimental data in its identifiability
analysis. We propose using the results of PL analysis
for model discrimination when increasing model com-
plexity based on additional data.

3.2 Parameter Estimation

Bayesian inference methods aggregate different
sources of data by shaping prior distributions
of the corresponding parameters before fitting a
model to the corresponding time course. Each
experiment that we proposed allows for obtaining
mean and standard deviation estimates for a specific
parameter. An assumption on experimental error
distribution (e.g. Gaussian or Poisson) would allow
to construct the corresponding prior distribution.
The model fitting algorithm will sample parameter
values from the corresponding prior distributions while
minimizing the sum of squared differences between the
time course data and gene expression pattern produced
by the model. Parameter values from the regions that
are far from the experimental measurements are highly
unlikely to be sampled which would ensure that the
model describes both the time course data and the
results of the additional experiments.

Due to a nonlinear nature of the differential equations
governing gene expression dynamics we suggest using
the latest generation of Bayessian inference based pa-
rameter estimation algorithm, namely Differential Evo-
lution Adaptive Metropolis (DREAM) software pack-
age [33]. It has been demonstrated that DREAM
outperforms similar software in nonlinear, multimodal,
and high dimensional problems [16].

4 Conclusion

In this paper, we presented a methodology for se-
quential increase in gene expression dynamic model
complexity by aggregating different types of experi-
mental data. The methodology provides a flexible
framework for accumulating the existing knowledge of
a biological process of interest at the transcriptome
level and proposes efficient ways for expanding this
knowledge through additional experimentation. This
paper aims to facilitate modeling efforts in the studies
where time course experiments have been implemented
and the key regulatory connections have been identified.

145

References

[1] Martino Barenco, Daniela Tomescu, Daniel
Brewer, Robin Callard, Jaroslav Stark, and
Michael Hubank. Ranked prediction of p53 targets
using hidden variable dynamic modeling. Genome
biology, 7(3):R25, 2006.

[2] Daniel Brewer, Martino Barenco, Robin Callard,
Michael Hubank, and Jaroslav Stark. Fitting
ordinary differential equations to short time course
data. Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and
Engineering Sciences, 366(1865):519–544, 2008.

[3] Nora Bujdoso and Seth J Davis. Mathematical
modeling of an oscillating gene circuit to unravel
the circadian clock network of arabidopsis thaliana.
Frontiers in Plant Science, 4, 2013.

[4] Javier Carrera, Guillermo Rodrigo, Alfonso
Jaramillo, Santiago F Elena, et al. Reverse-
engineering the arabidopsis thaliana transcrip-
tional network under changing environmental
conditions. Genome Biol, 10(9):R96, 2009.

[5] Natalie M Clark, Elizabeth Hinde, Cara M
Winter, Adam P Fisher, Giuseppe Crosti, Ikram
Blilou, Enrico Gratton, Philip N Benfey, and
Rosangela Sozzani. Tracking transcription factor
mobility and interaction in arabidopsis roots
with fluorescence correlation spectroscopy. Elife,
5:e14770, 2016.

[6] Nicole L Garneau, Jeffrey Wilusz, and Carol J
Wilusz. The highways and byways of mrna decay.
Nature reviews Molecular cell biology, 8(2):113–
126, 2007.

[7] Rudolf Gesztelyi, Judit Zsuga, Adam Kemeny-
Beke, Balazs Varga, Bela Juhasz, and Arpad
Tosaki. The hill equation and the origin of
quantitative pharmacology. Archive for history of
exact sciences, pages 427–438, 2012.

[8] Mika Gustafsson, Michael Hörnquist, Jesper
Lundström, Johan Björkegren, and Jesper Tegnér.
Reverse engineering of gene networks with LASSO
and nonlinear basis functions. Annals of the New
York Academy of Sciences, 1158(1):265–275, 2009.

[9] Reinhard Guthke, Ulrich Möller, Martin Hoff-
mann, Frank Thies, and Susanne Töpfer. Dynamic
network reconstruction from gene expression data
applied to immune response during bacterial
infection. Bioinformatics, 21(8):1626–1634, 2005.

[10] Ruirui Ji, Xinxin Zhang, and Xiaomei Yan. Mod-
elling transcriptional regulation with fractional
order differential equation using gaussian process.
In Control Conference (CCC), 2016 35th Chinese,
pages 9366–9370. IEEE, 2016.

[11] Johan Karlsson, Milena Anguelova, and Mats
Jirstrand. An efficient method for structural
identifiability analysis of large dynamic systems.
IFAC Proceedings Volumes, 45(16):941–946, 2012.

[12] Joachim Kilian, Dion Whitehead, Jakub Horak,
Dierk Wanke, Stefan Weinl, Oliver Batistic, Cecilia
D’Angelo, Erich Bornberg-Bauer, Jörg Kudla,
and Klaus Harter. The AtGenExpress global
stress expression data set: protocols, evaluation
and model data analysis of UV-B light, drought
and cold stress responses. The Plant Journal,
50(2):347–363, 2007.

[13] Alexandr Koryachko, Anna Matthiadis, Joel J
Ducoste, James Tuck, Terri A Long, and Cranos
Williams. Computational approaches to identify
regulators of plant stress response using high-
throughput gene expression data. Current Plant
Biology, 3:20–29, 2015.

[14] Alexandr Koryachko, Anna Matthiadis, Durre-
shahwar Muhammad, Jessica Foret, Siobhan M
Brady, Joel J Ducoste, James Tuck, Terri A
Long, and Cranos Williams. Clustering and
differential alignment algorithm: Identification of
early stage regulators in the arabidopsis thaliana
iron deficiency response. PloS one, 10(8):e0136591,
2015.

[15] Jan Krumsiek, Sebastian Pölsterl, Dominik
Wittmann, and Fabian Theis. Odefy-from discrete
to continuous models. BMC bioinformatics,
11(1):233, 2010.

[16] Eric Laloy and Jasper A Vrugt. High-dimensional
posterior exploration of hydrologic models using
multiple-try dream (zs) and high-performance
computing. Water Resources Research, 48(1),
2012.

[17] James CW Locke, László Kozma-Bognár, Peter D
Gould, Balázs Fehér, Eva Kevei, Ferenc Nagy,
Matthew S Turner, Anthony Hall, and Andrew J
Millar. Experimental validation of a predicted
feedback loop in the multi-oscillator clock of
arabidopsis thaliana. Molecular systems biology,
2(1):59, 2006.

[18] James CW Locke, Megan M Southern, László
Kozma-Bognár, Victoria Hibberd, Paul E Brown,
Matthew S Turner, and Andrew J Millar.

146

Extension of a genetic network model by itera-
tive experimentation and mathematical analysis.
Molecular systems biology, 1(1), 2005.

[19] JCW Locke, AJ Millar, and MS Turner. Mod-
elling genetic networks with noisy and varied
experimental data: the circadian clock in ara-
bidopsis thaliana. Journal of theoretical biology,
234(3):383–393, 2005.

[20] Luis Mendoza and Ioannis Xenarios. A method for
the generation of standardized qualitative dynam-
ical systems of regulatory networks. Theoretical
Biology and Medical Modelling, 3:13, 2006.

[21] Sarah E Munchel, Ryan K Shultzaberger, Naoki
Takizawa, and Karsten Weis. Dynamic profiling
of mrna turnover reveals gene-specific and system-
wide regulation of mrna decay. Molecular biology
of the cell, 22(15):2787–2795, 2011.

[22] Reena Narsai, Katharine A Howell, A Harvey
Millar, Nicholas O’Toole, Ian Small, and James
Whelan. Genome-wide analysis of mrna decay
rates and their determinants in arabidopsis
thaliana. The Plant Cell Online, 19(11):3418–
3436, 2007.

[23] Leon Palafox, Nasimul Noman, and Hitoshi Iba.
Reverse engineering of gene regulatory networks
using dissipative particle swarm optimization.
Evolutionary Computation, IEEE Transactions
on, 17(4):577–587, 2013.

[24] Chanda Panse, Dr Kshirsagar, et al. Survey on
modelling methods applicable to gene regulatory
network. arXiv preprint arXiv:1310.2361, 2013.

[25] Alexandra Pokhilko, Sarah K Hodge, Kevin Strat-
ford, Kirsten Knox, Kieron D Edwards, Adrian W
Thomson, Takeshi Mizuno, and Andrew J Millar.
Data assimilation constrains new connections and
components in a complex, eukaryotic circadian
clock model. Molecular Systems Biology, 6(1),
2010.

[26] Alexandra Pokhilko, Paloma Mas, and Andrew J
Millar. Modelling the widespread effects of toc1
signalling on the plant circadian clock and its
outputs. BMC systems biology, 7(1):23, 2013.

[27] Gregory Prelich. Gene overexpression: uses, mech-
anisms, and interpretation. Genetics, 190(3):841–
854, 2012.

[28] Andreas Raue, Clemens Kreutz, Thomas Mai-
wald, Julie Bachmann, Marcel Schilling, Ursula
Klingmüller, and Jens Timmer. Structural

and practical identifiability analysis of partially
observed dynamical models by exploiting the
profile likelihood. Bioinformatics, 25(15):1923–
1929, 2009.

[29] Bruce A Rosa, Ji Zhang, Ian T Major, Wensheng
Qin, and Jin Chen. Optimal timepoint sampling
in high-throughput gene expression experiments.
Bioinformatics, 28(21):2773–2781, 2012.

[30] Maria Pia Saccomani, Stefania Audoly, and
Leontina D’Angiò. Parameter identifiability of
nonlinear systems: the role of initial conditions.
Automatica, 39(4):619–632, 2003.

[31] Yara-Elena Sanchez-Corrales, Elena R Alvarez-
Buylla, and Luis Mendoza. The arabidopsis
thaliana flower organ specification gene regulatory
network determines a robust differentiation pro-
cess. Journal of theoretical biology, 264(3):971–983,
2010.

[32] Kate Sidaway-Lee, Maria J Costa, David A Rand,
Bärbel Finkenstadt, and Steven Penfield. Direct
measurement of transcription rates reveals multi-
ple mechanisms for configuration of the arabidopsis
ambient temperature response. Genome biology,
15(3):R45, 2014.

[33] Jasper A Vrugt, CJF Ter Braak, CGH Diks,
Bruce A Robinson, James M Hyman, and Dave
Higdon. Accelerating markov chain monte carlo
simulation by differential evolution with self-
adaptive randomized subspace sampling. In-
ternational Journal of Nonlinear Sciences and
Numerical Simulation, 10(3):273–290, 2009.

[34] Shuang Wu, Zhi-Ping Liu, Xing Qiu, and Hulin
Wu. Modeling genome-wide dynamic regulatory
network in mouse lungs with influenza infection
using high-dimensional ordinary differential equa-
tions. PloS one, 9(5):e95276, 2014.

[35] Daniel E Zak, Gregory E Gonye, James S
Schwaber, and Francis J Doyle. Importance of
input perturbations and stochastic gene expression
in the reverse engineering of genetic regulatory
networks: insights from an identifiability analysis
of an in-silico network. Genome research,
13(11):2396–2405, 2003.

[36] Jie Zhang, Bing Liu, Mengshu Li, Dongru Feng,
Honglei Jin, Peng Wang, Jun Liu, Feng Xiong,
Jinfa Wang, and Hong-Bin Wang. The bhlh
transcription factor bhlh104 interacts with iaa-
leucine resistant3 and modulates iron homeostasis
in arabidopsis. The Plant Cell, 27(3):787–805,
2015.

147

IsoRef Improves The Reference-Based Transcriptome Assembly
Accuracy for RNA-Seq Data

Xiang Ao, Zicheng Zhao, and Shuaicheng Li
Department of Computer Science, City University of Hong Kong

Hong Kong, China
shuaicli@cityu.edu.hk

Abstract

Transcript reconstruction from mammal RNA-Seq
data remains a challenging problem due to several
biases, such as those from sequencing or mapping,
the complexity of mammalian transcriptome generation
from alternative splicing, fragmentary characteristics
of reads, and from the unbalanced sequencing. Here,
IsoRef, a reference-based transcriptome assembler for
RNA-Seq data, is proposed. IsoRef investigates in-
formation from not only sequencing data, but from
transcript annotation as well, in order to build accurate
splice graphs. A flow balancing technique is proposed
to reduce the impact of false positive transcripts and
to narrow the search space of true positive transcripts.
For each of two in silico datasets, IsoRef predicted 1,400
additional correct transcripts than StringTie; for each
of the five actual datasets, IsoRef identified at least
1,500 additional correct transcripts than StringTie,
which improves the transcript-level and gene-level accu-
racy compared to StringTie with a maximum improve-
ment of 20%. IsoRef is available at deepomics.org/
module-instances/2CA682222F734424/.

keywords: transcriptome assembly, splice graph, flow-
balance graph.

1 Introduction
Transcriptome assembly from RNA-Seq data is a

challenging and essential task in profiling, analyzing
and understanding the transcriptome complexity and
molecular mechanisms. It combines the upstream data
preparation (such as sequencing library preparation
and alignment of reads) and the downstream analy-
sis (such as differential gene expression analysis and
alternative splicing analysis) within the procedure of
computational RNA-Seq data processing [3]. Due to
the fragmentary characteristic of sequencing reads, the
biases coming from various sources (such as sequencing
biases and reads alignment biases, the complexity of
mammalian transcriptome resulting from alternative

Step-4
exon1 exon3 exon5

exon1 exon2 exon3 exon5

exon3exon1 exon2 exon4 exon5

exon1 exon2 exon4 exon5

isoform1

isoform2

exon1 exon3 exon5

exon1 exon2 exon3 exon5

exon2 exon3 exon4 exon5exon1

Step-1.2

exon3exon1 exon2 exon4 exon5isoform3

S 1

2

3

4

T5

exon2 exon3 exon4 exon5exon1

Step-1.1

3

2
3

4

2

5

S 1

2

3

4

T5

Step-2

3

2
3

4

2

5

S 1

2

3

4

T5

Step-3

S 1

2

3

4

T52
5

3

2

52 2
7 7

Figure 1: Schematic representation of IsoRef. In Step-1,
IsoRef constructs two splice graphs from sequencing data and
reference annotation, respectively. Then, IsoRef integrates these
two graphs to produce a new comprehensive splice graph in Step-
2. After balancing the flows of each node in the integrated graph
in Step-3, IsoRef generates a flow-equilibrium splice graph and
recovers transcripts in Step-4.

splicing [15, 22]), the transcriptome assembly for mam-
mals is full of difficulties and attracts a lot of interests
from researchers [6, 14].

During the last decade, several transcriptome as-
sembly methods were presented. Depending on the
presence of the reference genome, these methods can
be classified into two categories: the reference-based
assembly methods (such as Cufflinks [21], IsoLasso
[12], and StringTie [17]), and the de-novo assembly
methods [6, 20] (such as Oases [18], ABySS [19], and
Velvet [23]). The former methods require a reference
genome for mapping of reads and potential transcripts
are then derived from such alignments. Therefore,
these methods are commonly used for organisms which
genome has been well-annotated [2]. In contrast, the
latter methods do not require reference genomes and
deduct transcripts directly from sequencing reads. Such
methods prevail in processing organisms without the
existing genome [1]. Unsurprisingly, reference-guided
assembly approaches usually produce transcripts with
higher accuracy compared to the performance of de
novo assemblers [13].

Among the reference-based assembly methods, there

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

148

are two popular assemblers gathering reputation from
RNA-Seq data analyzers Cufflinks and StringTie. Cuf-
flinks derives transcripts from an overlap graph in
which nodes denote sequenced fragments and edges
represent the connectivity between nodes supported by
compatible fragments. Cufflinks adopts an ungenerous
strategy to infer transcripts and hence produces a set
of transcripts with the smallest values to construct the
overlapped graph. As regards StringTie, it first builds
a splice graph from aligned reads. The nodes in the
splice graph, different from those in the overlap graph
of Cufflinks, indicate continuous regions of the genome
without splice interruption and edges correspond to
the connectivity between nodes, in case there are sup-
porting reads. Next, StringTie draws transcripts from
the splice graph by applying a network flow algorithm.
However, without using transcriptome annotation, both
assemblers exhibited high error rates on real data [8].

Several factors can affect the performance of the
existing assemblers. Firstly, there is a deficiency of
sufficient reads to bridge the connections between the
exons. Secondly, the reads can lead to inaccurate
connections between exons, resulting in having false
positives. Thirdly, the boundaries of exons are often
wrongly defined, which leads to inaccuracy in the
transcript inference. Aforementioned issues render
assemblers difficult to reach a high accuracy level.
Transcriptome annotations can bring improvement of
the performance [8], since they provide the exon bound-
aries and their connectivity. In view of the fact that
many mammalian reference transcriptomes are well-
annotated, such annotations can be utilized in the
assembly process.

Both Cufflinks and StringTie can employ the annota-
tions, but using different strategies. Cufflinks produces
the annotation transcripts as far as there are reads
mapping to the transcripts, even when there is no
alignment in specific exons of the transcripts. In con-
trast, StringTie generates the annotation transcripts
only if the transcripts are feasible in the splice graph,
which means that each component of the transcript
has supporting reads. In general, Cufflinks produces
transcripts according to the annotation and StringTie
outputs transcripts in accordance with the reads align-
ments.

In this work, we propose IsoRef, a method empha-
sizing the importance of both the RNA-Seq data and
the reference annotations. IsoRef takes the two types
of data to reconstruct transcripts and estimates their
respective expression levels simultaneously. Figure 1
displays the flowchart of IsoRef. Firstly, IsoRef con-
structs two splice graphs from sequencing data and the
reference annotation (Step-1.1, Step-1.2), respectively.
The two splice graphs are then integrated in order
to generate a more comprehensive splice graph for

subsequent procedures (Step-2). If the splice graph
captures the actual expression levels of the exon, then
a node in the graph (different from the source node
and the sink node) should satisfy the flow balance
property; that is, the amount of flows that arrived into
the node is equal to the amount of flows that departed
from it. Inspired by this insight, we proposed a flow-
balance algorithm to balance flows, in order to obtain
the flow-equilibrium splice graph (Step-3). Finally, this
flow-equilibrium graph is adopted to recover transcripts
(Step-4). Experimental results from the simulated data
and the real data show the competitive performance
of IsoRef, especially on the real data, in which IsoRef
exceeded StringTie in terms of gene-level precision by
9.5% in average.

The rest of this paper is organized as follows: we
present the IsoRef methods in detail in the methodology
section. In Section 3 we compare the performance of
IsoRef with Cufflinks and StringTie.

2 Methodology

IsoRef consists of four stages reconstructing
transcripts from both RNA-seq data and the
transcriptome annotation. At each gene locus, it
firstly builds two splice graphs from sequencing data
and annotations, respectively. Then, IsoRef combines
the two splice graphs into a new splice graph. In step
3, IsoRef executes a flow-balance procedure on the
comprehensive splice graph to get a flow-equilibrium
splice graph, in which each node has the same amount
of flows going in, through and out of the node. In step
4, it infers transcripts and calculates its corresponding
abundance from the balanced splice graph.

Splice graph was first proposed in [9] and has
been proven to perform well on many transcriptome
assemblers, such as StringTie. For the sake of inferring
transcripts precisely and fully using the transcript
annotations, IsoRef constructs two splice graphs, if
possible, for each gene pool. The first one is derived
from reads and is called reads-derived splice graph
(Step-1.1), and the other graph is derived from the
relevant transcript annotations and is named as
annotation-derived splice graph (Step-1.2). The nodes
in reads-derived splice graph represent contiguous
genomic regions where there is no interruption. Within
the annotation-derived splice graph, these are exons
or partial exons. Edges, on the other hand, indicate
the connection relationships between nodes supported
by either junction reads or annotation structures.
A source node and a sink node are added to each
graph, linking all starting nodes and ending nodes in
the graphs, respectively. The two graphs may have
different structures, and only reads-derived splice

149

graphs possess the flow in their nodes and edges.
The amount of flow of each edge in the reads-derived
splice graph can be calculated as the number of the
supporting junction reads. On the other hand, the
flows in nodes consider the node’s average coverage
as the corresponding value. Besides, flows of edges
spreading out from the source node or into the sink
node are recovered from the flows of connecting nodes.

In Step-2, IsoRef merges the splice graph derived from
reads and the splice graph derived from annotation
and creates a new more comprehensive splice graph.
Nodes from the two graphs having the same definition
and possessing identical connectivity with neighboring
nodes are considered as concordant nodes. Those edges
that link two identical nodes between the two graphs
are concordant edges. The new splice graph retains
all concordant nodes and edges and only manages
those with inconsistency. Firstly, it excludes all nodes
that do not possess any alignments. Nodes that have
different definitions in the two graphs, but overlap in
genomic coordinates are adjusted according to their
definitions in annotation-derived splice graph, except
those nodes which defined by junction reads. Edges
are recovered from both the annotation-derived splice
graph and the reads-derived splice graph as long as
the connection between nodes exists. Loci having the
reads-derived splice graph alone don’t do this merging
step, while those that have only the annotation-derived
splice graph won’t be delivered to subsequent processes.

Ideally, the flows entering in, going through and
out of a specific node (except the source and the sink
node) should be identical. IsoRef tries to achieve
this state by applying a flow-balance algorithm in
Step-3 (in this part we refer to IsoRef as IsoRef+).
Suppose V and E are sets of nodes and edges of
the integrated splice graph, respectively. Thus,
V = {vi|i = 0, 1, ..., N} , v0 and vN are the source node
and the sink node, respectively. The set of edges is
E = {⟨vi, vj⟩ |∀i ∈ [0, N − 1],∀j ∈ [1, N], vi, vj ∈ V, } .
, and fij indicates the flows in edge ⟨vi, vj⟩ , where
f in
i =

∑N−1
j=0 fji is the total number of flows entering

to vi and fout
i =

∑N
j=1 fij is the sum of flows

going out of vi, while fi represents the number
of flows going through node vi. After balancing is
performed, IsoRef is supposed to reach the state where
∀i ∈ [1, N −1], f

′in
i = f

′out
i = f ′

i , in which f
′in
i , f

′out
i , f ′

i

are the final three types of flows for the node i. IsoRef
adopts the IBM CPLEX library and uses the linear
programming solver to generate a new flow-balanced
splice graph. Denote the flow change of the node i
before and after balancing flow by εi and the change
of edge ⟨vi, vj⟩ by εij . Our objective of the linear
programming problem is:

80 85 90 95 100

50
60

70
80

80 85 90 95 100

50
60

70
80

Sensitivity(%)

P
re

ci
si

on
(%

)

simA
35596

37772 37543

17803

13216

16524

21230

16389

18114

20767

16422

18103

Cufflinks StringTie IsoRef IsoRef+

0

5k

15k

25k

35k

18770 18773 18763

10292 10274

13127 13396 12849

14662
13569

12952

14663

simB
35540

37681 37481

17993

13289

16602

21187

16316

18128

20647

16385

18087

Cufflinks StringTie IsoRef IsoRef+

0

5k

15k

25k

35k

18678 18672 18664

10348 10312

13168 13427
12797

14630
13652

12887

14659

Cufflinks StringTie IsoRef IsoRef+ Tophat2 HISAT2 STAR

Tophat2 HISAT2 STAR

Figure 2: Performance of assemblers on simulated datasets
(simA and simB). The upper two figures show the accuracy
(precision and sensitivity) of assemblers. The bottom two figures
display the total number of transcripts inferred by the assemblers,
where the numbers of correctly inferred transcripts are colored.

min
(∑N−1

i=1 εi +
∑N−1

i=0

∑N
j=1 εij

)

s.t. ∀i ∈ [1, N − 1] , εi ≥ 0, εini ≥ 0, εouti ≥ 0

− εi ≤ f
′
i − fi ≤ εi, −εini ≤ f in′

i − f in
i ≤ εini ,

− εouti ≤ fout′
i − fout

i ≤ εouti , f
′in
i = f

′
i = f

′out′
i ;

∀ < vi, vj >∈ E, εij ≥ 0, −εij ≤ f
′
ij − fij ≤ εij ;

where fij and f
′
ij are the flows in edge ⟨vi, vj⟩

before and after balancing, respectively.
Finally, IsoRef obtains transcripts from the flow-

balance splice graph by using a similar method to
the one proposed in StringTie. At each locus, IsoRef
repeatedly searches the transcript (a path from the
source to the sink node) from a node with the highest
number of flows going through it. Then, it is extended
in both directions to the source and to the sink node,
by choosing the edges with the most abundant flows.
IsoRef computes the magnitude of the flow in the
transcript by applying the maximum flow algorithm.
The process for inferring transcripts and its expression
level repeats until the transcript’s flow abundance is
too low or there is no valid path available anymore.

3 Experimental Results

We compared IsoRef with two leading genome-based
transcriptome assemblers, Cufflinks and StringTie, us-
ing both simulated and real data. All the assem-
blers were executed with default parameters. The
reads data were aligned to hg19 genome reference
using Tophat2 [11], HISAT2 [10] and STAR [4]. The
performance of assemblers was evaluated in terms of
accuracy consisting of precision and sensitivity. A
predicted transcript is correct only if both boundaries
of its introns match those of a reference transcripts

150

Annotation

Expressed

Cufflinks

StringTie

IsoRef

7,572 kb 7,574 kb 7,576 kb 7,578 kb 7,580 kb 7,582 kb 7,584 kb 7,586 kb 7,588 kb 7,590 kb

19 kb

chr17

p13.3 p13.2 p13.1 p12 p11.2 p11.1 q11.1 q11.2 q12 q21.1 q21.2 q21.31 q21.32 q21.33 q22 q23.1 q23.2 q23.3 q24.1 q24.2 q24.3 q25.1 q25.2 q25.3

Figure 3: Comparison of predictions produced by Cufflinks, StringTie and IsoRef from HISAT2 alignments. Here, the predictions of
gene TP53 made by the three assemblers are shown. The ‘annotation’ (purple) track shows the isoforms of TP53, the ‘expressed’ (orange)
track shows the expressed isoforms, and ‘Cufflinks’ (cyan), ‘StringTie’ (yellow) and ‘IsoRef’ (green) tracks show the prediction results of
corresponding assemblers.

and the number of exons is the same. The precision
is the ratio of correctly derived transcripts and the
number of predicted transcripts. The sensitivity is the
ratio of correctly derived transcripts and the number of
reference transcripts used in the evaluation. We used
gffcompare [16] to evaluate the performance.

3.1 Performance on in silico data

We firstly compared IsoRef to other assemblers on
simulated data, since the correctness of predicted tran-
scripts can be precisely measured. We used Flux
Simulator [7] to simulate RNA-Seq datasets. The
parameters of Flux Simulator were set according to
the RNA-Seq human protocol, which is provided on
the simulator’s website. Specifically, we simulated
150 million paired-end reads with 75bp length in each
simulation. The reference genome was GRCh37/hg19
downloaded from UCSC Genome Browser. The cor-
responding transcriptome annotation of known RefSeq
Genes was also downloaded from the browser

We simulated two datasets using the same protocol.
However, as the Flux Simulator randomly selected
transcripts to be expressed, at a stochastic expression
level, such two datasets would be different. Therefore,
we named them simA and simB, respectively. We
adopted Tophat2, HISAT2 and STAR to align both
datasets. The alignments were then passed to the
assemblers. To assess the performance accurately, we
employed the confidently expressed transcripts instead
of hg19 annotation in the evaluation.

Figure 2 and Table 1 show the comparative results
among the assemblers. Unsurprisingly, Cufflinks pre-
dominated in terms of sensitivity and the number
of the correct transcripts, as it predicted transcripts
once a reference annotation exists, regardless to its
feasibility. However, the error rates of Cufflinks were
also greatly above those of other assemblers (47.3%,
50.3% and 50% in simA, 47.4%, 50.5% and 50.2% in
simB). Regarding the performance of StringTie and
IsoRef, IsoRef predicted around 3100, 2400 and 1400
more correct transcripts from Tophat2, HISAT2 and
STAR alignments, respectively, than StringTie, while

the accuracy was not harmed. Besides, the expression
correlations of IsoRef were improved compared to those
of StringTie (Table 2). The benefits of using IsoRef,
shown in the figures, demonstrate the superiority of
IsoRef’s strategy that incorporated information from
annotation and reads. The IsoRef strategy helped
discover more reliable transcripts, especially those that
were not explicitly supported through reads. Its effec-
tivity suggests the necessity of using the reference anno-
tation in transcript reconstruction. Regarding IsoRef+,
it predicted even more correct transcripts compared
to IsoRef (above 150 more from Tophat2 alignments
and around 100 more from HISAT2 alignments) and it
had higher accuracy and expression correlations than
both StringTie and IsoRef. The superiority of IsoRef+
compared to IsoRef indicates that balancing the flow of
splice graph was beneficial to transcript reconstruction,
increasing not only the accuracy of assembly, but
also the number of correct transcripts. In Figure 3,
we compared the performances of IsoRef, Cufflinks
and StringTie in building the isoforms of gene TP53
from HISAT2 alignments. TP53, acting as a tumor
suppressor, is the most studied gene in human genome
[5]. From this figure, we know that TP53 has seven
isoforms and only two of them were expressed during
the simulation. Cufflinks predicted all seven isoforms,
while StringTie gave only one correct prediction. In
contrast, IsoRef built the structures for each of the
expressed two isoforms.

3.2 Performance on real data

Next, the comparison on five real datasets is
performed. We used IsoRef that undergoes the flow-
balance technique. The real datasets are publicly
available datasets, where three of them are from [17].
These datasets were downloaded from NCBI and
are represented by “Lung” (GSM981244), “Blood”
(GSM981256), “Monocytes” (GSM984609), “Spleen”
(SRR4421334) and “HepG2” (SRR4422652) datasets.
The dataset Spleen has 5.8 G bases of 100bp paired-end
reads from a male adult’s spleen, while the HepG2
is from the HepG2 cell line containing 2.1 G bases

151

of 50bp paired-end reads. Reads were mapped using
Tophat2, HISAT2 and STAR as well.

Table 1: Accuracy of assemblers on simA and simB

Cuff ST Ref Ref+

TH+simA
sens 100 83.1 82.7 83.6
prec 52.7 57.8 63.1 65.3
called 35596 17803 21230 20767
match 18770 10292 13396 13569

HT+simA
sens 100 84.6 84.1 85
prec 49.7 77.7 78.4 78.9
called 37772 13216 16389 16422
match 18773 10274 12849 12952

SR+simA
sens 100 90.2 90.5 90.3
prec 50 79.4 80.7 81
called 37543 16524 18114 118103
match 18763 13127 14662 14663

TH+simB
sens 100 83.4 83.6 84.2
prec 52.6 57.5 63.4 66.1
called 35540 17993 21187 20647
match 18678 10348 13427 13652

HT+simB
sens 100 85 84.2 85.1
prec 49.6 77.6 78.4 78.7
called 37681 13289 16316 16385
match 18672 10312 12797 12887

SR+simB
sens 100 90.5 90.7 90.5
prec 49.8 79.3 80.7 81
called 37481 16602 18128 18087
match 18664 13168 14630 14659

‘TH’=Tophat2, ‘ST’ = HISAT2, ‘SR’ = STAR, ‘Cuff’ = Cufflinks, ‘ST’ =
StringTie, ‘Ref’ = IsoRef, ‘Ref+’ = IsoRef+, ‘sens’ = sensitivity, ‘prec’ =

precision, ‘called’ = # of predicted transcripts, ‘match’ = # of correct
predictions.

Table 2: Expression correlation on simulated data

Cuff ST Ref Ref+

TH+simA pearson 0.9423 0.8337 0.8593 0.8753
spearman 0.9435 0.8409 0.8479 0.8654

HT+simA pearson 0.9381 0.8647 0.8756 0.8918
spearman 0.919 0.8619 0.8709 0.8871

SR+simA pearson 0.9578 0.8612 0.875 0.8925
spearman 0.9576 0.85 0.8672 0.88

TH+simB pearson 0.9449 0.8257 0.8378 0.871
spearman 0.9448 0.8345 0.8368 0.8587

HT+simB pearson 0.9413 0.8544 0.8663 0.8841
spearman 0.9214 0.8544 0.864 0.8815

SR+simB pearson 0.9562 0.8467 0.8692 0.886
spearman 0.9565 0.8332 0.8626 0.874

Figure 4 and Table 3 show the performances of
the assemblers on these datasets. Because in the
actual data we cannot tell which transcripts were truly
expressed, another criterion to evaluate the correct
number of predicted genes is added. A predicted
gene is considered correct if all the introns are exactly
recognized in the order of an annotation. Thus, we
can calculate the sensitivity and the precision for each
assembler, at the gene level.

Similar to the results gained using in silico data,
Cufflinks led the boards of sensitivity and precision
at both transcript level and the gene level, as well
as the board of the number of correct predictions.
Since the exact transcripts that were expressed are
unknown, the performance of Cufflinks was even better
than its performance on simulated data. However,
the number of false positive transcripts generated by
Cufflinks is also higher when considering the above
situation. Generally, for all datasets, IsoRef surpassed
StringTie in most aspects of accuracy, no matter
which tool used in alignment. On both Tophat2 and
HISAT2 alignments, IsoRef held about 5% leads in
major indices than StringTie, especially in the dataset
HepG2, which displayed 22% and 21% higher precision

at gene-level, respectively. Based on STAR alignments,
IsoRef showed a slight advantage over StringTie at
both transcript-level and gene-level accuracy. These
results may be due to the higher rate of uniquely
mapped reads using STAR than that using Tophat2
and HISAT2 (more than 7% unique mapping reads),
which reduced the ambiguity of reads in the assembly
and thus weakened the importance of annotation and
the flow-balance algorithm IsoRef used. Regarding the
number of correct transcripts, regardless of tools used
in the alignment, IsoRef showed a stable improvement
over StringTie on all datasets. Specifically, IsoRef
produced about 2600, 1500 and 1600 more correct
transcripts than StringTie on all the Tophat2, HISAT2
and STAR alignments, respectively.

4 Conclusion

We proposed a novel transcriptome assembly method
IsoRef, which incorporates information from sequencing
data and referred transcriptome annotation. The
extra information from the annotation helps predict
transcripts more precisely. Experimental results from
simulated data and the real data both show the superi-
ority of IsoRef over StringTie in transcripts prediction
accuracy and expression estimation, regardless of the
tools used in the alignment. Moreover, balancing the
flow of the splice graph is proved to be a helpful
technique to increase the number of correctly predicted
transcripts, without harming the estimation of tran-
scripts’ expressions. .

References
[1] Caroline B Albertin, Oleg Simakov, et al. The octopus

genome and the evolution of cephalopod neural and
morphological novelties. Nature, 524(7564):220–224, 2015.

[2] Moran N Cabili, Cole Trapnell, et al. Integrative annotation
of human large intergenic noncoding rnas reveals global
properties and specific subclasses. Genes & development,
25(18):1915–1927, 2011.

[3] Ana Conesa, Pedro Madrigal, et al. A survey of best
practices for rna-seq data analysis. Genome biology, 17:13–
13, 2016.

[4] Alexander Dobin, Carrie A Davis, et al. Star: ultrafast
universal rna-seq aligner. Bioinformatics, 29(1):15–21, 2013.

[5] Elie Dolgin. The most popular genes in the human genome.
Nature News, 551:427–431, 2017.

[6] Liliana D Florea and Steven L Salzberg. Genome-
guided transcriptome assembly in the age of next-generation
sequencing. IEEE/ACM transactions on computational
biology and bioinformatics, 10(5):1234–1240, 2013.

[7] Thasso Griebel, Benedikt Zacher, et al. Modelling
and simulating generic rna-seq experiments with the flux

152

60 70 80 90 100

30
35

40
45

50
55

60
65

60 70 80 90 100

20
30

40
50

60

70 75 80 85 90 95 100

35
40

45
50

55
60

65
70

70 75 80 85 90 95 100

20
40

60
80

65 70 75 80 85 90 95

30
40

50
60

70
80

90

60 70 80 90 100

40
50

60
70

Lung

75 80 85 90 95 100

30
40

50
60

Blood

95 96 97 98 99 100

45
50

55
60

65
70

75
80

Monocytes

95 96 97 98 99 100

20
40

60
80

100

Spleen

93 94 95 96 97 98 99

40
50

60
70

80
90

100

HepG2

Sensitivity(%)

Prec
ision

(%) Tran
scrip

t lev
el

Gen
e lev

el

Cufflinks StringTie IsoRef Tophat2 HISAT2 STAR

(a) Accuracy on real data
Lung

53120
51680

50249

29965

43644

32435 32215

33958 33541

Cufflinks StringTie IsoRef

0

10k

20k

30k

40k

50k

33352 33211 32571

11846

14196
15114

14422
15959

16672

Blood
79575

69735

61156

57455

62785

32640

56119
53873

33222

Cufflinks StringTie IsoRef

0

10k

20k

30k

40k

50k

60k

33358 33351 33175

12480

15103
13834

15025
16794

15809

Monocytes

50011

58639
57127

21501

30323
31502

24365

31954 31781

Cufflinks StringTie IsoRef

0

10k

20k

30k

40k

50k

33368 33368 33157

9536

11553

14808

12869
14226

16469

Spleen

96185

35528

161192

202956201497

163113
158846

154567
149958

Cufflinks StringTie IsoRef

0

50k

100k

150k

200k

33368 33368 33368

9537 10290
13755 14298 14874 16819

HepG2

37306

33988

69645

20381 21023

25681
26840 26722 26563

Cufflinks StringTie IsoRef

0

10k

20k

30k

40k

50k

60k

33368 33368 33368

6567 7279

13788
12393 12672

15833

Tophat2
HISAT2
STAR

(b) Transcript count

Figure 4: Performance of assemblers on real datasets.

Table 3: Accuracy of assemblers on real datasets

Lung Blood Monocytes Spleen HepG2
t-level g-level t-level g-level t-level g-level t-level g-level t-level g-level

sens prec sens prec sens prec sens prec sens prec sens prec sens prec sens prec sens prec sens prec
TH+Cuff 100 62.8 100 66.2 100 41.9 100 40.4 100 66.7 100 76.3 100 34.7 100 30.3 100 89.4 100 94.6
TH+ST 74.4 39.5 95.6 42.1 74.9 21.7 94.7 25.9 73.1 44.4 95.7 54 69.6 4.7 95.8 4 66.6 32.2 94.2 38.5
TH+Ref 74.6 44.8 96.3 49.4 74.9 26.8 96.2 33.3 72.9 52.8 97 65.3 69.8 9 97.6 8.1 67.2 46.2 97.3 61
HT+Cuff 100 64.3 100 73.9 100 47.8 100 48.1 100 56.9 100 62.8 100 93.9 100 98 100 98.2 100 99.5
HT+ST 59.4 32.5 70.3 35.8 66.7 24.1 78.4 30 76.3 38.1 96.4 47.9 71.1 5.1 96.9 4.4 70.7 34.6 95.8 41.6
HT+Ref 78.8 47 97 55.3 79.5 31.2 96.5 42.2 75.6 44.5 97.5 57.7 70.3 9.6 98.1 8.8 68.4 47.4 97.7 62.7
SR+Cuff 100 64.8 100 73 100 54.2 100 60.3 100 58 100 63 100 20.7 100 16.7 100 47.9 100 51
SR+ST 81.6 46.6 96.6 52.8 80 42.4 97.5 57.1 82.6 47 97.6 61.3 75.5 8.4 97.9 6.9 79.2 53.7 98.3 67.3
SR+Ref 80.5 49.7 97 56.6 79.1 47.6 98.1 62.5 82.3 51.8 98.1 66.1 75.2 11.2 98.6 9.4 79 59.6 98.6 72.1

‘TH’ = Tophat2, ‘HT’ = HISAT2, ‘SR’ = STAR, ‘Cuff’ = Cufflinks, ‘ST’ = StringTie, ‘Ref’ = IsoRef, ‘t-level’ = transcript level, ‘g-level’ = gene level.

simulator. Nucleic acids research, 40(20):10073–10083,
2012.

[8] Katharina E Hayer, Angel Pizarro, et al. Benchmark
analysis of algorithms for determining and quantifying full-
length mrna splice forms from rna-seq data. Bioinformatics,
31(24):3938–3945, 2015.

[9] Steffen Heber, Max Alekseyev, et al. Splicing graphs and est
assembly problem. Bioinformatics, 18(suppl 1):S181–S188,
2002.

