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Message from Chairs

One of the greatest values of any scientific conference is in the gathering of a large number of fellow researchers in the same
place and same time. This is the main motivation and purpose of any conference, and this BICOB 2018 is no exception.

Having said that, we, at the organizing committee, are pleased to welcome you to the 10th International Conference on
Bioinformatics and Computational Biology (BICOB 2018), sponsored by the International Society for Computers and Their
Applications (ISCA). We also would like to express our gratitude for you taking the effort to come and present your research
findings to us. This year, BICOB 2018 is held in Las Vegas, Nevada, USA, during March 19–21, 2018, seemingly a popular
time and place for this conference.

BICOB is instituting in itself one of the important outlets of research presentations and discussions in the fields of bioinfor-
matics and computational biology. The tenth BICOB conference offers the opportunity and utmost venue for researchers and
scientists from all over the world to present and discuss their research results, techniques and findings with other researchers
having similar interests in the field of bioinformatics. Also, BICOB encourages interesting applications and emerging chal-
lenges in the field.

Being considered as one of the best destinations for vacations, entertainment, and conventions in the world, Las Vegas was
selected as the venue for BICOB 2018 which is held during March 19–21, 2018 in the heart of the entertainment capital of
the world.

This time the conference features a keynote talk by Dr. Dan Gusfield, who is well known for his outstanding work in
bioinformatics and computational biology. Dr. Gusfield is a distinguished professor coming from UC-Davis, California,
USA, to tell us about his outstanding research results and findings in bioinformatics algorithm and biomedical combinatorics.
This year, the main conference includes eight sessions of regular paper presentations. The conference addresses a broad range
of central topics in the bioinformatics area including: next generation sequencing, biological networks, regulatory networks,
genomics, proteomics, protein structure analysis, data mining and machine learning applications in bioinformatics, diseases
and drug related research, microarray research and applications and more.

The conference is gathering bioinformatics researchers, scientists, practitioners, and attendants from many countries. Further-
more, the participants are coming from various research institutions like universities, corporations, and government research
agencies.

In BICOB 2018, each submission was evaluated and peer-reviewed by three to five reviewers who are usually members
of the international program committee (PC). The members of the PC with their affiliations and countries are listed in the
proceedings and on the conference website. Papers have been evaluated by referees judging the originality, significance,
technical contents, application contents and presentation style. We used the EasyChair online conference management system
to automate the workflow for submission and refereeing.

Finally, we would like to gratefully acknowledge the professional work of the program committee and the sub-reviewers
for contributing a tremendous amount of time. We owe great thanks to ISCA president and board of directors for the well-
organized conference management. We also would like to thank the ISCA executive director for his help, guidance, support,
and work. We also want to thank all presenters and attendees for actively contributing to the success of BICOB 2018 and
look forward to excellent presentations and fruitful discussions at the meeting, which will certainly broaden our professional
horizons. All participants are invited to make new friends within the BICOB family. We sincerely wish to every participant a
very enjoyable and beneficial time at BICOB 2018. And as a final note: next year BICOB will be held in Honolulu, HI, USA
(another great destination for meetings and entertainments; thus we invite you to consider it for your research presentation
and meeting next year in March).

With Our Best Regards

Hisham Al-Mubaid, Program co-Chair
Qin Ding, Program co-Chair
Oliver Eulenstein, Conference Chair

March 2018
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Integer Linear Programming in Computational and

Systems Biology

Keynote Address

Dan Gusfield
Department of Computer Science

University of California, Davis
Davis, CA 95616, USA
gusfield@cs.ucdavis.edu

Abstract

Integer (Linear) Programming, abbreviated
“ILP”, is a versatile modeling and optimization
technique that was developed for complex planning
and operational decision making. However, it has
been increasingly used in computational biology
in non-traditional ways, most importantly and
inventively as a computational tool to model
biological phenomena, to analyze biological data,
and to extract biological insight from the models
and the data. Integer programming is often very
effective in solving instances of hard biological
problems on realistic data of current importance,
despite the fact that many of those problems lack
general algorithmic solutions that are efficient (in a
provable, worst-case sense), and that the problem
of solving integer programs also lacks a provable
worst-case efficient general solution.

Highly engineered, commercial ILP solvers are
available (now free to academics and researchers)
to solve ILP formulations. The improvement of the
best solvers has been spectacular, with an estimate
that (combined with faster computers) benchmark
ILP problems can now be solved 200-billion times
faster than twenty-five years ago. Exploiting ILP,
some biological problems of importance can be
modeled in a way that allows a solution in seconds
on a laptop, while more common (statistically-
based) models require days, weeks or months of
computation on large clusters.