[10] Daehwan Kim, Ben Langmead, and Steven L Salzberg.
Hisat: a fast spliced aligner with low memory requirements.
Nature methods, 12(4):357–360, 2015.

[11] Daehwan Kim, Geo Pertea, et al. Tophat2: accurate
alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome biology, 14(4):R36, 2013.

[12] Wei Li, Jianxing Feng, and Tao Jiang. Isolasso: a
lasso regression approach to rna-seq based transcriptome
assembly. Journal of Computational Biology, 18(11):1693–
1707, 2011.

[13] A Marchant, F Mougel, et al. Comparing de novo
and reference-based transcriptome assembly strategies by
applying them to the blood-sucking bug rhodnius prolixus.
Insect biochemistry and molecular biology, 69:25–33, 2016.

[14] Jeffrey A Martin and Zhong Wang. Next-generation tran-
scriptome assembly. Nature Reviews Genetics, 12(10):671–
682, 2011.

[15] Qun Pan, Ofer Shai, et al. Deep surveying of alternative

splicing complexity in the human transcriptome by high-
throughput sequencing. Nature genetics, 40(12):1413–1415,
2008.

[16] Geo Pertea. gffcompare. https://github.com/gpertea/
gffcompare.

[17] Mihaela Pertea, Geo M Pertea, et al. Stringtie enables
improved reconstruction of a transcriptome from rna-seq
reads. Nature biotechnology, 33(3):290–295, 2015.

[18] Marcel H Schulz, Daniel R Zerbino, et al. Oases: robust
de novo rna-seq assembly across the dynamic range of
expression levels. Bioinformatics, 28(8):1086–1092, 2012.

[19] Jared T Simpson, Kim Wong, et al. Abyss: a parallel
assembler for short read sequence data. Genome research,
19(6):1117–1123, 2009.

[20] Tamara Steijger, Josep F Abril, et al. Assessment of
transcript reconstruction methods for rna-seq. Nature
methods, 10(12):1177–1184, 2013.

[21] Cole Trapnell, Brian A Williams, et al. Transcript
assembly and quantification by rna-seq reveals unannotated
transcripts and isoform switching during cell differentiation.
Nature biotechnology, 28(5):511–515, 2010.

[22] Eric T Wang, Rickard Sandberg, et al. Alternative
isoform regulation in human tissue transcriptomes. Nature,
456(7221):470–476, 2008.

[23] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for
de novo short read assembly using de bruijn graphs. Genome
research, 18(5):821–829, 2008.

153

Exploring Multi-Objective with Protein Sequence Alignment

Maha M. Abdelrasoul and Yaohang Li

 Computer Science Department, Old Dominion University

 Norfolk, VA, 23529, USA

{mabdelaa, yaohang}@cs.odu.edu

Abstract
The continuously growing protein sequence and structure

data provide an increase in the need and importance of
protein sequence alignment. Protein sequence alignment
has been investigated by many researchers as a single-score
optimization problem where both sequence and structural
information are taken into account through a single
combined score function. However, there is usually a trade-
off between the sequence and structure scores, which
makes it unlikely to generate a single alignment that
optimizes all the scores. In this paper, we pursue a Multi-
Objective Alignment (MOA) algorithm to obtain
diversified alignments. The multi-objective alignment
algorithm yields a better chance of obtaining the correct
alignments and then achieving protein structure models
with higher accuracy. The effectiveness of our multi-
objective alignment algorithm is demonstrated in thread-
based protein structure modeling on CASP11 targets.

1 Introduction
One of the essential tasks in bioinformatics is sequence

alignment. As protein sequence alignment is fundamental
to many problems in biology, such as protein structure
modeling, protein design, and functional annotation of
proteins [1] [2]. Generating an alignment between two
protein sequences is generally done by optimizing an
alignment scoring function. The most popular approach for
protein sequence alignment is Dynamic Programming [3]
[4] [5]. Several enhancements for the dynamic
programming approach have been introduced. A
remarkable one is the use of multiple sequence information
to develop position-specific substitution profiles [6] [7] [8]
[9]. Also the transformation of this multiple sequence
alignment into a Hidden Markov Model [10] [11] [12] [13]
is another addition to this technique. The position-specific
substitution profiles have been used in several successful
sequence alignment algorithms. One is CLUSTALW,
which generates multiple sequence alignment in a pairwise
manner [14] [15]. Another is SATCHMO, which

simultaneously constructs a tree and a set of multiple
sequence alignments, one for each node in the tree [16].

An important application of sequence alignment in
protein structure modeling is thread-based protein structure
modeling. Given a structure template, thread-based protein
structure modeling aims at aligning every amino acid in the
target sequence with the template sequence and evaluate
how well the target fits into the template structure. Thread-
based protein structure modeling is designed to model
proteins that have the same fold as proteins with
experiment-determined structures but without having high
sequence similarity. In addition to sequence profile
alignment, thread-based modeling also attempts to align
structural information including secondary structures,
solvent accessibility, backbone dihedral angles, and
fragments [17] [18] [19] [20] [21] [22] [23] [24] [25] [26]
at the same time. The alignments of sequence and structural
information are usually measured as individual scores,
which are later linearly combined as a single alignment
score. Dynamic programming or genetic algorithms are
often employed to generate alignments by optimizing the
alignment score [27] [28] [29] [30].

Correctly aligning the target sequence with the template
sequence often yields maximum protein structure modeling
accuracy for this template. Although typically the weights
used to linearly combine individual scores can be trained
by various machine learning algorithms, there is unlikely a
single set of weights that can satisfy alignments of all target
sequences and templates. This is due to the fact that the
individual scores of sequence profiles and structural
information are often conflicting. In this paper, we pursue
a Multi-Objective Alignment (MOA) algorithm based on
the Needleman-Wunsch algorithm [3] to obtain a set of
diversified Pareto-optimal alignments. In theory, the multi-
objective alignment algorithms can be considered as a
super consensus method [31] [32] [33] whose goal is to
derive all possible alignments with diversified consensus
over all positive, linear weigh combinations. As a result,
compared to finding a single alignment by optimizing a

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

154

certain combination of individual scores, the multi-
objective alignment algorithm yields a better chance of
obtaining the correct alignment and then achieving protein
structure models with higher accuracy. The effectiveness
of our multi-objective alignment algorithm is demonstrated
in thread-based protein structure modeling on a set of
CASP11 targets by deriving alignments based on sequence
profile score and the structural information score.

2 Methodology
We examined the implementation of MOA algorithm for

protein sequences based on the following objectives: (1)
sequence profile, (2) secondary structure, and solvent
accessibility objective functions.

Multi-Objective Alignment (MOA) Algorithm
Our idea for MOA is based on the Needleman-Wunsch

algorithm, but instead of building only one score matrix we
built a score matrix for each objective function. Tracing
maximum-match pathway in each matrix will end up by
generating the optimal alignment for the objective used to
build this matrix. To get the multi-objectives alignments
we will trace the maximum-match pathway in all the
matrices to get each objective optimal alignment.
Whenever these alignment decisions (match, insert, and
delete) of the objectives disagree, a new alignment, which
has the same starting part as the alignment being traced but
continue by following the alignment decision of the
disagreeing matrix, will be added. This procedure will be
done until we generate all the alignments discovered while
tracing the objective matrices. Finally, the scores of the
generated alignments will be calculated according to all the
objectives, and only the non-dominating alignments will be
kept. The implementation of our method is split into two
stages: score matrices generation and tracing objective
matrices to generate the multi-objective alignments.

Score Matrices Generation
Given a set of objective functions 𝑓1(.), … , 𝑓𝑘(.), for two

sequences 𝐴 = 𝑎1𝑎2 … 𝑎𝑀 and 𝐵 = 𝑏1𝑏2 … 𝑏𝑁 , a score
𝑠𝑚,𝑛(𝑓𝑖) is assigned to an aligned pair of residues 𝑎𝑚 and
𝑏𝑛 based on objective function 𝑓𝑖(.) . Besides, a gap
penalty 𝑔(𝑓𝑖) is for aligning a residue from 𝐴/𝐵 to a gap.
For each objective function 𝑓𝑖(.), a score matrix 𝐹(𝑓𝑖) is
computed according to Needleman-Wunsch algorithm and
based on 𝑓𝑖(.) scores, where 𝐹𝑚,𝑛(𝑓𝑖) is calculated as
follow:

𝐹𝑚,𝑛(𝑓𝑖) =

𝑚𝑎𝑥 {

𝐹𝑚−1,𝑛−1(𝑓𝑖) + 𝑠𝑚,𝑛(𝑓𝑖) 𝑚𝑎𝑡𝑐ℎ/𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

𝐹𝑚−1,𝑛(𝑓𝑖) + 𝑔(𝑓𝑖) 𝑖𝑛𝑠𝑒𝑟𝑡

𝐹𝑚,𝑛−1(𝑓𝑖) + 𝑔(𝑓𝑖) 𝑑𝑒𝑙𝑒𝑡𝑒

The cells in 𝐹(𝑓𝑖) are generated one row at a time and
one cell at a time starting from one at the up left corner.
Once all the objective matrices are generated
(𝐹(𝑓1), ⋯ , 𝐹(𝑓𝑘)), the multi-objective alignments of
sequences 𝐴 and 𝐵 with respect to 𝑓1(.), … , 𝑓𝑘(.). can be
generated by tracing these matrices.

Backtracking the objective Matrices
Once the score matrices (𝐹(𝑓1), ⋯ , 𝐹(𝑓𝑘)) are

completely generated, the multi-objective alignments will
be generated by backtracking. The difference here is that
the backtracking is done in more than one matrix. The
backtracking of the multi-objective alignments is
performed using the following iterating steps:

1. Initialize a set of alignments 𝑈 where 𝑈 initially holds
only one alignment 𝑈1. An alignment 𝑈𝑗 is represented
by two empty strings 𝐴𝐴 ← "" and 𝐴𝐵 ← "" to hold store
the alignment, and two indices 𝑚 = 𝑀 and 𝑛 = 𝑁 to
keep track of the current index in each sequence.

2. For each alignment 𝑈𝑗 ∈ 𝑈, trace the score at the cell of
indices 𝑚, 𝑛 in every score matrix (𝐹(𝑓1), ⋯ , 𝐹(𝑓𝑘)), to
determine the source of 𝐹𝑚,𝑛(𝑓1) ⋯ 𝐹𝑚,𝑛(𝑓𝑘).

a. If all 𝐹𝑚,𝑛(𝑓1) ⋯ 𝐹𝑚,𝑛(𝑓𝑘) come from a match. Update
𝑈𝑗 accordingly as 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵 ,
𝑚 = 𝑚 − 1, and 𝑛 = 𝑛 − 1.

b. If all 𝐹𝑚,𝑛(𝑓1) ⋯ 𝐹𝑚,𝑛(𝑓𝑘) come from an insert. Update
𝑈𝑗 accordingly as 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← " − " + 𝐵𝐵 ,
𝑚 = 𝑚 − 1, and 𝑛 = 𝑛.

c. If all 𝐹𝑚,𝑛(𝑓1) ⋯ 𝐹𝑚,𝑛(𝑓𝑘) come from a delete. Update
𝑈𝑗 accordingly as 𝐴𝐴 ← " − " + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵 ,
𝑚 = 𝑚, and 𝑛 = 𝑛 − 1.

d. If ∃ 𝐹𝑚𝑛(𝑓𝑖) coming from an insert while others 𝐹𝑚,𝑛(.)
come from match, a new alignment 𝑈𝑥 is added based
on the insert where 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← " − " + 𝐵𝐵,
𝑚 = 𝑚 − 1, and 𝑛 = 𝑛. Also, 𝑈𝑗 is updated according
to the match as 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵 , 𝑚 =

𝑚 − 1, and 𝑛 = 𝑛 − 1.
e. If ∃ 𝐹𝑚𝑛(𝑓𝑖) that comes from a delete while the other

𝐹𝑚,𝑛(.) come from match, a new alignment 𝑈𝑥 is added
based on the delete where 𝐴𝐴 ← " − " + 𝐴𝐴 , 𝐵𝐵 ←

𝑏𝑛 + 𝐵𝐵 , 𝑚 = 𝑚, and 𝑛 = 𝑛 − 1. Also, 𝑈𝑗 is updated
according to the match as 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 +

𝐵𝐵 , 𝑚 = 𝑚 − 1, and 𝑛 = 𝑛 − 1.
f. If ∃ 𝐹𝑚𝑛(𝑓𝑖) that comes from an insert while the other

𝐹𝑚,𝑛(.) come from delete, a new alignment 𝑈𝑥 based on
the insert where 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← " − " + 𝐵𝐵 ,
𝑚 = 𝑚 − 1, and 𝑛 = 𝑛. Also, update 𝑈𝑗 according to
the delete as 𝐴𝐴 ← " − " + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵 , 𝑚 =

𝑚, and 𝑛 = 𝑛 − 1.
g. If ∃ 𝐹𝑚𝑛(𝑓𝑖) that comes from an insert and ∃ 𝐹𝑚𝑛(𝑓𝑙)

that comes from a delete while the other 𝐹𝑚,𝑛(.) come

155

from match, a new alignment 𝑈𝑥 is added based on the
insert where 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← " − " + 𝐵𝐵 , 𝑚 =

𝑚 − 1, and 𝑛 = 𝑛. Also, a new alignment 𝑈𝑦 is added
based on the delete where 𝐴𝐴 ← " − " + 𝐴𝐴 , 𝐵𝐵 ←

𝑏𝑛 + 𝐵𝐵 , 𝑚 = 𝑚, and 𝑛 = 𝑛 − 1. Besides, 𝑈𝑗 is added
according to the match as 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 +

𝐵𝐵 , 𝑚 = 𝑚 − 1, and 𝑛 = 𝑛 − 1.
3. Repeat step 2 until all the alignments in 𝑈 reach indices

0,0.
4. For each alignment 𝑈𝑗 ∈ 𝑈, calculate its score according

to all the objectives.
5. Remove the dominated alignments from 𝑈.

Example

To demonstrate how the algorithm works, a simple
alignment example is done over the following sequences.

Sequence A P Q Q Y Y P Q
Secondary Structure C H H B B C C
Sequence B P N N Y Q P Y Q
Secondary Structure H C C C H H B B

Where the objectives here are the profile and the
secondary structure and the scoring function for both will
be 1 for a match and -1 for mismatch or gap. Figure 1
shows an illustration of the alignments generation. Figure
2 show the scores for all the generated alignments, while
Table 1 shows the resulting non- dominated ones.

3 Results
The Critical Assessment of Protein Structure Prediction

(CASP) 11 targets are used to show the effectiveness of
MOA. Here, we used two scoring functions to measure the
alignment between the ith residue in the query sequence
and the jth residue in the template sequence, which result
in score matrices of the query and template sequences. The
first one is based on the sequence profile such that

𝑆𝑠𝑒𝑞(𝑖, 𝑗) = ∑ 𝐹𝑎𝑞(𝑖, 𝑘) + 𝐹𝑏𝑞(𝑖, 𝑘)𝐿𝑡(𝑗, 𝑘)/2

20

𝑘=1

.

Here, 𝐹𝑎𝑞(𝑖, 𝑘) is the frequency of the kth amino acid at
the ith position of the multiple sequence alignments (MSA)
obtained by PSI-BLAST [34] against the non-redundant
(NR) sequence database with an E-value cutoff of 0.001.
𝐹𝑎𝑞(𝑖, 𝑘) is considered as a close alignment frequency.
𝐹𝑏𝑞(𝑖, 𝑘) is a more distant frequency generated using a
higher E-value cutoff of 1.0. The idea of combining distant
and close sequence profiles comes from [28] [35] [36] [37],
which helps increase the alignment sensitivity in different
homologue areas. 𝐿𝑡(𝑗, 𝑘) is the derived log-odds profile of
template sequence for the kth amino acid at the jth position.
The template sequence derived log-odds profile generated
from PSI-BLAST search with an E-value cutoff 0.001.

The second scoring function is based on structural
features including predicted secondary structures and
solvent accessibility.

𝑆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑖, 𝑗) = 𝑆𝑆(𝑖, 𝑗) + 𝑆𝐴(𝑖, 𝑗).
Here, 𝑆𝑆(𝑖, 𝑗) is the probability that the predicted

secondary structure of the ith residue of the query sequence
matches with that of the jth residue of the template
sequence, i.e.,

𝑆𝑆(𝑖, 𝑗) = 𝑃𝑟𝑜𝑏 (𝑠𝑠𝑞(𝑖) = 𝑠𝑠𝑡(𝑗))
where 𝑠𝑠𝑞(𝑖) and 𝑠𝑠𝑡(𝑗) are the secondary structures of

the ith residue of the query sequence and the jth residue of
the template sequence. The secondary structure of the
query is predicted by Scorpion [38] . Similarly, 𝑆𝐴(𝑖, 𝑗) is
the probability that the predicted solvent accessibility of
the ith residue of the query sequence matches with that of
the jth residue of the template sequence such that

𝑆𝐴(𝑖, 𝑗) = 𝑃𝑟𝑜𝑏 (𝑠𝑎𝑞(𝑖) = 𝑠𝑎𝑡(𝑗))
where 𝑠𝑎𝑞(𝑖) and 𝑠𝑎𝑡(𝑗) are the solvent accessibility of

the ith residue of the query sequence and the jth residue of
the template sequence. The solvent accessibility of the
query is predicted by CASA [39].

MOA is compared with two popularly used template
alignment and selection methods for template-based
protein structure modeling (Muster [28] and
GenTHREADER [40]). Each target sequence is aligned
with the same templates by the structure profile alignment
method. Then, tertiary protein structure models are
generated by the Modeller program [41] according to the
alignments. The Global Distance Test-Total Score (GDT-
TS), which indicates the percentage of the model
conformation superimposed correctly onto the native
structure, is used to measure the quality of these models
and the corresponding alignments. Since MOA generates
more than one alignment, we only show the one with the
highest GDT-TS score.

We first compare MOA and Muster on the top-ranked
templates of each target specified by Muster. Figure 3
shows the GDT-TS score for Muster along with the MOA.
As it appears in the figure that MOA achieved a higher or
equal GDT-TS score for 102 targets and most of the time
MOA is higher than Muster. Also MOA GDT-TS score
was greater than Muster by at least 10 points in seven
targets. Similar comparison is done between MOA and
pGenTHREADER, which is shown in Figure 4. In 79
targets, the GDT-TS scores of models generated by MOA
are higher than pGenTHREADER, where in 13 of them,
the gain is at least 10 points or higher.

156

Figure 1.(a) The Needleman alignment matrix based on the profile with the maximum-match path traced to generate the optimal

alignment. (b) The Needleman alignment matrix based on the secondary structure with the maximum-match path traced to generate the

optimal alignment. (c), & (d) The optimal profile alignment and the optimal secondary structure alignment respectively. (e), & (f) The

Needleman alignment matrix based on the profile and the Needleman alignment matrix based on the secondary structure respectively with

the maximum-match path traced along with the splits due to disagreement of the other matrix, where the decisions taken based on the profile

are marked on black and the ones based on the secondary structure are marked on red.

Table 1 Non-dominated alignments

Non-dominated alignment
Profile

Score

Secondary
Structure
Score

P Q Q Y Y P - Q 0 -8
P N N Y Q P Y Q
- - - P Q Q Y Y P Q -6 0
P N N Y Q P Y Q - -
- - P Q Q Y Y P Q -3 -3
P N N Y Q P Y - Q
- - - P Q Q Y Y P Q -4 -2
P N N Y Q P - Y - Q
- P - Q Q Y Y P Q -3 -3
P N N Y Q P Y - Q
- - P - Q Q Y Y P Q -6 0
P N N Y Q P Y Q - -
- - P - Q Q Y Y P Q -4 -2
P N N Y Q P - Y - Q
P - - Q Q Y Y P Q -1 -5
P N N Y Q P Y Q -
- P - - Q Q Y Y P Q -6 0
P N N Y Q P Y Q - -
- P - - Q Q Y Y P Q -4 -2
P N N Y Q P - Y - Q
P - - - Q Q Y Y P Q -2 -4
P N N Y Q P Y Q - -

Figure 2 Scores of the alignments generated by MOA where the

red ones represent the dominated alignments and the blue ones

represent the non-dominated alignments

 C H H B B C C
 P Q Q Y Y P Q P Q Q Y Y P Q
 0 -1 -2 -3 -4 -5 -6 -7 0 -1 -2 -3 -4 -5 -6 -7
P -1 1 0 -1 -2 -3 -4 -5 H P -1 -1 0 -1 -2 -3 -4 -5
N -2 0 0 -1 -2 -3 -4 -5 C N -2 0 -1 -1 -2 -3 -2 -3
N -3 -1 -1 -1 -2 -3 -4 -5 C N -3 -1 -1 -2 -2 -3 -2 -1
Y -4 -2 -2 -2 0 -1 -2 -3 C Y -4 -2 -2 -2 -3 -3 -2 -1
Q -5 -3 -1 -1 -1 -1 -2 -1 H Q -5 -3 -1 -1 -2 -3 -3 -2
P -6 -4 -2 -2 -2 -2 0 -1 H P -6 -4 -2 0 -1 -2 -3 -3
Y -7 -5 -3 -3 -1 -1 -1 -1 B Y -7 -5 -3 -1 1 0 -1 -2
Q -8 -6 -4 -2 -2 -2 -2 0 B Q -8 -6 -4 -2 0 2 1 0

(a) (b)

Optimal profile alignment Optimal secondary structure alignment

P Q Q Y Y P - Q - - - P Q Q Y Y P Q

P N N Y Q P Y Q P N N Y Q P Y Q - -

(c) (d)

 C H H B B C C
 P Q Q Y Y P Q P Q Q Y Y P Q
 0 -1 -2 -3 -4 -5 -6 -7 0 -1 -2 -3 -4 -5 -6 -7
P -1 1 0 -1 -2 -3 -4 -5 H P -1 -1 0 -1 -2 -3 -4 -5
N -2 0 0 -1 -2 -3 -4 -5 C N -2 0 -1 -1 -2 -3 -2 -3
N -3 -1 -1 -1 -2 -3 -4 -5 C N -3 -1 -1 -2 -2 -3 -2 -1
Y -4 -2 -2 -2 0 -1 -2 -3 C Y -4 -2 -2 -2 -3 -3 -2 -1
Q -5 -3 -1 -1 -1 -1 -2 -1 H Q -5 -3 -1 -1 -2 -3 -3 -2
P -6 -4 -2 -2 -2 -2 0 -1 H P -6 -4 -2 0 -1 -2 -3 -3
Y -7 -5 -3 -3 -1 -1 -1 -1 B Y -7 -5 -3 -1 1 0 -1 -2
Q -8 -6 -4 -2 -2 -2 -2 0 B Q -8 -6 -4 -2 0 2 1 0

(e) (f)

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

-8 -6 -4 -2 0

Se
co

n
d

ar
y

St
ru

ct
u

re
 S

co
re

Profile Score

Non dominated
alignments

Dominated
alignments

157

0 20 40 60 80 100

T0811-D1
T0812-D1

T0814
T0813-D1
T0814-D1
T0814-D2
T0814-D3
T0815-D1
T0816-D1

T0817
T0817-D1
T0817-D2
T0818-D1
T0819-D1
T0821-D1
T0822-D1
T0823-D1

T0827
T0827-D1
T0827-D2

T0830
T0830-D1

T0831
T0831-D1
T0831-D2
T0832-D1
T0833-D1

T0834
T0834-D1
T0834-D2
T0835-D1
T0836-D1
T0837-D1
T0838-D1

T0840
T0840-D1
T0843-D1

T0845
T0845-D2
T0847-D1

T0848
T0848-D1
T0848-D2
T0849-D1

T0852
T0852-D1
T0852-D2

T0853
T0853-D1
T0853-D2
T0854-D1
T0854-D2
T0855-D1
T0856-D1
T0857-D1
T0858-D1

GDT-TS

Ta
rg
e
ts

Muster
GDT

MOA GDT

0 20 40 60 80 100

T0759
T0759-D1
T0759-D2
T0760-D1

T0761
T0761-D1
T0761-D2
T0762-D1
T0763-D1
T0764-D1
T0765-D1
T0766-D1

T0767
T0767-D2
T0768-D1
T0769-D1
T0770-D1
T0771-D1
T0772-D1
T0773-D1
T0774-D1
T0776-D1
T0777-D1

T0780
T0780-D1
T0780-D2

T0781
T0781-D1
T0781-D2
T0782-D1

T0783
T0783-D1
T0783-D2
T0784-D1
T0785-D1
T0786-D1

T0789
T0789-D1
T0789-D2

T0790
T0790-D1
T0790-D2

T0791
T0791-D1
T0791-D2

T0794
T0794-D1
T0794-D2
T0796-D1
T0800-D1
T0801-D1
T0803-D1
T0805-D1

T0808
T0808-D1
T0808-D2

T0810
T0810-D1
T0810-D2

GDT-TS

Ta
rg
e
ts

Figure 3 The GDT-TS score of Muster alignment and MOA alignment to CASP 11 targets with the top-ranked template selected

by Muster. MOA achieved a higher or equal GDT-TS score for 102 targets and most of the time MOA seven of them the difference

is more than 10 i.e. T0773-D1

0 20 40 60 80 100

T0759
T0759-D1
T0759-D2
T0760-D1

T0761
T0761-D1
T0761-D2
T0762-D1
T0763-D1
T0764-D1
T0765-D1
T0766-D1

T0767
T0768-D1
T0769-D1
T0771-D1
T0772-D1
T0773-D1
T0774-D1
T0776-D1

T0780
T0780-D1
T0780-D2

T0781
T0781-D1
T0782-D1
T0784-D1
T0785-D1
T0786-D1

T0789
T0789-D1
T0789-D2

T0790
T0790-D1
T0790-D2

T0791
T0791-D1
T0791-D2
T0796-D1
T0800-D1
T0803-D1

T808
T0808-D1
T0808-D2
T0810-D2

GDT-TS

Ta
rg
e
ts

0 20 40 60 80 100

T0811-D1
T0813-D1

T0814
T0814-D1
T0814-D2
T0814-D3
T0815-D1
T0816-D1
T0818-D1

T0820
T0820-D1
T0821-D1
T0822-D1

T0827
T0827-D1
T0827-D2

T0830
T0831

T0831-D1
T0832-D1
T0833-D1

T0834
T0834-D1
T0834-D2
T0836-D1
T0837-D1
T0838-D1

T0845
T0847-D1

T0848
T0848-D1
T0848-D2

T0852
T0852-D1
T0852-D2

T0853
T0853-D1
T0853-D2
T0854-D1
T0854-D2
T0855-D1
T0856-D1
T0857-D1
T0858-D1

GDT-TS

Ta
rg
e
ts

pGenTHREADER
GDT
MOA GDT

Figure 4 The GDT-TS score of pGenTHREADER alignment and MOA alignment to CASP 11 targets with the top-

ranked template selected by pGenTHREADER. In 79 targets MOA GDT-TS score is higher or equal pGenTHREADER,

13 of them MOA GDT-TS score was 10 points higher than pGenTHREADER. i.e. T0840

158

4 Conclusions
Protein alignment is fundamental to many biological

problems. Hence, we developed MOA, a multi-objective
sequence alignment algorithm. There is usually a trade-off
between the different objectives used in protein alignment,
which makes it impossible to generate a single alignment
that optimize all the objectives. Compared to finding a
single alignment, MOA yields a better chance of obtaining
the correct alignment and then achieving protein structure
models with higher accuracy. MOA was examined on a set
of CASP11 targets using the following objectives: (1)
sequence profile, (2) secondary structure, and solvent
accessibility objective functions. MOA has demonstrated a
competitive results compared to other state of art methods.

Despite the competitive results shown from MOA, it
suffers from two main deficiencies which we will work on
improving in our future research. First, the MOA algorithm
will generate a new alignment whenever the objectives
disagree with each other, which may lead an exponential
growth of the number of the traces and then end up with a
large number of alignments. This is very computationally
costly, particularly when aligning long protein sequences.
In fact, we are only interested in the non-dominated
alignments. Second, MOA generate some of the Pareto-
optimal front alignments, but it doesn’t guarantee the
generation of the entire Pareto-optimal front.

5 Acknowledgements
This work is supported in part by the National Science

Foundation under Grant No. 1066471 and the Natural
Science Foundation of China under Grant No. 61728211.

6 References

[1] G. Barton, "Protein sequence alignment and database
scanning," in Protein Structure prediction - a

practical approach, Oxford, IRL Press at Oxford
University Press, 1996.

[2] O. Gotoh, "Multiple sequence alignment: algorithms
and applications," Adv Biophys, vol. 36, no. 159-206,
1999.

[3] S. B. Needleman and W. D. Christian, "A general
method applicable to the search for similarities in the
amino acid sequence of two proteins," Journal of

molecular biology, vol. 48, no. 3, pp. 443-453, 1970.
[4] M. Gerstein and M. Levitt, "Using Iterative Dynamic

Programming to Obtain Accurate Pairwise and
Multiple Alignments of Protein Structures," in
ISMB-96, 1996.

[5] S. F. Altschul, "Generalized Affine Gap Costs for
Protein Sequence Alignment," PROTEINS:

Structure, Function, and Genetics, vol. 32, pp. 88-
96, 1998.

[6] M. Gribskov, A. D. Mclachlan and D. Eisenberg,
"Profile analysis: detection of distantly related
proteins," Proc Natl Acad Sci, vol. 84, pp. 4355-
4358, 1987.

[7] S. F. Altschul, T. L. Madden, A. A. Schaffer and J.
Zhang, "Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs,"
Nucleic Acids Research, vol. 25, no. 17, pp. 3389-
3402, 1997.

[8] J. Park, K. Karplus, C. Barrett, R. Hughey, D.
Haussler, T. Hubbard and C. Chothia, "Sequence
Comparisons Using Multiple Sequences Detect
Three Times as Many Remote Homologues as
Pairwise Methods," J. Mol. Biol., vol. 284, pp. 1201-
1210, 1998.

[9] M. A. Marti-Renom, M. S. Madhusudhan and A.
Sali, "Alignment of protein sequences by their
profiles," Protein Science, vol. 13, no. 4, pp. 1071-
1087, 2004.

[10] R. Hughey and A. Krogh, "Hidden Markov models
for sequence analysis: extension and analysis of the
basic method," Computer Appl. Biosci., vol. 12, no.
2, pp. 95-107, 1996.

[11] V. D. Francesco, V. Geetha, J. Garnier and P. J.
Munson, "Fold recognition using predicted
secondary structure sequences and hidden Markov
models of protein folds," Proteins: Struct. Funct.

Genet., vol. 29, no. S1, pp. 123-128, 1997.
[12] K. Karplus, K. Sjolander, C. Barrett and M. Cline,

"Predicting protein structure using hidden Markov
models," Proteins: Struct. Funct. Genet., vol. 29, no.
S1, pp. 134-139, 1997.

[13] S. R. Eddy, "Profile hidden Markov models,"
Bioinformatics, vol. 14, no. 9, pp. 755-763, 1998.

[14] D. G. Higgins and P. M. Sharp, "CLUSTAL: a
package for performing multiple sequence alignment
on a microcomputer," Gene, vol. 73, pp. 237-244,
1988.

[15] J. D. Thompson, D. G. Higgins and T. J. Gibson,
"CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties
and weight matrix choice," Nucleic Acids Research,

vol. 22, no. 22, pp. 4673-4680, 1994.
[16] R. C. Edgar and K. Sjolander, "SATCHMO:

sequence alignment and tree construction using
hidden Markov models," Bioinformatics, vol. 19, no.
11, pp. 1404-1411, 2003.

159

[17] M. S. Johnson and J. Overington, "A Structural Basis
for Sequence Comparisons:: An Evaluation of
Scoring Methodologies," Molecular Biology, vol.
233, no. 4, pp. 716-738, 1993.

[18] A. Prlic, F. Domingues and M. Sippl, "Structure-
derived substitution matrices for alignment of
distantly related sequences," Protein Engineering

Design and Selection, vol. 13, no. 8, pp. 545-550,
2000.

[19] Q. Le, F. Sievers and D. G. Higgins, "Protein
multiple sequence alignment benchmarking through
secondary structure prediction," Bioinformatics, vol.
33, no. 9, pp. 1331-1337, 2017.

[20] D. Jones, W. Taylor and J. Thornton, "A new
approach to protein fold recognition.," Nature, vol.
358, no. 6381, pp. 86-89, 1992.

[21] L. A. Kelley, R. M. MacCallum and M. J. E.
Sternberg, "Enhanced Genome Annotation Using
Structural Profiles in the Program 3D-PSSM," JMB,

vol. 299, pp. 499-520, 2000.
[22] J. Shi, T. L. Blundell and K. Mizuguchi, "FUGUE:

sequence-structure homology recognition using
environment-specific substitution tables and
structure-dependent gap penalties," Journal of

Molecular Biology, vol. 310, no. 1, pp. 243-257,
2001.

[23] L. Rychlewski, L. Jaroszewski, W. Li and A. Godzik,
"Comparison of sequence profiles. Strategies for
structural predictions using sequence information,"
Protein Science, vol. 9, no. 2, pp. 232-241, 2000.

[24] J. D. Blake and F. E. Cohen, "Pairwise sequence
alignment below the twilight zone," Journal of

Molecular Biology, vol. 307, no. 2, pp. 721-735,
2001.

[25] L. Jaroszewski, L. Rychlewski and A. Godzik,
"Improving the quality of twilight-zone alignments,"
Protein Science, vol. 9, no. 8, pp. 1487-1496, 2000.

[26] G. Yona and M. Levitt, "Towards a complete map of
the protein space based on a unified sequence and
structure analysis of all known proteins.," in Int.

Conf. Intell. Syst. Mol. Biol, 2000.
[27] S. Wu and Y. Zhang, "LOMETS: A local meta-

threading-server for protein structure prediction,"
Nucleic Acids, vol. 35, no. 10, pp. 3375-3382, 2007.

[28] S. Wu and Y. Zhang, "MUSTER: Improving protein
sequence profile-profile alignments by using
multiple sources of structure information," Proteins,

p. 547–556, 2008.
[29] Y. Yang, E. Faraggi, H. Zhao and Y. Zhou,

"Improving protein fold recognition and template-
based modeling by employing probabilistic-based
matching between predicted one-dimensional
structural properties of query and corresponding

native properties of templates," Bioinformatics, vol.
27, no. 15, pp. 2076-2082, 2011.

[30] A. Lobley, M. I. Sadowski and D. T. Jones,
"pGenTHREADER and pDomTHREADER: new
methods for improved protein fold recognition and
superfamily discrimination," Bioinformatics, vol. 25,
no. 14, pp. 1761-1767, 2009.

[31] Y. Li, "MOMCMC: An efficient Monte Carlo
method for multi-objective," Computers &

Mathematics with Applications, vol. 64, no. 11, pp.
3542-3556, 2012.

[32] A. Y. Y. L. W. Zhu, "DEMCMC-GPU: An Efficient
Multi-Objective Optimization Method with GPU
Acceleration on the Fermi Architecture," New

Generation Computing, vol. 29, no. 2, pp. 163-184,
2011.

[33] I. R. S. C. E. J. Yaohang Li, "Improving Predicted
Protein Loop Structure Ranking using a Pareto-
Optimality Consensus Method," BMC Structural

Biology, vol. 10, p. 22, 2010.
[34] S. F. Altschul, T. L. Madden, A. A. Schaffer, J.

Zhang, Z. Zhang, W. Miller and D. J. Lipman,
"Gapped BLAST and PSI-BLAST: a new generation
of protein data base search programs," Nucleic Acids

Research, vol. 25, no. 17, pp. 3389-3402, 1997.
[35] J. Skolnick and D. Kihara, "Defrosting the frozen

approximation: PROSPECTOR--a new approach to
threading," Proteins, vol. 42, no. 3, pp. 319-331,
2001.

[36] J. Skolnick, D. Kihara and Y. Zhang, "Development
and large scale benchmark testing of the
PROSPECTOR_3 threading algorithm," Proteins,

vol. 56, no. 3, pp. 502-518, 2004.
[37] H. Zhou and J. Skolnick, "Ab Initio Protein Structure

Prediction Using Chunk-TASSER," Biophysical,

vol. 93, no. 5, pp. 1510-1518, 2007.
[38] A. Yaseen and Y. Li, "Context-based features

enhance protein secondary structure prediction
accuracy," Journal of chemical information and

modeling, vol. 54, no. 3, pp. 992-1002, 2014.
[39] A. Yassen and Y. Li, "CASA: A Protein Solvent

Accessibility Prediction Server using Context-based
Features to Enhance Prediction Accuracy," BMC

Bioinformatics, 2014.
[40] D. T. Jones, "GenTHREADER: an efficient and

reliable protein fold recog- nition method for
genomic sequences," Journal of Molecular Biology,

vol. 287, pp. 797-815, 1999.
[41] A. Š. a. T. L. Blundell., "Comparative protein

modelling by satisfaction of spatial restraints.," J.

Mol. Biol., vol. 234, pp. 779-815, 1993.

160

A Two-level Scheme for Quality Score Compression

Jan Voges+∗, Ali Fotouhi§, Jörn Ostermann+ and M. Oğuzhan Külekci‡∗

+Institut für Informationsverarbeitung, Leibniz Universität Hannover
Hannover, Germany

{voges,office}@tnt.uni-hannover.de

§Electronics and Communications Engineering Department, Istanbul Technical University
Istanbul, Turkey

fotouhi@itu.edu.tr

‡Informatics Institute, Istanbul Technical University
Istanbul, Turkey

kulekci@itu.edu.tr

Abstract

Previous studies on quality score compression can
be classified into two main lines: lossy schemes and
lossless schemes. Lossy schemes enable a better man-
agement of computational resources. Thus, in practice,
and for preliminary analyses, bioinformaticians may
prefer to work with a lossy quality score representa-
tion. However, the original quality scores might be
required for a deeper analysis of the data. Hence,
it might be necessary to keep them; in addition to
lossy compression this requires lossless compression
as well. We developed a space-efficient hierarchical
representation of quality scores, QScomp, which allows
the users to work with lossy quality scores in routine
analysis, without sacrificing the capability of reaching
the original quality scores when further investigations
are required. Each quality score is represented by a
tuple via a novel decomposition. The first and second
dimensions of these tuples are separately compressed
such that the first-level compression is a lossy scheme.
The compressed information of the second dimension
allows the users to extract the original quality scores.
Experiments on real data reveal that the down-stream
analysis with the lossy part — spending only 0.49 bits
per quality score on average — shows a competitive
performance, and that the total space usage with
the inclusion of the compressed second dimension is
comparable to the performance of competing lossless
schemes.

QScomp is written in C++ and can be downloaded
from https://github.com/voges/qscomp.

This work has been partially supported by The Scientific
and Technological Research Council of Turkey grant number
TÜBİTAK - 114E293.
∗ Corresponding author.

Supplementary Material can be downloaded from
http://www.tnt.uni-hannover.de/∼voges.

1 Introduction

Sequencing data produced by high-throughput se-
quencing machines are typically stored in the FASTQ
format [5]. Due to the growing volumes of sequencing
data, processing, transmission, and storage of the
FASTQ files becomes challenging. Therefore, the
compression of data stored in FASTQ files has been
receiving great interest in the last years [15]. Compact
representations of the data do not only help during
storage and transmission by decreasing the required
disk space or by enabling the possibility to better
manage the available bandwidth, but also help during
the analysis of the huge data volumes when the applied
compression schemes support functionality such as
random access over the compressed data directly. That
dimension, namely compressive genomics, has been
proposed and discussed in previous studies [2, 13].

FASTQ files include four lines per read. The first
and the third line, beginning with the @ and + sym-
bols, respectively, indicate the read identifier and an
optional description. The second line lists the read-
out nucleotides. For each nucleotide in the second line
a corresponding quality score (QS) Q is stored in the
fourth line. The quality scores indicate the accuracy of
the base-calling by Q = −10 · log10 P , where P is the
error probability of the base-calling process [8].

So far, efforts in compressing raw sequencing data
stored in FASTQ files have been focusing on compress-
ing the nucleotide sequences, quality scores, and read
identifiers separately. This approach yields a better per-
formance than jointly compressing the different streams

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

161

since these streams have divergent statistical properties.
Previous studies on quality score compression can be
further separated into two categories: lossy schemes
and lossless schemes. The lossy methods achieve
much better compression ratios by sacrificing some
information. This is done by reducing the alphabet size
of the quality scores according to specific quantization
methods. Although these lossy approaches help a
lot in terms of storage and transmission of the data,
the original values might still be required for further
analyses [20].

The daily practice in sequencing data analysis starts
with regular routines. In further steps of the analysis,
deeper investigations are performed on the reads that
are mapped to regions of interest detected by these
regular routines. Quantized quality scores may work
well during the initial processing unless the incorpo-
rated quantization does impact further steps signifi-
cantly. Thus, when the target regions regarding the
tested hypothesis become clear, necessity to access the
original quality scores of the selected reads may become
unavoidable during further down-stream analyses. Yet
another reason to keep the original values stems from
the underlying thought that the original quality scores
might be required by new methods in the future.
Specifically, in large population genomics projects, the
owners of the data may prefer lossless compression
techniques. Thus, an approach would be preferable
where the users have the choice to work effectively in
the first stage with quality scores represented with a
lossy scheme, but at the same time have the choice to
reach the original values in following analysis steps.

Motivated by this demand, we explore in this study a
two-level approach for the compact representation of
the quality scores. By using a novel decomposition
scheme D, we represent each quality score Q with
a tuple D(Q) → 〈q1, q2〉. The compression of the
q1 values constitutes the first compression level, and
compressing the q2 values creates the second level,
where the q1 values determine the context during the
compression of the q2 sequence. The first level is the
lossy representation of the quality scores Q. Thus,
working with this level corresponds to a lossy scheme.
Given q1 and q2, the inverse decomposition D−1 yields
the original quality scores by Q ← D−1(q1, q2). This
way, we preserve the capability to extract the original
values. With such a two-level approach, both lossy
compression and lossless compression of the quality
scores can be achieved hierarchically. In the scope of
this paper, we evaluate the lossy layer in terms of its
effect on down-stream analyses. The space occupied by
the first level and the second levels is expected to be
competitive to previously proposed lossless schemes.

2 Previous Studies

In a FASTQ file the alphabet for the nucleotides (i.e.,
A, C, G, T, and N) is usually much smaller than that of the
quality scores, which typically stem from an alphabet of
size 40 or 41 [5]. Thus, quality scores at full resolution
are in general more difficult to compress. Therefore,
the overall success of compressing an input FASTQ file
depends more on the representation of the quality scores
than on the compression of the nucleotide sequences.

Lossless compression techniques focus on detecting
regularities in quality score streams [22]. For instance,
some of the quality scores are likely to be more frequent
than others, or several biases may appear in some
positions of the reads due to the underlying sequencing
technology. Remember that a compression scheme
can be viewed as a two-step process, where the first
phase is to devise a context model describing the
data, and the second phase is to encode the data
that is represented with that model using an entropy
coder. General-purpose FASTQ compressors mainly
differ in their context modeling approaches. The
DSRC scheme defines three models for quality score
streams, and represents a given quality score sequence
according to its best-fitting model [6]. SCALCE [9] and
Quip [12] make use of a single standard order-3 context
model, and encode every quality score according to
its three immediate predecessors. Fastqz [3] applies a
more complex scheme that uses relations in the near
predecessors to define the context of the current quality
score.

Lossy compression was considered based on the as-
sumption that the resolution of raw quality scores is
much higher than required for accuracy evaluation,
and that the tools in the analysis pipelines will not
be affected much from a lossy representation. It
was proven that this assumption is true, and more
than that, actually lossy representations improve the
efficiency of down-stream analyses in many cases [23,
17]. The authors of [22] explored different binning
strategies and their effects on the compression effi-
ciency. Besides simple bucketing that uses fixed-length
intervals, variable-length intervals inferred through a
number of different statistical measures have also been
proposed in [4]. Another statistical approach has been
introduced with QualComp [16]. QualComp fits a
Gaussian distribution to the quality score sequences
(i.e., vectors), and provides users with the ability
to define the level of acceptable distortion during
encoding. According to the specified number of bits
to be used per quality score, QualComp performs
the optimal alteration of the quality scores such that
the mean squared error is minimized according to
the precomputed Gaussian model. This idea has

162

been further improved by the more recent QVZ and
QVZ 2 compressors [14, 10]. Besides the binning and
statistical inference approaches, there are other efforts
which exploit the information contained in the read-
out nucleotide sequences [11, 23, 21]. For example, the
Quartz compressor [23] sets the quality scores of the
most frequent k-mers to a predefined high value with
the motivation that if a specific nucleotide sequence
is observed many times, then its correctness does not
need any further verification from the quality scores.
Thus, the quality scores can be set to a fixed value.
This way the entropy is reduced and higher compression
performance is achieved.

3 Proposed Method

When an analysis pipeline automatically returns
results for a set of reads (stored in a FASTQ file), the
analyst usually feels the necessity to perform a verifica-
tion of these results by investigating the reads together
with their associated quality scores. A bioinformatician
working on such reads might become suspicious when
she observes low quality scores since those indicate
a possible error in the base-calling process, which
could have then caused problems in the automatically
produced results. Similarly, when quality scores are
larger than a threshold, it does not tell much to the
analyst in most cases as there appears to be not much
practical difference between the 99.999% accuracy with
Q = 50 than 99.9999% with Q = 60. This difference
becomes less and less important as long as the quality
scores get higher. On the other side, due to the
logarithmic nature of the quality scores, Q = 10 is quite
different from Q = 20, since the first case implies 90%
accuracy, while the second indicates 99% accuracy in
the base-calling process.

Therefore, it seems that a simple bucketing approach
with short intervals for the small quality scores and
larger intervals for the higher quality scores might
work well in practical analyses. Hence, we propose to
decompose a quality score Q into the tuple

D(Q)→ 〈q1, q2〉 (1)

such that

q1 = round(
√
Q), (2)

q2 = Q−
(
q21 − q1 + 1

)
. (3)

Notice that given q1 and q2, the inverse decomposition
yields the original quality score as

Q = D−1 (q1, q2) = q21 − q1 + 1 + q2. (4)

This decomposition is inpired by the representation
of integers in an Elias gamma code [7] (or its gener-
alization, the Exp-Golomb code [18]). Assume Q =

q21 + c with c = 1 − q1 + q2. If Q is an n-bit binary
number, then q1 is an n/2 -bit binary number and c
lies in the interval [0, 2b]. Then q1 can be encoded
using any universal coding. Given q1, the number
of bits necessary to represent c can be determined as
log2 (2q1 + 1). However, as the scope of this work is the
two-level representation of quality scores and not the
exploration of sophisticated entropy coding schemes, we
use the well-known general-purpose compressor bzip2
for the compression of the tuples D(Q).

Table 1 shows the decomposition of quality scores
in the interval [30, 43]. The proposed decomposition
creates buckets of length (2 · q1), where typically q1 ∈
{6, 7, 8, 9, 10, 11} since in the FASTQ format the quality
scores are between 33 and 126 (i.e., in the range of
printable ASCII characters). The first (q1 − 1) of the
items in a bucket are promoted to a better quality,
whereas the last q1 are faced with a penalty. Notice
that the (2 · q1) items long bins are relatively short
for the smaller q1 values, which fits to the motivating
observation described above.

Without incorporating the q2 values, the representa-
tion of quality scores (only by their corresponding q1
values) creates a simple lossy scheme. In that sense,
a FASTQ file in which all quality scores are changed
to their q21 values will exhibit a better compressibility
since the alphabet for the quality scores is reduced
to at most 6 symbols instead of 94(= 126 − 33 + 1)
possible characters. Remember that in general the
observed number of symbols is around 40 as opposed
to the theoretically possible 90+ symbols. Similarly,
when the users would like to pertain the capability to
retrieve the original scores, then they need to also keep
the q2 sequence. Instead of handling the q2 sequence
as a single stream, which would force the subsequent
compressor to assume the most general alphabet for the
q2 sequence, clustering the q2 values according to their
corresponding q1 values would improve the compression
ratio (as the q1 value in a tuple specifies the exact
alphabet for the q2 values). Thus, for each distinct q1
value observed in the input FASTQ file, we maintain
a separate sequence of q2 values. Finally, we compress
the q1 values and the multiple q2 sequences individually.
Any general-purpose compressor can be applied. As
already mentioned, we prefer to use bzip2. Surely, the
users of the proposed system can proceed with different
choices at this step.

4 Experimental Results

In this section we provide experimental
results for the evaluation of the proposed
compression scheme QScomp. We compare
QScomp to three competitors, namely Crumble

163

Table 1: An example describing the proposed representation of quality scores.

(q1 − 1) items q21 q1 items
Q 30 31 32 33 34 35 36 37 38 39 40 41 42 43
q1 5 6 6 6 6 6 6 6 6 6 6 6 6 7
q2 9 0 1 2 3 4 5 6 7 8 9 10 11 0

(https://github.com/jkbonfield/crumble), Quartz [23],
and QVZ 2 [10]. For the used versions and an indication
of their support for lossless and lossy compression,
respectively, we refer the reader to the Supplementary
Material. Note that QScomp is the only tool which
truly is able to operate in the lossless and in the lossy
mode.

The data sets used to evaluate the performance of
the selected compression tools originate from the same
individual, namely NA12878. For this individual, the
National Institute of Standards and Technology (NIST)
released a consensus set of variants which we used for
our analyses [24]. Note that similar analyses were
conducted in other works [17, 1, 21]. The selected data
sets are shown in Table 2. For more information on the
used data sets we refer the reader to the Supplementary
Material.

Table 2: Data sets selected for the evaluation.

ID Name Technology Coverage

H01 ERR174324
Illumina

14×
HiSeq 2000

H11 SRR1238539 Ion Torrent 10×
H12

Garvan Illumina
49×

replicate HiSeq X

Moreover, for the evaluation of the proposed com-
pression scheme QScomp, we selected three different
variant calling pipelines. The first pipeline is composed
of GATK [20] variant calling (using the HaplotypeCaller
tool) and SNP extraction with subsequent filtering of
variants using GATK Vector Quality Score Recalibra-
tion (VQSR) with four different filter values. The sec-
ond pipeline is also composed of GATK variant calling
using the HaplotypeCaller tool and SNP extraction
but followed by the more traditional hard filtration
of variants instead of VQSR. The third pipeline uses
Platypus [19] for variant calling. For the individual
commands and tools and auxiliary files used, we refer
the reader to the Supplementary Material.

Each of the mentioned pipelines outputs a set of
variants in the VCF file format. Subsequently, each
set of variants is compared to the consensus set of
variants. We perform this comparison using the tool
hap.py (https://github.com/Illumina/hap.py) released
by Illumina and adopted by the Global Alliance for
Genomics and Health (GA4GH). This benchmarking

tool outputs the following values for each comparison:

� True Positives (T.P.): All those variants that are
both in the consensus set and in the set of called
variants.

� False Positives (F.P.): All those variants that are
in the called set of variants but not in the consensus
set.

� False Negatives (F.N.): All those variants that are
in the consensus set but are not in the set of called
variants.

� Non-Assessed Calls: All those variants that fall
outside of the consensus regions defined by a BED
file.

These values are used to compute the following two
metrics:

� Recall/Sensitivity: This is the proportion of called
variants that are included in the consensus set; that
is, R = T.P./(T.P. + F.N.),

� Precision: This is the proportion of consensus
variants that are called by the variant calling
pipeline; that is, P = T.P./(T.P. + F.P.).

Finally, we measured the maximum memory usage
and the execution time of each tool on each dataset
with GNU time.

4.1 Performance Analysis of the
Proposed Scheme

In this section we first show the compression ratios of
all tools and for all datasets from Table 2.

Figure 1 shows the compression results for all tools in
bits per quality score. In addition to the compression
results for the mentioned tools, we also show the
memoryless entropy per original quality score, which is
3.62 bits per quality score, averaged over all data sets.
Furthermore, we show the gzip and bzip2 compression
results for the raw quality scores, which are 3.54 bits
per quality score and 3.27 bits per quality score, also
averaged over all data sets.

As shown in Figure 1, the lossy quality score rep-
resentation obtained using QScomp with subsequent
bzip2 compression (i.e., “QScomp dim1 (+ bzip2 -9)”)
yields 0.49 bits per quality score on average. This

164

Entropy gzip bzip2 ‐9 QVZ 2 T1 QVZ 2 T2 QVZ 2 T4 QVZ 2 T8 QVZ 2 T16
QScomp
dim1

(+ bzip2 ‐9)

QScomp
dim1 and
dim2.*

(+ bzip2 ‐9)

QScomp
dim1 and
dim2_a

(+ bzip2 ‐9)

Crumble ‐1
(+ CRAM)

Crumble ‐9
(+ CRAM)

Quartz
(+ bzip2)

ERR174324, chr11 3.11 3.10 2.86 0.73 0.38 0.13 0.04 0.01 0.15 2.84 2.90 0.41 0.24 0.45
ERR174324, chr20 3.38 3.14 2.91 0.77 0.42 0.16 0.05 0.02 0.16 2.89 2.96 0.41 0.21 0.42
SRR1238539, chr11 4.37 4.43 4.05 1.98 1.56 1.13 0.69 0.35 0.75 4.20 4.50 3.67 3.26 1.41
SRR1238539, chr20 4.38 4.45 4.06 2.00 1.58 1.15 0.71 0.36 0.76 4.22 4.52 3.67 3.27 1.39
Garvan replicate, chr11 3.33 3.04 2.86 0.97 0.70 0.44 0.31 0.18 0.53 2.95 3.14 0.39 0.29 0.75
Garvan replicate, chr20 3.16 3.10 2.92 1.02 0.74 0.47 0.33 0.20 0.56 3.01 3.20 0.39 0.28 0.76

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

Bi
ts
/Q

S

ERR174324, chr11 ERR174324, chr20 SRR1238539, chr11 SRR1238539, chr20 Garvan replicate, chr11 Garvan replicate, chr20

Figure 1: Compression ratios results.

result is comparable to the results obtained with QVZ 2
when a target mean squared error (MSE) of 8 (i.e.,
“QVZ 2 T8”) is specified, which yields 0.35 bits per
quality score on average.

We can observe from the figure that the lossless qual-
ity score representation of QScomp with subsequent
bzip2 compression (i.e., “QScomp dim1 and dim2.* (+
bzip2 -9)”) is capable of delivering 3.35 bits per quality
score, which is slightly below the entropy, as expected.
The two-level scheme of QScomp with conditional
compression of the second level with respect to first
level is slightly superior to just compressing the quality
scores with gzip, and comparable to compressing the
quality scores with bzip2. Thus, QScomp does not
sacrifice the lossless compression performance, while
combining the lossless and lossy compression via its
unique two-level scheme. We finally show in Figure 1
the results of compressing the joint single sequence of q2
values (i.e., ”QScomp dim1 and dim2 a (+ bzip -9)”).
This experiment yields 3.53 bits per quality score. This
results suggests that the proposed separate compression
of multiple q2 sequences is superior to just compressing
the q2 residues as a single stream.

Furthermore, in the Supplementary Material we show
the maximum RAM usage and the running times,
respectively, of all tools. QScomp exhibits the least
RAM usage of all tools, with 3.4 MB on average, due
to its low algorithmic complexity. The running times
of QScomp are comparable to that of the different runs
of QVZ 2 and even two orders of magnitude lower than
that of Quartz.

4.2 Variant Calling Results

In this section, we show the results of variant calling
with the GATK + VQSR pipeline. For further results
obtained from running the other two pipelines, we

refer the reader to the Supplementary Material. For
the first set of simulations we used the paired-end
run ERR174324 of the NA12878 individual. This run
was sequenced by Illumina on an Illumina HiSeq 2000
system as part of their Platinum Genomes project. The
coverage of this data set is 14×. Due to the size of
the data and the following the approach of [17] we
consider chromosomes 11 and 20. Furthermore, we
averaged the Recall and Precision metrics over the two
chromosomes (11 and 20) and the four VQSR filter
values (θ ∈ {90, 99, 99.9, 100}) which yields 2 plots. In
what follows, we did the same for the other data sets.
Thus, we present in total 6 plots (i.e., 3 data sets × 2
metrics) in this section.

We can observe from Figure 2 that QScomp com-
presses the quality scores down to 0.16 bits per quality
score while the Precision is retained. However, we also
observe a slight drop in Recall, compared to the results
for the uncompressed data.

0 0.2 0.4 0.6 0.8
-2

-1

0

1

2

3

4

5
10

-3

QVZ 2 T1

QVZ 2 T2

QVZ 2 T4

QVZ 2 T8

QVZ 2 T16

QScomp (+ bzip2 -9)

Crumble -1 (+ CRAM)

Quartz (+ bzip2)

0 0.2 0.4 0.6 0.8
-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

QVZ 2 T1

QVZ 2 T2

QVZ 2 T4

QVZ 2 T8

QVZ 2 T16

QScomp (+ bzip2 -9)

Crumble -1 (+ CRAM)

Quartz (+ bzip2)

Figure 2: Recall and Precision results averaged over
both chromosomes (11 and 20) and all four VQSR
filter values for the Illumina HiSeq 2000 data set
(ERR174324) with a coverage of 14×.

165

Next, we show the results for the SRR1238539 run
on the NA12878 individual for which an Ion Torrent
sequencing machine was used. The coverage of this
data set is 10×. Again, chromosomes 11 and 20 were
considered due to the size of the data. Moreover, the
results shown are also the results of averaging over the
same four filter values and both chromosomes. Figure 3
shows that QScomp is the worst performer in terms
of both Recall and Precision. Since all other tools
exhibit a similar performance, we must conclude that
the assumptions used for the construction of the binning
scheme implemented in QScomp do not seem to hold
for the quality score statistics produced by Ion Torrent
sequencing machines.

0 1 2 3 4
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

QVZ 2 T1

QVZ 2 T2

QVZ 2 T4

QVZ 2 T8

QVZ 2 T16

QScomp (+ bzip2 -9)

Crumble -1 (+ CRAM)

Quartz (+ bzip2)

0 1 2 3 4
-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

QVZ 2 T1

QVZ 2 T2

QVZ 2 T4

QVZ 2 T8

QVZ 2 T16

QScomp (+ bzip2 -9)

Crumble -1 (+ CRAM)

Quartz (+ bzip2)

Figure 3: Recall and Precision results averaged over
both chromosomes (11 and 20) and all four VQSR filter
values for the Ion Torrent data set (SRR1238539) with
a coverage of 10×.

Finally, we used the first replicate of the sample data
set generated by the Garvan Institute from the Coriell
Cell Repository NA12878 reference cell line. These data
were sequenced on a single lane of an Illumina HiSeq X
machine. The coverage of this data set is 49×. These
results are shown in Figure 4. In terms of Recall and
Precision, QScomp exhibits a similar performance as for
the data set ERR174323, which is shown in Figure 2.
Again, the Precision is retained. However, for this
data set, a better Recall can be observed for all tools,
including QScomp. Due to the high coverage of this
data set, the competing tools are able to spend less bits
per quality score than QScomp. Nevertheless, QScomp
compresses the quality scores down to 0.55 bits per
quality score, yielding a compression factor of 5.9 with
respect to the entropy of the uncompressed data.

5 Conclusions

We presented a hierarchical quality score compression
scheme, which represents the quality scores in two
levels. The first level maps each quality score to its

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
10

-3

QVZ 2 T1

QVZ 2 T2

QVZ 2 T4

QVZ 2 T8

QVZ 2 T16

QScomp (+ bzip2 -9)

Crumble -1 (+ CRAM)

Crumble -9 (+ CRAM)

Quartz (+ bzip2)

0 0.2 0.4 0.6 0.8 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
10

-4

QVZ 2 T1

QVZ 2 T2

QVZ 2 T4

QVZ 2 T8

QVZ 2 T16

QScomp (+ bzip2 -9)

Crumble -1 (+ CRAM)

Crumble -9 (+ CRAM)

Quartz (+ bzip2)

Figure 4: Recall and Precision results averaged over
both chromosomes (11 and 20) and all four VQSR
filter values for the Illumina HiSeq X data set (Garvan
replicate) with a coverage of 49×.

nearest square integer, and the second level encodes
the distance of the original quality score to its mapped
value. The impact of the lossy representation of qual-
ity scores on down-stream analyses was investigated
using three different variant calling pipelines. For
data produced by Illumina sequencing machines, the
down-stream analysis results are competitive to the
results obtained with competing lossy quality score
compressors. Here, the Precision is retained, while a
slight drop in Recall was observed. When this lossy
level is accompanied by the second level, we observe
that the compression ratio is around the entropy of the
original quality scores. This shows that the suggested
method to represent each quality score by a tuple does
not have a negative effect on the lossless compression
ratio performance. What is more, we showed that the
proposed separate compression of multiple second level
streams is superior to the compression of the second
level as a single stream. Hence, the incorporation of
other quantization strategies from previous works into
the proposed two-level scheme might be a reasonable
future research avenue. Besides the compression ratios,
the memory consumption and the running times are
also important parameters. Here, with an average of
only approximately 3.4 MB, QScomp shows a signif-
icant reduction in peak memory usage, and achieved
the highest speed in the benchmark.

Previous studies on quality score compression pro-
posed solutions that are either lossless or lossy. Thus,
if a user prefers lossy compression, the possibility to
extract the original quality scores disappears, and in
the reverse case, the user looses the capability to
work with lossy quality scores to reduce the necessary
computing resources. The QScomp scheme introduced
in this study is unique in terms of providing lossless and
lossy compression in a single framework by utilizing a

166

hierarchical two-level representation.

In daily practice, we suggest to replace the quality
scores in FASTQ files with the proposed first-level
values, and to perform initial explorations with this
lightweight presentation. The second-level values could
for example be stored in an archive, and when deeper
investigations are required the original quality scores
could be retrieved.

References

[1] Claudio Alberti et al. An Evaluation Framework
for Lossy Compression of Genome Sequencing
Quality Values. In 2016 Data Compression
Conference (DCC), pages 221–230, 2016.

[2] Bonnie Berger, Noah M Daniels, and Y William
Yu. Computational Biology in the 21st Century:
Scaling with Compressive Algorithms. Communi-
cations of the ACM, 59(8):72–80, 2016.

[3] James K Bonfield and Matthew V Mahoney. Com-
pression of FASTQ and SAM Format Sequencing
Data. PloS ONE, 8(3):e59190, 2013.

[4] Rodrigo Cánovas, Alistair Moffat, and Andrew
Turpin. Lossy compression of quality scores in
genomic data. Bioinformatics, 30(15):2130–2136,
2014.

[5] Peter J A Cock et al. The Sanger FASTQ file
format for sequences with quality scores, and the
Solexa/Illumina FASTQ variants. Nucleic Acids
Research, 38(6):1767–1771, 2010.

[6] Sebastian Deorowicz and Szymon Grabowski.
Compression of DNA sequence reads in FASTQ
format. Bioinformatics, 27(6):860–862, 2011.

[7] Peter Elias. Universal Codeword Sets and Repre-
sentations of the Integers. IEEE Transactions on
Information Theory, 21(2):194–203, 1975.

[8] B Ewing and P Green. Base-calling of automated
sequencer traces using phred. II. Error probabili-
ties. Genome Research, 8(3):186–194, 1998.

[9] Faraz Hach, Ibrahim Numanagić, Can Alkan, and
S Cenk Sahinalp. SCALCE: boosting sequence
compression algorithms using locally consistent
encoding. Bioinformatics, 28(23):3051–3057, 2012.

[10] Mikel Hernaez, Idoia Ochoa, and Tsachy Weiss-
man. A Cluster-Based Approach to Compression
of Quality Scores. In 2016 Data Compression
Conference (DCC), pages 261–270, 2016.

[11] Lilian Janin, Giovanna Rosone, and Anthony J
Cox. Adaptive reference-free compression of
sequence quality scores. Bioinformatics, 30(1):24–
30, 2014.

[12] Daniel C Jones, Walter L Ruzzo, Xinxia Peng, and
Michael G Katze. Compression of next-generation
sequencing reads aided by highly efficient de novo
assembly. Nucleic Acids Research, 40(22):e171,
2012.

[13] Po-Ru Loh, Michael Baym, and Bonnie Berger.
Compressive genomics. Nature Biotechnology,
30(7):627–630, 2012.

[14] Greg Malysa et al. QVZ: lossy compression of
quality values. Bioinformatics, 31(19):3122–3129,
2015.

[15] Ibrahim Numanagić et al. Comparison of high-
throughput sequencing data compression tools.
Nature Methods, 13(12):1005–1008, 2016.

[16] Idoia Ochoa et al. QualComp: a new lossy
compressor for quality scores based on rate
distortion theory. BMC Bioinformatics, 14:187,
2013.

[17] Idoia Ochoa et al. Effect of lossy compression
of quality scores on variant calling. Briefings in
Bioinformatics, 18(2):183–194, 2016.

[18] Jörn Ostermann et al. Video coding with
H.264/AVC: tools, performance, and complexity.
IEEE Circuits and Systems Magazine, 4(1):7–28,
2004.

[19] Andy Rimmer et al. Integrating mapping-,
assembly- and haplotype-based approaches for
calling variants in clinical sequencing applications.
Nature Genetics, 46(8):912–918, 2014.

[20] Geraldine A Van der Auwera et al. From FastQ
data to high-confidence variant calls: the Genome
Analysis Toolkit best practices pipeline. Cur-
rent Protocols in Bioinformatics, 43(11):11.10.1–
11.10.33, 2013.

[21] Jan Voges, Jörn Ostermann, and Mikel Hernaez.
CALQ: compression of quality values of aligned
sequencing data. Bioinformatics, btx737, 2017.

[22] Raymond Wan, Vo Ngoc Anh, and Kiyoshi Asai.
Transformations for the compression of FASTQ
quality scores of next-generation sequencing data.
Bioinformatics, 28(5):628–635, 2012.

[23] Y William Yu, Deniz Yorukoglu, Jian Peng, and
Bonnie Berger. Quality score compression im-
proves genotyping accuracy. Nature Biotechnology,
33(3):240–243, 2015.

[24] Justin M Zook et al. Extensive sequencing of
seven human genomes to characterize benchmark
reference materials. Scientific Data, 3(160025),
2016.

167

Minimising the Deep Coalescence

Dawid D¡bkowski and Paweª Górecki

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Warsaw, mazowieckie, 00-927, Poland

dd345130@students.mimuw.edu.pl, gorecki@mimuw.edu.pl

Abstract

Metagenomic studies identify the species present in
an environmental sample usually by using procedures
that match molecular sequences, e.g., genes, with
the species taxonomy. Here, we formulate the prob-
lem of gene-species matching in the parsimony frame-
work using phylogenetic gene and species trees under
the deep coalescence cost and the assumption that each
gene is paired uniquely with one species. In particular,
we solve the problem in the cases when one of the trees
is caterpillar. Next, we generalize the solution and pro-
pose several heuristic algorithms. Finally, we present
the results of computational experiments on simulated
and empirical datasets.

keywords: deep coalescence, metagenomics, species
taxonomy, gene tree

1 Introduction

One of the primary goals of metagenomic studies
is to identify the species present in an environmental
sample. Such identi�cation from metagenomics data is
usually computationally demanding and requires com-
plex work�ows in which molecular sequences identi�ed
in the sample, i.e., reads, genes or contigs, can be
matched with the species taxonomy. The gene-species
matching can be expressed by using a partially labeled
phylogenetic tree, where a gene tree inferred from a set
of homologous sequences extracted from the sample
is matched with the known species taxonomy. Here,
we formulate the problem in the parsimony framework
using gene and species trees under the deep coalescence
model and the assumption that each gene is paired
uniquely with one species.

Deep coalescence is a major process that can lead to
a discordance between a gene tree and its species tree.
It occurs when the time at which lineages of alleles co-
alesce, predates speciation events of the alleles' species
[1, 2]. The discordance caused by deep coalescence can
be measured by using the deep coalescent cost which,

given two labeled trees, is e�ciently computable in
linear time [3]. Consequently, the cost has been studied
in the context of classical problems in computational
biology, e.g., gene tree parsimony [4�7], tree reconcilia-
tion [8], error correction [9] or tree rooting [10, 11].

In this article, we analyze the deep coalescence cost
for a pair of bijectively labeled gene and species trees.
We investigate into gene-species matching problem
expressed as the minimisation problem, that is, given
two unlabeled trees �nd bijective leaf-labelings for these

trees that minimise the deep coalescence cost. While
several variants of the dual maximising problem can be
solved in polynomial time [12�14], little is known about
the minimising problem. The closest is the minimisa-
tion problem for the general leaf-labelings, i.e., without
the requirement of bijectivity. Usually, such a problem
can be solved by a dynamic programming in polynomial
time [15�17].

In this article, we solve the gene-species problem
for bijectively labeled leaves in the cases when one
of the trees is caterpillar by using two tree ordering
operations. Next, we generalize the solution and
propose several heuristic algorithms the problem for
any gene and species tree topology. Finally, we present
the results of computational experiments on simulated
and empirical datasets.

2 Basic de�nitions

A tree in this article is a rooted binary tree T =
〈V (T), E(T)〉 such that the edges of T are directed
towards leaves, i.e., if 〈v, w〉 ∈ E(T) then v is the parent
of w. The edges incident to the root are called top.
By T (v) we denote a subtree of T rooted at a node
v. A cluster of v, denoted CT (v), is the set of all
leaves of T (v). By |T | we denote the size of T , that is,
the number of its leaves. By h(T) we denote the height
of T , i.e., the maximal number of edges on the path
from the root to a leaf of T . If v is a non-root node,
then vP is the parent of v and vS is the sibling of v.

Let X = {x1, x2, . . . , xn} be a �xed set of n > 1 taxa.

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

168

A labeled tree over X is a tree having exactly n leaves
bijectively labeled by the elements from X. A labeled
tree is often ordered. In such a case, each internal
node v has the left and the right child, denoted vL and
vR, respectively. An ordered tree T induces a labeling

ΛT : [n] → X,1 such that ΛT (1),ΛT (2), . . . ,ΛT (n) are
the taxons obtained from the leaves by the left to right
traversal of T . A labeling that satis�es ΛT (i) = xi, for
i ∈ [n] will be called simple. For a node v, the subtree
T (v) has the labeling inherited from T .

Each edge e ∈ E(T) can be uniquely identi�ed by
the child, therefore, in notation, we often use an edge
and its terminating node (the child) alternatively. For
instance, the subtree S(v) can be denoted as S(e) if
e = 〈vP , v〉.
In computational biology, we recognize two types of

trees: a gene tree and a species tree. In this article,
they are both labeled trees over the same set of taxa.
Now we introduce the least common ancestor mapping,
in short, LCA-mapping, from a gene tree G to a species
tree S. An example is depicted in Fig. 1.

De�nition 1. LCA-mapping from a gene tree G to

a species tree S is a function LCAS : G → S such that

for a node v of G, LCAS(v) is the lowest node s of S,
such that each taxon from G(v) is present in S(s).

Based on the LCA-mapping we can embed a gene
tree G into S by mapping every edge 〈v, w〉 of G
to the path in S whose endpoints are LCAS(v) and
LCAS(w). The edges of such paths are called lineages.
Embeddings can be visualized in the form depicted in
Fig. 1. If both trees are equal, then the LCA-mapping
is a bijection, and an edge is bijectively mapped to
an edge. Otherwise, the embedding has some number
of extra lineages present on edges of the species tree.
For an edge e ∈ E(S), the number, denoted xl(G, e),
can be de�ned formally as [13]

xl(G, e) = |CS(e)| − ce − 1,

where ce is the number of internal nodes of G that are
mapped to nodes of S(e).

Having this, we de�ne the deep coalescence cost.

De�nition 2. For a gene tree G and a species tree

S the deep coalescence cost is de�ned as dc(G,S) =∑
e∈E(S) xl(G, e).

Equivalently, it can be shown that dc(G,S) =∑
〈v,w〉∈E(S) ‖ LCAS(v), LCAS(w)‖ − 1, where ‖s, s′‖

denote the number of edges on the shortest path
connecting s and s′.

Now, we will investigate into the minimal deep
coalescence cost for �xed tree topologies. For a given

1[n] = {1, 2, . . . , n}

a
b c

d
e f

G

a d
b c e f

S

a d
b c e f

Figure 1: Left: An example of a gene tree G
and a species tree S over X = {a, b, c, d, e, f} with
the LCA-mappings of internal nodes of G. Right:

The embedding, or evolutionary scenario [18], explains
the di�erences between G and S by drawing G inside
S. Here, dc(G,S) = 2 as each top edge of S has one
extra lineage.

tree T (labeled or not) by S(T) we denote the set of all
labeled trees T ′ over X such that V (T) = V (T ′) and
E(T) = E(T ′). In other words, the elements of S(T)
share the tree topology.

Problem 1 (MinDC). Given trees G and S. Find

the minimal dc(G′, S′), denoted d̃c(G,S), in the set of

all pairs 〈G′, S′〉 from S(G)× S(S).

From the practical point of view, the most critical
problem is to infer the minimal labelings, which encode
the gene-species mappings. This can be expressed by
seeking for the optimal gene tree as follows.

Problem 2 (Gene-Species Matching). Given a tree

G and a species tree S. Find G∗ ∈ S(G) such that

dc(G∗, S) = d̃c(G,S).

3 Results

In this section, we show how to solve our problems
when one of the trees is a caterpillar, i.e., the maximum-
height tree Cn.

3.1 Caterpillar species tree

We say that an ordered tree T is size-ordered if for
each internal node v we have |T (vL)| ≤ |T (vR)|.

Theorem 1. Given a size-ordered gene tree G and

a size-ordered species tree Cn. If both are simply labeled

then d̃c(G, Cn) = dc(G, Cn). Furthermore,

d̃c(G, Cn) = d̃c(GL, C|GL|) + d̃c(GR, C|GR|) + |GL| − 1,
(1)

where GL and GR are the left and the right subtree of

G, respectively.

Proof. Without loss of generality, we assume that
the labeling of G is simple. Let us consider any labeling
of Cn. First, we embedGL andGR separately, and then,

169

we join them by embedding the top edges. We can write
that,

dc(G, Cn) = dc(GL, C|GL|) + dc(GR, C|GR|) + K, (2)

where K > 0 is the number of additional extra lineages
from the top edges and the intersection of subtrees in
the embedding. Here, the labelings of C|GL| and C|GR|
are inherited from Cn. An example is depicted in Fig. 2.

K = 4, dc(G,S1) = 5 K = 2, dc(G,S2) = 3

Figure 2: Embeddings of a simple labeled gene tree G =
((a, (b, c)), ((d, e), (f, g))) into Cn with two labelings.
The lineages of GL = (a, (b, c)) are red, GR =
((d, e), (f, g)) are green, while the lineages of top edges
of G are black. The contribution to dc is marked next
to edges. The right embedding is optimal, as the tree
is simple labeled and the lineages of GL and GR are
disjoint.

We show that the best labeling of Cn is simple.
The proof is by induction on the size of T . For n = 1
it is trivial. Assume that the statement holds true for
trees of the size smaller than n. We want to minimize
the value of dc(G, Cn).

Let Λ be the labeling of the species tree Cn and let
m = |GL| ≤ |GR|. Let A and the set of indices of taxons
mapped to Cn from GL

2. If Λ is simple, then A = [m]
andK = m−1 as the lineages of GL and GR are disjoint
and there arem−1 lineages of the top edges (see Fig. 2).
In general, for any A, let 0 = l0 < l1 < l2 < . . . < lk = n
be the maximal sequence such that for 1 ≤ j < k either
lj ∈ A ∧ lj + 1 /∈ A or lj /∈ A ∧ lj + 1 ∈ A. E.g.
for the left tree from Fig. 2, k = 4, n = 7, l1 = 1,
l2 = 3, l3 = 5 and l4 = 7. Now we have [n] split into
k parts Pj := {lj−1 + 1, . . . , lj} for j ∈ [k]. We can
imagine a tree Gj as a tree contracted to the set of
taxons from Λ[Pj]. When embedding G into Cn, we can
inductively embed GL (and similarly GR) as proposed
in formula (2). This can be done by using every second
Gj 's tree and calculating only additional extra lineages
in embeddings of Gj and Gj+2 that are separated
by the embedding of Gj+1. Including the lineages

2Formally, A = Λ−1(ΛG[{1, 2, . . . ,m}]).

of top edges, to calculate K we have the following
observations. Let sj be the LCA-mapping of the root of
Gj . For every 3 ≤ j ≤ k, Gj has to be connected with
Gj−2, which requires |Gj−1| − 1 lineages, located on
the path connecting sj−1 with the parent of sj , shared
with the lineages of Gj−1. Similarly, G2 needs |G1| − 1
lineages between the parent of s2 and the root of S.
Next, if 2 ≤ j < k, there is one more lineage, i.e.,
the edge whose terminating node is sj , shared with
the lineages connecting Gj−1 and Gj+1. We have that

|Gj | = lj− lj−1, hence K = k−2+
∑k

j=2(|Gj−1|−1) =
lk−1 − 1 ≥ min(m,n − m) − 1 = m − 1. So, for
every labeling of Cn, K is bounded, and this boundary
is achieved only when k = 2. By the inductive
assumption, this statement joined with the previous
observations, completes the proof.

The next theorem shows that to compute the minimal
dc for the caterpillar species tree, it is su�cient to order
the gene tree by size.

Theorem 2. If G is a size-ordered gene tree then

d̃c(G, Cn) =
∑

e∈Lft(G)

|G(e)| − 1, (3)

where Lft(G) is the set of all edges in G that connect

a node with its left child.

Proof. It follows immediately from Thm. 1.

Note that we cannot fully classify the minimal cost
trees by writing that for a gene tree G, d̃c(G, Cn) =
dc(G, Cn) if and only if G is a size-ordered tree and
ΛG = ΛCn . This statement does not hold in general,
e.g., we can swap leaves of f and g in the left species
tree from Fig. 2 and the minimal cost will be preserved.

The compact formula (3), or the recursive formula

(1), allows us to compute d̃c in linear time. Now let us
also �x the topology of G to be a complete balanced tree
of height h, i.e., a tree of the size 2h with all 2h leaves
on the same depth, and calculate deep coalescence
cost. We have: d̃c(Bn, Cn) =

∑h
i=1 2i−1 · (2h−i − 1) =

1
2 (
∑h

i=1 2h − 2i) = 1
2 (h · 2h − 2 · 1−2h1−2) = 1

2 (n log2 n +
2(1− n)) = n

2 (log2 n− 2) + 1

It shows that d̃c between a complete binary and
a caterpillar tree is ∼ n

2 log2 n. Having this, one

may conjecture, that the maximal d̃c for any gene tree
versus a caterpillar species tree, both of the size n, is
∼ n

2 log2 n.

3.2 Caterpillar gene tree

In this Section, we show how to solve our Problems in
the case when a gene tree is a caterpillar. The solution is

170

similar to the previous case, with the di�erence that we
need a new type of order. For a node v ∈ V (T) a saving
of v, denoted sav(v), is de�ned recursively: sav(v) =
max(sav(vL), sav(vR)) + |T (v)| − 1, where sav(v) = 0 if
v is a leaf. We say that a tree is sav-ordered, if, for
every internal node v we have sav(vL) ≤ sav(vR). An
example of a sav-ordered tree is depicted in Fig. 3.

43
24

4
1

a
13

b
13

1

c
13

d
13

15

e
14

10

f
18

6

g
21

3

h
23

1

i
24

j
24

25

k
8

17

l
15

10
3

m
23

1

n
24

o
24

4
1

p
25

q
25

1

r
25

s
25

T

Figure 3: An example of a sav-ordered tree T with
the decoration showing the values of sav for the internal
nodes, and the weights ωi(T) each leaf. This is one
of the two smallest trees (to obtain the second one
replace ((a, b), (c, d)) by (a, (b, (c, d)))) showing that
sav-ordeding is signi�cantly di�erent than size-ordering.
Furthermore, this example shows that sav-ordering
cannot be replaced by a potentially simpler ordering
based on the height of subtrees.

Let Ei(T) denote the set of edges on the path
connecting the root of T with the i-th leaf. Let
ωT (i) =

∑
e∈Ei(T) |T (e)| − 1 be the weight of the i-

th path. First, we show that, for a sav-ordered tree T ,
ωi(T) is maximized by the rightmost path.

Lemma 1. For any sav-ordered tree T , maxi ωT (i) =
sav(root(T)) − |T | + 1. Moreover, the maximum is

reached by the rightmost path, i.e., for i = n.