The effectiveness of the best ILP solvers on

problem instances of importance in biology opens
huge opportunities. The impact of faster and easier-
to-implement computation could be truly transfor-
mative in several parts of biology. However, there
are challenges in effectively using these tools for
biological problems, and educational and outreach
issues that must be addressed. In this talk, I will
discuss some of the successes, opportunities, and
challenges in exploiting ILP for computational and
systems biology.

Bibliography

Dr. Gusfield’s primary interests involve the
efficiency of algorithms, particularly for problems
in combinatorial optimization and graph theory.
These algorithms have been applied to study data
security, stable matching, network flow, matroid
optimization, string/pattern matching problems,
molecular sequence analysis, and optimization
problems in population-scale genomics. Currently,
he is focused on string and combinatorial
problems that arise in computational biology
and bioinformatics. Dr. Gusfield served as chair
of the computer science department at UCD from
July 2000 until August 2004, and was the founding
Editor-in-Chief of The IEEE/ACM Transactions
of Computational Biology and Bioinformatics until
January 2009.

Dan Gusfield received his Ph.D. in 1980 from UC
Berkeley, working with Richard Karp, and was an
Assistant Professor at Yale University from 1980
to 1986. His dissertation concerned problems of
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sensitivity analysis in graphs, network flow and
Matroid theory. In January 1987 Dan moved to
UC Davis. In July 2016, he was promoted to the
rank of Distinguished Professor.
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Abstract 

 

    Transposable elements (TEs) are mobile genetic 

elements that comprise a large portion of the genome of 

many eukaryotic organisms. They can transpose directly 

through the use of cut/paste mechanisms or indirectly 

copy/paste mechanisms. TE’s can sometimes induce a 

harmful effect through inserting themselves in a gene, 

rendering it non-functional. A number of tools have been 

developed with the goal of providing annotation 

information for the location of TEs within the genome. 

Our tool provides the researchers with ways to speed up 

the process of analyzing, comparing and summarizing the 

important information, in regards to the distribution of the 

densities for different families and subfamilies of TEs, 

whether across the whole genome or within specific 

regions of interest (ROI). Equipping researchers with such 

a tool is an imperative necessity to the research 

community. To demonstrate the usefulness of our tool we 

used Piwi-interacting RNA (piRNA) clusters as our ROI 

in which we calculate the densities for the different 

families/subfamilies of TEs. We observed that the 

densities of TEs varies and heavily depends on the 

location being analyzed, whether it is a piRNA cluster, a 

gene, or other parts of the genome. 

  

1. Background And Motivation 
 

    TEs are one of the several types of mobile genetic 

elements, which can be defined as DNA sequences that 

can move from one position to another within the genome 

through replication and insertion. They can be divided 

into two main classes based on their transposition 

mechanism. The first type is retrotransposons, which use 

copy and paste mechanisms and move indirectly via an 

RNA intermediate. These include long terminal repeats 

(LTRs), long interspersed elements (LINEs) and short 

interspersed elements (SINEs). The second type is DNA 

transposons, which move directly through the use of cut 

and paste mechanisms. Retrotransposons are more 

abundant in plants as well as many other organisms than 

DNA transposons. For example, TEs account for 

approximately 45% of the human genome, 41%-42% are 

retrotransposons 20% are LINEs, 13% are SINEs, 8% are 

LTRs, while DNA transposons account for only 3% of the 

TEs within the human genome [1][2][3]. 

 

    TEs have the potential of causing harm or damage to 

the host cell through their continuous movement within 

the genome (insertion, deletion, duplication). For 

example, they can insert themselves into a functional gene 

which could block or disable the functionality of that 

gene. However, most TEs are in a non-active state, 

meaning they are not duplicating or moving from one 

place to another in the genome. Even though active TEs 

might be potentially harmful, the genome has developed 

mechanisms to suppress and silence their activity [4][5]. 

Generally speaking, TEs can have a positive or a negative 

impact on the organization of an organism’s genome and 

its progeny [4]. 