Proof. The proof is by induction on the size of T . For
n = 1 it is trivial. We assume that the statements hold
for trees of the size smaller than n. First, we partition
the set of paths: maxi ωT (i) = max(maxi ωTL

(i) +
|TL| − 1,maxi ωTR

(i) + |TR| − 1). Now, from
the induction assumption and the de�nition of saving
this value equals max(sav(root(TL)), sav(root(TR)))
= sav(root(T)) − |T | + 1, which completes
the �rst part of the proof. For the second
path, observe, that the tree is sav-ordered, hence
max(sav(root(TL)), sav(root(TR))) = sav(root(TR)).
Finally, by induction assumption, we have
sav(root(TR)) = ωT (n).

For a tree S and i ∈ [n], by Si we denote the tree
obtained from S as follows.

• Let v1, v2 . . . vk be nodes on the path from the root
to the i-th leaf.

dc(G,S1) = 6 dc(G,S2) = 4

Figure 4: Embeddings of a simple labeled gene tree G =
(a, (b, (c, (d, (e, (f, g)))))) into species trees S1 and S2.
The rightmost paths are colored in yellow. The number
of extra lineages is shown near the corresponding edges.
S2 has simple labeling, therefore the right embedding is
optimal. In particular, its rightmost path has no extra
lineages.

• For j = 1, 2, . . . , k, if the left child of vj is vj+1

then swap the subtrees of vj .

Obviously, this transformation does not change
the deep coalescence so d̃c(G,S) = d̃c(G,Si) for any
i, G and S. Also, if S is sav-ordered then Sn = S.
Now we can formulate our main theorem for the case
of caterpillar gene trees.

Theorem 3. Let Cn be a caterpillar gene tree, and S
be a species tree. Assume that both are sav-ordered. If

both have simple labeling, then d̃c(Cn, S) = dc(Cn, S).

Proof. For simplicity, let En(S) = E(S) \En(S). Note
that the n-th leaf in a simple labeled Cn is the deepest
node in Cn and ΛCn(n) = xn.

3 By d̃ci(Cn, S) we denote
the minimal dc(Cn, S) in the set of all species trees
S with the labeling satisfying ΛS(i) = xn. We split

the proof into two parts. First, we show that d̃ci(Cn, S)
is determined by the simple labeling of Si and equals∑

e∈En(Si)(|Si(e)| − 1). Secondly, we prove that this
sum is minimal if i = n.

Part I. Let ΛS(i) = xn. Clearly, d̃ci(Cn, S) =

d̃cn(Cn, Si), i.e., we consider Si with the n-th leaf
labeled by xn. Note, that every internal node of
Cn maps to a node from the path En(Si) as xn is
the label of the n-th node from Si and Cn. Hence,
if e = 〈v, w〉 is an edge from En(Si), e is a lineage
for every taxon (leaf) below v when embedding Cn into
Si. Thus, e is exactly |Si(e)| times a lineage, which
gives |Si(e)| − 1 extra lineages. We conclude that

d̃cn(Cn, Si) ≥ ∑
e∈En(Si)(|Si(e)| − 1). Now, we show

that this boundary is reached by the simple labeling
of Si. In such a case, for j < n, the lineages of
the edge adjacent to the j-th leaf of Cn are disjoint with
the rightmost path of Si. Moreover, there is no extra

3Recall that xn is the last taxon from the taxon set X.

171

lineage in En(Si) (see the right embedding in Fig. 4).
This completes the proof of the �rst part.

Part II. Let W (S) =
∑

e∈S(|S(e)| − 1). Note that
W (S) = W (Si). It follows from the �rst part that

d̃cn(Cn, Si) =
∑

e∈En(Si)(|Si(e)| − 1) = W (Si) −∑
e∈En

(|Si(e)| − 1) = W (S) − ωn(Si) = W (S) −
ωi(S). Hence, we have d̃c(Cn, S) = mini d̃ci(Cn, S) =
W (S)−maxi ωi(S). Finally, by Lemma 1 we have that

d̃c(Cn, S) = W (S)−ωn(S), i.e., when i = n and Sn = S
is simply labeled. This completes the proof.

Theorem 4. If S is sav-ordered then

d̃c(Cn, S) =
∑

e∈E(S)\En(S)

|S(e)| − 1. (4)

Proof. Under the notation from the second part of
the proof of Thm. 3 we have d̃c(Cn, S) = W (S)−ωn(S).
The rest follows by expanding W (S) and ωn(S).

The formula (4) allows us to compute the minimal
deep coalescence cost in O(n) time. Now we can com-
pute easily the minimal cost for the complete balanced
species tree when n = 2k. We have d̃c(Cn,Bn) =∑k

i=1(2i − 1)(2k−i − 1) =
∑k

i=1(2k − 2i − 2k−i + 1) =
k2k − (2k+1 − 2) − 2k(1 − 2−k) + k = 2k(k − 2 − 1) +
2 + 1 + k = n(log2 n− 3) + log2 n + 3.

It shows that d̃c for the caterpillar and the complete
binary tree is ∼ n log2 n, which is similar to the results
obtained in the previous section. Having this, one may
also conjecture, that the maximal d̃c for a caterpillar
gene tree versus any species tree, both of the size n, is
∼ n

2 log2 n.

3.3 Algorithms for Gene-Species

Matching

Here, we propose several heuristic algorithms for
solving our problems. The algorithms, given the input
consisting of two unlabeled trees of the same size, alter
the ordering of nodes and infer labelings that approx-
imate the minimal deep coalescence cost. Then, to
compute the dc cost for such trees, we use the classical
O(n) algorithm based on LCA queries [3].

Algorithm 1: The simple algorithm

1: Input: Trees G and S of the same size.
2: Output: Approximation of d̃c(G,S).
3: Order G by size and S by saving.
4: Add simple labelings to G and S.
5: Return dc(G,S).

Alg. 1 has a linear time and space complexity. Next, it
follows from Thm. 1 and 3, that the simple algorithm

Algorithm 3: Extended greedy algorithm

1: Input/Output: see Alg. 2.
2: Notation: For a tree T , let K(T) be the set of maximal

nodes v, such that the left and the right subtree of v
are isomorphic.

3: Order G by size and S by saving.
4: return min(d(G,S),ming∈K(G),s∈K(S) d(G

g, Ss)),
where Gg (and similarly Ss) is a tree obtained from G
by swapping subtrees of vj if, for each j < k, vj+1 is
the left child of vj , where v1, v2, . . . , vk is the path
from the root of G to g.

5: Function d(G,S): all lines ≥ 4 from Alg. 2

is exact if one of the input trees is caterpillar as for
caterpillar trees ordering by size and by saving are
equivalent.

Although the simple algorithm �ts our theorems
perfectly, one could �nd even small counterexample
when the output cost is not optimal. Therefore, we
propose another approach (see Alg. 2), in which we �rst
try to match cherries, which are nodes with precisely
two leaves beneath. Empirical evaluation shows, see
Fig. 5 that the greedy algorithm performs better than
Alg. 1 in terms of the returned cost. Alg. 2 has
a quadratic time complexity. It is also more di�cult to
�nd a counterexample which does not give the lowest
cost.

Extending algorithms. To further improve the perfor-
mance of our algorithms we propose to apply di�erent
kinds of orderings in some nodes of the input trees.
The details how to extend Alg. 2 are depicted in Alg. 3.
Analogously, we extend the simple algorithm. Both
extended algorithms are never worse than the original
ones, and we still have the exact solution for caterpillar
trees. For the other trees, extended algorithms tend
to perform better, which is summarized in Fig. 5. As
the set of nodes K(T) in Alg. 3 can be computed by
using an O(n log n) the solution proposed by Campbell
et al. [19], the time complexity of the extended greedy
algorithm is O(n4), while the extended variant of
the simple algorithm requires O(n3) time.

The evaluation of all proposed algorithms is depicted
in Fig. 5.

4 Experimental Results

We have performed two computational experiments
on empirical and simulated datasets. In the �rst
experiment, we present a comparative study of the re-
construction algorithms, while in the second, we tested
the quality of labeling inference.

Experiment I. To verify which algorithm yields

172

Algorithm 2: The greedy algorithm

1: Input: Trees G and S of the same size. Output: Approximation of d̃c(G,S).
2: Notation: For a tree T and a set of nodes Z ⊆ V (T) and i ∈ {1, 2, . . . , |Z|}, by Z[i] we denote i-th node from Z when T

is traversed in post-order. By IT we denote the set of internal nodes of a tree T .
3: Order G by size and S by saving.
4: Add the simple labeling to G. Let i := j := 1. Initialize sets MG := MS := ∅.
5: F := CG(root(G)) - the set of unmapped leaves from G; U := CS(root(S)) - the set of unlabeled leaves in S.
6: While j ≤ n− 1
7: A := |F ∩ CG(IG[i])| and B := |U ∩ CG(IS [j])|
8: If |A| = |B| Then map(A,B); i+=1; j+=1;
9: Else If |A ∪MG| = |B ∪MS | Then map(A ∪MG, B ∪MS); MG := MS := ∅; i+=1; j+=1;
10: Else If |A ∪MG| = |B| Then map(A ∪MG, B); MG := ∅; i+=1; j+=1;
11: Else If |A| = |B ∪MS | Then map(A,B ∪MS); MS := ∅; i+=1; j+=1;
12: Else If |A| < |B| Then MG := MG ∪A; i+=1;
13: Else MS := MS ∪B; j+=1;
14: return dc(G,S).
15: Function map(P,Q):
16: For k = 1, 2, . . . , |P |, set the label of Q[k] to be the label of P [k].
17: F := F \ P , U := U \Q.

0

20

40

60

80

100

120

140

160

180

200

220

240

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
tree size

m
ea

n
dc

 v
al

ue

method
simple
simple extended
greedy
greedy extended

Figure 5: Averaged minimal deep coalescence, com-
puted by all four heuristics.

the lowest cost, we generated random trees from
the Yule model [20]. For each tree size between 1
and 150 we generated 7 random tree pairs. Then, we
computed the approximation of the minimal cost by
using our four algorithms. The result, averaged over
sizes of trees, is depicted 5. We observe that the greedy
extended algorithm is the best performing among all
our algorithms.

Experiment II. In practice, we often have some partial
information on the labeling of leaves. Therefore, we
introduce a more practical variant of our problems:

Given a gene tree G with a partial labeling, i.e.,

some leaves of G are unlabeled, and a species tree S.
Find the total labeling for G that minimize the deep

coalescence cost dc(G,S).

The greedy algorithm can be easily modi�ed to solve
the above problem. In line 5 of Alg. 2, it is su�cient

to remove labeled leaves from F and used taxons being
labels from U .

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
labels erased

m
ea

n
qu

al
ity

Figure 6: Averaged quality, computed by the mod-
i�ed greedy algorithm on the trees from TreeFam

dataset [21].

The test was performed on TreeFam dataset, which
consists of 1274 curated gene family trees from
TreeFam v7.0 [21] spanning 25 mostly animal species.
The species tree was based on the NCBI taxonomy.
First, we extracted 295 gene trees with bijectively
labeled leaves. Next, for each such a gene tree G,
we contracted a species tree to the taxons present
in G. Hence, we obtained 295 pairs of bijectively
labeled trees, with the average size of 17.66 taxons.
Finally, for every pair of trees 〈G,S〉, and for each
i = {2, 3, . . . , |G|}, we removed labels of i random leaves
from G and then applied the modi�ed greedy algorithm
to infer total labeling. The quality of a reconstruction
is determined by the number of properly reconstructed

173

labels divided by i. The experiment was repeated 10
times. The result, averaged over i, is depicted in Fig. 6.

5 Conclusion

In this article, we gave a closer look at an open ques-
tion of the minimal deep coalescence cost for the �xed
tree topologies and bijective labelings. The particular
cases that we have solved provide a better understand-
ing of the properties of the deep coalescence cost.
While the complexity of our problems remains open,
the methods presented seem to be a good starting
point to the solve the problems in the general case
which we plan to study in future. Also, we plan
to test our solutions on more complex empirical and
simulated datasets, including simulations with more
realistic models.

Acknowledgements

The support was provided by NCN grant
#2015/19/B/ST6/00726.

References

[1] W. P. Maddison. �Gene Trees in Species Trees�. In: Syst
Biol 46 (1997), pp. 523�536.

[2] R. D. M. Page and E. C. Holmes. Molecular evolution: a
phylogenetic approach. Blackwell Science, 1998.

[3] L. Zhang. �From Gene Trees to Species Trees II: Species
Tree Inference by Minimizing Deep Coalescence Events�.
In: IEEE/ACM TCBB 8 (2011), pp. 1685�1691.

[4] B. C. Carstens and L. L. Knowles. �Estimating species
phylogeny from gene-tree probabilities despite incomplete
lineage sorting: an example from Melanoplus grasshop-
pers�. In: Syst Biol 56.3 (2007), 400�11.

[5] W. Jennings and S. Edwards. �Speciational history of
Australian grass �nches (Poephila) inferred from thirty
gene trees�. In: Evolution 59.9 (2005), 2033�47.

[6] C. Than and L. Nakhleh. �Species tree inference by min-
imizing deep coalescences�. In: PLoS Comput Biol 5.9
(2009), e1000501.

[7] C. V. Than and N. A. Rosenberg. �Consistency Properties
of Species Tree Inference by Minimizing Deep Coales-
cences�. In: J Comput Biol 18.1 (2011), pp. 1�15.

[8] Y.-C. Wu, M. D. Rasmussen, M. S. Bansal, and M. Kellis.
�Most parsimonious reconciliation in the presence of gene
duplication, loss, and deep coalescence using labeled coales-
cent trees�. In: Genome research 24.3 (2014), pp. 475�486.

[9] R. Chaudhary, J. G. Burleigh, and O. Eulenstein. �E�cient
error correction algorithms for gene tree reconciliation
based on duplication, duplication and loss, and deep
coalescence�. In: BMC bioinformatics 13.10 (2012), S11.

[10] P. Górecki and O. Eulenstein. �Deep coalescence Reconcili-
ation with Unrooted Gene Trees: Linear Time Algorithms�.
In: LNCS 7434 (2012), pp. 531�542.

[11] P. Górecki, O. Eulenstein, and J. Tiuryn. �Unrooted
Tree Reconciliation: A Uni�ed Approach�. In: IEEE/ACM
TCBB 10.2 (2013), pp. 552�536.

[12] P. Górecki and O. Eulenstein. �Maximizing Deep Coales-
cence Cost�. In: IEEE/ACM TCBB 11.1 (2014), pp. 231�
242.

[13] C. V. Than and N. A. Rosenberg. �Mathematical properties
of the deep coalescence cost�. In: IEEE/ACM TCBB 10.1
(2013), pp. 61�72.

[14] P. Górecki and O. Eulenstein. �Gene Tree Diameter for
Deep Coalescence�. In: IEEE/ACM TCBB 1 (2015),
pp. 155�165.

[15] A. Mykowiecka, P. Szczesny, and P. Gorecki. �Inferring
gene-species assignments in the presence of horizontal gene
transfer�. In: IEEE/ACM TCBB (2017).

[16] A. Betkier, P. Szcz¦sny, and P. Górecki. �Fast Algorithms
for Inferring Gene-Species Associations�. In: International
Symposium on Bioinformatics Research and Applications.
Springer. 2015, pp. 36�47.

[17] L. Zhang and Y. Cui. �An E�cient Method for DNA-
Based Species Assignment via Gene Tree and Species Tree
Reconciliation�. In: WABI. Springer. 2010, pp. 300�311.

[18] P. Górecki and J. Tiuryn. �DLS-trees: A model of evolu-
tionary scenarios�. In: Theor Comput Sci 359.1-3 (2006),
pp. 378�399.

[19] D. M. Campbell and D. Radford. �Tree isomorphism
algorithms: speed vs. clarity�. In: Mathematics Magazine
64.4 (1991), pp. 252�261.

[20] G. U. Yule. �A mathematical theory of evolution, based on
the conclusions of Dr. JC Willis, FRS�. In: Philosophical
transactions of the Royal Society of London. Series B,
containing papers of a biological character 213 (1925),
pp. 21�87.

[21] J. Ruan et al. �TreeFam: 2008 Update�. In: Nucleic Acids
Res 36 (2008), pp. D735�40.

174

State-of-the-art Genomic Data Compression Technology

Dunling Li1 , Lin-Ching Chang2

1BTS Software Solutions, Columbia, Maryland, USA
2Dept. of Electrical Engineering and Computer Science, The Catholic University of America,

Washington, District of Columbia, USA

dunling.li@bts-s2.com, changl@cua.edu

Abstract — The demand for efficient genomic data storage

and distribution has increased substantially as advanced high-

throughput sequencing has dramatically reduced costs and

processing time required for genomic data collection.

However, these advances generate a new challenge with data

storage, transmission, and manipulation. To wit, the sizes of

genomic databases are often very huge; for example, the

genomic data in Cancer Genome Atlas database is over 2.5

petabytes (2.5 million gigabytes). Data compression would

be the key to meet the technical and cost challenges of

genomic data storage, transmission, and access for analysis.

Recently, there has been growing interest in developing high-

performance compression tools designed specifically for

genomic data. This paper provides an overview of state-of-

the-art genomic data compression technology, the commonly

used tools, and their performance.

Keywords: Genomic data compression, Sequencing Data

Compression, Reads Compression, Genomic Compression Tools,

Compression Performance.

I. INTRODUCTION

As the next-generation sequencing (NGS), also known

as high-throughput sequencing (HTS), technology advances,

sequencing genomes is now much faster and cheaper. It

makes larger and larger whole-genome projects like 1000

Genomes feasible [1]. For example, the cost of sequencing a

whole human genome has dropped from $20 million in 2004

to $1,000 in 2015 [2]. Sequencing the first human genome

took 13 years to complete [3] while we only need an hour to

complete one human genome in 2017 [4]. The data generated

during the first 6 months by the 1000 Genomes Project, an

international research effort to establish the most detailed

catalogue of human genetic variation from 2008 to 2013 [1],

has exceeded the sequence data accumulated during 21 years

in the NCBI GenBank database [5].

The significant cost and time reduction has led to

massive amounts of genomic data being generated at ever

increasing rates. Currently, sequencing data is doubling

approximately every seven months. At such a fast rate, more

than an exabyte (i.e. 1018 bytes) of genomic data will be

generated every year, and the total amount of sequencing data

will reach a zettabyte (i.e., 1021 bytes) by 2025 [6].

Due to the unique nature of genomic data, whose

samples may not be available in the future for re-sequencing

from organisms and/or ever-changing ecosystems, data must

be stored and preserved without information loss. The rapid

increase in genomic data generation and resulting huge

omnipresent HTS datasets lead to great challenges in storing

and distributing massive amount of genomic data. Obviously,

data compression is the technology to solve these challenges

[2, 7-9]. Genomic data compression has attracted many in the

field to try and develop high performance genome-specific

methods [2, 7, 9].

Moreover, current trends in HTS data generation

indicate that the storage, transmission, and bandwidth costs

will soon surpass the costs of sequencing. These issues will

become the main bottleneck in genomics research and in the

applications of HTS data to precision medicine. To meet this

growing demand of HTS data storage and distribution, the

Moving Picture Expert Group (MPEG) and HTS industry

formed the MPEG HTS Compression Working Group

(MPEG-HTS-CWG) in 2015 [10]. The ultimate goal of this

group is to design and specify genomic data compression and

transport technology by means of an open standard and

interoperability among systems. This paper will provide a

concise overview on genomic data, state-of-the-art

compression methods including both lossless and lossy

approaches, existing compression tools, and ongoing

research and development.

II. GENOMIC DATA OVERVIEW

Genomic data refers to the genome and DNA data of an

organism. It is used in bioinformatics for collecting, storing,

and processing the genomes of living things. Genomic

information is presented as genome sequencing, a long

sequence of DNA nucleotides with specific orders, using

NGS or whole genomic sequencing (WGS). NGS

technologies are not able to provide the whole genome

sequence, but produce a collection of millions of small

fragments. WGS is the process of determining the complete

DNA sequencing of an organism’s entire genome at one time

by many fragments acquired using NGS. Therefore, most of

the genomic data being stored and analyzed to date is

comprised of sequencing data produced by NGS technologies.

The fragments NGS produces are called ‘reads.’ As the

reads may have a wrong readout of the actual sequencing

signal, the raw reads include both the reads and their

corresponding quality scores, indicating the probability of a

given base that is called incorrectly by the sequencer [2, 11].

The number of raw reads in the sequencing data depends on

the coverage, which the expected number of times a specific

nucleotide of the genome is sequenced. For most of NGS

technologies, the read length is of a few hundred base-pairs,

which is much smaller than a full genome; for comparison, it

would be about 3 billion base-pairs for a human genome.

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

175

Each base-pair is a combination of four nucleobases:

Cytosine (C), Guanine (G), Adenine (A) or Thymine (T).

Reads are typically stored in FASTQ format, a text-based

format for storing both the sequence letters and quality score

which are each encoded with a single ASCII character for

brevity [12].

After generating raw sequencing data, NGS mechanisms

typically apply mapping algorithms [13] to align the reads to

a reference sequence to determine the corresponding location

in the reference for each read. The alignment information

along with original reads and their quality scores are stored

in the standard Sequence Alignment Map (SAM) file format

or Binary Alignment Map (BAM) - a compressed format of

SAM files.

NGS also generates other files which contain additional

information between the original genome and the one used as

a reference. To illustrate the size of these files, a human

genome containing 3 billion of base-pairs is about 3GB of

data if the base-pairs are stored in FASTQ format. Typical

NGS of a human genome with 200x coverage will generate

around 6 billion reads, assuming the read length of 100bp.

The resulting FASTQ file and SAM file will be about 1.5TB

and 3TB respectively [2].

III. GENOMIC DATA COMPRESSION METHODS

Although standard data compression tools like zip and rar

have been used to compress genomic data, they do not exploit

the particularities of the data itself and yield a relatively low

compression gain. As genomic sequences often contain

repetitive contents and many sequences exhibit high levels of

similarity, specialized new lossless compression methods

have been developed in past few years [15-18]. Other existing

lossless compression algorithms can be categorized into

Naïve Bit encoding [19, 20], Dictionary-based [21, 22],

Statistical-based [23, 24], and Reference-based encodings [2,

25, 26].

Naïve Bit encoding methods exploit fixed-length

encodings of two or more symbols in a single byte. Such

encoding methods were designed for raw DNA sequencing

and yield a range of compression ratios from 2:1 to 6:1 [9, 15-

18]. Of note, Naïve Bit encoding methods may not be suitable

to other types of genomic data such as quality scores due to

the large size of their symbol sets.

Dictionary-based compression methods replace repeated

substrings by references, which is a set of previously seen or

predefined common strings and can be built at runtime.

Lampel-Ziv-based compression algorithms, such as zip or

bpzip2, are prominent examples of dictionary-based

algorithms [27]. Usually the dictionary and reference indices

are further encoded by entropy coding methods like arithmetic

coding or integer coding schemes like Golomb codes [28].

Such approachs can be applied to any type of genomic data.

The state-of-the-art dictionary-based genomic compression

methods achieve a compression ratio in the range of 4:1 to 6:1

depending on the frequency of repeats in the specific genomes

being compressed [9, 29, 30].

Statistical-based encoding methods derive a probabilistic

model from the input data. Based on the partial matches of

subsets of the input, the model predicts the next symbols in

the sequence. Statistical encoding can be used in all types of

genomic data. The state-of-the-art statistical based methods

are able to reach compression ratios in the range of 4:1 to 8:1

[9, 24, 31-34] depends on the prediction accuracy.

Referential approaches replace long substrings of the to-

be-compressed input with references to another string. They

require that the references are available for both the encoding

and decoding process as they are not part of input data.

Reference-based genomic compression algorithms are

designed to utilize the extremely high level similarity of all re-

sequenced genomes from the same species. Such methods can

reach very high compression ratios (approaching 400:1) if the

reference sequences well represent the to-be-encoded

sequences [9, 35, 36].

The aforementioned compression methods are all lossless

or reversible, i.e. the decompressed data is identical to the

original input data. To compress genomic data even further,

lossy compression methods have been proposed for the

quality score portion of the NGS data. However, quality

scores contain noise induced during sequencing and are harder

to compress than the corresponding reads; evidence shows

that quality scores can occupy over 70% of compressed

genomic data files [2, 37].

Quality scores generated by base-calling algorithms in

HTS are not strictly part of the DNA sequences. The scores

are supplementary information used in a heuristic (somewhat

inaccurate) manner when downstream applications operate on

the reads. Observation of this behavior shows that minor

perturbation of these values does not affect downstream

analysis and manipulation tools. Thus, lossy compression is a

viable technique for compression of quality scores [2].

Various lossy compression algorithms for genomic data have

been proposed [38-41]; their performance is usually shown in

rate-distortion representations. In some examples, over 10:1

compression on quality scores had no corresponding negative

impact on application results [2].

IV. GENOMIC DATA LOSSLESS COMPRESSION TOOLS AND

THEIR PERFORMANCE

Many HTS data compression tools for FASTQ and SAM

files are available in both commercial markets and open

source. The MPEG-HTS-CWG has done a comprehensive

evaluation on most of the available open-source compression

tools for HTS data, which include both industrial-scale tools

as well as research-oriented prototypes [10, 42]. In Figure 1,

we summarized the state-of-the-art compression tools that are

currently available to compress FASTQ and/or SAM files.

Compression tools showed in the red box, i.e., pigz (parallel

gzip), pbzip2 (parallel bzip) and Quip, can be used for both

FASTQ and SAM files. Pigz and pbzip2 are dictionary-based

176

generic lossless compression tools and commonly used for

FASTQ compression designed to take advantage of multi-

processor/multi-core systems.

Specialized FASTQ compressors initially perform a form

of transformation such as read-identifier tokenization or 2-bit

nucleotide encoding, followed by statistical modeling and

entropy coding. Examples of such approaches are DSRC2,

FQC, Fqzcomp and Fastqz, Slimfastq, and LFQC as showed

in Figure 1. Because the read order within a FASTQ file is

arbitrary and most of the underlying genome is repetitive, the

other approach is re-ordering the reads in a manner that brings

similar reads together to boost compression ratios. Tools like

SCALCE, Orcom, Mince, and BEETL use this approach as a

preprocessing step to improve compression performance.

Another approach is replacing each read with a pointer to

the underlying reference genome, assuming such a reference

genome is available at both encoding and decoding sides.

FQZip is an example of this approach. Where a reference

genome is not available, the same technique can be used after

de novo assembly. Many de novo techniques exist though the

most common is the assembly of contigs. References to newly

assembled contigs or de Bruijn paths can then be substituted

for sequences. The primary tools that use assembly for data

compression are Quip, Leon, k-Path, and KIC. However, both

sequence mapping and assembly are computationally

intensive tasks. Tools like Orcom, BEETL, Mince, and k-Path

are designed for FASTQ reads only files. The tools DRSC2,

Fqzcomp, Fastqz, FQC, CALCE, FQZip, Leon, KIC, etc (in

purple box) are used for FASTQ full files and reads only files.

Figure 1. Compression Tools for FASTQ and SAM files

Most SAM files are compressed and stored in the BAM

format. The compression tools for BAM manipulation are

Samtools, Picard, and Sambamba. All BAM-based tools

support arbitrary ordering of the reads and do not require a

reference during compression or decompression. None of

them treat various streams in a BAM file differently. The

reference-based compression for SAM files is CRAM which

separates different fields in the reads and applies different

compression techniques on each. CRAM is implemented in

Cramtools, and Scramble has recently been incorporated into

Samtools and Picard.

In both BAM and CRAM formats, reads covering the

same sequence variant are encoded independently. To reduce

the redundancy among the same variants, DeeZ implicitly

assembles the underlying donor genome to encode these

variants only once. CBC or TSC follows a similar path,

encoding variants only one time. All of these tools treat each

SAM field independently and apply a variety of compression

techniques to each field. Finally, Quip and sam_comp

employ highly optimized statistical models for various SAM

fields; they are among the best performing tools in terms of

pure compression ratio [42].

To compare the performance of these compression tools,

the MPEG-HTS-CWG compiled a broad HTS dataset with a

wide spectrum of characteristics to ensure statistically

meaningful results from the compression performance

evaluation. The dataset includes FASTQ and SAM files with

both deep and shallow coverage; fixed-length and variable

length reads obtained by sequencing technology from leading

manufacturers (Illumina, Pacific Biosciences, etc.); genomic

data from various organisms (Homo sapiens, bacteria, plants,

etc.); and several sample types (metagenomics, cancer cell

lines, etc.). We summarize MPEG-HTS-CWG test dataset in

Table 1 and Table 2. It contains 7 FASTQ files and 8 SAM

files respectively. The total data size is about 4 TB [10, 42].

Table 1 Selected FASTQ Files

Samples Full-

Size

(MB)

Reads-

Size

(MB)

Cove-

rage

(MB)

Organism Techs

1 SRR554

369

650 165 25 Pseudomona
s aeruginosa

Illumina

GAIIx

2 SRR327

342

3881 947 80 Saccharomyc
es cerevisiae

Illumina

GAII

3 MH0001

.081026

1880 512 N/A Homo

sapiens gut

Illumina

GA

4 SRR128

4073

1309 649 140 Escherichia

coli

PaciBio

5 649SRR

870667

22944 7463 20 Theobroma

cacao

Illumina

GAIIx

6 ERR174

310

53869 20966 7 Homo

Sapiens

HiSeq

7 ERP001

775

2717029 1059387 120 Homo

Sapiens

HiSeq

Table 2 Selected SAM Files

Samples Full-Size

(MB)

Coverage

(MB)

Organism Techs

1 DH10B 5579 420 E. Coli MiSeq

2 9827.2.4

9

21059 2 Homo Sapiens HiSeq

3 sample-

2-1

5924 0.6 Homo Sapiens Ion Torrent

4 K562.LI
D8465

75915 6 Homo Sapiens RNASeq

5 dm3 30081 75 Drosophila

melanogaster

Pacbio

6 NA1287

8.PB

126545 15 Homo Sapiens Pacbio

7 HCC195

4

427028 30 Homo Sapiens Cancer cell

8 NA1287

8.S1

589038 50 Homo Sapiens HiSeq

177

MPEG-HTS-CWG evaluated the performance of

genomic data compression tools in term of compression ratio,

relative encoding and decoding times, memory usage, and

parallelization capabilities [10]. In this paper, we focus on

compression ratios and speed; we present MPEG-HTS-CWG

test results of the top performing tools, while more details can

be found in references [10] and [42]. Table 3, 4 and 5 show

the corresponding compression ratios of HTS compression

tools on FASTQ full files, FASTQ reads only, and SAM files.

A FASTQ full file includes reads and quality scores. FASTQ

files are typically compressed by general purpose pigz and

pbzip2 tools while SAM files are compressed by Samtools.

Note that pbzip2 performs significantly better than pigz

in all test samples in Table 3, 4, and 5. Neither pbzip2 nor

Samtools have the best performance in any cases among the

HTS specific compression tools. The tools that yield the

highest compression ratios for each test file are marked in red

for easy reading. No one tool out-performs on all files.

Table 3 Compression Ratios on FASTQ Full Files

Sample 1 2 3 4 5 6 7

DSRC2 6.2 5.8 4.4 N/A 4.8 4.1 N/A

Fqzcomp 7.3 6.9 4.9 N/A 5.7 4.8 N/A

lfqc 9.4 7.9 6.7 3.2 9.5 N/A N/A

pbzip2 5.2 4.7 3.5 2.8 4.1 3.6 11.2

pigz 4.1 3.8 2.8 2.4 3.3 2.9 8.9

Quip 7.3 7.2 5.1 3.1 5.9 4.8 14.8

SCALCE 8.6 8.0 4.6 3.1 6.2 5.0 16.9

slimfastq 6.9 7.7 5.4 N/A 5.4 4.9 15.3

Table 4 Compression Ratios on FASTQ Reads Only Files

Sample 1 2 3 4 5 6 7

DSRC2 4.0 3.7 4.0 N/A 4.0 4.0 N/A

Fqzcomp 4.5 4.7 4.3 N/A 4.8 4.5 N/A

lfqc 9.7 7.3 5.0 4.2 N/A N/A N/A

pbzip2 3.8 3.8 3.7 3.7 4.0 3.8 11.0

pigz 3.4 3.4 3.4 3.5 3.5 3.5 10.1

Quip 4.5 5.2 4.5 4.1 5.1 4.6 13.3

SCALCE 9.7 13.9 7.2 4.0 7.5 6.9 37.2

slimfastq 5.5 6.4 4.9 N/A 5.3 4.7 13.6

BEETL 7.2 8.1 4.5 N/A 6.2 5.4 N/A

k-Path 11.8 21.0 8.3 N/A 11.3 10.0 N/A

Mince 16.5 25.6 10.2 N/A 10.9 10.7 N/A

Orcom 15 26.3 10.0 N/A 9.0 11.7 153.1

Among the tested FASTQ tools, the best compression

ratios are offered by tools that reorder reads. Sequence-

mapping and assembly-based tools like lfqc may also provide

good compression ratios, but they are often slow with high

memory costs. Table 3 and 4 show lfqc and SCALCE are the

best tools for FASTQ full files while Orcom and Mince yield

the highest compression ratios for FASTQ reads-only files.

Note that the majority of the available tools are optimized for

Illumina-style short, fixed-length reads; many tools are not

capable of compressing long variable-length read collections

such as data from Pacific Biosciences (PacBio).

For SAM files, it is possible to achieve better compression

ratios than those achieved by Samtools. However, unlike

Samtools, they do not provide random-access capability.

Among the available tools, only BAM and CRAM-family

tools, DeeZ and TSC are able to conduct random-access.

Table 5 shows DeeZ and Quip with reference reach the best

compression ratios. The integrated tool sam_comp at the last

row of Table 5 yields the best compression ratios. The

integrated solution chooses the specific approach which out

performs on input data type with respect to the performance

measure, i.e. compression ratio in Table 5.

Table 5 Compression Ratios on SAM Files

Sample 1 2 3 4 5 6 7 8

Cram2 5.2 5.6 5.1 7.3 4.0 3.3 4.4 N/A

Cram3 6.5 6.4 5.8 8.2 4.6 3.7 5.2 8.8

Cram3NR* 6.2 5.0 5.3 7.7 2.8 2.8 4.9 8.1

DeeZ 7.6 7.7 6.5 10.5 4.6 3.7 5.7 11.0

pbzip2 5.2 4.0 5.3 7.4 3.1 2.9 4.3 6.6

picard 3.9 3.2 4.0 5.5 2.3 2.2 3.2 N/A

Pigz 4.2 3.5 4.3 5.9 2.4 2.4 3.6 5.2

Quip 5.1 4.8 4.8 6.8 3.3 3.0 4.3 6.1

Quip Ref 6.9 N/A N/A 8.7 4.7 N/A N/A 9.1

Samtools 4.0 3.2 4.0 5.5 2.3 2.2 3.2 4.8

sam_comp 8.0 7.9 6.7 10.8 3.6 3.9 10.0 11.1

Cram3NR*: CRAM Version 3 without Reference

In general, there is trade-off among compression ratio,

compression (encoding) and decompression (decoding)

speed, memory cost, etc. Table 6 and 7 show the encoding

and decoding speed measures of selected FASTQ tools. The

processing speed is usually measured as a ratio of data size

over processing time, e.g. MB/sec, and depended on the

power of processor. For the purpose of comparing different

tools, the speed measures are defined as the ratio of the

processing times of a given tool over a reference tool.

Therefore, the smaller the speed measure, the faster the actual

speed and the lower the computation cost.

Table 6 FASTQ Encoding Speed Measures

Sample 1 2 3 4 5 6 7

DSRC2 0.22 0.26 0.24 N/A 0.21 0.2 N/A

Fqzcomp 0.34 0.37 0.41 N/A 0.33 0.32 N/A

lfqc 18.53 18.5 21.1 18.03 14.5 N/A N/A

pbzip2 1.19 1.45 1.29 0.74 0.99 0.81 0.21

pigz 1 1 1 1 1 1 1

Quip 0.5 0.53 0.47 0.36 0.48 0.46 0.38

SCALCE 0.77 0.63 0.8 0.67 0.6 0.59 0.57

slimfastq 0.55 0.47 0.54 N/A 0.51 0.47 0.49

Table 7 FASTQ Decoding Speed Measures

Sample 1 2 3 4 5 6 7

DSRC2 2.11 3.09 1.91 N/A 1.39 1.22 N/A

Fqzcomp N/A 7.54 N/A N/A N/A 3.29 N/A

lfqc 315 310 339.9 386 N/A N/A N/A

pbzip2 5.97 6.85 6.35 6.99 3.61 2.83 1.23

pigz 1 1 1 1 1 1 1

Quip 10.7 11.5 11.37 10.6 5.57 5.22 4.64

SCALCE 9.05 8.23 12.17 9.78 4.89 4.57 1.94

slimfastq 11.46 9.55 11.32 N/A 5.8 4.76 5.94

Table 6 shows the encoding speed measures, which are

calculated using the corresponding encoding time divided by

pigz encoding time. Similarly, the decoding speed measures

in Table 7 are computed using the corresponding decoding

time divided by pigz decoding times. The fastest tools are

again marked in red. DSRC2 and pbzip2 are the fastest

FASTQ encoding tools while pigz and DSRC2 are fastest

178

decoding ones. Comparing with Table 3, we can see that the

best FASTQ tools, lfqc and SCALCE, marked in green in

Table 6 and 7, are the costliest ones in terms of encoding and

decoding times.

Table 8 SAM Encoding Speed Measures

Sample 1 2 3 4 5 6 7 8

Cram2 0.93 1.42 2.12 1.7 0.93 1.01 1.28 N/A

Cram3 0.23 0.29 0.62 0.38 0.14 0.31 0.27 0.1

Cram3NR 0.29 1.18 0.45 0.43 0.21 0.46 0.37 0.1

DeeZ 0.91 1.23 3.49 2.01 0.71 1.22 1.66 0.41

pbzip2 1.65 1.93 4.04 3.57 0.72 0.94 1.62 0.46

picard 1.42 1.04 1.82 1.48 0.74 0.55 1.18 N/A

pigz 0.77 1.55 1.48 1.06 1.39 1.37 1.4 0.13

Quip 10.7 7.81 4.43 8.27 7.52 9.87 9.05 2.18

Quip Ref 10.1 N/A N/A 8.2 7.19 N/A N/A 2.2

Samtools 1 1 1 1 1 1 1 1

Sam_comp 0.68 0.76 1.2 0.71 0.51 0.59 0.62 0.37

Table 9 SAM Decoding Speed Measures

Sample 1 2 3 4 5 6 7 8

Cram2 1.71 1.67 4.93 2 2.05 2.39 1.5 N/A

Cram3 0.76 0.66 1.58 0.67 0.58 0.84 0.71 0.5

Cram3NR 0.74 0.63 1.06 0.78 1.14 1.54 0.79 0.47

DeeZ 10.1 5.6 9.86 7.91 4.86 6.67 6.39 1.9

pbzip2 3.16 3.39 3.72 2.46 2.93 3.94 3.23 0.59

picard 2.76 1.52 2.1 2.44 1.09 1 1.91 N/A

pigz 0.63 0.82 0.49 0.7 0.79 0.7 0.91 0.6

Quip 10.7 7.81 4.43 8.27 7.52 9.87 9.05 2.18

Quip Ref 10.1 N/A N/A 8.02 7.19 N/A N/A 22

Samtools 1 1 1 1 1 1 1 1

Sam_comp 3.36 2.95 6.54 3.56 5.49 5.42 3.25 2

Similarly, Table 8 and 9 show the comparison results of

the encoding and decoding speed measures of SAM tools.

The encoding speed measures in Table 8 are the ratios of

encoding time of different tools divided by Samtools’

encoding time. The values in Table 9 are the decoding time

of different tools divided by Samtools’ decoding time. Cram3

and Cram3NR are the fastest encoding tools while pigz,

cram3 and CramNR are the fastest decoding tools for SAM

files. Comparing with Table 5, the tools that yield the highest

compression ratios, DeeZ and Quip with reference, are

marked in green in Table 8 and 9. Their encoding speeds lay

in the middle compared with other SAM tools, but their

decoding speeds are among the slowest. The integrated

solution sam_comp yields the highest compression ratios in

Table 3; its encoding and decoding speeds are in reasonably

fast ranges in Table 8 and 9. Therefore, the integrated

solution provides the best overall outcomes in term of

compression ratio and speed.