 

    TEs have been an important topic of study since their 

discovery in the 1940s  by McClintok [6]. Advancement 

of next-generation sequencing technologies and the large 

amount of data produced by these methods has led to the 

generation of many tools for the purpose of annotation 

and classification of TEs. Some of these tools are tailored 

specifically for TE identification while others are general 

purpose tools that incorporate identification of TEs as part 

of their overall framework. There is a numerous list of 

tools for annotation of TE, with Bergman [7] listing more 

than thirty tools while Lerat [8] listed more than fifty. 

 

978-1-943436-11-8 / copyright ISCA, BICOB 2018 
March 19-21, 2018, Las Vegas, Nevada, USA

3



    These tools include Repeat Masker [9] , CENSOR [10], 

RepeatFinder [11], RepSeek [12], DAWGPAWS [13], 

RepeatScout  [14] and various others. Some tools like 

Repeat Masker and CENSOR enable the user to search for 

repeats by comparing them to a reference sequence within 

certain databases like Repbase [15], which is a repetitive 

element database for eukaryotic organisms. These tools 

differ significantly in their goals and the underlying 

mechanisms of how they work. Some of these are general 

purpose tools, while others perform specific tasks such as 

TE annotation or classification, and sometimes both tasks. 

What these tools have in common is that they provide the 

researcher with basic information on the annotation of 

TEs. However, we sometimes want to know the 

distribution and quantitative information for specific 

families and subfamilies of TE classes and whether these 

classes are abundant within certain regions [16] [17] [18] 

[19] [20] [21]. The tool described here allows researchers 

to easily compare the different regions within the genome 

to determine whether those regions share certain common 

characteristics with respect to the presence or absence of 

certain families or sub-families of TEs. It can also be used 

to highlight regions of high recombination rates through 

identifying those regions with high transposes and no 

retrotransposons [25]. It is important to point out that the 

tool cannot identify transposon-free regions [26] directly 

but those regions can be inferred from the results based on 

which regions have been identified to contain TEs. Here, 

we provide the researchers with a tool that automates the 

process of classifying the transposable elements into their 

main class of families and sub-families across different 

regions of interest and for the whole genome. Our tool 

automates, facilitates and simplifies this long and difficult 

task which is usually performed in a non-automated 

fashion. We chose to demonstrate the functionality of the 

tool by calculating the densities of TEs within Piwi-

interacting RNA (piRNA) clusters for both mouse and rat 

genomes.  

 

    We designed a tool called RepCalc that takes as input 

the annotation information for TEs, which is usually 

available through a variety of databases and specialized 

annotation tools. Our tool then generates detailed 

quantitative report regarding the TE densities within 

specific ROIs as well as across the whole genome.   It is 

important to note here that this tool is not meant to be 

used as a genome annotator for the repeats but as a tool 

that simplifies analysis and comparison of annotated TE 

information and provides a quick summary of those 

results. 

2. Implementation 
 

    RepCalc was developed using Python and requires a 

separate installation of Tkinter to run the tool in graphical 

mode in Linux. Tkinter is a standard Python interface to 

the Tk graphical user interface toolkit [22]. However, the 

program can run on a Linux terminal without the support 

of a visual interface if the Tkinter package is not installed. 

It also can run directly on both Windows and Mac OS X 

since Tkinter is included during the installation of Python 

3.4 or later versions. 

3. Results And Discussion 

     RepCalc has two modes: graphical mode and 

command line mode. To run RepCalc from the command 

line, the user must specify a number of arguments. Some 

of these arguments are mandatory while others are 

optional. The general format for the order of arguments in 

the command line mode is shown below. The square 

brackets indicate optional arguments. However, the 

optional arguments can sometimes become required, 

depending upon which arguments are used and the 

requirements set by the user. Below are the command line 

arguments needed to run RepCalc. 
 

./repcalc -options [length] TE file [CO] ROI file [CO] 

output file [configuration] 

- TE file: specifies transposable element filename 

- CO: column order 

- ROI file: specifies region of interest file 

    RepCalc can be viewed as a set of three distinctive 

tools that provide the user with a different set of 

information regarding the quantitative information for the   

densities of the TEs based upon the user’s needs. Each 

tool gives the user a different set of useful information 

with reference to the task being performed.  The user may 

choose one of three different analysis options. The first 

analysis option computes the densities of the TEs within 

the whole genome (WG). The second analysis option 

finds the total sum of all the densities but within specific 

ROI for each family and subfamily of TEs (ROI). The 

third analysis option calculates the TE densities within 

individual sub-regions for certain ROI/s for each family 

and subfamily of TEs (MXROI). Those analysis options 

correspond to options (a), (b) and (c), respectively, in the 

command line version of the RepCalc tool. Table 1 below 

shows the different command line options for Repcalc. 