V. CONCLUSION

As NGS technology continually advances, it is estimated
that genomic data will be doubled every seven months. Data
compression would be a key technology for efficient genomic
data storage and distribution. In this paper, we have provided
an overview of the state-of-the-art compression techniques for
genomic data compression and summarized the performance
evaluation results of widely used genomic data compression
tools using the MPEG HTS dataset.

Genomic data mainly contains HTS datasets, which are

stored in FASTQ or SAM formats. Their sizes and contents

vary significantly based on the applications. The MPEG-

HTS-CWG’s evaluation results show that HTS data-specific

compression tools achieve higher compression ratios than

generic lossless compression tools, but no method performs

the best in all test cases. The compression ratios of these

state-of-the-art tools depend on the datasets and are typically

perform below 10:1. Research to develop new methods to

compress genomic data more efficiently and effectively is

needed in the future of genomic data processing.

There are trade-offs between compression ratios and

their corresponding encoding/decoding speeds. Integrated

solutions are able to provide better performance in terms of

compression ratios and provide reasonable encoding and

decoding speed.

Various lossy compression methods have also been

developed for the quality scores of HTS data, and research

shows that over 10:1 compression on quality scores has no

negative impact on application results. The MPEG-HTS-

CSG is currently developing a standard format for

compressed files to integrate the best features of the tools and

formats. In our view, new algorithms to compress genome

data producing both a high compression ratio and high

quality of decompressed data in the future will be needed.

The integrated solution would consist a dynamic combination

of lossless and lossy methods targeting the original reads and

their quality scores respectively.

VI. REFERENCES

[1] https://en.wikipedia.org/wiki/1000_Genomes_Project
[2] Ochoa I. Genomic data compression and processing:

theory, models, algorithms and experiments, PhD

dissertation, Stanford University, 2016.
[3] https://www.livescience.com/28708-human-genome-

project-anniversary.html

[4] http://www.sandiegouniontribune.com/business/biotech/sd
-me-illumina-novaseq-20170109-story.html

[5] Re C, Ro A, Re A. Will computers crash genomics?

Science, 5:1190, 2010.
[6] Stephens ZD, et al. Big data: Astronomical or genomical?

PLoS Biol, 13(7):e1002195, 2015.

[7] https://en.wikipedia.org/wiki/Compression_of_Genomic_
Re-Sequencing_Data

[8] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868316/

[9] Wandelt S, Bux M, Leser U. Trends in Genome
Compression. Current Bioinformatics. 9.

doi:10.2174/1574893609666140516010143.

[10] Numanagić I, Bonfield JK, Hach F,Vges J, Ostermann J,

Alberti C, Mattavelli M, Sahinalp SC. Comparison of
high-throughput sequencing data compression tools,

Nature Methods, 13, 1005–1008 (2016).

doi:10.1038/nmeth.4037
[11] Buermans HPJ, Dunnen JTD. Next generation sequencing

technology: advances and applications. Biochimica et

Biophysica Acta (BBA)-Molecular Basis of Disease,
1842(10):1932–1941, 2014.

[12] https://www.decodedscience.org/comparing-genetic-code-

dna-binary-code/55476

179

[13] Li H, et al. The sequence alignment/map format and
samtools. Bioinformatics, 25(16):2078–2079, 2009.

[14] Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The

sanger fastq file format for sequences with quality scores,
and the solexa/illumina fastq variants. Nucleic acids

research, 38(6):1767–1771, 2010.
[15] Vey G. Differential direct coding: a compression

algorithm for nucleotide sequence data. The Journal of
Biological Databases and Curation, 2009.

[16] Rajeswari PR, Apparo A, Kumar VK. Genbit compress
tool(gbc): A java- based tool to compress dna sequences

and compute compression ratio(bits/base) of genomes.

CoRR, abs/1006.1193, 2010.
[17] Bharti RK, Verma A, Singh RK. A biological sequence

compression based on cross chromosomal similarities

using variable length lut. International Journal of
Biometrics and Bioinformatics, 4:217–223, 2011.

[18] Mehta A, Patel B. Dna compression using hash based data

structure. International Journal of Information Technology
and Knowledge Management, July-Dec. 2010, Vo. 2, No.

2, pp. 383-386

[19] Grumbach S, Tahi F. A new challenge for compression
algorithms: genetic sequences. Information Processing &

Management, 30(6):875–886, 1994.

[20] Chen L, Lu S, Ram J. Compressed pattern matching in dna
sequences. In Proceedings of the 2004 IEEE

Computational Systems Bioinformatics Conference,

CSB’04,

[21] Larsson J, Moffat A. Offline dictionary-based
compression. In Proceedings of the 1999 Conference on

Data Compression, DCC’99, pages 296–305, 1999.

[22] Shibata Y, Matsumoto T, Takeda M, Shinohara A,
Arikawa S. A boyer-moore type algo- rithm for

compressed pattern matching. In Proceedings of the 11th

Annual Symposium on Combinatorial Pattern Matching,
COM’00, pages 181–194, 2000.

[23] Cleary J, Witten I. Data compression using adaptive

coding and partial string matching. IEEE Transactions on

Communications, 32:396–402, 1984.
[24] Cao MD, Dix TI, Allison L, Mears C. A simple statistical

algorithm for biological sequence compression. In

Proceedings of the 2007 Conference on Data
Compression, DCC’07, pages 43–52, 2007.

[25] Kuruppu S, Puglisi SJ, Zobel J. Relative lempel-ziv

compression of genomes for large-scale storage and
retrieval. In Proceedings of the 17th International Con-

ference on String Processing and Information Retrieval,

SPIRE’10, pages 201–206, 2010.
[26] Kuruppu S, Puglisi S, Zobel J. Optimized relative lempel-

ziv compression of genomes. In Australasian Computer

Science Conference, 2011.

[27] Ziv J, Lempel A. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory,

23(3):337–343, 1977.

[28] Golomb SW. Run-length encodings. IEEE Transactions on
Information Theory, 12:399–401, 1966.

[29] Antoniou D, Theodoridis E, Tsakalidis A. Compressing

biological sequences using self adjusting data structures.
In Information Technology and Applications in

Biomedicine, 2010.

[30] Kaipa KK, Bopardikar AS, Abhilash S, Venkataraman P,
Lee K, Ahn T, Narayanan R. Algorithm for dna sequence

compression based on prediction of mismatch bases and

repeat location. In Bioinformatics and Biomedicine
Workshops, BIBMW, 2010.

[31] Hosseini M, Pratas D, Pinho AJ. A Survey on Data

Compression Methods for Biological Sequences.

doi:10.3390/info7040056, 2016.
[32] Pratas D, Pinho AJ. Compressing the human genome

using exclusively markov models. In Miguel P. Rocha,

Juan M. Corchado Rodrguez, Florentino Fdez-Riverola,
and Alfonso Valencia, editors, PACBB, volume 93 of

Advances in Intelligent and Soft Computing, pages 213–

220. Springer, 2011.
[33] Venugopal KR, Srinivasa KG, Patnaik L. Probabilistic

Approach for DNA Compression, chapter 14, pages 279–

289. Springer, 2009.

[34] Tabus I, Korodi G. Genome compression using
normalized maximum likelihood models for constrained

markov sources. In Information Theory Workshop, 2008.

[35] Chern B, Ochoa I, Manolakos A, Venkat AK, Weissman
T. Reference based genome compression. In Information

Theory Workshop (ITW), 2012 IEEE, pages 427–431.

IEEE, 2012.
[36] Wandelt S, Leser U. Fresco: Referential compression of

highly similar sequences. Computational Biology and

Bioinformatics, IEEE/ACM Transactions on, 10(5):1275–
1288, 2013.

[37] Bonfield JK, Mahoney MV. Compression of fastq and sam

format sequencing data. PloS one, 8(3):e59190, 2013.
[38] Ochoa I, Asnani H, Bharadia D, Chowdhury M,

Weissman T, Yona G. Qualcomp: a new lossy compressor

for quality scores based on rate distortion theory. BMC
bioinformatics, 14(1):1, 2013.

[39] Canovas R, Moffat A, Turpin A. Lossy compression of

quality scores in genomic data. Bioinformatics, 30(15):
2130–2136, 2014.

[40] Malysa G, Hernaez M, Ochoa I, Rao M, Ganesan K,

Weissman T. Qvz: lossy compression of quality values.
Bioinformatics, page btv330, 2015.

[41] Ochoa I, Hernaez M, Goldfeder M, Weissman T, Ashley
E. Effect of lossy compression of quality scores on variant

calling. Briefings in Bioinformatics,

doi:10.1093/bib/bbw011, 2016

[42] Numanagić I, Bonfield JK, Hach F, Vges J, Ostermann J,
Alberti C, Mattavelli M, Sahinalp SC. The State of the Art

in High Throughput Sequencing Data Compression,

Nature Methods, doi:10.1038/nmeth.4037

180

Computational Prediction of Alternative Metabolic Pathways of Plasmodium

Falciparum

Jelili Oyelade1, 2, *,Itunuoluwa Isewon1, 2, Olufemi Aromolaran1, 2, Efosa Uwoghiren1, 2

1Department of Computer & Information Science, Covenant University, Ota

2Covenant University Bioinformatics Research Cluster (CUBRe), Ota

Abstract

Plasmodium falciparum (P.f.), the malaria pathogen, has

shown substantial resistance to treatment and vaccine

thereby requiring urgent, holistic and broad approach to

prevent an endemic. Understanding the biology of the

malaria parasite has been identified as a vital approach to

overcome the threat of malaria. This study reconstructed

the iPfa Genome-scale metabolic model (GEM) of 3D7

strain of Plasmodium falciparum by filling gaps in the

model with nineteen (19) metabolites and twenty-three

(23) reactions obtained from MetaCyc database. Biomass

reactions and exchange reactions were removed since they

are mainly used to evaluate changes in flux which is not

required in our approach. Twenty (20) currency

metabolites were removed from the network because they

have been identified to produce shortcuts that are

biologically infeasible. The resulting modified iPfa GEM

was model using reaction graph and a k-shortest path

algorithm was applied to identify alternative metabolic

pathways of Plasmodium falciparum. Five alternative

paths were predicted in the glycolysis pathway.

Keywords: Graph based technique, k-shortest path,

Plasmodium falciparum, metabolic pathway.

1 Introduction

1.1 The Overview of Plasmodium falciparum

Malaria remains one of the leading global health challenge,

especially in tropical and subtropical areas, where about

212 million clinical cases and more than 429,000 estimated

cases of deaths recorded in the year 2015 [1]. According to

World health Organization (WHO), 88% of malaria

incidence and death in 2015 are estimated to have occurred

in Africa. The major cause of the ailment in human is an

organism known as Plasmodium falciparum (P.f.). There

exist five variants of the plasmodium clan, these are;

Plasmodium falciparum, Plasmodium vivax, Plasmodium

ovale, Plasmodium malariae and Plasmodium knowlesi,

out of which Plasmodium falciparum and Plasmodim vivax

are the most dangerous. There have been concerted effort

by the governments of Nations and global health body

(WHO) in the area of funding, research and drug

development to halt the devastating trend of the malaria

endemic especially in Africa, however the scourge is still

pervasive. Understanding the biology of the malaria

parasite has been identified as a vital approach to

overcome the threat of malaria [2].

The comprehensive Plasmodium falciparum lifecycle

comprises of 3 important developmental stages: the

mosquito stage, the liver stage, and the blood stage [3].

The malaria parasite metabolic pathways are in a number

of ways different from that of a human being because of

the uniqueness in the malaria parasite life-cycle, thus it

becomes very possible for the malaria parasite to take

advantage of the uniqueness of its pathways to design

therapeutic strategies [4]–[6] by traversing alternative

pathways for its activities which helps the parasite to

resisting existing drugs and makes it a core responsibility

to discover new drugs[7], [8],[9].

Four major biological networks have been widely studied

for the comprehensive understanding of the biology of the

malaria parasite, they include: metabolic networks of

enzyme catalyzed biochemical reactions between

metabolic substrates; protein interaction networks

comprising of the physical interactions between an

organism's proteins which provides conceptual framework

for more insight into the functional organization of the

whole complement of proteins that exist within a cell,

tissue or organism; transcriptional regulatory networks

which depict the regulatory relationships between various

genes[10] and the signal transduction network[9]. It

enables better understanding how a gene or set of genes

determines expression of other genes.

1.2 Metabolic Network

Metabolism can either be catabolism which is the breaking

down of complex compound in living organisms to

generate smaller ones alongside release of energy which is

used by the organism to sustain life or metabolism can be

anabolism which is the build-up of complex compounds

from simpler ones in living organism. The metabolic

network of a specific cell or a living organism is the entire

network of metabolic reactions of the cell. In order to make

sense of the available metabolic network data, metabolic

networks are usually constructed as compound graphs,

reaction graphs, enzyme graphs bipartite graph or hyper-

graph and a path finding technique is used to enumerate the

paths. In this context, we would like to clarify the

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

181

difference between a path and a (metabolic) pathway. In

graph theory, a path is defined as a linear sequence of

nodes connected by edges such that each node pair is

connected by only one edge and each path node, including

the start and the end node, can be found at most once in a

path. However, metabolic pathway is similar to a path but

may contain branches, cycles, and multiple instances of the

same compound [11].

1.3 Metabolic pathways of P.f.

A metabolic pathway is a collection of enzyme catalysed

biochemical reactions by which a living organism

transforms a source (initial) compound into a target (final)

compound. A metabolic pathway could likewise be

presented as an interconnected sub-network of the

metabolic network either depicting particular activities or

characterized by functional limits, e.g., the network

between glucose (source substance) and pyruvate (target

substance).The theory upon which the path finding

approaches is based is that finding directed paths between

the source compound and the destination compound in the

entire metabolic network will give clear understanding into

the intermediate reactions/compounds utilized in the

metabolic pathway between the source and destination

compounds.Metabolism in eukaryotes is classified into

several categories which include; Amino acid metabolism,

Nucleic acid metabolism, Carbohydrate metabolism and

Lipid metabolism.

1.4 k-shortest Path Algorithm

Faust et al., (2010) stated that a simple approach towards

the prediction of a pathway is to find the shortest path(s)

between a given start and end node in the network. The k-

shortest paths problem is a network optimization problem

where the objective is not only to identify the shortest path,

but also the second, the third, the fourth,..., to the kth

shortest path from source node s to target node t in a

network. A good number of k-shortest path algorithms

such as [12]–[20]list all shortest paths between a given pair

of nodes have been applied to several types of networks

including biological networks. However, when using them

to predict metabolic pathways, two issues specific to

metabolic networks need to be considered theses are;

reaction directionality and the hub compound problem

[11]. Hence, the application of k-shortest path technique

must considerably consider these two issues and

adequately tackle their effects.

2 Materials and Methods

2.1 Reconstruction of the metabolic network

In this study the iPfa Genome-scale metabolic model

(GEM) [21] which is the latest model was chosen because

it represents the most comprehensive, stage-specific P.

falciparum metabolic reconstruction to date. iPfa includes

325 genes and 670 metabolic reactions localized within

five intracellular compartments: the nucleus, the

apicoplast, the cytosol, the endoplasmic reticulum and the

mitochondrion. iPfa also accounts for transport reactions:

236 potential uptakes, i.e. transports from the medium

(host cell cytosol or blood serum) to the parasite's cytosol,

and 155 transports between intracellular compartments.

Nineteen (19) metabolites and twenty-three (23) reactions

were obtained from MetaCyc database [22] to fill gaps in

the iPfa GEM while biomass reactions and exchange

reactions were removed since they are mainly used to

evaluate changes in flux to obtain a modified GEM for the

metabolic network. The details about the twenty three (23)

reactions obtained from MetaCyc database can be found in

Appendix A.

Hub compounds or pool metabolites or currency

metabolites are compounds that are commonly involved in

metabolic reactions and cause shortcuts without biological

meaning when computing paths in a simple graph [23]

(e.g. Proton, Water). Kim et al., (2015) identified twenty-

five (25) currency metabolites out of which we eliminated

20 of such from the network before reconstructing the

graph. The remaining five (5) currency metabolites

identified by Kim et al., (2015) were retained in the

network since their presence does not have significant

effect that could lead to shortcuts without biological

meaning; this therefore partially addresses the issue of hub

compounds. Reaction interaction graph was used to model

the metabolic network where the vertices are the reactions

and the edges represent the interaction between the

reactions and uniform weight was assigned to all edges in

the network.

2.2 The Algorithm

T-star algorithm was selected among other k-shortest paths

techniques because of its superior computational

performance [22], see table 1. T-star requires a topological

sort of the graph nodes as its input. Topological sort is only

possible for a Directed Acyclic Graph, hence we

implemented the algorithm to avoid loops/cycles. We

enhanced the prediction precision of the graph based

approach by incorporating a heuristic function which

favors paths that are biologically related to the annotated

pathway between a given pair of compounds. Our

approach is based on the theory that the malaria parasite

uses the shortest route to a particular product, hence the

assumption that the currently known annotated pathways

contain the shortest paths utilized by the pathogen,

therefore the heuristic function uses the reactions in the

annotated pathways to rank paths that share similar

reactions above others. The enhanced T* algorithm was

applied to the reconstructed network to obtain k-shortest

paths for selected metabolic pathways where k = 20.

182

Table 1: Time Complexity of T*, K*, Yen, Feng, EA and

LVEA algorithms.(Source: Kadivar, 2016)

Algorithm Time Complexity

T* O(m + nk log d)

K* O(m + n log n + k)

LVEA O(m+n log n+k log k)

EA O(m+n log n+k log k)

Feng O(kn(m+n log n))

Yen O(1/2(Kn3))

The reactions within the annotated pathway for a given

biological process such as glycolysis are referred to as the

Known nodes in the algorithm shown below.

1: H = [Known nodes]

2: next = source;

3: while next != target do

4: Update(P[next] by P[j], j ∈ A─ (next));

5: Reward(P[next] for each h in P[next], h ∈ H)

6: next = next + 1;

7: end while

8: Update(P[i] by P[j], j ∈ A─ (i))

9: Make min-priority queue MQ(i) by P1j ∈ P[j] for

j ∈ A─ (i) according to L(P1j) + cji values.

10: while MQ(i) ≠ ∅ and |P[i]| < k do

11: Move P at root of MQ(i) to P[i] and replace

the moved item by its neighbor in the

source list from which it came and update

the nodes values traversing up in MQ(i)

along the path of the moved item.

12: end while

Figure 1: Modified T* Algorithm Flow chart. The boxes labelled in red signifies the point where heuristic function

was applied to the algorithm

3 Results

We applied our method to the following two metabolic

pathways to enumerate k-shortest paths, where k = 5;

Glycolysis Pathway and Pentose Phosphate Pathway.

Eight (8) additional metabolic reactions were

predicted to be involved in the glycolysis pathway

which could provide an alternative path for conversion

of glucose to pyruvate. The list of the 8 reactions are

given in Table 2. Also, figure 2 shows the 5 predicted

alternative paths for the pathway.

Table 2: Predicted reactions involved in glycolysis

pathway

183

Reaction

name in

KEGG

Description of

Reaction

Associated

E.C

Number

R00345 phosphate:oxaloaceta

te carboxy-lyase

4.1.1.31

R00662 Uridine triphosphate

pyrophosphohydrolas

e

3.6.1.8

3.6.1.19

R01138 dATP:pyruvate 2-O-

phosphotransferase

2.7.1.40

R00156 ATP:UDP

phosphotransferase

2.7.4.6

R08845 UTP:monosaccharide

-1-phosphate

uridylyltransferase

2.7.7.64

R00769 UTP:D-fructose-6-

phosphate 1-

phosphotransferase

2.7.1.11

R00341 ATP:oxaloacetate

carboxy-lyase

(transphosphorylating

;phosphoenolpyruvat

e-forming)

4.1.1.49

R00289 UTP:alpha-D-

glucose-1-phosphate

uridylyltransferase

2.7.7.9

2.7.7.64

k=1:5

Figure 2: Predicted paths for glycolysis pathway

Five (5) additional metabolic reactions were predicted

to be involved in the Pentose Phosphate pathway

which could provide an alternative path for conversion

of D-Glucose 6-phosphate to D-Glyceraldehyde 3-

phosphate. The list of the 5 reactions are given in

Table 3. Also, figure 3 shows the 5 predicted

alternative paths for the pathway.

184

Table 3: Predicted reactions involved in Purine

metabolism

Reaction

name in

KEGG

Description of

Reaction

Associated

E.C Number

R01015 D-glyceraldehyde-3-

phosphate aldose-

ketose-isomerase

5.3.1.1

R01010 Glycerone phosphate

phosphohydrolase

3.1.3.1

3.1.3.2

R00756 ATP:D-fructose-6-

phosphate 1-

phosphotransferase

2.7.1.11

R02568 D-Fructose 1-

phosphate D-

glyceraldehyde-3-

phosphate-lyase

4.1.2.13

R01068 D-fructose-1,6-

bisphosphate D-

glyceraldehyde-3-

phosphate-lyase

(glycerone-

phosphate-forming).

4.1.2.13

k=1:5

Figure 3: Predicted paths for Pentose Phosphate pathway

4 Discussion

The application of our method on the metabolic

network of P.f. to predict alternative paths within two

(2) metabolic pathways reveals that there are potential

reactions that could be involved in the metabolic

pathways of the organism that could serve as

redundant links between source and destination

reactions in the case where the primary link is

unavailable or blocked by vaccines. Some of the

predicted reactions yet to be validated have red outline

in figure 2 and 3. The predicted paths is ordered left to

right starting from k=1 to k=5. The implication of

these alternative paths is that if path 1 is unavailable

for the metabolic activities of the parasite it attempts

185

to use path 2 and so on and this has been highlighted

as the major cause of the drug resistance by the

parasite.

5 Conclusion

This study applied T* Algorithm enhanced with

heuristic algorithm to predict alternative paths within

the metabolic network of P.f. The predicted paths

could provide valuable insight into the biology of the

organism which will aid in effective therapy and

vaccine development and subsequently reduce the

mortality and morbidity rate of malaria disease.

Finally, we observed that dataset used is a GEM

prepared for constraint-based modelling and not

graph-theoretical path finding approaches which was

employed in this study and this has a considerably

effect on our prediction.

ACKNOWLEDGMENT

We acknowledge the support of Covenant

University Center for Research, Innovation and

Discovery, Covenant University, Ota, Nigeria.

6 References

[1] WHO, “World Malaria Report 2016,” 2016.

[2] H. Cai, T. G. Lilburn, C. Hong, J. Gu, R. Kuang,

and Y. Wang, “Predicting and exploring network

components involved in pathogenesis in the

malaria parasite via novel subnetwork

alignments,” BMC Syst. Biol., vol. 9, no. Suppl

4, p. S1, Jun. 2015.

[3] Z. Bozdech, M. Llinás, B. L. Pulliam, E. D.

Wong, J. Zhu, and J. L. DeRisi, “The

Transcriptome of the Intraerythrocytic

Developmental Cycle of Plasmodium

falciparum,” PLoS Biol., vol. 1, no. 1, p. e5,

Aug. 2003.

[4] K. Nakatani, H. Ishikawa, S. Aono, and Y.

Mizutani, “Identification of essential histidine

residues involved in heme binding and

Hemozoin formation in heme detoxification

protein from Plasmodium falciparum.,” Sci.

Rep., vol. 4, p. 6137, Aug. 2014.

[5] E. Hempelmann, “Hemozoin Biocrystallization

in Plasmodium falciparum and the antimalarial

activity of crystallization inhibitors,” Parasitol.

Res., vol. 100, no. 4, pp. 671–676, Jan. 2007.

[6] N. Lang-Unnasch and A. D. Murphy,

“METABOLIC CHANGES OF THE

MALARIA PARASITE DURING THE

TRANSITION FROM THE HUMAN TO THE

MOSQUITO HOST,” Annu. Rev. Microbiol.,

vol. 52, no. 1, pp. 561–590, Oct. 1998.

[7] G. Plata, T. Hsiao, K. L. Olszewski, M. Llinás,

and D. Vitkup, “Reconstruction and flux‐balance

analysis of the Plasmodium falciparum

metabolic network,” Mol. Syst. Biol., vol. 6, no.

1, p. 408, 2010.

[8] C. Huthmacher, A. Hoppe, S. Bulik, and H.-G.

Holzhütter, “Antimalarial drug targets in

Plasmodium falciparum predicted by stage-

specific metabolic network analysis,” BMC Syst.

Biol., vol. 4, no. 1, p. 120, Aug. 2010.

[9] Jelili Oyelade, Ezekiel Adebiyi, Itunu Ewejobi,

Benedikt Brors and Roland Eils.(2011)

 “Computational Identification of Signalling

Pathways in Plasmodium falciparum”. Infection,

genetics and evolution, Journal of molecular

epidemiology and evolutionary genetics

in infectious diseases - Elsevier, Vol. 11(4), 755-

764

[10] Itunuoluwa Isewon, Jelili Oyelade,Benedikt

Brors, Ezekiel Adebiyi(2015):In-silico

 GeneRegulatory Network of the Maurer’s

Cleft Pathway in Plasmodium falciparum.

 Evolutionary Bioinformatics. Vol. 11, 231-

238

[11] K. Faust, P. Dupont, J. Callut, and J. Van

Helden, “Pathway discovery in metabolic

networks by subgraph extraction,”

Bioinformatics, vol. 26, no. 9, pp. 1211–1218,

2010.

[12] J. Y. Yen, “Finding the k shortest loopless paths

in a network,” Manage. Sci., vol. 17, no. 11, pp.

712–716, 1971.

[13] D. Eppstein, “Finding the k shortest paths,”

SIAM J. Comput., vol. 28, no. 2, pp. 652–673,

1998.

[14] E. Hadjiconstantinou and N. Christofides, “An

efficient implementation of an algorithm for

finding K shortest simple paths,” Networks, vol.

34, no. 2, pp. 88–101, 1999.

[15] E. Q. V Martins and M. M. B. Pascoal, “A new

implementation of Yen’s ranking loopless paths

algorithm,” 4OR A Q. J. Oper. Res., vol. 1, no. 2,

pp. 121–133, 2003.

[16] G. Liu and K. G. Ramakrishnan, “A* Prune: an

algorithm for finding K shortest paths subject to

multiple constraints,” in INFOCOM 2001.

186

Twentieth Annual Joint Conference of the IEEE

Computer and Communications Societies.

Proceedings. IEEE, 2001, vol. 2, pp. 743–749.

[17] A. Y. Hamed, “A genetic algorithm for finding

the k shortest paths in a network,” Egypt.

Informatics J., vol. 11, no. 2, pp. 75–79, 2010.

[18] H. Aljazzar and S. Leue, “K⁎: A heuristic

search algorithm for finding the k shortest

paths,” Artif. Intell., vol. 175, no. 18, pp. 2129–

2154, 2011.

[19] N. Flerova, R. Marinescu, and R. Dechter,

“Searching for the M Best Solutions in Graphical

Models,” J. Artif. Intell. Res., vol. 55, pp. 889–

952, 2016.

[20] M. Kadivar, “A new $ O (m+ kn log overline

{d}) $ algorithm to Find the $ k $ shortest paths

in acyclic digraphs,” Trans. Comb., vol. 5, no. 3,

pp. 23–31, 2016.

[21] A. Chiappino-Pepe, S. Tymoshenko, M. Ataman,

D. Soldati-Favre, and V. Hatzimanikatis,

“Bioenergetics-based modeling of Plasmodium

falciparum metabolism reveals its essential

genes, nutritional requirements, and

thermodynamic bottlenecks,” PLOS Comput.

Biol., vol. 13, no. 3, p. e1005397, 2017.

[22] R. Caspi, T. Altman, R. Billington, K. Dreher, H.

Foerster, C. A. Fulcher, T. A. Holland, I. M.

Keseler, A. Kothari, and A. Kubo, “The

MetaCyc database of metabolic pathways and

enzymes and the BioCyc collection of

Pathway/Genome Databases,” Nucleic Acids

Res., vol. 42, no. D1, pp. D459–D471, 2014.

[23] M. Arita, “The metabolic world of Escherichia

coli is not small,” Proc. Natl. Acad. Sci. U. S. A.,

vol. 101, no. 6, pp. 1543–1547, 2004.

[24] T. Kim, K. Dreher, R. Nilo-Poyanco, I. Lee, O.

Fiehn, B. M. Lange, B. J. Nikolau, L. Sumner, R.

Welti, and E. S. Wurtele, “Patterns of metabolite

changes identified from large-scale gene

perturbations in Arabidopsis using a genome-

scale metabolic network,” Plant Physiol., vol.

167, no. 4, pp. 1685–1698, 2015.

187

7 Appendix A

Table 6: Reactions obtained from MetaCyc database to fill gaps in the iPfa GEM

NAME EQUATION EC-NUMBER SUBSYSTEM

L-threonine

aldolase

L-Threonine[c] <=> Acetaldehyde[c]

+ Glycine[c]

4.1.2.48, 4.1.2.5 Glycine, serine and

threonine metabolism

glycine

hydroxymethyltran

sferase

L-Serine[c] + Tetrahydrofolate[c]

<=> Glycine[c] + 5,10-Methylene-

tetrahydrofolate[c] + H2O[c]

2.1.2.1 Glycine, serine and

threonine metabolism

serine-glyoxylate

transaminase

Glyoxylate[c] + L-Serine[c]

<=>Hydroxypyruvate[c] +

Glycine[c]

2.6.1.45 Glycine, serine and

threonine metabolism

ornithine

cyclodeaminase

L-Ornithine[c] <=> L-Proline[c] +

NH3[c]

4.3.1.12 Arginine and proline

metabolism

 (S)-1-Pyrroline-5-carboxylate[c] <=>

L-Glutamate 5-semialdehyde[c]

 Arginine and proline

metabolism

aspartate 4-

decarboxylase

L-Aspartate[c] <=> L-Alanine[c] +

CO2[c]

4.1.1.12 Alanine, aspartate and

glutamate metabolism

citrate (Si)-

synthase

Acetyl-CoA[c] + H2O[c] +

Oxaloacetate[c] <=> Citrate[c] +

CoA[c]

2.3.3.1 Alanine, aspartate and

glutamate metabolism

glutamine-pyruvate

transaminase

L-Glutamine[c] + Pyruvate[c] <=> 2-

Oxoglutaramate[c] + L-Alanine[a]

2.6.1.15 Alanine, aspartate and

glutamate metabolism

2-oxoglutaramate

amidase

2-Oxoglutaramate[c] + H2O[c] <=>

2-Oxoglutarate[c] + NH3[c]

3.5.1.111 Alanine, aspartate and

glutamate metabolism

cystathionine

gamma-synthase

L-Cysteine[c] + O-succinyl-L-

homoserine[c] <=> succinate[c] + L-

cystathionine[c] + H+[c]

2.5.1.48 Cysteine and methionine

metabolism

cystathionine beta-

lyase

L-cystathionine[c] + H2O[c] <=>

ammonium[c] + pyruvate[c] + L-

homocysteine[c]

4.4.1.8 Cysteine and methionine

metabolism

methionine

synthase

L-homocysteine[c] + N5-

methyltetrahydrofolate[c] <=> L-

Methionine[a] + tetrahydrofolate[c]

2.1.1.13 Cysteine and methionine

metabolism

5-

methyltetrahydropt

eroyltriglutamate-

homocysteine S-

methyltransferase

L-homocysteine[c] + N5-

methyltetrahydropteroyl tri-L-

glutamate[c] <=> L-Methionine[a] +

tetrahydropteroyl tri-L-glutamate[c]

2.1.1.14 Cysteine and methionine

metabolism

cystathionine

gamma-lyase

L-cystathionine[c] + H2O[c] <=> 2-

oxobutanoate[c] + L-Cysteine[c] +

ammonium[c]

4.4.1.1 Cysteine and methionine

metabolism

188

inositol-

tetrakisphosphate

5-kinase

D-myo-inositol (1,3,4,6)-

tetrakisphosphate[c] + ATP[c] <=>

D-myo-inositol 1,3,4,5,6-

pentakisphosphate[c] + ADP[c] +

H+[c]

2.7.1.140 Inositol phosphate (vit

B8) metabolism

inositol-1,3,4-

trisphosphate 5/6-

kinase

D-myo-inositol (1,3,4)-

trisphosphate[c] + ATP[c] <=> D-

myo-inositol (1,3,4,6)-

tetrakisphosphate[c] + ADP[c] +

H+[c]

2.7.1.159 Inositol phosphate (vit

B8) metabolism

inositol-1,3,4-

trisphosphate 5/6-

kinase

D-myo-inositol (1,3,4)-

trisphosphate[c] + ATP[c] <=> D-

myo-inositol (1,3,4,5)-

tetrakisphosphate[c] + ADP[c] +

H+[c]

2.7.1.159 Inositol phosphate (vit

B8) metabolism

inositol-1,4-

bisphosphate 1-

phosphatase

D-myo-inositol (1,3,4)-

trisphosphate[c] + H2O[c] <=> D-

myo-inositol (3,4)-bisphosphate[c] +

phosphate[c]

3.1.3.57 Inositol phosphate (vit

B8) metabolism

phosphatidylinosito

l-3,4-bisphosphate

4-phosphatase

D-myo-inositol (3,4)-bisphosphate[c]

+ H2O[c] <=> 1D-myo-Inositol 3-

phosphate[c] + phosphate[c]

3.1.3.66 Inositol phosphate (vit

B8) metabolism

inositol-

polyphosphate

multikinase

D-myo-inositol (1,4,5)-

trisphosphate[c] + ATP[c] <=> D-

myo-inositol (1,4,5,6)-

tetrakisphosphate[c] + ADP[c] +

H+[c]

2.7.1.151 Inositol phosphate (vit

B8) metabolism

inositol-

polyphosphate

multikinase

D-myo-inositol (1,4,5,6)-

tetrakisphosphate[c] + ATP[c] <=>

D-myo-inositol 1,3,4,5,6-

pentakisphosphate[c] + ADP[c] +

H+[c]

2.7.1.151 Inositol phosphate (vit

B8) metabolism

inositol-

trisphosphate 3-

kinase

D-myo-inositol (1,4,5)-

trisphosphate[c] + ATP[c] <=> D-

myo-inositol (1,3,4,5)-

tetrakisphosphate[c] + ADP[c] +

H+[c]

2.7.1.127 Inositol phosphate (vit

B8) metabolism

inositol-

pentakisphosphate

2-kinase

D-myo-inositol 1,3,4,5,6-

pentakisphosphate[c] + ATP[c]

<=>phytate[c] + ADP[c] + H+[c]

2.7.1.158 Inositol phosphate (vit

B8) metabolism

189

Identifying Temporal Variation of Transcription in Populations

Aisharjya Sarkar, Prabhat Mishra and Tamer Kahveci
Department of Computer and Information Science and Engineering, University of Florida

Gainesville, Florida, 32611, USA
(aisharjya, prabhat, tamer)@ufl.edu

Abstract

We consider the problem of aligning multiple time
series gene expression data with the goal of achieving
minimum SP (sum of pairwise) distance score. The
transcription level of genes often change over time. For
a gene, the rate of change of transcription values can
vary across different members of a population. There-
fore, alignment of such data has great potential to reveal
how the cellular activities of different samples deviate
from each other. We develop an algorithm for alignment
of multiple time series expression data using dynamic
time warping approach. Our experiments demonstrate
that our method always improves the alignment score.
We observe that the correlation between significant
gene pairs show drastic improvement after our method
is applied, which helps in uncovering key functional
characteristics from biological perspective. Further-
more, the alignment strategy is independent of the
length of different time series under consideration.

keywords: gene expression, time series, multiple
alignment, dynamic time warping

1 Introduction
Genes are segments within DNA which contains

within themselves instructions for producing molecules
to carry out various functions within cells. The
process by which the information contained within
a gene transforms into the product called RNA is
called transcription or expression. Typically not all
gene products are needed all the time. Even when a
specific set of gene products are needed, the amount
of time it takes to produce them and the rate at
which a gene produces them varies. In fact, it will
be energy inefficient for a cell to express every gene
all the time. Further, some gene products are harmful
to the cell if it is not produced at the right time or
quantity. Recent technology such as high throughput
sequencing makes it possible to record expression values
for thousands of genes in parallel by means of gene
expression profiling. This results in huge amount of
transcription information.

Gene expression data is usually represented in a
matrix or tabular form where each row represents a gene
or probe. Each column typically represents a sample.
Each entry of this matrix is the expression level of a
particular gene for a particular sample. Several existing
efforts has already been done to analyze such data in
order to extract meaningful biological knowledge [3].
Most of the studies on transcriptome are limited to
static expression analysis, where a value is a snapshot
of the expression of genes in different samples at a
particular time point. There are also studies which
measure the transcription values of a sample multiple
times over a period of time [17]. We call such datasets
as time series gene expression data. Studying of time
series data is extremely important since it has great
potential to reveal the process through which cells react
to transcriptional variations, external stimulants (such
as drugs), or major disorders (such as cancer) over a
period of time.

One major hurdle in studying time series expression
data arises from inherent characteristics of cells. The
genes of different samples (eg., different individuals)
often vary in their rates at which they react to tran-
scriptional alterations. For instance, the same gene
from a young and old individual may have different
reaction rate. Also different samples may possess
varying genetic or epigenetic mutations or may be
subject to external stimulants (such as drugs) or they
may be at different stages of a disease. As a result
of such variation, the specific time points in time series
expression of a sample may not match to the same time
point in the time series expression of another sample.
Thus, finding which time point in a time series sample
correspond to which time point(s) in a given set of
time series sample is essential in studying such data.
As expression levels can be measured across time in
different organisms including humans, it is useful to
compare the expression changes across different time
points between two or more time series data. Since the
common biological processes may function at varying
rates in different individuals or organisms, methods are
required that will allow to map the expression states
between different time series. Such analyses reveal

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

190

temporal features of gene expression changes, such as
acceleration or delay in transcription values. This
temporal change in gene expression values play a vital
role in the biology of an organism since the information
from a gene is used in the synthesis of proteins. One
such example is inter-species time series expression data
comparison [5]. In this work, the authors compared the
similarities between temporal expression data between
two species (Saccharomyces cerevisiae, Schizosaccha-
romyces pombe) that are separated by more than 400
million years of evolution by means of global alignment.

There are several methods that employed the concept
of dynamic time warping (DTW) to address temporal
alignment problems. DTW is a type of time series
alignment algorithm for measuring similarity between
two time series data that may vary in speed. DTW
was originally developed to address speech recognition
problems [13, 14]. Aach and Church [2] introduced the
concept of DTW for gene expression data. This has
been further developed by other groups [15, 10, 16].
Although there is a substantial amount of research on
DTW, to the best of our knowledge they are limited
to comparing only two time series [12]. ‘Continuous
Profile Model’ [9] was primarily developed for speech
waveform time series data where frequent sampling of
data is a reasonable approach. Here, smoothness in
time is necessary for the ‘continuous’ CPM alignment
which is not feasible for real time gene expression
data. Therefore, it is not appropriate to apply CPM
alignment to the breast cancer dataset considered here.

In this paper, we develop a method to tackle the
problem of alignment of multiple time series expres-
sion data using the DTW approach. Our method
adopts the progressive alignment strategies used for
aligning multiple nucleotide or amino acid sequences
[18, 11, 7] to DTW of multiple transcription data. We
define a score-based progressive alignment algorithm by
means of dynamic programming technique on successive
branches of a guide tree. Guide tree decides the
order of alignment in the progressive multiple alignment
heuristic. It finds the optimal alignment between a
pair of one or more than one time series with respect
to a given scoring function. This study addresses two
major challenges that are inherent characteristics of
time series data:

• Often time series data are sampled at non-uniform
time intervals. The time points observed in one
time series may not correspond to measured time
points in another time series.
• The time series may be of variable size. One time

series data may contain fewer observations than
another.

We organize the rest of the paper as follows. We
present our algorithm in Section 2. We discuss our

experimental results in Section 3 and conclude in
Section 4.

2 Methodology

We develop an algorithm to align multiple gene
expression time-series data. By alignment of gene-
expression data, we mean a mapping from time coor-
dinates in each series to those of the remaining ones
such that the expression values at those time points
are similar. In this section, we present a detailed
description of our method. We present the basic
notation we use in this paper in Section 2.1. We then
describe two distance measures. Section 2.2 discusses
how we measure the distance while allowing flexibility
to the amount of time in order to capture the best
possible mapping or alignment between a pair of time-
series data. We then elaborate on each step of our
method, which works for multiple time-series data, in
detail in Section 2.3.

2.1 Notation

We start by describing the notation that will be
used in the rest of this paper. Let us assume that
a given temporal dataset contains m samples, where
each sample is the expression level of a given gene of a
patient measured over a period of time. We denote the
samples in the given dataset with S1, S2,· · · , Sm. Let us
denote the number of time points at which transcription
of the given gene is measured for the ith sample with
ni. We represent each sample Si using a vector as
Si = [vi,1, vi,2,· · · , vi,ni

], where each entry vi,j shows
the transcription level of the gene under consideration
belonging to the ith sample observed at the jth time
point.

2.2 Measuring distance between time
series data

Consider two time series samples Si and Sj . Also,
consider the following two assumptions: (i) Si and Sj
have the same number of measurements (i.e., ni =
nj), and (ii) for all time points k, where 1 ≤ k ≤ ni,
the measurement taken at the kth time point of Si
(vi,k) corresponds to that of Sj (vj,k). Under these
two assumptions, the distance between Si and Sj
is often computed as a simple vector norm of the
difference Si − Sj . First and second vector norms
are among the most commonly used distance measure
in the literature. These norms are also known as
the Manhattan and the Euclidean distances, and are

computed as
∑
k |vi,k − vj,k| and

√∑
k (vi,k − vj,k)

2
,

respectively.

Although the vector norms discussed above are used

191

(a) Aligned dynamic states (b) Stretched dynamic states

Figure 1: An illustration of time-warping of two hypothetical samples, Si and Sj . Each circle (square) represents a time point. The

time points of Si are labeled with values from vi,1 to vi,6. The time points of Sj is labeled with values from vj,1 to vj,5. In left figure 1a

the two solid line curves show the actual patterns of the two dynamic states. Dashed lines show the time-warping alignment of the two

dynamic states. The right figure 1b shows the time points that are aligned with multiple time points from the other states are duplicated

and stretched to match them along the time axis.

commonly for different time series datasets, they cannot
easily be used for gene expression time series data.
This is because the two underlying assumptions leading
to these norms do not hold when applied to gene
expression sequences for several reasons. First, the
transcription measurements of different samples can
be taken at different number of time points (i.e., it
is possible to have ni 6= nj). Second and more im-
portantly even when ni = nj , two samples can exhibit
longitudinal variance. In other words, the kth time
point of Si does not necessarily represent the same
state of Sj at the kth time point as the same gene
in two different samples can have different response
time to transcriptional regulation. Such variation in
response time happens for many reasons. Gene copy
number variations and epigenetic mutations are only
two examples to those reasons. Regardless of the
biological reason, the net outcome observed is that in
such scenarios, the transcriptional values of two samples
can have similar values but the time it takes to reach
this value may differ. We say that such times series
expression values are stretched along the time axis.

Time-warping distance takes into account temporal
distortions. Briefly, time-warping distance aligns two
given temporal vectors in order to find a mapping
between their time points. It does this by stretching
them to bring their similar values close to each other.
Figure 1 shows the alignment of two hypothetical
time series data using time-warping distance. In this
example, the time series on the top contains values for
six time points labeled from vi,1 to vi,6. The other
time series has values for five time points labeled from

vj,1 to vj,5. In Figure 1a, the dashed lines between
two time points, one from each time series, show the
aligned time points. Notice that one time point of
one series can align with multiple time points of the
other. We say that the measurements at such time
points are stretched along the time axis. We represent
this process by making multiple copies of such values
consecutively. Figure 1b shows how the two time series
data are stretched along the time dimension to match
their time points. For instance, in Figure 1a, vi,2 is
aligned with both vj,2 and vj,3. We reflect this in
Figure 1b by making two copies of vi,2. Notice that,
after stretching the two sequences, they both have the
same number of time points. Once the two dynamic
states are aligned, this measure computes the distance
as the Manhattan distance between the two stretched
time series data. As we stretch the time series, the
number of time points grow. To accomodate for this
change, we normalize the distance between two time
series data by dividing their Manhattan distance with
the number of time points in the stretched time axis.

There are two major challenges in computing time
warping distance is to determine which time points
will be stretched and by how much. We address these
challenges by using dynamic programming technique
to align two given time series data as follows. Let us
denote the distance between the first k values of Si and
the first r values of Sj with γ(Si, k, Sj , r). We compute
this function as follows:

γ(Si, k, Sj , r) = |vi,k−vj,r|+min{γ(Si, k−1, Sj , r−1),

γ(Si, k − 1, Sj , r), γ(Si, k, Sj , r − 1)} (1)

192

The min function consists of the following three scenar-
ios:

• The first scenario arises when the first k− 1 values
of Si are aligned to the first r − 1 values of Sj .
• The second scenario corresponds to the case that

the first k− 1 values of Si are aligned to the first r
values of Sj . In other words, Sj is stretched along
the time axis.
• The third scenario occurs when the first k values of
Si are aligned to the first r − 1 values of Sj . That
is, Sj is contracted along the time axis.

Let k ∈ [1 : k], which denotes the first k values of Si and
r = 1, which denotes the first value of Sj . Then there
is only one possible warping path between Si(1 : k) and
Sj(1 : 1) having a total distance as

γ(Si, k, Sj , 1) =

k∑

n=1

|vi,n − vj,1|

This determines the stopping criteria in order to min-
imize an expected cost. Similarly, we compute the
optimal distance between Si when k = 1 and Sj when
r ∈ [1 : r], which represents the first r values of Sj as

γ(Si, 1, Sj , r) =

r∑

n=1

|vi,1 − vj,n|

2.3 Algorithm

In this section, we present our method in detail. Our
method takes a set of m vectors, where each vector
Si represents a sample having transcription values for
ni time points as input. It works in three steps as
follows: (i) Generation of initial distance matrix D.
(ii) Construction of guide tree T . (iii) Construction
of alignment matrix A

2.3.1 Generating initial distance matrix

Given a set of m vectors, we construct an m×m matrix
called the distance matrix and denote it with D. This
is an upper triangular matrix. For all 1 ≤ i < j ≤ m,
D[i, j] is equal to the time warping distance between Si
and Sj . We do not need to store the diagonal of the
matrix as the distance between a time series with itself
is always zero. Also we do not store its lower triangular
part as the time warping distance is commutative (i.e.,
D[i, j] = D[j, i],∀i 6= j). Figure 2a shows a hypothetical
distance matrix D5 consisting of five time series S1, S2,
S3, S4 and S5. Each cell within the matrix consists
of a pairwise time warping distance between two time
series. For example, the time warping distance between
two time series S1 and S3 is represented as d13.

2.3.2 Constructing guide tree

Once we generate the initial distance matrix D, we
construct a tree called the guide tree using D. Guide

(a) Initial distance matrix
consisting of five time series
S1, S2, S3, S4 and S5.

(b) Guide Tree

Figure 2: A hypothetical initial distance matrix and guide tree.

tree is a rooted and bifurcating tree (i.e., each internal
node has two child nodes). It determines the ordering
at which we align the time series samples. More
specifically, guide tree aims to order the alignment of
the entire dataset of m time series in a way such that
the closely related series are aligned before the relatively
distant ones. Figure 2b illustrates a hypothetical guide
tree, where each leaf node represents a unique time
series sample. Therefore, S1, S2, S3, S4 and S5 are
the time series represented by the leaf nodes in Figure
2b. Next we discuss in detail how we generate this guide
tree.

We build guide tree in an iterative manner with the
help of the distance matrix D. Each iteration contains
two steps:

(1) We pick the pair of samples (Si, Sj) with the
least pairwise distance. This corresponds to the
entry D[i, j] in D with the smallest value among
all i < j. If there are multiple such sample pairs
with the same value, we pick one arbitrarily. We
then construct an internal node of the guide tree
which takes Si and Sj as two children.

(2) We remove Si and Sj from the sample set and
replace them with the new hypothetical sample
corresponding to their alignment. We explain how
we align them in Section 2.3.3. This reduces the
number of samples by one. We update the distance
matrix accordingly by computing the distance
between the new sample and all the remaining
samples.

At the end of each iteration we construct one internal
node of the guide tree. More specifically, the new inter-
nal node is connected to the two nodes corresponding to
the two time series Si and Sj selected at that step. The
new internal node denotes the new hypothetical time
series generated at that iteration from Si and Sj . We
repeat this process until we have only one time series
left. The final (hypothetical) time series denotes the
root of the guide tree.

2.3.3 Building alignment matrix

Once we complete the construction of the guide tree, we
are ready to align all the time series expression data.

193

We do this iteratively. Let us denote the given set of m
time series data with S = {S1, S2, · · · , Sm}. Recall that
each leaf level node of the guide tree contains a time
series data from the set S. Briefly, at each iteration, we
pick an internal node of the guide tree such that both
children of that node contains a time series expression
data or an alignment of a set of time series data. We
then align the two time series data corresponding to
it’s children using dynamic time warping and place the
resulting alignment at that internal node. Thus at the
end of each iteration, we populate one internal node of
the guide tree with the alignment of all the time series
data located at the leaf nodes of the clade rooted at that
internal node. We repeat this process until we reach the
root node of the guide tree. The alignment contained
at the root node is the multiple alignment of the entire
time series dataset.

Notice that, the internal node selected at each it-
eration falls into one of the three possible scenarios
depending on it’s two children.

• Both children nodes contain single time series data.
This happens when both children are leaf nodes.
• One child node contains a time series data and the

other contains an alignment of a set of time series.
This happens when one child is a leaf node and the
other is an internal node.
• Both children nodes contain the alignment of a

set of time series data. This happens when both
children are internal nodes.

Of the above three scenarios, the first one is straight-
forward. We use the dynamic programming method
described in Section 2.2 to align the given pair of time
series data. The challenge lies in the remaining two
cases, where, at least one of the two children is the
alignment of a set of time series. Notice that the second
case is special form of the third one since a time series
can be considered as a set containing only one series.
In the following, we explain how we address the third
case.

Our solution follows from the observation that each
internal node represent a set of time series that are
already aligned. It preserves this alignment while
aligning that set with another. Consider an internal
node Ti of the guide tree T . Let us denote the set of
time series contained in the clade rooted at Ti with

Si = {Sπ1
, Sπ2

, · · · , Sπi
},∀Si ⊆ S

and π1, π2, · · · , πi ∈ {1, 2, · · · ,m}. For instance, for
the guide tree in Figure 2b, the set of time series for
the internal node c is Sc = {S1, S2, S3}. Recall that
the time warping distance potentially stretches the time
series in set Si while aligning them. We denote the
alignment of the time series in Si with matrix Ai as

Ai =

vπ1,σ1,1
vπ1,σ1,2

· · · vπ1,σ1,p

vπ2,σ2,1 vπ2,σ2,2 · · · , vπ2,σ2,p

...
...

. . .
...

vπi,σi,1 vπi,σi,2 · · · vπi,σi,p

Each row in this notation denotes a time series in Si
after it is aligned with the rest of the time series in
that set. For instance, the first row denotes Sπ1 , the
second one denotes Sπ2 , and so on. The subscript
σi,k is a monotonically non-decreasing value with k
(∀k, σi,k ≤ σi,k + 1). It refers to the index of a par-
ticular value within the time series Sπi

after stretching
it. For simplicity, we will refer to each entry vπi,σi,k

in
the matrix Ai as vr,s, where r denotes the time series
index and s denotes the position index within a time
series after stretching it. We denote the entry in the
rth row and sth column of Ai as Ai[r][s] = vr,s. For
instance, in Figure 2b, we express the alignment of the
time series in Sc = {S1, S2, S3}, rooted at the internal
node c with the matrix Ac as

Ac =

v1,1 v1,2 · · · v1,p
v2,1 v2,2 · · · v2,p
v3,1 v3,2 · · · v3,p

Notice that Ai is the partial alignment of all the time
series in set Si.

Let us consider another subset of j time series Sj ,
where Sj ⊆ Sm \ Si. Let Aj be the alignment matrix of
the times series in Sj . Next, we explain how we align
the two sets Si and Sj .

When we align two internal nodes i and j in the guide
tree, it means we are trying to align a partial alignment
Ai with that of Aj . The following equation calculates
the distance between first q values of Ai with that of
first r values of Aj by means of dynamic programming
technique as

γ(Ai, q,Aj , r) =

|Si|∑

x=1

|Sj |∑

y=1

|vπx,q − vπy,r|

+min{γ(Ai, q − 1,Aj , r − 1), γ(Ai, q − 1,Aj , r),
γ(Ai, q,Aj , r − 1)} (2)

In matrix notation, we rewrite the above equation as

γ(Ai, q,Aj , r) =

|Si|∑

x=1

|Sj |∑

y=1

|Ai[x][q]−Aj [y][r]|

+min{γ(Ai, q − 1,Aj , r − 1), γ(Ai, q − 1,Aj , r),
γ(Ai, q,Aj , r − 1)} (3)

Notice that this equation follows from Equation 1.
The main difference is that the first term considers all
combination of sequence pairs instead of one pair. The
following equation shows the stopping condition, which

194

aligns q values for each time series of Ai with one value
for each time series of Aj .

γ(Ai, q,Aj , 1) =

q∑

n=1

(

|Si|∑

x=1

|Sj |∑

y=1

|Ai[x][n]−Aj [y][1]|) (4)

Computation of final alignment score. Let Am
be the final alignment matrix for the given set of m
time series data, S = {S1, S2, · · · , Sm}. As discussed
above, each row inAm represents a time series stretched
to align with the other time series in the dataset S,
therefore, a total of m rows. Let, the stretched version
of S has a total of p columns. Am is shown below. Each
element vi,j represents the transcription value of the ith
row and jth column.

Am =

v1,1 v1,2 · · · v1,p
v2,1 v2,2 · · · , v2,p

...
...

. . .
...

vm,1 vm,2 · · · vm,p

The final alignment score of Am is calculated as the
total of the sum of the pairwise distance between all
possible pairs per column, for all columns, divided by
the number of columns. The formulation of alignment
score is as below:

SPdist = 1/p(

p∑

z=1

m∑

x,y=1
x<y

|v[x][z] − v[y][z]|) (5)

Here after, we refer to the final alignment score as SP
(sum of pairwise) distance.

3 Experimental Results
In this section, we extensively evaluate the perfor-

mance of our method on a real breast cancer dataset.
We measure the performance in terms of both quan-
titative and qualitative analysis. In the following, we
describe in detail about the dataset and the analysis on
experiments. We have tested our method on simulated
datasets as well described in [1].

3.1 Experimental Setup

We use the breast cancer dataset (DataSet Record:
GDS4088) from Gene Expression Omnibus (GEO)
dataset [6]. This dataset provides transcription values
of breast tumor samples preserved using two different
RNA stabilization methods. Time series of eleven
breast cancer samples subjected to different cold
ischemic stress of up to 3 hour post tumor excision is
reported in this dataset. The dataset contains tumor
tissue samples that are collected from 11 previously
untreated breast cancer patients at surgery and
divided into 8 portions. For our analysis, we consider

the dataset on RNAlater stabilization method which
provides values for 6 time points (baseline, 20, 40,
60, 120 and 180 minutes) accross 11 patients. This
dataset contains the time series gene expression values
for 21,775 genes. Many genes have multiple time series
data arising from multiple probes in the dataset. After
filtering of the duplicate genes we have 13,630 unique
genes in the dataset. In order to select genes relevant
to breast cancer, we referred to 12 datasets on breast
cancer for Homo sapiens from Molecular Signatures
Database (MSigDB) [8]. We took union of all the
genes from these 12 datasets to form a larger dataset of
1,842 genes. We intersect this dataset with the 13,630
unique genes in our breast cancer dataset leading to
1,412 genes. This filtering enables us to select the most
relevant genes in this scenario. We organize each gene
in a dataset as a matrix where each row represents a
sample of a particular patient and each column denotes
a time point in increasing order. Each value in this
matrix is the gene expression value at a certain time
point for that sample.

3.2 Quantitative analysis

In order to quantitatively analyze our method, we
first pre-process the data where we select a subset of
relevant genes from the entire set of more than 13,500
genes originally produced in this dataset. We employ
two mechanisms: statistical pre-processing and domain-
specific (biological) pre-processing for this purpose.
Statistical pre-processing filters the genes whose expres-
sions do not change significantly over time. This is
because, alignment of the transcription of such genes is
trivial as all values are almost identical. Furthermore,
we conjecture that such genes are less likely to be
associated with the disease progression as their values
remain unchanged over time. To do this, we calculate
the coefficient of variation of the gene expression values
of each gene per patient across 6 given time points.
The coefficient of variation cv for a set of observations
is defined as standard deviation σ of the observations
divided by their mean µ. We calculate coefficient
of variation for each gene per patient as cv = σ/µ.
The coefficient of variation gives a measure of the
spread of expression values that describes the amount of
variability relative to the mean. We get a total 11 such
values of cv per gene, one for each of 11 patients. Next,
we calculate the average of cv of each gene for all the 11
patients to get a single value for each gene. We perform
this operation for all the genes in the dataset and rank
the entire gene list in descending order of this measure.
We set a cut-off value at 0.25. We select all the genes
having coefficient of variation above this cut-off. This
results in 681 genes.

For biological pre-processing, we collect 12 gene sets

195

Figure 3: Comparison of sum of pairwise distance (SP distance)

between no time warping (along x-axis) and our method (with

time warping, along y-axis) on the 1,412 biologically significant

genes. Our method always yields a lower SP distance compared

to no time warping.

related to breast cancer from CGP (chemical and ge-
netic perturbations), C2(curated gene sets) of MSigDB
(Molecular Signatures Database) [8]. There are in total
1,842 unique genes in this dataset. An intersection of
this set of genes extracted from MsigDB with that of
the entire time-series dataset of more than 13,500 genes
resulted in a filtered dataset of 1,412 genes. Whereas,
an intersection of the same set of 1,842 breast cancer
related genes with that of the 681 genes extracted by
means of statistical pre-processing (explained before)
resulted in 39 genes.

In this manner, we build an initial subset of 2,054
relevant genes (681 statistical significant genes + 1,412
biologically significant genes - 39 common genes). Fig-
ure 3 shows a scatter plot where each dot represents a
gene from the biologically significant geneset of 1,412
genes. We plot along x-axis and y-axis, the SP distance
distance without and with time-warping, respectively.
It is seen from the figure that our method with time-
warping always yield a lower SP distance. Among the
biologically significant genes, we observe a significant
reduction of 40% to 20% on SP distance after time-
warping. Figure 4 shows SP distance of the top 20 genes
with highest SP gain among all statistically significant
genes. Per gene, it shows SP distance with and without
time warping. Here too our method dramatically
reduces the SP distance cost over the alignment without
time warping. Our algorithm reduces the SP distance
by a maximum of 46%.

3.3 Qualitative results

Pairwise gene correlation: Correlation can be viewed
as the relationship between transcription levels of gene
pairs across different samples. Thus high correlation
is observed when time points of different samples are
aligned correctly. We perform this experiment in order

Figure 4: Sum of pairwise distance (Genes retrieved from

statistical pre-processing).

Figure 5: Pairwise gene correlation for 39 genes (statistical

intersect biological geneset).

to test the improvement of gene pairs in terms of
correlation. The improvement in pairwise correlation
is measured in terms of SP distance before and after
warping. This experiment is performed on the geneset
of 39 genes that are present in both the statistical
and biological geneset. For each pair of genes, we
calculate the correlation between the two matrices, one
for each gene. As mentioned earlier in Section 3.1
(Real Dataset), a matrix for a gene represents 11 time
series data (for 11 patients) across 6 time points. We
first compute the Pearson’s correlation on the raw data
before we apply the dynamic time warping algorithm.
Next, we calculate the pairwise correlation again on the
stretched version of data after we apply our algorithm.
Figure 5 shows a scatter-plot of the gene correlation
values before and after stretching. Along the x-axis
we plot the correlation before stretching. Along the
y-axis we plot that after stretching. We consider a
correlation value between two genes gi and gj , to be
significant if the absolute value of their correlation is
at least 0.4. Our results demonstrate that all the
gene pairs (except for one) have a low correlation value
before stretching (within ±0.4). However, after aligning
them using our method, the stretched time series of
a substantial number of genes yield high correlation

196

Table 1: The four gene pairs (highlighted in Figure 5 by red

dots), having highest absolute correlation value after warp is

shown in this table. Each row represents a gene pair information

(column A) with correlation without warping (column B), with

warping (column C) and shortest path length (column D) in the

biological network, retrieved from STRING database.

A B C D
{DZIP1, IGF2BP3} 0.26 0.65 2

{PELO, TAPT1} 0.08 0.63 3
{ITGB1, STK3} 0.29 0.62 2
{DST, MYO1B} -0.01 -0.60 3

values. Of all the gene pairs, the four gene pairs
that have correlation ≥ 0.6 and correlation ≤ −0.6
are highlighted with red dots in Figure 5. Table 3.3
shows the correlation before time warping and after
time warping for each of these four pairs. It can be seen
that there is a substantial improvement of correlation
after applying our algorithm. In order to determine
the biological significance of these pairs, we calculate
the shortest path length between the two genes in each
pair in the human network extracted from STRING
database [4]. Table 3.3 shows shortest path length for
each gene pair calculated on human network extracted
from STRING. The minimum and maximum shortest
path length is 2 and 3, respectively. The conjecture
is that the less the shortest path distance, the more
the biological significance in terms of carrying out a
common biological process or molecular function. This
signifies that with so less shortest path length, the gene
pairs carry out common biological functions.

4 Conclusion

In this paper, we developed a method to align
multiple time series gene expression data by using
dynamic-time warping approach. Our algorithm first
generates an initial distance matrix by calculating
pairwise time warping distance between all possible
combinations of time series data. It then constructs
a guide tree that determines the ordering at which we
should align the time series samples, in an iterative
manner. The guide tree tends to align the time series
pairs with minimum time warping distance first. Next,
we build alignment matrix in an iterative manner to
align all time series data in an order as determined
in the previous step. At a particular iteration of
alignment, we align a time series or a group of time
series with an already aligned group of time series while
preserving all their initial alignments. The alignment is
independent of the length of different time series under
consideration. Our results on real dataset show that
pairwise gene correlation of biologically related genes
improve significantly after our method.

References

[1] Technical report: Identifying temporal variation of tran-
scription in populations. https://www.cise.ufl.edu/

~sarkar/MultipleTimeSeriesAlignment_TR.pdf.

[2] John Aach and George M Church. Aligning gene expression
time series with time warping algorithms. Bioinformatics,
17(6):495–508, 2001.

[3] Riccardo Bellazzi and Blaž Zupan. Towards knowledge-
based gene expression data mining. Journal of Biomedical
Informatics, 40(6), 2007.

[4] Andrea Franceschini et al. String v9. 1: protein-
protein interaction networks, with increased coverage and
integration. Nucleic Acids Research, 41(D1), 2012.

[5] Yury Goltsev and Dmitri Papatsenko. Time warping of
evolutionary distant temporal gene expression data based
on noise suppression. BMC Bioinformatics, 10(1), 2009.

[6] Christos Hatzis et al. Effects of tissue handling on rna
integrity and microarray measurements from resected breast
cancers. Journal of the National Cancer Institute, 2011.

[7] Kazutaka Katoh, Kazuharu Misawa, Kei-ichi Kuma, and
Takashi Miyata. Mafft: a novel method for rapid multiple
sequence alignment based on fast fourier transform. Nucleic
acids research, 30(14):3059–3066, 2002.

[8] Arthur Liberzon et al. Molecular signatures database
(msigdb) 3.0. Bioinformatics, 27(12), 2011.

[9] Jennifer Listgarten, Radford M Neal, Sam T Roweis, and
Andrew Emili. Multiple alignment of continuous time series.
In Advances in neural information processing systems, pages
817–824, 2005.

[10] Xueli Liu and Hans-Georg Müller. Modes and clustering for
time-warped gene expression profile data. Bioinformatics,
19(15), 2003.

[11] Cédric Notredame, Desmond G Higgins, and Jaap Heringa.
T-coffee: A novel method for fast and accurate multiple
sequence alignment. Journal of molecular biology,
302(1):205–217, 2000.

[12] Sean Robinson, Garique Glonek, Inge Koch, Mark Thomas,
and Christopher Davies. Alignment of time course gene
expression data and the classification of developmentally
driven genes with hidden markov models. BMC bioinfor-
matics, 16(1):196, 2015.

[13] Hiroaki Sakoe and Seibi Chiba. Dynamic programming
algorithm optimization for spoken word recognition. IEEE
Transactions on Acoustics, Speech, and Signal Processing,
26(1), 1978.

[14] David Sankoff and Joseph B Kruskal. Time warps,
string edits, and macromolecules: the theory and practice
of sequence comparison. Reading: Addison-Wesley
Publication, 1983, edited by Sankoff, David; Kruskal,
Joseph B., 1983.

[15] Adam A Smith et al. Similarity queries for temporal
toxicogenomic expression profiles. PLoS Computational
Biology, 4(7), 2008.

[16] Adam A Smith et al. Clustered alignments of gene-
expression time series data. Bioinformatics, 25(12), 2009.

[17] Adi L Tarca et al. Analysis of microarray experiments of
gene expression profiling. American Journal of Obstetrics
and Gynecology, 195(2), 2006.

[18] Julie D Thompson, Desmond G Higgins, and Toby J Gibson.
Clustal w: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice. Nucleic
acids research, 22(22):4673–4680, 1994.

197

Integrated Metabolic Flux and Omics Analysis of Leishmania major metabolism

Sushil Shakyawar
1, 2

, Isabel Rocha
1, 2

, and Sonia Carneiro
1,

*

1
SilicoLife Lda, Braga, Portugal

2
University of Minho, Braga, Portugal

*Corresponding author: scarneiro@silicolife.com

Abstract

Leishmaniasis is a virulent parasitic infection that causes a

significant threat to human health worldwide. The existing

drugs are becoming less effective due to the ability of

Leishmania spp. to alter its metabolism to adapt to harsh

environments. Understanding how this parasite manipulates its

metabolism inside the host (e.g. sandfly and human) might

underpin new ways to prevent the disease and develop

effective treatment strategies.

Despite significant advances in omics technologies,

biochemistry of parasites still lacks the understanding of

molecular components that determine the metabolic behavior

under varying conditions. Metabolic network modeling might

be of interest to identify physiologically relevant nodes in a

metabolic network.

The present work proposes a metabolic model iSK570 (an

extension of the iAC560 model) with additional reactions for

the metabolism of lipids, long chain fatty acids and

carbohydrates to study the metabolic behavior of this parasite.

Gene Inactivity Moderated by Metabolism and Expression

(GIMME) algorithm was used to verify the consistency

between model flux predictions and gene expression data.

Improved flux distributions were obtained, allowing a more

accurate understanding of stage-specific metabolism in of

promastigotes and amastigotes.

1. Introduction
Protozoan parasites from the genus Leishmania belong to the

family Trypanosomatidae, and cause a spectrum of human

diseases affecting around 12 million people worldwide

(www.who.int). Existing treatment therapies involving drugs

such as e.g. sodium stibogluconate and meglumine

antimoniate, amphotericin B and miltefosine are limited by

various features, including in some cases host toxicity and

lack of efficacy [1,2]. Considering endemic severity of the

disease, there is an urgent need for understanding Leishmania

metabolism which can subsequently help in developing novel

anti-leishmanial therapies.

Significant alterations have been observed in the metabolism

exhibited by Leishmania at different stages of its life cycle,

where it faces different nutritional environments [3]. For

example, the promastigote form (inside sandfly) of

Leishmania preferably uses glucose and L-proline via

glycolysis pathways and TCA cycle; while amastigote uses

glucosamine (GlcN) and its derivative N-acetylglucosamine

(GlcNAc)along with some lipids and amino acids [4,5].

Availability of various sugars, such as hexoses (e.g. glucose,

mannose, and galactose) and amino sugars (e.g. GlcN and

GlcNAc) are determining factors for parasitic metabolic

phenotype, especially for synthesizing essential glycans and

glycoconjugates [6].

Unfortunately, no previous studies have explained the

metabolic basis leading to the biosynthesis of glycans and

glycoconjugates in the presence of different environments. In

fact, it is still unknown if observed metabolic changes are

resulting from, or arising out of the different parasitic stages.

For example, under promastigote stage, only a few enzymes

from the TCA cycle are active, while in amastigote stage,

glycolytic enzymes are less functional.

Metabolic network modeling is an effective and sophisticated

approach for systematically study the metabolic behaviour of

an organism, as well as to understand the relationship between

its genotype and phenotype. Previously, these methods have

been used to understand the cellular metabolism as well as to

identify essential genes in many medically important

organisms, such as Mycobacterium tuberculosis [7],

Acinetobacter baumanii [8], Francisella tularensis [9]

including human parasites like Leishmania major [10] and

Plasmodium falciparum [11]; though with the low prediction

accuracy. One of the most probable and obvious reasons for

the low prediction accuracy might be associated with the lack

of use of experimental data (e.g. transcriptomics, proteomics,

and metabolomics etc.) to constrain the model and

unavailability of the suitable strategies to use omics data in the

metabolic network analyses.

Integrating omics data with metabolic network analysis can

improve our understanding on various aspects, such as

metabolic alterations associated with the environmental

conditions, essential genes and metabolic flux variability of

the essential reactions [12]. The relevant data can be

integrated into the metabolic model to provide an extra layer

of metabolic flux constraints to improve its overall prediction

efficiency. Various methods like GIMME [13], iMAT [14],

MADE [15], E-Flux [15] and PROM [16] have been made

available for the integration of transcriptomics and genomics,

fluxomics [17], and metabolomics [18] data into metabolic

models. Successful examples include the integration of

RNAseq data into the Leishmania infantum model [19],

proteomics data into a metabolic model of Enterococcus

faecalis [20], and multi-omics data into metabolic models of

Escherichia coli [21] to understand the metabolism and

associated phenotypes. The strategy has also improved drug

target predictions in many medically important organisms

such as Aspergillus fumigatus [22], Plasmodium falciparum

[23] and L. major [24].

In spite of the availability of abundant omics data and various

methodologies, only a few studies have employed these

strategies to understand the metabolism of Leishmania

[10,19,25]. Here, we applied omics data with metabolic

modeling approaches to understand the metabolic profile of L.

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

198

major under different environmental conditions. The

workflow mainly includes the integration of gene expression

data from promastigote and amastigote stages into our

metabolic model using Gene Inactivity Moderated by

Metabolism and Expression (GIMME) method [13].

2. Methodology

2.1. Model extension and refinement

The existing metabolic model iAC560 [10] was extended to

include sugar nucleotides biosynthetic pathways, which

reactions and enzyme-coding genes were collected from

databases like KEGG [26] and LeishCyc [27]. As some of the

reaction steps were not associated with a specific gene,

homology search tools like BLAST [1], were applied to find

the highest scoring gene sequences (% identity ≥ 40%,

alignment length ≥ 70% and E-value 1.0e
-30

), as described in

[19] and associate those to the corresponding reactions.

Additionally, based on experimental evidence, several

metabolic reactions were altered in terms of reversibility

and/or compartments, while new transport reactions for sugar

nucleotides, lipids, and fatty acids were also included. Refer to

Supplementary material S1 for added, deleted or altered

reactions.

2.2. Biomass composition

The macromolecular composition of L. major cells was also

corrected. Protein, DNA and RNA contents were estimated

from L. donovani studies [19], while carbohydrates, lipids, and

polyamine contents were calculated using experimental data

from protozoan Tetrahymena [28,29] and L. mexicana [30].

Individual carbohydrates, such as mannan, lipophosphoglycan

(LPG), glycoinositol phospholipid (GIPL), and N-glycans,

were estimated as follows: mannan contents were assumed to

represent 80% and 90 % of all carbohydrates in promastigote

and amastigote stage, respectively [30], while LPG, GIPL, and

N-glycans would represent 20% and 10% in total,

respectively. The relative mass fractions (w/w) of LPG, GIPL,

and N-glycans were estimated based on previous studies [31–

34]. Further details on biomass calculations can be found in

Supplementary material S2.

2.3. In-silico media formulation

2.3.1. Modified Media for Promastigote (MMP)

MMP was formulated for L. major growth under promastigote

stage, which includes 16 nutrient sources: L-arginine, L-

cysteine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-

methionine, L-phenylalanine, L-threonine, L-tyrosine, L-

valine, hypoxanthine, phosphate, oxygen, proline, and

glucose. The nutrients, in particular, glucose and proline were

considered based on the previous studies [35,36], explaining

that both the compounds are major carbon source for

Leishmania promastigote, while remaining ones were included

considering the experimental studies [37,38] and

computational predictions in [10], which concluded that

Leishmania can grow in these nutrients.

2.3.2. Modified Media for Amastigote (MMA)

MMA includes all 16 nutrients from MMP with additional

amino sugars, amino acids, lipids and fatty acids, making a

total of 21 nutrients. GlcN and GlcNAc sugars were added

considering findings from Naderer et al. (2010) studies [4] that

showed the degradation of glycosaminoglycans inside

macrophages to provide GlcN and GlcNAc as carbon sources

during the amastigote stage. Fatty acids like stearyl acid and

lipids, e.g. phosphatidylethanolamine were also considered,

based on different studies that show that Leishmania utilizes

lipids from host cells and transports them into the cytosol

[39,40]. The consumption of the lipids and fatty acids during

amastigote stages were also supported by other experimental

studies discussing the possibility of growth of Leishmania

axenic amastigote in lipid and fatty acid-rich medium [41–43].

The amino acids aspartate and alanine were also added to

MMA, based on higher consumption measurements of these

amino acids as carbon sources by amastigotes [44].

2.4. Reaction flux constraints in FBA-based
simulations

Model simulations under amastigote and promastigote stages

were estimated using different reaction constraints. For

example, the uptake flux for proline was reduced by 90% in

amastigote compared to promastigote simulations, based on

the previous study showing a decrease in the consumption of

this particular amino acid in L. mexicana amastigotes [35].

Also, glucose uptake flux was constrained to 90% less than

that in the promastigote stage, considering previous findings

[45,46], which concluded that parasitophorous vacuole is a

compartment poor in glucose. Furthermore, the oxygen uptake

in amastigote stage was significantly reduced as compared to

that in the promastigote stage, considering the fact that

Leishmania-infected macrophage is an oxygen-deficient entity

[47,48]. The upper and lower limits for uptake fluxes for all

other nutrients were set unconstrained (See Supplementary

material S2).

2.5. Metabolic network analysis

The gene expression data (FPKM
1
 values) of 10275 genes

from Leishmania spp. [49] was integrated with the extended

metabolic model (termed as iSK570) by applying GIMME

approach. OptFlux modules [50] were used to run GIMME

algorithm and to perform FBA-based analyses under different

environmental conditions.

Briefly, GIMME implementation considers genes (and

associated reactions) with an expression level below the

threshold as inactive, and thus removes those from the

simulation. The algorithm may reconsider few of these

1
 FPKM (Fragments Per Kilobase Million) is method for estimating relative

abundance of transcripts in terms of fragments observed in RNA-Seq
experiment.

199

inactive reactions, especially the essential ones and so-called

metabolically important reactions (MIRs), back in the

simulation to achieve an optimal solution. The remaining

reactions are blocked and termed as metabolically unwanted

reactions (MURs) in that particular metabolic state.

Inconsistencies between the metabolic model and gene

expression data are estimated based on MIRs that are re-

inserted in the model; however, GIMME solves a linear

programming (LP) on reconsidered reactions to minimize this

inconsistency. As such, inconsistency scores (IS) are

calculated and associated with each metabolic reaction.

Accordingly, metabolic reactions can be categorized as

follow:

Figure 1: A) Workflow for integrating gene expression data

into the metabolic. B) An exemplifying scheme for calculating

inconsistency score (IS) using gene expression and flux

values.

(1) inactive (expression levels below the threshold and

metabolic flux
2
 equal to zero);

(2) potentially inactive (expression levels below the

threshold and metabolic flux
2
 is non-zero);

(3) potentially active (expression levels above the

threshold and metabolic flux
2
 equal to zero);

(4) active (expression levels above the threshold and

metabolic flux
2
 is non-zero).

Different threshold values were tested, and inconsistency

scores (IS) were recalculated as described in [13] (Figure 1).

Furthermore, flux spans
3
 based on Flux Variability Analysis

(FVA) and PFBA flux distributions were compared. The

predicted changes in metabolic operability of reactions after

GIMME implementation were also compared with proteomic

data from Pawar et al. (2014) [51].

3. Results and Discussion

3.1. Consistency between metabolic model
iSK570 and gene expression data in
promastigote conditions

Based on different tests, where the gene expression threshold

values were changed, it was observed that IS values increase

with the threshold values (Figure 2A), particularly above

threshold values of 11 (Figure 2B). Below this threshold, IS

values are close to zero, indicating that there are only a few

inconsistencies between predicted fluxes and gene expression

levels associated to the corresponding reactions. As such,

while increasing the threshold value more reactions with

predicted fluxes different from zero, but with low expression

levels, i.e. reactions that should be active, are included, which

increases the level of inconsistency between expression data

and flux predictions. Although the number of potentially

inactive reactions, i.e. reactions with expression levels below

the threshold and predicted zero flux, increases with the

threshold value, agreeing with metabolic predictions; the fact

is that increasing the threshold value tends to exclude

reactions that should be active as predicted by FBA-based

simulations.

2
 Metabolic flux was calculated by performing GIMME which uses

Parsimonious Flux Balance Analysis (PFBA) to run simulations.
3
 Flux span refers to the difference between maximum and minimum flux

values that a reaction can carry according to FVA analysis.

200

Figure 2: Evaluating inconsistencies between iSK570 model

predictions and gene expression data from L. major

promastigote cells. A) Inconsistency scores (IS) were

calculated for different expression threshold values, while

estimating the number of reactions with gene expression levels

below a threshold value and predicted flux values equal and

different from zero. B) Zoom in of plot A for lower threshold

values, showing the variation in the inconsistency score and

the number of reactions with gene expression below threshold

flux values different and equal to zero.

As shown in Figure 2A, the number of potentially inactive

reactions (i.e. with gene expression less than the threshold and

predicted flux equal to zero) increases to a maximum of 400 at

the highest expression threshold value (368). In general,

GIMME considers these reactions as MURs (or metabolically

unwanted reactions) and, ultimately they do not have an

impact on the flux distribution. Similarly, potentially active

reactions (i.e. with gene expression less than threshold and

flux equal to zero) can be associated with MIRs and GIMME

might need to reconsider some of these reactions during the

simulation process. These are almost 250 at a maximum

threshold value of 368. Although the number of MIRs are

lower than the number of MURs at a particular threshold

value, these contribute far more to increase IS values.

Therefore a threshold value should be carefully selected. In

the following analysis, a threshold value of 12 (equivalent IS =

5.9×10
2
) was chosen to perform GIMME simulations, which

predicted 30 genes (out of 570) with expression levels below

the threshold value, corresponding to 23 reactions from which

16 were considered MURs and 7 MIRs.

3.2. FVA and PFBA analyses

FVA analyses were performed based on GIMME results using

a threshold value of 12. Briefly, the idea was to evaluate

changes in metabolic predictions imposed by GIMME

constraints (especially blocked reactions or MURs) and

estimate the impact in the predicted metabolic flexibility under

the defined conditions. Therefore, FVA analyses with and

without GIMME constraints were compared. Reactions were

categorized as such: type1, minimum and maximum FVA

fluxes equal to zero; type2, minimum and maximum FVA

fluxes different from zero (either positive or negative); and

type3, minimum and maximum FVA fluxes equal to upper

and lower bounds of reactions (Table 1).

Results show that the number of reactions type3 decreased,

while reactions type1 and type2 increased, which suggests that

GIMME-based constraints reduced metabolic flexibility

associated with large FVA spans as defined by FVA fluxes of

type 3 reactions. Also, reactions type 1 with FVA spans of

zero (i.e. blocked reactions) contribute to decrease this

metabolic flexibility, as the number of possible alternatives for

carbon distribution within the network also decreases.