 

Table 1. Various options for the command line version of 

RepCalc. 

 

Description of the option Command 
line option 

Calculates the densities of TEs within 

the whole genome. This option runs the 

WG-tool.  

A 

Calculates the total sum of densities 

within certain ROIs for each family and 
B 
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subfamily of transposable elements. This 

option runs the ROI-tool. 

Calculates the transposable element 

densities within individual ROIs for each 

family and subfamily of transposable 

elements. This option runs the MXROI-

tool. 

C 

 

The user must specify the order of the 

columns for the TEs file. 
A 

The user must specify the order of the 

columns for the RIO file. 
B 

Transpose the output file (this option 

only works with the c option) 
T 

   In graphical mode, the analysis options are decided by 

choosing one of three radio buttons. It is important to note 

here that the user is required to choose only one of the 

three analysis options for either mode.  

    In the command line mode, the options argument 

defines how the arguments following it shall be used. The 

option letters are (a), (b) and (c), which represents the 

different options to calculate TE densities discussed 

earlier.We also have the (A) and the (B) options which 

tells the program that the column order for the TE file and 

the ROI file must be explicitly provided by the user after 

the name of the file. The TE and ROI files contain 

information regarding their locations (where they start and 

end, and the chromosome in which they reside) with a 

unique ID assigned to each location. The option (A) is for 

the TE file and option (B) is for the ROI file. If the user 

does not provide (A) or (B) in the options, then the order 

of the column for each one of the data elements in the 

files must match the default column order. The default 

column order for the data elements is (ID, chromosome, 

start, and end) which corresponds to column 1, 2, 3 and 4 

respectively. TE Start and end within the TE or the ROI 

file are the location information of the TEs and ROIs. 

RepCalc can accept a various number of file types input 

provided that the user specifies the correct column order 

for each data element and that the data column is 

whitespace delimited. 

  

    It is important that the ID column in the TE files match 

a specific family/subfamily structure, which is identical to 

the format given by RepeatMasker. In the ROI file, the ID 

can represent any unique identifier for the regions of 

interest. These regions of interest may be genes, piRNAs, 

miRNAs or any number of regions within the genome. 

The option (t) in the command line mode, which 

transposes the data, is only used with the (c) option to 

transpose the matrix output, to simplify the readability of 

the output file. The length argument is mandatory when 

using the (a) and (b) options, which are the length of the 

whole genome and the total length of the regions of 

interest, respectively. When using the (c) option, the 

length should not be provided. The TE file argument is 

mandatory for all the options while the ROI file argument 

is mandatory for options (b) and (c).  

 

    The final argument in the command line mode is an 

optional configuration file which is created by the user. 

The rules to create the configuration file are specified in 

the readme and example.conf files in the documentation 

of the program. This option enables the user to modify 

how the family/subfamily structure of TEs are displayed 

in the output file. It also enables the user to control which 

TE families/subfamilies should be included when 

calculating the total interspersed repeats. In addition, it 

allows the user to specify whether certain families or 

subfamilies of TEs are to be included under a different 

name or under another family of transposable elements. 

For example, one would use this option if the RC 

(Rolling-Circle) TE family has a subfamily (i.e. Helitron) 

and the user does not wish for that subfamily to be listed 

in the output file as an individual subfamily entry under 

the main RC  family and would prefer it to be listed and 

counted as part of the main RC family. The user can 

specify this change in the configuration file by typing 

RC/Helitron = RC. This will ensure that for each time a 

Helitron subfamily is encountered under the RC family, it 

will be reported and listed as part of the RC family 

without listing the subfamily in the output. 

 

    In the graphical mode of the program, based upon the 

user’s choice of the analysis type, certain data fields in the 

interface will be enabled or disabled. The user must still 

provide the column order of the data elements for the files 

uploaded if they do not match the default column order 

for the data elements discussed earlier.  

 

    Below is an example of the input requirements that 

shows how each tool can be used from within the 

command line mode: 

 

1. The WG-tool can be used by choosing the (a) option in 

the command line mode. The length of the genome must 

be specified. The TE annotation file containing the 

locations of the TEs within the genome follows. This file 

can often be downloaded from available databases or can 

be created by the user using specialized tools. A 

restriction is that the file must have the order of the 

columns matching the default column order or the user 

must explicitly specify the order for each of the columns 

required to perform the analysis. A name for the output 

file is specified next. The tool then calculates the density 

of the transposable elements within the whole genome for 

that species and produces a table file similar to the one 

generated by RepeatMasker with the number, length, and 

percentage for each class and subclass of TEs. The main 

advantage of using this tool is efficiency and speed since 

it is possible to generate the table file for the whole 

genome of an organism in a short time, less than two 
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minutes in most cases when the TE annotation 

information is already available. 

 

2. The ROI-tool can be used by choosing (b) in the 

command line mode. The ROIs can be genes, microRNAs 

(miRNAs), small interfering RNAs (siRNAs), Piwi 

interacting RNA (piRNA) or piRNA clusters, or any set 

of regions that the researcher wants to analyze.  The user 

must supply the TE file following the same rules 

explained previously for the WG-tool. The user must then 

specify a file that contains the information regarding the 

location of the ROI within the genome. This file can be 

downloaded from online databases, or created by the user. 

However, the file must follow the default column order 

for the file or explicitly specify the order of the columns 

when creating the file. The third argument is the total 

length of the ROIs. The user then specifies a name for the 

output filename. The total of all the quantitative 

information for the densities of the TEs within all the 

regions is summed, and an output file with the number, 

length, and percentage for each family and subfamily of 

transposable elements is produced. Table 2 below shows 

an example of a sample of the output table file. The 

running time for this program will vary depending upon 

the type of data that the user needs to process, whether the 

ROIs are piRNAs, miRNAs, genes or any other type of 

data, and the number and size of regions that need to be 

analyzed. 

 

Table 2. A sample of the table file which shows the output 

generated using the ROI-sub-tool 

 
Classes and 
Subclasses 
of (TEs) 

number 
of 
elements 

length 
occupied percentage  

SINE: 629772 90756490 bp 8.225% 

MIR 30228 3608577 bp 0.327% 

Deu 334 35149 bp 0.003% 

B4 150860 24400087 bp 2.211% 

B2 174238 29468031 bp 2.671% 

Alu 256697 31969398 bp 2.897% 

ID 17343 1266177 bp 0.115% 

No subclass 72 9071 bp 0.001% 

LINE: 265284 158098186 bp 14.328% 

RTE-BovB 45 3783 bp < 0.0005% 

CR1 2492 361438 bp 0.033% 

Penelope 12 2093 bp < 0.0005% 

RTE-X 231 41615 bp 0.004% 

L2 15568 2581223 bp 0.234% 

 
3. The MXROI tool can be used by choosing (c) in the 

command line mode. The TE file, the ROI file, and the 

output file are then specified. Here, the length of the 

regions is not required since each individual sub-region is 

included by default in our calculation. The user may also 

transpose the data using the (t) in the options argument, 

and this transpose option is enabled in the graphical 

mode. This tool gives the user specific information about 

the quantitative information for the densities of the TEs 

for each family and subfamily in the specified region/s 

and writes this information into a file in a matrix form. 

This tool requires more time than the previous two tools 

since it provides detailed output regarding each individual 

region. The running time for this program varies 

depending on the type of data being processed, the 

number of regions, and the size of the genome. Figure 1 

below shows the various features of RepCalc and how the 

user can choose different analysis options. 

 

 
 

Figure 1: Different features within RepCalc 

 
4. Application On Real Data 
 
     To test our tool we chose the region of interest to be 

piRNA clusters. The locations of piRNA clusters vary 

between different species as well as within different 

databases, depending upon the mechanism used to 

identify those clusters. We chose to analyze two main 

databases containing piRNA data: piRNA Bank [23] and 

Johannes Gutenberg University of Mainz piNRA database 

(JGU database) [24]. The number of clusters within the 

same organisms varies between those two databases. In 

piRNA bank, the number of mouse piRNA clusters is 

2710 while in the JGU database it is 171, also the number 

of piRNA clusters of rat is 189 in piRNA bank and 168 in 

JGU database.  The difference in piRNA clusters in both 

databases could be attributed to the different 

methodologies used by each database to predict piRNA 

clusters. 

 

    From each database, we extracted the information 

necessary to locate each piRNA cluster. The information 

usually includes the cluster ID, the chromosome where it 
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is located, and the starting and ending position for the 

cluster. We provided each tool with the necessary files. 

For the WG tool, this is the TE locations found in the 

annotation file and total genome length. For the ROI tool, 

we provided the piRNA cluster locations, the TE 

annotation information and total length for the ROIs. For 

the MXROI tool, we used the same information that was 

used for the ROI tool with the exception of the 

information regarding the length of the ROI.  