Minimum and maximum flux values from FVA analyses with

and without GIMME constraints for each reaction are

presented in Supplementary material S1.

Table 1: Number of reactions classified as type1, type2 and

type3 from FVA results considering simulations with and

without GIMME-based constraints (i.e. deleting MURs).

Reaction

Category

Minimum (min) and

maximum (max)

FVA values

Number of reactions

 Without

GIMME-

based

constraints

With

GIMME-

based

constraints

type1 min = 0 and

max = 0

472 493

type2 min/max< 0

or min/max > 0

239 256

type3 min =lower bound and

max=upper bound

466 428

Additionally, PFBA and GIMME flux distributions were

compared. In general, flux distributions did not change

significantly, most likely because of small differences in the

number of active and non-active reactions (Figure 3A);

however, few reactions changed their flux values from zero to

non-zero and vice-versa. The reactions with these binary

changes are mostly transport reactions, but reactions

associated with metabolic pathways like “Glycerolipid

metabolism” (30.3 %) and “Pyrimidine metabolism” (9.09%)

(Figure 3B) were also found. Changes in flux operability of

these reactions can be supported by proteomic data for L.

major from Pawar et al., 2014 [51], which showed that genes

associated with eight reactions (out of ten) that changed their

fluxes from zero to non-zero, are expressed at the protein level

(Table 2). This indicates that GIMME-based flux analyses

improve model predictions.

201

Table 2: List of reactions which showed binary changes (zero

to non-zero) in their fluxes after GIMME implementation

(threshold value of 12), and which associated enzymes have

positive expression at protein level.

Reaction ID

PFBA flux value Associated

genes
Protein

expression

[51]
 Without

GIMME
With

GIMME

R_AGPATi_L

M

0 4.80 LmjF32.1960 yes

R_CDPDSPm_
LM

0 3.26 LmjF14.1200 yes

R_GPAM_LM 0 4.80 LmjF34.1090 yes

R_HEXg 0 99.30 (LmjF21.0250

or
LmjF36.2320)

or

LmjF21.0240)

yes

R_ME1x 0 162.49 LmjF24.0770 yes

R_PAPAm_LM 0 1.04 (LmjF18.0440

or

LmjF19.1350)

yes

R_PNS1 0 10000 LmjF29.2800 yes

R_UPPRTr 0 -10000 LmjF34.1040 yes

Figure 3: A) Changes in the number of reactions with

predicted flux = 0 or ≠ 0 after GIMME implementation. B)

Percentage cellular distribution of the reactions which showed

binary changes in their fluxes after GIMME.

4. Conclusion

The work described the application of GIMME algorithm in

combination with flux-based analysis to integrate gene

expression data into genome-scale models to determine

consistency between data and metabolic model iSK570. The

strategy has been used to put an extra layer of stoichiometric

constraints on reactions to predict more accurate fluxes across

various pathways of L. major. The predicted

activation/inactivation of the metabolic reactions in a

particular environment was supported by expression of the

associated enzymes at the protein level. Improved flux

distribution further used to describe stage-specific metabolism

and drug target predictions in Leishmania (not described here

due to page limitations). All supplementary data mentioned in

this manuscript can be provided on demand.

5. Funding and Acknowledgement

This work was supported by the Initial Training Network,

GlycoPar, funded by the FP7 Marie Curie Actions of the

European Commission (FP7-PEOPLE-2013-ITN-608295).

The authors gratefully express appreciation to SilicoLife Lda

for providing required infrastructural facilities related to this

work. We also thank Bruno Pereira (systems biologist at

SilicoLife) and Hugo Giesteira (programmer at SilicoLife) for

scientific and technical assistance during various phases of the

project.

6. References

1. Philippe J. Guerin, Piero Olliaro, Shyam Sundar, Marleen Boelaert, Simon

L. Croft, Philippe Desjeux, Monique K. Wasunna, and Anthony D.M.
Bryceson. Visceral leishmaniasis: current status of control, diagnosis, and

treatment, and a proposed research and development agenda. Lancet Infect.

Dis, 2:494–501, 2002.
2. Goto H, Lindoso JA. Current diagnosis and treatment of cutaneous and

mucocutaneous leishmaniasis. Expert Rev Anti Infect Ther, 8:419–433, 2010.

3. Fred R. Opperdoes and Graham H. Coombs. Metabolism of Leishmania:
proven and predicted. Trends Parasitol, 23:149–158, 2007.

4. Thomas Naderer, Joanne Heng, and Malcolm J. McConville. Evidence that

intracellular stages of Leishmania major utilize amino sugars as a major
carbon source. PLoS Pathog, 6, 2010.

5. Thomas Naderer, Miriam Ellis, M Fleur Sernee, David P. De Souza, Joan
Curtis, Emanuela Handman, and Malcolm J. McConville. Virulence of

Leishmania major in macrophages and mice requires the gluconeogenic

enzyme fructose-1,6-bisphosphatase. Proc. Natl. Acad. Sci. U. S. A.,
103:5502–5507, 2006.

6. Daniel C. Turnock and Michael A. J. Ferguson. Sugar nucleotide pools of

Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Eukaryot.

Cell, 6:1450–1463, 2007.

7. Dany J. V. Beste, Tracy Hooper, Graham Stewart, Bhushan Bonde, Claudio

Avignone-Rossa, Michael E. Bushell, Paul Wheeler, Steffen Klamt, Andrzej
M. Kierzek, and Johnjoe McFadden. GSMN-TB: a web-based genome-scale

network model of Mycobacterium tuberculosis metabolism. Genome Biol.,

8:R89, 2007.
8. Hyun U. Kim, Tae Y. Kim, and Sang Y. Lee. Genome-scale metabolic

network analysis and drug targeting of multi-drug resistant pathogen

Acinetobacter baumannii AYE. Mol. Biosyst., 6:339–48, 2010.
9. Anu Raghunathan, Sookil Shin, and Simon Daefler. Systems approach to

investigating host-pathogen interactions in infections with the biothreat agent

Francisella. Constraints-based model of Francisella tularensis. BMC Syst.
Biol., 4:118, 2010.

10. Arvind K. Chavali, Jeffrey D. Whittemore, James A. Eddy, Kyle T.

202

Williams, and Jason A. Papin. Systems analysis of metabolism in the

pathogenic trypanosomatid Leishmania major. Mol. Syst. Biol., 4:177, 2008.
11. Germán Plata, Tzu Lin Hsiao, Kellen L. Olszewski, Manuel Llinás, and

Dennis Vitkup. Reconstruction and flux-balance analysis of the Plasmodium

falciparum metabolic network. Mol. Syst. Biol., 6:408, 2010.
12. Rajib Saha, Anupam Chowdhury, and Costas D. Maranas. Recent

advances in the reconstruction of metabolic models and integration of omics

data. Curr. Opin. Biotechnol., 29:39–45, 2004.
13. Scott A. Becker and Bernhard O. Palsson. Context-specific metabolic

networks are consistent with experiments. PLoS Comput. Biol., 4, 2008.

14. Tomer Shlomi, Moran N. Cabili, Markus J. Herrgård, Bernhard Palsson,
and Eytan Ruppin. Network-based prediction of human tissue-specific

metabolism. Nat. Biotechnol., 26:1003–1010, 2008.

15. Paul A. Jensen and Jason A. Papin. Functional integration of a metabolic
network model and expression data without arbitrary thresholding.

Bioinformatics, 27:541–547, 2011.

16. Sriram Chandrasekaran and Nathan D. Price. Probabilistic integrative
modeling of genome-scale metabolic and regulatory networks in Escherichia

coli and Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A.,

107:17845–50, 2010.
17. Sharon J. Wiback, Radhakrishnan Mahadevan, and Bernhard Palsson.

Using Metabolic Flux Data to Further Constrain the Metabolic Solution Space

and Predict Internal Flux Patterns: The Escherichia coli Spectrum. Biotechnol.
Bioeng., 86:317–331, 2004.

18. Tunahan Cakir, Kiran R. Patil, Zeynep I. Onsan, Kutlu O. Ulgen, Betul

Kirdar, and Jens Nielsen. Integration of metabolome data with metabolic
networks reveals reporter reactions. Mol. Syst. Biol., 2:50, 2006.

19. Mahesh Sharma, Naeem Shaikh, Shailendra Yadav, Sushma Singh, and
Prabha Garg. A systematic reconstruction and constraint-based analysis of

Leishmania donovani metabolic network: identification of potential

antileishmanial drug targets. Mol. BioSyst., 277:38245–38253, 2017.
20. Ruth Großeholz, Ching-Chiek Koh, Nadine Veith, Tomas Fiedler, Madlen

Strauss, Brett Olivier, Ben C. Collins, Olga T. Schubert, Frank Bergmann,

Bernd Kreikemeyer, Ruedi Aebersold, and Ursula Kummer. Integrating
highly quantitative proteomics and genome-scale metabolic modeling to study

pH adaptation in the human pathogen Enterococcus faecalis. npj Syst. Biol.

Appl., 2:16017, 2016.
21. Andrew R. Joyce and Bernhard O. Palsson. The model organism as a

system: integrating ‘omics’ data sets. Nat. Rev. Mol. Cell Biol., 7:198–210,

2006.
22. Martin Kaltdorf, Mugdha Srivastava, Shishir K. Gupta, Chunguang Liang,

Jasmin Binder, Anna-Maria Dietl, Zohar Meir, Hubertus Haas, Nir Osherov,

Sven Krappmann, and Thomas Dandekar. Systematic identification of anti-
fungal drug targets by a metabolic network approach. Front. Mol. Biosci.,

3:1–19, 2016.

23. Philipp Ludin, Ben Woodcroft, Stuart A. Ralph, and Pascal Mäser. In
silico prediction of antimalarial drug target candidates. Int J Parasitol Drugs

Drug Resist, 2:191–199, 2012.

24. Arvind K. Chavali, Anna S. Blazier, Jose L. Tlaxca, Paul A. Jensen,
Richard D. Pearson, and Jason A. Papin. Metabolic network analysis predicts

efficacy of FDA-approved drugs targeting the causative agent of a neglected

tropical disease. BMC Syst. Biol., 6:27, 2012.
25. Abhishek Subramanian and Ram R. Sarkar. Revealing the mystery of

metabolic adaptations using a genome scale model of Leishmania infantum.

Sci. Rep., 7:10262, 2017.
26. Kanehisa M, Goto S. Kyoto Encyclopedia of Genes and Genomes.

Nucleic Acids Res., 28:27–30, 2000.

27. Maria A. Doyle, James I. MacRae, David P. De Souza, Eleanor C.
Saunders, Malcolm J. McConville, and Vladimir A. Likic. LeishCyc: a

biochemical pathways database for Leishmania major. BMC Syst. Biol., 3:57,

2009.
28. Michael A. Gates, Andrew Rogerson, and Jacques Berger. Dry to wet

weight biomass conversion constant for Tetrahymena elliotti (Ciliophora,

Protozoa). Oecologia, 55:145–148, 1982.
29. P Hellung-Larsen and a P Andersen. Cell volume and dry weight of

cultured Tetrahymena. J. Cell Sci., ; 92 (Pt 2):319–24, 1989.

30. Julie E. Ralton, Thomas Naderer, Helena L. Piraino, Tanya A.
Bashtannyk, Judy M. Callaghan, and Malcolm J. McConville. Evidence that

Intracellular???1-2 Mannan Is a Virulence Factor in Leishmania Parasites. J.

Biol. Chem., 278:40757–40763, 2003.
31. Salvatore J. Turco and David L. Sacks. Expression of a stage-specific

lipophosphoglycan in Leishmania major amastigotes. Mol. Biochem.

Parasitol., 45:91–99, 1991.
32. Malcolm J. McConville and Mike Ferguson. The structure, biosynthesis

and function of glycosylated phosphatidylinositols in the parasitic protozoa

and higher eukaryotes. Biochem. J., 294:305–324, 1993.
33. Albert Descoteaux and Salvatore J. Turco. The lipophosphoglycan of

Leishmania and macrophage protein kinase C. Parasitol. Today, 9:468–471,

1993.
34. John A. Kink and Kwang P. Chang. N-Glycosylation as a biochemical

basis for virulence in Leishmania mexicana amazonensis. Mol. Biochem.

Parasitol., 27:181–190, 1988.
35. Hart DT, Graham H. Coombs. Leishmania mexicana: Energy metabolism

of amastigotes and promastigotes. Exp. Parasitol., 54:397–409, 1982.

36. Petrie M. Rainey and Nicholle Mackenzie. A carbon-13 nuclear magnetic
resonance analysis of the products of glucose metabolism in Leishmania

pifanoi amastigotes and promastigotes. Mol. Biochem. Parasitol., 45:307–315,

1991.
37. Timothee Merlen, Denis Sereno, Nathalie Brajon, Florence Rostand, and

Jean Loup Lemesre. Leishmania spp.: Completely defined medium without

serum and macromolecules (CDM/LP) for the continuous in vitro cultivation
of infective promastigote forms. Am. J. Trop. Med. Hyg, 60:41–50, 1999.

38. Frederick L. Schuster and James J. Sullivan. Cultivation of clinically

significant hemoflagellates. Clin. Microbiol. Rev., 15:374–389, 2002.
39. Thomas Naderer and Malcolm J. McConville. The Leishmania-

macrophage interaction: A metabolic perspective. Cell. Microbiol., 10:301–

308, 2008.
40. Kai Zhang, Justine M. Pompey, Fong F. Hsu, Phillip Key, Padmavathi

Bandhuvula, Julie D. Saba, John Turk, and Stephen M. Beverley. Redirection

of sphingolipid metabolism toward de novo synthesis of ethanolamine in
Leishmania. EMBO J., 26:1094–104, 2007.

41. Malcolm J. McConville and Blackwell JM. Developmental changes in the
glycosylated phosphatidylinositols of Leishmania donovani. Characterization

of the promastigote and amastigote glycolipids. J. Biol. Chem., 266:15170–

15179, 1991.
42. Winter G, Fuchs M, McConville MJ, et al. Surface antigens of Leishmania

mexicana amastigotes: characterization of glycoinositol phospholipids and a

macrophage-derived glycosphingolipid. J. Cell Sci., 107:2471–82, 1994.
43. Kai Zhang, Fong F. Hsu, David A. Scott, Roberto Docampo, John Turk,

and Stephen M. Beverley. Leishmania salvage and remodelling of host

sphingolipids in amastigote survival and acidocalcisome biogenesis. Mol.
Microbiol., 55:1566–1578, 2005.

44. Eleanor C. Saunders, William W. Ng, Jennifer M. Chambers, Milica Ng,

Thomas Naderer, Jens O. Krömer, Vladimir A. Likic, and Malcolm J.
McConville. Isotopomer profiling of Leishmania mexicana promastigotes

reveals important roles for succinate fermentation and aspartate uptake in

Tricarboxylic Acid Cycle (TCA) anaplerosis,,glutamate synthesis, and
growth. J. Biol. Chem., 286:27706–27717, 2011.

45. Henry W. Murray, Jonathan D. Berman, Clive R. Davies, and Nancy G.

Saravia. Advances in leishmaniasis. Lancet, 366:1561–1577, 2005.
46. A Garami and T Ilg. The Role of Phosphomannose Isomerase in

Leishmania mexicana Glycoconjugate Synthesis and Virulence. J. Biol.

Chem., 276:6566–6575, 2001.
47. Alexander Mahnke, Robert J. Meier, Valentin Schatz, Julian Hofmann,

Kirstin Castiglione, Ulrike Schleicher, Otto S. Wolfbeis, Christian Bogdan,

and Jonathan Jantsch. Hypoxia in Leishmania major skin lesions impairs the
NO-dependent leishmanicidal activity of macrophages. J. Invest. Dermatol.,

134:2339–2346, 2014.

48. A. Degrossoli, Wagner W. Arrais-Silva, M. C. Colhone, F. R. Gadelha, P.
P. Joazeiro and S. Giorgio. The Influence of Low Oxygen on Macrophage

Response to Leishmania Infection. Scand. J. Immunol., 74:165–175, 2011.

49. Alberto Rastrojo, Fernando Carrasco-Ramiro, Diana Martín, Antonio
Crespillo, Rosa M. Reguera, Begoña Aguado, and Jose M. Requena. The

transcriptome of Leishmania major in the axenic promastigote stage:

transcript annotation and relative expression levels by RNA-seq. BMC
Genomics, 14:223, 2013.

50. Isabel Rocha, Paulo Maia, Pedro Evangelista, Paulo Vilaça, Simão Soares,

José P. Pinto, Jens Nielsen, Kiran R. Patil, Eugénio C. Ferreira, and Miguel
Rocha. OptFlux: an open-source software platform for in silico metabolic

engineering. BMC Syst. Biol., 4:45, 2010.

51. Harsh Pawar, Santosh Renuse, Sweta N. Khobragade, Sandip Chavan,
Gajanan Sathe, Praveen Kumar, Kiran N. Mahale, Kalpita Gore, Aditi

Kulkarni, Tanwi Dixit, Rajesh Raju, T. S. Keshava Prasad, H. C. Harsha,

Milind S. Patole, and Akhilesh Pandey. Neglected Tropical Diseases and
Omics Science: Proteogenomics Analysis of the Promastigote Stage of

Leishmania major Parasite. OMICS, 18:1–14, 2014.

203

A Next Generation Sequencing Approach to Analyze Genes Expression in

Breast Cancer Stem Cells

Anushree Tripathi , Gautam K. Verma, Krishna Misra*

Department of Applied Sciences, Indian Institute of Information Technology Allahabad (IIITA),

Allahabad, India-211015

*Corresponding author: kmisra@iiita.ac.in

Abstract

Despite progressive development in technologies for breast

cancer treatment, many challenging issues still persist.

Among these challenges, relapse of breast cancer cells was

found to be most critical aspect. These cells have tumor-

initiating and metastatic potential. The combination of

ALDH+ and CD44+/CD24- is widely recognized as

potential biomarker for the identification and

characterization of breast cancer stem cells. In recent

studies, it has been reported that ALDH+ breast cancer

cells are 100 fold more tumorigenic that ALDH- cells.

High level of tumorigenicity has been observed in breast

cancer cells exhibiting positive expression of CD44 and

negative expression of CD24. CD44 expression is

significantly correlated with Estrogen Receptor-negative

(ER-) breast cancer cells. The association between ALDH+

or CD44+/CD24- with Estrogen Receptor-positive (ER+)

breast cancer cells in terms of gene expression still remains

unresolved. In the present study, the up- and down-

regulation of gene expression have been studied that

strongly correlate with ALDH+ or CD44+/CD24-

expression in ER- and ER+ breast cancer cells by using

next-generation sequencing method. For the effective

breast cancer therapy, this novel strategy of targeting

significant genes can be used as biomarkers to reduce

breast cancer stem cells growth that is likely to suppress

breast cancer relapse.

Keywords: Cancer relapse, Breast cancer stem cells,

Biomarkers, Estrogen receptor, Next Generation

Sequencing.

1. Introduction

Breast cancer is found to be leading cause of deaths

specifically in women, adversely affecting survival rates.

According to World Health Organization (WHO) it has

been estimated that breast cancer is the most frequently

observed and affects millions all over the world.

GLOBOCAN 2012 report has stated that breast cancer

ranks second after lung cancer, accounting 15.4% deaths in

developed and 14.3% deaths of all cancers in developing

countries [1-3]. Despite tremendous progressive

development of techniques for reducing death rates caused

by breast cancer, there are many unresolved problems. The

most critical aspect of breast cancer treatment is the

recurrence of cancer cells that leads to metastasis [3]. A

small subset of breast cancer cell population has self-

renewal and differentiation potential, termed as breast

cancer stem cells or breast tumour-initiating cells. These

cells cause tumour initiation, tumour propagation and

metastasis [4, 5]. Early diagnosis of breast cancer needs

targeting of breast cancer stem cells. According to Kai et

al., targeting of breast cancer stem cells by combining

histone deacetylase and salinomycin can be used for

effective inhibition of tumour growth [6-7]. Such targeting

can be possible with the development of biomarkers to

identify and characterize breast cancer stem cells. Selective

and specific inhibition of cancer stem cells can be possible

by using molecular markers [8]. Among different

biomarkers, combination of Aldehyde dehydrogenases

(ALDHs) or CD44 and CD24 are known to be potential

markers to diagnose breast cancer stem cells growth. This

combination of markers can be used as a prognostic marker

for detecting breast cancer recurrence [9]. ALDHs

represent a class of nicotinamide-adenine dinucleotide

phosphate-positive (NAD(P)+)-dependent enzymes. These

are involved in catalyzing oxidation of endogenous

including (amino acids, lipids and vitamins) exogenous

(drugs and ethanol) aldehyde substrates to their

corresponding carboxylic acids. In breast cancer, ALDH

acts as a significant predictor of tumour progression by

regulating breast cancer stem cells growth [10, 11]. ALDH

strongly affects growth of breast cancer stem cells in

multiple ways such as gene expression, protein translation

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

204

and signalling pathways [12]. Functionally, ALDHs are

involved in modulation of retinoic acid signalling pathway

to enhance differentiation of breast cancer stem cells,

reduction of reactive oxygen species to protect breast

cancer stem cells under oxidative stress, chemotherapy

resistance to cause breast cancer relapse [13]. ALDHs

affect ER negative breast cancer cell lines.

Breast cancer stem cells expressing CD44+/CD24-

phenotypes have been used as another potential marker.

Sheridan et al., reported that breast cancer stem cells

exhibit CD44+/CD24- phenotypes are highly invasive and

facilitate metastasis detection. CD44 is a transmembrane

glycoprotein, encoded by CD44 gene on chromosome 11 in

humans [14]. It acts as a receptor for hyaluronan or

hyaluronic acid. CD44 constitutes major component of

extracellular matrix and mediates cell-cell and cell-matrix

interaction in metastatic growth of breast cancer stem cells.

It has been identified as a cancer stem cell marker [15].

CD24 gene on chromosome 6 encodes CD24 which is a

small cell surface protein attached to glycosyl-

phosphatidyl-inositol. It was obtained in mice as heat

stable antigen. CD24 exhibits variety of physiological

functions due to high glycosylation activity and plays

important role in cell-cell and cell-matrix interactions [16].

Breast cancer can be classified as Estrogen receptor-

positive (ER+) and Estrogen receptor-negative (ER-)

cancer types. ER+ tumours of breast cancer possess high

gene expression of luminal cells and also known as luminal

group. It has been estimated that 75% breast cancers are

ER+ type. Besides, ER- cells express low level of Estrogen

receptor accounting nearly 30% of breast cancer. Due to

low expression level of Estrogen receptor, breast cancer

stem cells exhibit high level of drug resistance that

ultimately results in high rate of breast cancer relapse in

ER- cells [17]. Breast cancer cell line i.e., BT-474 has been

identified as ER- whereas MDA-MB-231 has shown

positive expression for Estrogen receptor [18].

In the present study, gene expression pattern has been

observed in ER- and ER+ breast cancer in context of

ALDH+/CD44+/CD24- biomarkers in order to predict

significant genes as well as their up- and down-regulation

in breast cancer stem cells. Genes of breast cancer stem

cells were identified from the population of breast cancer

cell line by using retrieved data of ALDH+/CD44+/CD24-

markers through mapping and alignment methods of Next

Generation Sequencing approach. Based on gene finding,

network models have been designed to obtain association

of significant genes with signalling pathways.

2. Material and methods

2.1. Data retrieval

Three Sequence Read Archive (SRA) data were

downloaded from National Centre for Biotechnology

Information (NCBI). First data was associated with

transcriptional characterization of different states of cancer

stem cells in triple negative breast cancer using

ALDH+/CD44+/CD24- markers. Second and third data

containing regulatory analysis of nuclear receptor

signalling in MDA-MB-231 and BT474 breast cancer cell

lines were downloaded. Figure 1 represents the overview

of proposed methodology.

Figure 1: Overview of proposed methodology

Figure 2 depicts the basic steps of proposed methodology.

This figure elaborates filtering and mapping tools used in

the present study.

Figure 2: Basic steps of proposed methodology

205

2.2. Conversion of SRA data into FASTQ

The file format of downloaded .sra files were converted

into .fastq format using sratoolkit 2.8. A series of

independent data dump utilities constitute SRA Toolkit for

the conversion of file formats. SRA Toolkit works on

compression by reference using aligned data. This tool

stores differences in base pairs between sequence data and

the segment it aligns on.

2.3. Quality Control analysis

The quality checking of raw SRA data of three samples

were carried out using NGSQC Toolkit 2.3.3. The filtered

data for three samples were obtained through quality

checking. The NGSQC Toolkit is based on Perl script

supported by both Windows and Linux. It provides

packages for quality check of sequencing data, trimming of

raw data and statistics of quality scores.

2.4. Reference genome retrieval

The reference genome was searched using ensemble

database. If the reference genome was available, then the

filtered data were used as input for indexing using Bowtie

indexer.

2.5. Gene expression analysis with TopHat and

Cufflinks

The gene expression analysis of three retrieved data were

taken as input for generating index by using Bowtie with

DNA sequence in Fasta format. By using TopHat, the

alignment of RNA sequence reads to the reference genome

was carried out. The specificity of TopHat lies in mapping

splice junctions. The transcriptomic assembly from

downloaded RNA sequence data was performed with

cufflinks. The input file in BAM (Binary equivalent SAM

file) format was used to generate assembled isoforms in

.gtf format. Cuffmerge module was used to merge

transcript assemblies of three retrieved data. Using

Cuffdiff, the expression of significant genes were

determined.

2.6. Network modelling for predicted genes

Based on predicted genes, the network modelling was

carried out using Cytoscape. The network models were

prepared to find the connectivity of genes with signalling

pathways.

3. Results and Discussion

The significant genes were predicted on the basis of P-

value and fold change. The values of P-value and fold

change depict up-regulation and down-regulation of genes

shown in Table 1 and Table 2. On the basis of fold change

of +2 and P-value of 0.05, the up-regulated genes were

predicted whereas down-regulated genes were obtained

using fold change of -2 and P-value of 0.05.

Table 1: List of significant genes with their P-value and

fold change of ER- cancer cell line of MDA-MB-231

S.No. Gene name Log2Fold

Change

P-value

1. PKMP1 10.88 8.10E-06

2. RP11-500G10.5 9.47 6.37E-05

3. AL359878.1 9.36 1.64E-05

4. ANKRD1 9.23 1.59E-05

5. TMPRSS12 9.63 8.90E-06

6. ATP5C1P1 14.4 4.68E-06

7. RP11-64K12.10 8.92 4.16E-05

8. CORO2B 10.71 3.77E-05

9. CTB-134H23.2 9.94 2.30E-06

10. CTC-786C10.1 9.29 1.06E-05

11. RP11-416I2.1 8.31 7.15E-05

12. CTD-2231E14.6 9.36 6.99E-06

13. CTD-2291D10.1 9.02 5.59E-05

14. CTC-471F3.5 9.93 1.58E-05

15. AC080125.1 9.10 7.32E-05

16. ADAMTS6 10.0 8.07E-05

17. CTC-329D1.2 9.57 6.80E-05

18. DUSP4 10.1 5.24E-05

19. RP11-187C18.3 10.8 4.54E-05

20. RP11-436G20.1 10.8 4.23E-05

21. RP11-111F5.2 9.91 5.49E-06

22. AL772307.1 9.94 4.38E-06

23. RNU6ATAC 9.72 4.19E-06

24. RNA5-8SP6 12.4 1.37E-05

25. RP4-561L24.3 12.0 5.06E-08

26. PRELP -8.77 2.56E-05

Among twenty five upregulated significant genes shown in

Table 1, genes such as ANKRD1, TMPRSS12, CORO2B,

ADAMTS6 and DUSP4 were observed to be upregulated

and significantly involved in tumorigenesis. In recent

studies of Xie et al., ADAMTS6 belongs to a family of A

Disintegrin And Metalloproteinase with ThromboSpondin

motifs. The dysregulation of ADAMT6 results in the tumor

development. The high expression level of ADAMT6 has

shown favourable prognosis in breast cancer patients [20].

206

The up-regulation of ADAMTS6 has been observed in ER-

breast cancer cell line. Another gene was found to be up-

regulated i.e., TMPRSS12, a transmembrane protease

serine 12 protein coding gene possesses endopeptidase

activity. ANKRD1gene encodes Ankyrin repeat domain 1

protein. Its expression level is stimulated by the

overexpression of p53 and Rac1. Research studies of Kojic

et al. [21] reported the peculiar role of ANKRD1 gene as a

transcriptional co-activator regulating p53 activity .The

functional involvement of ANKRD1 has been observed in

monitoring YAP (Yes associated protein). The YAP

protein plays key role in tumorigenesis by enhancing self-

renewal property and migration of cancer stem cells [22].

In this study, ANKRD1 seems to be involved in ER- breast

cancer. Functionally, CORO2B gene encoding actin

binding protein i.e, Coronin like protein 2B and mainly

contributes in reorganization of actin structure. Previous

studies of Toro et al., analyzed the expression of CORO2B

in ER+ tumour in context of obesity as one of the risk

factor causing breast cancer in postmenopausal women

[23]. Its high expression level has been observed in the

present work. The Dual specificity phosphatase 4 (DUSP4)

gene has significant effect in modulating tumor initiation,

mammosphere formation and expression level of

CD44
+
/CD24

-
markers. It has been reported as negative

regulator of MAPK signalling pathway [24]. As shown in

Figure 3, the DUSP4 is directly involved in the modulation

of MAPK pathway.

Figure 3: Network model of predicted genes of ER-

negative cell line. Physical interactions (pink lines),

Predicted genes (Orange), genetic interactions (green),

Pathways (cyan).

The proline/arginine rich repeat protein (PRELP) encoded

by PRELP gene, expressed in cartilage and bone matrices.

It inhibits osteoclastogenesis by reducing NF-κB activity.

It represses the growth of breast tumour in causing

metastasis through the interaction with microenvironment

[25]. The down-regulation of PRELP was observed which

needs to be up-regulated for inhibiting breast cancer

metastasis.The predicted significant genes in ER+ breast

cancer line show different forms of miRNAs, C6orf48 and

CD83 as shown in Table 2.

Table 2: List of significant genes based on P-value and fold

change of ER+ cancer cell line of BT474.

S.N

o.

Gene name Log2Fold

Change

P-value

1. MIR17

MIR17HG

MIR18A

MIR19A

MIR19B1

MIR20A

MIR92A1

10.29 2.03E-06

2. AC016739.2 10.81 4.52E-06

3. RNA5SP149 12.79 4.56E-06

4. C6orf48 13.12 1.81E-07

5. Metazoa_SR

P

8.94 1.23E-05

6. RNA5-8SP6 10.93 1.50E-07

7. CD83 -8.33 1.49E-05

Previous studies of Yang et al. [26], revealed the critical

role of up-regulated miR-17 in breast tumour progression.

The microRNAs are small 20-25 nucleotides and acting as

negative regulators of oncogenes. These promote breast

carcinogenesis by modulating multiple processes including

cellular proliferation, differentiation and metastasis. The

finding of present work validates the involvement of

miRNA-17 in breast cancer progression. It has been

reported that miRNA-18A is closely associated with Dicer

dysregulation by suppressing its expression and enhancing

Paclitaxel resistance [27]. The high expression level of

miRNA-18A has shown its role in breast cancer stem cells

in causing drug resistance. The down-regulation of

miRNA-20A was observed in breast cancer previously [28]

but its up-regulation has been analysed in the present work.

CD83 is primarily used as a marker for mature dendritic

cells (DC) and also expressed by activated B and T cells.

The expression on DC and T cells is essentially important

in modulating immune response [29]. Based on studies of

Poindexter et al. [30] the low expression level of CD83

207

was observed in tumour containing sentinel lymph nodes

of breast cancer patients. CD83 was found to be down-

regulated in breast cancer in this work. Based on prediction

of significant genes of ER+ breast cancer cell line using

combination of ALDH+/CD44+/CD24- markers, network

model was generated to find the connectivity of signalling

pathway with predicted genes. Figure 4 shows the network

model of ER+ breast cancer cell line.

Figure 4: Network model of predicted genes of ER+ breast

cancer cell line.

In this model (Figure 4), the NF-κB pathway is associated

with predicted significant genes in ER+ cell line of BT474.

4. Conclusion

In order to reduce breast cancer recurrence, the targeting of

genes in the small sub-population of cancer stem cells can

be considered as important therapeutic strategy. The

present work identifies significant genes such as

ANKRD1, TMPRSS12, CORO2B, ADAMTS6 and

DUSP4 in ER- whereas genes including C6orf48 and

CD83 and miRNAs in ER+ breast cancer cell line. These

significant genes can be used as potent biomarkers for the

identification and characterization of breast cancer stem

cells for reducing many obstacles of successful cancer

therapy such as tumorigenesis, drug resistance and

metastasis. The targeting of signalling pathways of breast

cancer stem cells such as MAPK and NF-κB and finding

their association with predicted genes can be further

exploited for the effective treatment of breast cancer.

Acknowledgement

The author (A.T.) is thankful to the Ministry of Human

Resource and Development (MHRD) for fellowship and

Indian Institute of Information Technology Allahabad for

providing financial support to complete the present work.

References

[1] Carol DeSantis, Jiemin Ma, Leah Bryan,

Ahmedin Jemal, Breast cancer statistics, 2013. CA

Cancer J. Clin., 64(1): 52-62, 2014.

[2] Ashutosh K. Dubey, Umesh Gupta, Sonal Jain, Breast

cancer statistics and prediction methodology: a

systematic review and analysis. Asian Pac. J. Cancer

Prev., 16(10): 4237-45, 2015.

[3] Xiaomei Ma, Herbert Yu, Global burden of cancer,

Yale. J. Biol. Med., 79 (3-4):85-94, 2006.

[4] Thomas W. Owens and Matthew J. Naylor, Breast

cancer stem cells, Front Physiol., 4:225, 2013.

[5] Amanda J. Redig and Sandra S. McAllister, Breast

cancer as a systemic disease: a view of metastasis. J.

Intern. Med., 274(2):113-26, 2013.

[6] Suling Liu and Max S. Wicha, Targeting breast cancer

stem cells, J. Clin. Oncol. 28(25): 4006-4012, 2010.

[7] Masaya Kai, Noriko Kanaya, Shang V. Wu, Carlos

Mendez, Duc Nguyen, Thehang Luu, Shiuan Chen,

Targeting breast cancer stem cells in triple-negative

breast cancer using a combination of LHB589 and

salinomycin, Breast Cancer Res. Treat., 151(2):281-

94, 2015.

[8] Tobias Schatton, Natasha Y. Frank, Markus H. Frank,

Identification and targeting of cancer stem cells.

Bioessays 31(10): 1038-49, 2009.

[9] Yoshiya Horimoto, Atsushi Arakawa, Noriko

Sasahara, Masahiko Tanabe, Sei Sai, Takanori

Himuro, Mitsue Saito, Combination of cancer stem

cell markers CD44 and CD24 is superior to ALDH1 as

a prognostic indicator in breast cancer patients with

distant metastases. PLoS One, 11(10): e0165253,

2016.

[10] David W. Clark, Komaraiah Palle, Aldehyde

dehydrogenases in cancer stem cells: potential as

therapeutic targets, Ann. Transl. Med., 4(24): 518,

2016.

[11] Xia Xu, Shoujie Chai, Pingli Wang, Chenchen Zhang,

Yiming Yang, Ying Yang, Kai Wang, Aldehyde

dehydrogenases and cancer stem cells. Cancer Lett.,

369 (1): 50-7, 2015.

[12] Azam Bozorgi, Mozafar Khazaei, Mohammad Rasool

Khazaei, New findings on breast cancer stem cells: A

review. J Breast Cancer 18(4): 303-312, 2015.

208

[13] Hiroyuki Tomita, Kaori Tanaka, Takuji Tanaka,

Akira Hara, Aldehyde dehydrogenase 1A1 in stem

cells and cancer. Oncotarget 7(10): 11018-11032,

2016.

[14] Carol Sheridan, Hiromitsu Kishimoto, Robyn K.

Fuchs, Sanjana Mehrotra, Poornima Bhat-Nakshatri,

Charles H. Turner, Robert Goulet Jr, Sunil Badve,

Harikrishna Nakshatri, CD44+/ CD24- breast cancer

cells exhibit enhanced invasive properties: an early

step necessary for metastasis. Breast Cancer Res.,

8(5): R59, 2006.

[15] Yongmin Yan, Xiangsheng Zuo, Daoyan Wei,

Concise review: Emerging role of CD44 in cancer

stem cells: A promising biomarker and therapeutic

target. Stem Cells Transl. Med., 4(9): 1033-1043,

2015.

[16] Appalaraju Jaggupilli and Eyad Elkord, Significance

of CD44 and CD24 as cancer stem cell markers: An

enduring ambiguity. Clin. Dev. Immunol.

2012(2012):708036, 2012.

[17] Ozlem Yersal and Sabri Barutca, Biological subtypes

of breast cancer: Prognostic and therapeutic

implications. World J. Clin. Oncol., 5(3): 412-24,

2014.

[18] Kristina Subik, Jin-Feng Lee, Laurie Baxter, Tamera

Strzepek, Dawn Costello, Patti Crowley, Lianping

Xing, Mien-Chie Hung, Thomas Bonfiglio, David G.

Hicks, Ping Tang, The expression patterns of ER, PR,

HER2, CK5/6, EGFR, Ki-67 and AR by

immunohistochemical analysis in breast cancer cell

lines. Breast Cancer (Auckl.), 4: 35-41, 2010.

[19] Ravi K. Patel and Mukesh Jain, NGS QC Toolkit: A

toolkit for quality control of next generation

sequencing data. PLoS One 7(2): e30619, 2012.

[20] Yuxin Xie, Qiheng Gou, Kegi Xie, Zhu Wang,

Yanping Wang, Hong Zheng. ADAMTS6 suppresses

tumor progression via the ERK signaling pathway and

serves as a prognostic marker in human breast cancer.

Oncotarget 7(38): 61273- 61283, 2016.

[21] Snezana Kojic, Aleksandra Nestorovic, Ljiljana

Rakicevic, Anna Belgrano, Marjia Stankovic,

Aleksandra Divac, Georgine Faulkner. A novel role

for cardiac ankyrin repeat protein Ankrd1/ CARP as a

co-activator of the p53 tumor suppressor protein.

Arch. Biochem. Biophy. 502(1), 60-67, 2010.

[22] Giovanni Sorrentino, Naomi Ruggeri, Alessandro

Zannini, Eleonora Ingallina, Rebecca Bertolio,

Carolina Marotta, Carmelo Neri, Elisa Cappuzzello,

Mattia Forcato, Antonio Rosato, Miguel Mano, Silvio

Bicciato, Giannino Del Sal. Glucocorticoid receptor

signalling activates YAP in breast cancer. Nat.

Commun. 8:14073, 2017.

[23] Allyson L. Toro, Nicholas S. Costantino, Craig D.

Shriver, Darell L. Ellsworth, Rachel E. Ellsworth.

Effect of obesity on molecular characteristics of

invasive breast tumors: gene expression analysis in a

large cohort of female patients. BMC Obes. 3:22,

2016.

[24] Justin M. Balko, Luis J. Schwarz, Neil E. Bhola,

Richard Kurupi, Philip Owens, Todd W. Miller, Henry

Gomez, Rebecca S. Cook, Carlos L. Arteaga.

Activation of MAPK pathways due to DUSP4 loss

promotes cancer stem cell-like phenotypes in basal-

like breast cancer. Cancer Res. 73(20):6346-58, 2013.

[25] Nadia Rucci, Mattia Capulli, Luca Ventura, Adriano

Angelucci, Barbara Peruzzi, Viveka Tillgren, Murizio

Muraca, Dick Heinegard, Anna Teti. Proline/ arginine-

rich end leucine-rich repeat protein N-terminus is a

novel osteoclast antagonist that counteracts bone loss.

J Bone Miner Res. 28(9):1912-24, 2013.

[26] Fangliang Yang, Yuan Li, Lingyun Xu, Yulan Zhu,

Haiyan Gao, Lin Zhen, Lin Fang. miR-17 as a

diagnostic biomarker regulates cell proliferation in

breast cancer. Onco Targets Ther. 10: 543-550, 2017.

[27] L.-Y. Sha, Y. Zhang, W. Wang, X. Sui, S.-K. Lui, T.

Wang, H. Zhang. MiR-18a upregulation decreases

Dicer expression and confers paclitaxel resistance in

triple negative breast cancer. Eur. Rev. Med.

Pharmacol. Sci. 20(11): 2201-8, 2016.

[28] Ming-Qi Fan, Chi-Bing Huang, Yan Gu, Ya Xiao, Jin-

Xin Sheng, Lin Zhong. Decrease expression of

microRNA-20a promotes cancer cell proliferation and

predicts poor survival of hepatocelullar carcinoma. J.

Exp. Clin. Cancer Res., 32:21, 2013.

[29] Cindy Aerts-Toegaert, Carlo Heirman, Sandra

Tuyaerts, Jurgen Corthals, Joeri L. Aerts, Aude

Bonehill, Kris Thielemans, Karine Breckpot. CD83

expression on dendritic cells and T cells: Correlation

with effective immune responses. Eur. J. Immunol.,

37:686-95, 2007.

[30] Nancy J. Poindexter, Aysegul Sahin, Kelly K. Hunt,

Elizabeth A. Grimm. Analysis of dendritic cells in

tumor-free and tumor-containing sentinel lymph nodes

from patients with breast cancer. Breast Cancer

Research 6(4): R408-R415, 2004.

209

Machine Learning and Sentiment Analysis: Examining the Contextual Polarity of

Public Sentiment on Malaria Disease in Social Networks

Jelili Oyelade1, 3, *, Efosa Uwoghiren1, 3,Itunuoluwa Isewon1, 3, Olufunke Oladipupo1, Olufemi Aromolaran1, 3&

Kingsley Michael2

1Department of Computer & Information Science, Covenant University, Ota

2Department of Accounting, Covenant University, Ota
3Covenant University Bioinformatics Research Cluster (CUBRe), Ota

Abstract

Malaria, a major deadly disease which is still a threat to

human life’s even though numerous efforts has been put to

fight it, still affects over two hundred million people each

year amongst which over a million individuals dies.

Twitter happens to be an important and comprehensive

source of information that is quite subjective to individual

sentiments towards public health care. In this study, we

extracted tweets from the social network twitter, we pre-

processed the tweets extracted and built a model to fit our

data using a machine learning approach for text

classification to determine the contextual polarity of every

tweet on the subject of malaria in the bid to harvest

peoples’ opinion towards malaria and understand how well

research and recent development in the aid to tackle

malaria has affected the opinions of the public towards the

subject malaria. This study finds that tweets extracted, pre-

processed and classified in this study were majorly

classified as negative (-ve) due to the fact that tweets

tweeted were majorly about different occurrence of death,

misinformation and need for donations to save a life, hence

a major awareness is needed.

Keywords: Sentiment Analysis, Machine Learning

Technique, Malaria, Twitter, Data Mining.

1. Introduction

The dominance of malaria resistance to all identified anti-

malarial drugs in current circulation has given rise to the

increase of anti-malarial drug discovery research [1]–[3].

Hence, research towards the development of novel drug

which would serve as effective solutions for malaria

treatment are urgently needed [2]–[5] because despite the

colossal efforts put in to fight malaria, the disease still

affects up to over 200 million people every year amongst

which close to half a million dies [1], [5]–[9]. Considering

the declaration “Action and Investment to defeat Malaria

2016–2030 (AIM) – for a malaria-free world” [10], we

have decided to examine public opinion towards the

subject malaria. Opinions are central to almost all human

activities because they are key influencers of our

behaviours. As humans we love to find out what the public

feels or think about a particular brand, topic or subject area

this does not leave out finding out what people think about

a particular disease and how research and recent

developments are affecting the public opinion. With the

proliferation of Web to applications such as micro-

blogging, forums and social networks, reviews, comments,

recommendations, ratings and feedbacks have been made

very easy as users can generate content about virtually

anything.Twitter, which is a micro blogging platform

permits the fast exchange of personal ideas and thoughts,

therefore allowing users to tweet messages of about 140

characters [11]–[13]. With the explosion of this user

generated content, came the need for companies, service

providers, social psychologists, analysts and researchers to

mine and analyze these contents for different relevant uses,

this is quite significant bearing in mind that tweets are

often treated as facts and are cited in information outlets

for example news media [14]. The research community

and organizations are not left out in the need to find out

how their research and recent developments are affecting

the public opinion towards their discoveries and novel

implementations in a particular subject area, hence, the

reason for sentiment analysis. In this study, we have

decided to examine if the ground-breaking research and

recent developments on the subject malaria have really

affected people’s opinion and awareness on the subject

malaria.

1.1 Natural Language Processing
Natural languages are those languages spoken or written by

humans for the purposes of communication. Natural

Language processing (NLP) can be defined as “a

theoretically motivated range of computational techniques

for analysing and representing naturally occurring texts at

one or more levels, for the purpose of achieving human-

like language processing of tasks and applications”[15],

[16]. The field of NLP involves making computers to

perform useful tasks with the natural languages for human

use. The input and output of an NLP system can be either

Speech or Written Text. Below are the different stages in

natural language processing.

978-1-943436-11-8 / copyright ISCA, BICOB 2018
March 19-21, 2018, Las Vegas, Nevada, USA

210

Phonology: This deals with organizing sound

systematically. Phonetics and phonology deal with the

articulatory and acoustic properties of speech sounds, how

they are produced, and how they are perceived, and the

rules that govern them [17], [18].

Lexical Analysis:identifying and analysing the structure of

words. Lexicon of a language means the collection of

words and phrases in a language [19], [20].

Morphological Analysis:Thisrefers to the study of

construction of words from primitive meaningful units.

Since the meaning of each morphemes are the same across

words human can break down an unknown word into

constituent’s morphemes in order to understand its

meaning [21], [22].

Syntactic Analysis: This involves determining the

structural role of words in the sentence and in phrases. The

words are transformed into structures that show how the

words are related to each other. This requires the grammar

and the parser. The output of this level of processing is a

representation of the sentence that reveals the structural

dependencies and relationships between the words [17],

[18], [22].

Semantic Analysis:It is concerned with the meaning of

words and how to combine words into meaningful phrases

and sentences. It assigns meanings to natural language

utterances. A semantic representation must be precise and

unambiguous. It draws the exact meaning or the dictionary

meaning from the text. The text is checked for

meaningfulness. It is done by mapping syntactic structures

and objects in the task domain [15], [20], [22].

Discourse Analysis: It deals with how the immediately

preceding sentence can affect the interpretation of the next

sentence. For example the word “it” in the sentence “she

wanted it” depends upon the prior discourse context. The

meaning of any sentence depends upon the meaning of the

sentence just before it. In addition, it also brings about the

meaning of immediately succeeding sentences [15], [17],

[20], [21].

1.2 Text Mining

Text mining, also known as Intelligent Text Analysis or

Knowledge-Discovery in Text (KDT), refers generally to

the process of extracting interesting and non-trivial

information and knowledge from unstructured text [23]–

[26]. Text mining is now widely being applied to many

domains, some of its application areas include: Sentiment

analysis, Educational application, Security applications,

biomedical applications, Digital humanities and

Computational sociology etc.

1.3 Sentiment Analysis

Sentiment analysis gives room of harvesting opinions from

reviews or expression of different users on a particular

subject matter or product. This groups opinions into either

negative, positive or neutral helping to determine the

attitude or opinion of a particular writer or speaker with

respect to certain topics [27]–[29].Sentiment Analysis is

considered a classification process. 3 major classification

levels makes up sentiment analysis which are the Sentence-

level whose its objective is classifying sentiment expressed

in subjective sentences as either negative or positive

sentiments, the Document-Level whose its objective is

classifying sentiment of the whole document as expressing

as either negative or positive sentiments and the Aspect

Level whose its objective is classifying sentiment with

respect to the specific aspects of entities [30]–[35].

1.3.1 Applications of Sentiment Analysis

Sentiment analysis has been applied to various real world

scenarios and a few has been considered in this study.

Reputation Monitoring: sentiment analysis has been

applied to monitor the reputation of different brands on

Facebook and twitter as they are the core of sentiment

analysis in this domain [36]

Product and Service Reviews: sentiment analysis has been

applied to the reviews of consumer products and services

using websites that provide automated summaries of

reviews about products and about their specific aspects

[27], [37]

Result Prediction: sentiment analysis has been applied to

predict the probable outcome of a particular event [38]. For

instance, sentiment analysis can provide substantial value

to candidates running for various positions enabling

campaign track how voters feel about different issues and

how they relate to the speeches and actions of the

candidates [38]

Decision Making: sentiment analysis has been applied to

help decision making process [39]. There are numerous

news items, articles, blogs, and tweets about each public

company. A sentiment analysis system can use these

various sources, articles that discuss the companies and

aggregate the sentiment about them as a single score that

can be used by an automated trading system [29], [39]

1.3.2 Sentiment Classification

The major aim of sentiment classification is classifying

documents or reviews into a definite number of predefined

categories. The expressions of opinions in a sentence,

document etc. could either be done using a scaling system

or binaries (negative and positive).

Feature Selection in Sentiment Classification: Feature

selection gives a better understanding of data by giving

211

their important features. Feature selection is an important

step in text categorization problems; not all the features in

a document are required to classify it. Feature selection

helps in removing unimportant or redundant words of text

and thereby reduces the dimensionality of documents [29],

[40].

1.3.3 Sentiment Classification Techniques

It can be roughly divided into machine learning approach

and lexicon based approach, the lexical based approach

relies on a sentiment lexicon, a collection of known and

precompiled sentiment terms.

Lexicon-based approach: Opinion words are employed in

many sentiment classification tasks. Positive opinion

words are used to express some desired states, while

negative opinion words are used to express some undesired

states. There are also opinion phrases and idioms which

together are called opinion lexicon [35], [38], [41], [42].

Machine learning (ML) Approach: Machine learning

techniques first trains the algorithm with a training data set

before applying it to the actual data set [43]. The text

classification methods using machine learning approach

can be roughly divided into supervised and unsupervised

learning methods [43], [44].

2. Materials and Method

2.1 Phases of the Methodology

Represented in table 1 are the method and techniques used

in different phases of this study.

Table 1: Method and techniques used in different phases

2.2 Design Considerations for the Sentiment

Analysis Model

The approach for the development of our sentiment

analysis model which involves tweets preprocessing,

feature extraction, Machine learning text clustering and

classification techniques is being described.

Tweets used were obtained through the Twitter streaming

API using python. These sets of tweets serve as the input

data for our model. These tweets were preprocessed by

removing stop words and harsh tags. Thereafter,

lemmatization, POS tagging, were performed to enable the

efficient extraction of features for the classification of

sentiments of the tweets. After these tweets have been

preprocessed, feature vectors were extracted and these

vectors were analyzed using machine learning algorithms

of clustering and classification techniques, the algorithms

to be used include Naïve Bayes and Support vector

Machine algorithms.

2.3 System Architecture

This shows the formal description and representation in a

way that supports reasoning about the structure and

behaviour of the system. It comprises of the individual

components and the way they work together to implement

the sentiment analysis model. Figure 1 shows the System

architecture and its various components.

Figure 1: The system architecture of our study

Phase Methods |

techniques

Output

Tweets Collection Obtaining tweets

from Streaming

twitter API

Samples of

relevant

tweets.

Linguistic analysis Lemmatization,

stop words

removal, harsh

tags removal

Pre-

processed

tweets

Feature Extraction Extracting

feature vectors to

identify

sentiment

polarity

Feature

vectors

Sentiment Analysis Implementation

of the model to

classify and

identify

sentiment

polarity

Sentiment

polarity,

positive,

Negative

and Neutral

Stream

ing

API

Sentiment

polarity

Classification

of tweets

using support

vector

machine

algorithm

Featu

re

extra

ction

Tweets

preprocess

ing and

cleaning

stage

Tokenizati

on,

removal

of stop

words

Twe

ets

Training

Labelled

data sets

212

2.4 Framework of the Sentiment Analysis

Model

Here the different stages involved in the development of

this study sentiment analysis model are comprehensively

outlined. It explains the process and components for

analysis, design and implementation of the model. Figure 2

shows the entire life cycle of this model which is in 4

major phases namely Tweet Pre-processing, Feature

Extraction, Semantic Analysis, and Machine learning

Classification.

Figure 2: Framework of the Sentiment Analysis Model

2.4.1 Tweets Preprocessing

This is the first stage of the development process. Natural

language text can’t be processed directly; it must be pre-

processed first in order to obtain accurate results at the end

of this project. In light of that, the Pre-processing phase

includes Tokenization, Language detection, Stop words

removal. These processes would be explicitly explained

below with corresponding examples.

Tokenization: We tokenized the text to make it easy to

separate out other unnecessary symbols and punctuations,

and leave out only those words that can add value to the

sentimental polarity score of the text. For a sample input

text says "Tunde said the food he bought is bad".

Tokenizing divides the strings into lists of substrings

known as the tokens.

Language detection: This enables only the detection of

tweets in English since we are mainly interested in English

text only. This is possible by using NLTK's language

detection feature.

Stop words Removal: In this process, we removed very

common words such as “all", “almost", “alone", etc. The

reason for this is because their appearance in a tweet does

not provide any useful information in classifying a tweet as

positive, negative or neutral.

2.4.2 Part of speech (POS) tagging

POS tagging assigns a tag to each word in a text and

classifies a word to a specific morphological category such

as noun, verb, adjective, etc. POS taggers are efficient for

explicit feature extraction in terms of accuracy.

2.4.3 Feature Extraction

The improved dataset after pre-processing has a lot of

distinctive properties. The feature extraction method,

extracts the adjective from the dataset. Later this adjective

would be used to show the positive and negative polarity in

a sentence which is useful for determining the opinion of

individuals. This would be done using a Unigram model.

Unigram model extracts the adjective and segregates it. It

discards the preceding and successive word occurring with

the adjective in the sentences. For above example, i.e.

“painting ugly” through unigram model, only ugly is

extracted from the sentence.

2.4.4 Tweets Classification and Identification

of Sentiment Polarity

When using a machine learning approach, the ways

features are selected are very important to the success rate

of the classification. In this study, we used 2 major

machine learning algorithms which are Support Vector

Machine (SVM) Algorithm and Naïve Bayes (NB)

Algorithm. SVM & NB algorithms are trained using the

features generated which results into the training model.

3. Results

3.1 Tweets Collection

Twitter Application Programming Interface (API) which

was implemented in python language was used to collect

English-language tweets relating to malaria over a period

of several weeks. The corpus consists of thousands of

tweets from search tags like ‘malaria’, ‘malaria Africa’,

‘malaria Mozambique’, ‘malaria Nigeria’, etc. This task

was performed by different experts.

Table 2: Sample of tweets collected

Sample of tweets collected Sample of tweets collected

@Y1079FM

@iambrownberry

@deejayLoft

@LukmanEvergreenHelo

brown berry u make my

sunday morning amazing

wooow.cant s\xe2\x80\xa6

https://t.co/o2x1DPUT7z

Currently sat under my

@SandeshRishi

@altnews_in @mepratap

@timesofindia You are so

right, the girl died because

of Malaria !\xe2\x80\xa6

https://t.co/CibEtxBtk7

Do you know that hunger

kills more people annually

than AIDS, malaria and

Identified

Sentiment

Polarity

POS

Taggin

g

Feature

extracti

on Tweets

from

Streami

ng

Twitter

API

Training

data

Tweets

Clustering and

Classification

Tweets

pre-

processin

g

213

mosquito. net listening to

TMS in Nigeria suffering

with malaria! #bbccricket

#TMS

RT @fulelo: Extreme

gardening to help tackle

malaria

https://t.co/ojaXL51W6J

RT @Beanchesterr: Latest

research has it that bank

alerts can cure malaria.

Extreme gardening to help

tackle malaria

https://t.co/ojaXL51W6J

@GRadioRockstar Lmao

and the you read through

and find out "Big Daddy

Juix was exposed to

malaria" damn headlines

tuberculosis

combined?\xe2\x80\xa6

https://t.co/51bh4ItiiD

Is there a way to threat

Malaria without taking pills

or injections???

RT @scienmag: Chances of

surviving malaria may be

higher when host consumes

fewer calories

https://t.co/NCF8WH7JFP

https://t.co/AAxOaotUz3

@Blackkout__ I got very

sick at they little age... I

was down with malaria 3+.

I was very OK but the

stress was too much. And

it's not like I did any

tedious work. Just moving

about caused malaria.

RT @ISGLOBALorg:

Beatriz Galatas

@beagalatas: Working on

#malaria elimination in

#Mozambique

https://t.co/esVX5jrSmX

@Manhica_CISM

@FundlaC\xe2\x80\xa6

After taking malaria meds i

always think to myself

"dont go to sleep, dont go

to sleep..."

https://t.co/egUI8rPWWe

RT @PaulUithol: Second

day of @sotmafrica!

Kicking off with

Before he was diagnose of

malaria in during the week

and couldn't make it by

weekend.So sad. I wish the

Olajide's fortitude to bear

the loss

RT @PreventionTips:

Malaria, Mosquitoes and

Man: Prevention &

Control

https://t.co/9Ingffq6xk

https://t.co/eMEM1cxZCP

Expert wants increased

awareness on malaria to

save more\xc2\xa0lives

https://t.co/0jl4tNTWsv

https://t.co/iWnEODQh8y

Don't forget to take your

#Malaria pill!

3.2 Linguistic analysis

The tweets are pre-processed removing stop words, hash

tags, duplications and languages that are not known to be

English language hereby leaving us with the tweets needed

for feature extraction. Below is a sample of the pre-

processed tweets.

Table 3: Pre-processed tweets

Pre-processed tweets Pre-processed tweets

extreme gardening to help

tackle malaria

latest research has it that

bank alerts can cure

Before he was diagnose of

malaria in during the week

and couldn't make it by

weekend.so sad. i wish the

malaria

after taking malaria meds i

always think to myself dont

go to sleep, dont go to sleep

researchers find that simple

blood test predicts anemia

risk after malaria treatment

My barber's friend died last

Friday fine boy, waiting for

nysc. everything smooth he

died of malaria

olajide's fortitude to bear

the loss

wants increased awareness

on malaria to save more

2tweetaboutit Africa is the

epicentre of malaria. soon

there will be an malaria

epidemic in Europe

a human trial for a malaria

vaccine has achieved up to

100% protection against

infection for at least 10

weeks

mapbox using mapping and

visualizations to fight

malaria

is there a way to threat

malaria without taking pills

or injections ??

chances of surviving

malaria may be higher

when host consumes fewer

calories

baygon is almost 2k which

is hilarious bc it's

technically cheaper for me

to get malaria and treat it.

world's first malaria

vaccine will be given to

thousands of babies in

Africa

Heavy rainfall + poor

drainage = mosquitoes

having the time of their life

spreading malaria.

indigenous knowledge

systems and innovations in

malaria control in Nigeria

No wonder Nigeria is still

fighting malaria.

everywhere waterlogged as

fuck

Mosquitoes in Nigeria will

give you malaria.

Mosquitoes in Philippines

will give you dengue fever,

which is very deadly.

malaria control in African

schools dramatically cuts

infection and reduces risk

of anaemia

u.s. malaria donations

saved almost 2m African

children

i got very sick at they little

age..i was down with

malaria

you can help us save lives

by giving the gift of malaria

treatment, which quickly

restores

antimalarials of unproven

quality rampant in africa -

sub-saharanafrica

king mswati ii of Swaziland

calls for increased domestic

investments to eliminate

malaria in Africa

did you know: in Nigeria it

is cheaper to get malaria

and treat it than to buy

insecticide

touching needs donations to

save children in Nigeria

from malaria-please donate

3.3 Feature Extraction
Below is an improved dataset after extracting the adjective

from the pre-processed dataset which becomes useful when

classifying the polarities into negative, neutral or positive

polarities.

Table 4: Feature vectors

Sample feature vectors Sample feature vectors

extreme gardening help diagnose malaria week make

214

tackle malaria

taking malaria meds think

myself dont sleep dont

sleep

friend died Friday fine boy

waiting nysc smooth died

malaria

malaria donations saved

African children

chances surviving malaria

higher host consumes

fewer calories

baygon hilarious bc

technically cheaper

malaria treat

sad wish fortitude bear loss

got sick little age malaria

calls strong regulation local

production antimalarials

defeat malaria Africa

malaria vaccine given

thousands babies Africa

malaria death rate Africa

fell

Gambia massive progress

malaria elimination sight

3.4 Classifier Performance
Our classifier labelled tweet sentiment with an accuracy of

about 72.41%. Importantly, no positively classified tweets

were manually labelled as negative, and only 2% of the

negatively classified tweets were manually labelled as

positive by assigning a positive polarity to them. The

misclassifications were predominantly for tweets with non-

neutral sentiment classified as being neutral. As such, the

overwhelming majority of misclassified tweets did not

entail complete reversal of sentiment. Below are the

accuracy of the five classifiers that were combined and

used in this study.

Table 5b: Combinations of Naïve Bayes Classifiers

𝑪𝒐𝒎𝒃𝒊𝒏𝒂𝒕𝒊𝒐𝒏𝒔𝒐𝒇𝑵𝒂𝒊𝒗𝒆𝑩𝒂𝒚𝒆𝒔𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓𝒔, 𝒇𝒐𝒓𝒅𝒂𝒕𝒂𝒔𝒆𝒕𝒔𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈

𝑶𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝑵𝒂𝒊𝒗𝒆 𝑩𝒂𝒚𝒆𝒔 𝑨𝒍𝒈𝒐 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒑𝒆𝒓𝒄𝒆𝒏𝒕 74.54819277108435

𝑴𝑵𝑩_𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒑𝒆𝒓𝒄𝒆𝒏𝒕 73.94578313253012

𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊𝑵𝑩_𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒑𝒆𝒓𝒄𝒆𝒏𝒕 73.64457831325302

Table 5c: Combinations of Support Vector Machine

Classifiers

𝑪𝒐𝒎𝒃𝒊𝒏𝒂𝒕𝒊𝒐𝒏𝒔𝒐𝒇𝑺𝒖𝒑𝒑𝒐𝒓𝒕𝑽𝒆𝒄𝒕𝒐𝒓𝑴𝒂𝒄𝒉𝒊𝒏𝒆𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓𝒔, 𝒇𝒐𝒓𝒅𝒂𝒕𝒂𝒔𝒆𝒕𝒔𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈

𝑳𝒊𝒏𝒆𝒂𝒓𝑺𝑽𝑪_𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒑𝒆𝒓𝒄𝒆𝒏𝒕 70.03012048192771

𝑵𝒖𝑺𝑽𝑪_𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒑𝒆𝒓𝒄𝒆𝒏𝒕 69.87951807228916

3.4.1 F1-Score

The table 5a below shows the performance analysis of the

corpus used for training the classifiers.

Precision Score = tp / (tp + fp)

Recall Score = tp / (tp + fn)

F1-Score: F1 = 2 * (precision * recall) / (precision + recall)

Where: tp = true positives, fp = false positives, fn= false

negatives.

Table 5a: F1-score

 Precision recall f1-score support

pos 0.87 0.86 0.87 1600

Neg 0.83 0.89 0.87 1600

Avg / total 0.85 0.88 0.87 3200

3.5 Sentiment Analysis

Every tweet after feature extraction was done separately on

them after the model has been trainedwere assigned

polarities based on the how it was classified by the model

ranging from neutral (0.25, 0.5, 0.75, 1), to negative (0.25,

0.5, 0.75, 1), to positive (0.25, 0.5, 0.75, 1) respectfully.

Below are samples of polarities assigned to tweets and a

graph diagrammatically representing the polarities of

tweets of a period of time?

Table 6: Polarity of tweets extracted

Sample of tweets polarity Sample of tweets polarity

taking malaria meds think

myself dont sleep dont sleep

|neg|1.0

friend died friday fine boy

waiting nysc smooth died

malaria |neg|1.0

baygon hilarious bc

technically cheaper

malaria treat |neg|1.0

American donations fight

malaria Africa saved lives

nearly million |pos|0.75

people die malaria yearly

reduce clean environment

join movement |neg|1.0

children world die malaria

|neg|0.75

diagnose malaria week

make sad wish fortitude

bear loss |neg|1.0

got sick little age malaria

|neg|1.0

leaders adopt new strategic

framework end aids tb

malaria |pos|1.0

antimalarials unproven

quality rampant Africa

scidevnet report malaria

|neg|0.75

Gambia massive progress

malaria elimination sight

|neu|1

heavy rainfall poor

drainage mosquitoes having

time life spreading malaria

|neg|1.0

Figure 3: Graph to represent polarities of tweet

215

4. Discussion

In this study, we extracted tweets relating to malaria over a

period of time from the social network twitter, we pre-

processed the tweets extracted to eliminate unimportant

tweets and redundancy, and we built a model to fit our data

using machine learning approach for text classification to

determine the contextual polarity of every tweet on the

subject of malaria in a bid to harvest peoples opinion

towards malaria and understand how well research and

recent development in the aid to tackle malaria has affected

the opinions of people towards the subject malaria. This

study finds that though lots of ground breaking research

are ongoing, awareness on malaria treatment and

prevention needs to be on the increase and ground breaking

research in this area needs to be communicated to the

public appropriately through the appropriate authorities

because tweets extracted, pre-processed and classified in

this study were majorly classified as negative due to the

fact that tweets tweeted were majorly about different

occurrence of death, misinformation and need for

donations to save a life. We hereby proposed that

periodical analysis be done on the subject malaria, also

expanding the source of data to closely monitor the

awareness of the public and the opinions of the public on

the subject malaria which would help benchmark how

effective research beencarried out are affecting the public

and their level of awareness on malaria prevention and

treatments.

ACKNOWLEDGMENT

We acknowledge the support of Covenant University

Center for Research, Innovation and Discovery, Covenant

University, Ota, Nigeria.

Reference

[1] C. Ekenna, S. Fatumo, and E. Adebiyi, “In-silico

evaluation of malaria drug targets,” Int. J., 2010.

[2] A. Golldack, B. Henke, B. Bergmann, and M.

Wiechert, “Substrate-analogous inhibitors exert

antimalarial action by targeting the Plasmodium

lactate transporter PfFNT at nanomolar scale,”

PLoS, 2017.

[3] K. Sahan, C. Pell, and F. Smithuis, “Community

engagement and the social context of targeted

malaria treatment: a qualitative study in Kayin

(Karen) State, Myanmar,” Malaria, 2017.

[4] S. Hapuarachchi, S. Cobbold, and S. Shafik, “The

Malaria Parasite’s Lactate Transporter PfFNT Is

the Target of Antiplasmodial Compounds

Identified in Whole Cell Phenotypic Screens,”

PLoS, 2017.

[5] “WHO | World Malaria Report 2016,” WHO,

2016.

[6] N. Dholakia, P. Dhandhukia, and N. Roy,

“Screening of potential targets in Plasmodium

falciparum using stage-specific metabolic network

analysis,” Mol. Divers., 2015.

[7] C. Huthmacher, A. Hoppe, and S. Bulik,

“Antimalarial drug targets in Plasmodium

falciparum predicted by stage-specific metabolic

network analysis,” BMC Syst., 2010.

[8] J. Teahton, “In vitro and in vivo anti-plasmodial

activities of senna occidentalis roots extracts

against plasmodium falciparum and plasmodium

berghei,” 2016.

[9] Segun Fatumo, Kitiporn Plaimas, Ezekiel Adebiyi,

Rainer Konig (2011): Comparing metabolic

network models based on genomic and

automatically inferred enzyme information from

Plasmodium and its human host to define drug

targets in silico, Infection, Genetics and Evolution

11 (2011) 201–208

[10] Roll Back Malaria Partnership, “AIM 2016-2030

— Roll Back Malaria,” 2016. [Online]. Available:

http://www.rollbackmalaria.org/about-rbm/aim-

2016-2030. [Accessed: 10-Jul-2017].

[11] D. A. Goff, R. Kullar, J. G. Newland, L. N, and M.

G, “Review of Twitter for Infectious Diseases

Clinicians: Useful or a Waste of Time?,” Clin.

Infect. Dis., vol. 512, no. 10, pp. 126–9, Feb. 2015.

[12] A. J. Lazard, E. Scheinfeld, J. M. Bernhardt, G. B.

Wilcox, and M. Suran, “Detecting themes of public

concern: A text mining analysis of the Centers for

Disease Control and Prevention’s Ebola live

Twitter chat,” Am. J. Infect. Control, vol. 43, no.

10, pp. 1109–1111, Oct. 2015.

[13] O. M and Y. S, “HIV/AIDS and the Millennium

Development Goals: A Public Sentiment Analysis

of World AIDS Day Twitter Chat,” Int. J.

HIV/AIDS Res., pp. 129–132, Nov. 2016.

[14] H. Kwak, C. Lee, H. Park, and S. Moon, “What is

Twitter, a social network or a news media?,” in

Proceedings of the 19th international conference

on World wide web - WWW ’10, 2010, p. 591.

[15] R. J. P. N. N. N. Akshay Ghaisas, International

Journal of Engineering Research and Technology

IJERT, no. Vol.2-Issue 3 (March-2013). ESRSA

Publ, 2012.

[16] G. G. Chowdhury, “Natural Language Processing,”

216

Annu. Rev. Appl. Linguist., vol. 37, no. 1, pp. 51–

89, 2003.

[17] D. B. Pisoni and S. V Levi, “Some Observations

on Representations and Representational

Specificity in Speech Perception and Spoken Word

Recognition 2 Conventional View of Speech 2.1

Background,” 2005.

[18] E. Hume and K. Johnson, “A model of the

interplay of speech perception and phonology,”

Stud. interplay speech Percept. Phonol., vol. 55,

pp. 1–22, 2001.

[19] M. Shapiro, “Style,” pp. 203–278, 2017.

[20] K. J. Patterson, “When Is a Metaphor Not a

Metaphor? An Investigation Into Lexical

Characteristics of Metaphoricity Among Uncertain

Cases,” Metaphor Symb., vol. 32, no. 2, pp. 103–

117, Apr. 2017.

[21] M. Warsha, M. Choudhari, and M. Rinku

Rajankar, “Introduction to Natural Language

Processing With Python,” 2015.

[22] A. Tamrakar and D. Dubey, “Query Optimisation

using Natural Language Processing,” Int. J.

Comput. Sci. Technol., vol. 3, no. 1, 2012.

[23] A.-H. Tan, “Text mining: The state of the art and

the challenges,” in Proceedings of the PAKDD

1999 Workshop on Knowledge Disocovery from

Advanced Databases, 1999, vol. 8, pp. 65–70.

[24] S. Vijayarani, J. Ilamathi, and M. Nithya,

“Preprocessing Techniques for Text Mining - An

Overview,” Int. J. Comput. Sci. Commun.

Networks, vol. 5, no. 1, pp. 7–16, 2015.

[25] S. Anshika and G. Udayan, “Text Mining: A

Burgeoning technology for knowledge extraction,”

Int. J. Sci. Res. Eng. Technol., vol. 1, no. 12, pp.

022–026, 2013.

[26] A. Brahme, “A Review of Knowledge Discovery

Using Text Mining and Its Applications,” no. 5,

pp. 291–295, 2015.

[27] Y. Zhang and P. Desouza, “Enhance the Power of

Sentiment Analysis,” Int. J. Comput. Autom.

Control Inf. Eng., vol. 8, no. 3, pp. 7–12, 2014.

[28] E. Cambria, D. Das, S. Bandyopadhyay, and A. F.

Editors, A Practical Guide to Sentiment Analysis,

vol. 5. 2017.

[29] B. Pang and L. Lee, “Opinion Mining and

Sentiment Analysis,” Found. Trends Inf. Retr., vol.

2, no. 1–2, pp. 1–135, 2004.

[30] N. N. Yusof, A. Mohamed, and S. Abdul-Rahman,

“Reviewing classification approaches in sentiment

analysis,” in Communications in Computer and

Information Science, vol. 545, Springer, Singapore,

2015, pp. 43–53.

[31] R. S. Rahate and Emmanuel M, “Feature Selection

for Sentiment Analysis by using SVM,” Int. J.

Comput. Appl., vol. 84, no. 5, pp. 975–8887, 2013.

[32] U. Aggarwal and G. Aggarwal, “Sentiment

Analysis : A Survey,” Int. J. Comput. Sci. Eng.

Open Access Surv. Pap., vol. 5, no. 5, 2017.

[33] M. R. Osama, K. H. Ahmad, and A. A. Q. Dana,

“Sentiment analysis as a way of web

optimization,” Sci. Res. Essays, vol. 11, no. 8, pp.

90–96, Apr. 2016.

[34] A. M. Mostafa, “An Evaluation of Sentiment

Analysis and Classification Algorithms for Arabic

Textual Data,” Int. J. Comput. Appl., vol. 158, no.

3, pp. 975–8887, 2017.

[35] W. Medhat, A. Hassan, and H. Korashy,

“Sentiment analysis algorithms and applications: A

survey,” Ain Shams Eng. J., vol. 5, no. 4, pp.

1093–1113, Dec. 2014.

[36] K. Khan, B. Baharudin, A. Khan, and A. Ullah,

“Mining opinion components from unstructured

reviews: A review,” J. King Saud Univ. - Comput.

Inf. Sci., vol. 26, no. 3, pp. 258–275, Sep. 2014.

[37] X. Fang and J. Zhan, “Sentiment analysis using

product review data,” J. Big Data, vol. 2, no. 1, p.

5, Dec. 2015.

[38] L. Zhang and B. Liu, “Sentiment Analysis and

Opinion Mining,” in Encyclopedia of Machine

Learning and Data Mining, Boston, MA: Springer

US, 2016, pp. 1–10.

[39] B. Shreya and P. Rupal, “A brief review of

sentiment analysis methods,” Int. J. Inf. Sci. Tech.,

vol. 6, 2016.

[40] H. Zhou, J. Guo, and Y. Wang, “A feature

selection approach based on term distributions.,”

Springerplus, vol. 5, p. 249, 2016.

[41] X. Ding, S. M. Street, B. Liu, S. M. Street, P. S.

Yu, and S. M. Street, “A Holistic Lexicon-Based

Approach to Opinion Mining,” Wsdm’08, 2008.

[42] M. Hajjouz, “Information and Knowledge

Management Opinions Mining in Facebook,” vol.

6, no. 3, 2016.

[43] R. Shouval, O. Bondi, H. Mishan, A. Shimoni, R.

Unger, and A. Nagler, “Application of machine

217

learning algorithms for clinical predictive

modeling: a data-mining approach in SCT,” Bone

Marrow Transplant., vol. 49, no. 3, pp. 332–337,

Mar. 2014.

[44] Y. Baştanlar and M. Özuysal, “Introduction to

machine learning,” in Methods in Molecular Biology, vol.

1107, Humana Press, Totowa, NJ, 2014, pp. 105–128.

218

Author Index

Abdelrasoul, Maha M., 154
Akhter, Nasrin, 111
Al-Mubaid, Hisham, 45
Al-Rubaian, Arwa Ali, 95
Alaghband, Gita, 58
Aldwairi, Tamer, 3
Alouani, Ali T, 117
Anani, Mohammad, 89
Andonov, Rumen, 17
Ao, Xiang, 148
Aromolaran, Olufemi, 181, 210
Ay, Ahmet, 37

Badr, Ghada, 95

Carneiro, Sonia, 198
Chang, Lin-Ching, 175

Dönnes, Pierre, 76
Dąbkowski, Dawid, 168
Daling, Kyle, 70
Das, Anindya, 52
Djidjev, Hristo, 17

Elam, Benjamin, 3
Emrich, Scott J., 25

Fotouhi, Ali, 161
François, Sebastien, 17
Freitas, Connor, 70

Górecki, Paweł, 168
Gerke, Travis A., 37
Ghosheh, Nidal, 76
Gnabasik, David, 58
Gusfield, Dan, 1

Haque, Samiul, 142
Harris, Elena Y., 9
Heber, Steffen, 136
Hoffmann, Federico, 3
Hu, Qiwen, 136
Huang, Xiaoqiu, 52
Hutchinson, Brian, 105

Isewon, Itunuoluwa, 181, 210

Jagodzinski, Filip, 70, 105
June, Ronald K., 83

Külekci, M. Oğuzhan, 161
Kahanda, Indika, 89, 123

Kahveci, Tamer, 37, 190
Khan Mamun, Mohammad Mahbubur Rahman, 117
Kingsley, Michael, 210
Koryachko, Alexandr, 142

Lavenier, Dominique, 17
Li, Dunling, 175
Li, Shuai Cheng, 148
Li, Yaohang, 154

Melman, Paul, 99
Mishra, Prabhat, 190
Misra, Krishna, 204
Mumey, Brendan, 83

Nowling, Ronald J., 25

Oladipupo, Olufunke, 210
Olney, Richard, 105
Ostermann, Jörn, 161
Oyelade, Jelili, 181, 210

Perkins, Andy D., 3
Pourreza Shahri, Morteza, 123

Read, Hunter, 70
Ren, Yuanfang, 37
Rihan, Bassel F., 129
Rihan, Fathalla A., 129
Rocha, Isabel, 198
Roshan, Usman W., 99

S, Shiju, 64
Salinas, Daniel, 83
Sarkar, Aisharjya, 190
Shakyawar, Sushil, 198
Shehu, Amarda, 111
Sriram, K, 64
Synnergren, Jane, 76

Taha, Kamal, 31
Tripathi, Anushree, 204
Tuor, Aaron, 105

Uwoghiren, Efosa, 181, 210

Verma, Gautam K., 204
Voges, Jan, 161

Williams, Cranos, 142

Zhao, Zicheng, 148

	Preamble
	Publishing information
	Program Committee
	Message from Chairs

	Table of Contents
	
	Keynote
	Integer Linear Programming in Computational and Systems Biology

	Genomics
	RepCalc: a Tool for Calculating Transposable Element Density within the Genome
	Practical Space-efficient Linear Time Construction of FM-index for Large Genomes
	Global optimization approach for circular and chloroplast genome assembly
	Adjusted Likelihood-Ratio Test for Variants with Unknown Genotypes

	Genes and Gene-Disease Applications
	Computing Gene-Disease Associations Efficiently
	Searching Jointly Correlated Gene Combinations
	Analysis of Human Genes with Multiple Functions
	Selection of Informative Genomic Regions for Closely Related Isolates and Construction of their Phylogeny

	Data-driven Modeling
	A Data-driven Biomarker Computational Model for Lung Disease Classification
	A multiscale model explains the circadian phase dependent firing pattern variations in Suprachiasmatic nuclei and the occurrence of stochastic resonance
	cMutant : A Web Server and Compute Pipeline for Exploring the Effects of Amino Acid Substitutions via Rigidity Mutation Maps
	Integration of biomedical big data requires efficient batch effect reduction
	Predicting Pathways from Untargeted Metabolomics Data

	Machine Learning Applications in Bioinformatics
	Automated Biomedical Text Classification with Research Domain Criteria
	The Flashing-Decision-Trees: Towards an Intelligent Seizure Prediction System
	K-means-based Feature Learning for Protein Sequence Classification
	Protein Mutation Stability Ternary Classification using Neural Networks and Rigidity Analysis

	Protein and Disease Applications
	Analysis of Energy Landscapes for Improved Decoy Selection in Template-free Protein Structure Prediction
	Myocardial Infarction Detection using Multi Biomedical Sensors
	Extracting Co-mention Features from Biomedical Literature for Automated Protein Phenotype Prediction using PHENOstruct
	Dynamics of Hepatitis C Virus Infection

	Biological Sequences and Transcriptome
	Identifying Translated uORFs based on Sequence Features via Tree-based Algorithms
	Scalable Approach to Data Driven Transcriptome Dynamics Modeling
	IsoRef Improves the Reference-BasedTranscriptome Assembly Accuracy for RNA-Seq Data
	Exploring Multi-Objective with Protein Sequence Alignment

	Bioinformatics Applications I
	A Two-level Scheme for Quality Score Compression
	Minimising the Deep Coalescence
	State-of-Art Genomic Data Compression Technology
	Computational Prediction of Alternative Metabolic Pathways of Plasmodium Falciparum

	Bioinformatics Applications II
	Identifying Temporal Variation of Transcription in Populations
	Integrated Metabolic Flux and Omics Analysis of Leishmania major metabolism
	A Next Generation Sequencing Approach to Analyze Genes Expression in Breast Cancer Stem Cells
	Machine Learning and Sentiment Analysis: Examining the Contextual Polarity of Public Sentiment on Malaria Disease in Social Networks

	Author Index