 

    We ran the tools on the piRNA data and generated table 

files representing the densities for the TEs within the 

whole genome for both mouse and rat using the WG tool. 

Using the ROI tool we obtained the densities for the TEs 

within piRNA clusters. We also created a matrix 

representing the densities for the TEs for each family and 

sub-family of transposable elements within each distinct 

piRNA cluster using the MXROI tool. To verify the 

accuracy of our calculation we compared the densities for 

the TEs within the genome calculated using our tool to the 

densities calculated using Repeat Masker. Figures 2 and 

Figure 3 below show the different densities for TEs across 

different regions within the mouse and rat genome. 

 

 
 

Figure 2: Different Densities of TE in Mouse 

 

 
 

 Figure 3: Different Densities of TE in Rat  

 
 
 
 

5. Conclusions  
 

    RepCalc is a tool designed to be used for generating 

detailed quantitative information about the distribution of 

certain classes of TE families and their subfamilies at the 

genome level, within specific ROIs and across individual 

sub-regions, utilizing TE annotation information available 

throughout the various databases and annotation tools 

designed for this purpose. The tool is comprised of three 

tools, each one of them provides the user with a different 

level of quantitative detail regarding the TE densities 

across different segments of the genome.  

 

    To demonstrate how the tool works, we calculated the 

densities of TE families and sub-families within piRNA 

clusters and compared them to the TE densities within the 

genes and across the genomes of both mouse and rat 

utilizing two different piRNA databases. We found that 

the piRNA clusters that were extracted from piRNA bank 

exhibit a higher TE density than the JGU database for 

both the mouse and rat genes as well as across the whole 

genome.  

 

Availability And Requirements 
 

Project name: RepCalc 

Project home page: https://github.com/eenblam/repcalc 

Operating system: Windows, Linux, Mac OS X 
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Abstract 

The Burrows-Wheeler Transform (BWT) and Full-text 
index in Minute space (FM-index) are indispensable data 
structures that are used in the next generation sequencing 
data analysis to efficiently map reads to a reference 
genome. Recently developed algorithms SA-IS and BWT-
IS allowed construction of a Suffix Array and Burrow-
Wheeler Transform, respectively, for mammalian-size 
genomes in less than an hour. In practice, BWT-IS 
algorithm outperforms SA-IS in terms of RAM usage. 
Building an FM-index from a BWT requires LF-mapping 
that is a relatively time-consuming step. Here, we present 
a space-efficient linear time algorithm called BWT-ISFM 
that builds an FM-index concurrently with a construction 
of BWT. Our algorithm supports a genome size of up to 
8Gb (giga-basepairs) in length while a publicly available 
BWT-IS has a limit on a genome size of 4Gb. Moreover, 
in practice, our algorithm requires only 2.3n bytes of RAM 
for a genome size of n compared to 4n bytes of RAM used 
by SA-IS algorithms. 
 
keywords: next generation sequencing; BWT; FM-
index 
 

1 Introduction 
 

The Burrows-Wheeler Transform, BWT, introduced by 
Burrows and Wheeler [1] together with a Full-text index in 
Minute space, FM-index, proposed by Ferragina and 
Manzini [3], are used to align sequenced reads generated 
by the next generation sequencing instruments to a 
reference genome. Suffix Array, SA, a data structure 
introduced by Manber and Myers [9] is a concise 
representation of sorted suffixes of a given string T. Given 
a string T, SA is an array that stores positions of the 
suffixes of T sorted in lexicographic order. Given a SA, 
BWT can be constructed in linear time by scanning the SA 
and retrieving characters of T at the previous positions of 
the stored in the SA positions. Recent advances in linear 
time construction of a SA (see the survey by Dhaliwal et 
al. [2]) allow building a SA for large mammalian genomes 
such as human genome in tens of minutes using practically 
affordable space of about 15GB. It has been shown in 
Harris et al. [4] that building the BWT on two strands of a 
genome, positive strand and negative strand, speeds up 
read alignment two times. In this case and, in general, for 
larger genomes, space of at least 4n bytes (hereafter, n is 

the length of a genome) required by the most time-efficient 
SA algorithms, becomes not so practical. For example, 
building a SA over two strands of a human genome of 6Gb 
would require at least 24GB.  

Only few aligners use a SA to map sequenced reads to a 
reference genome, e.g. Hoffmann et al. [5]. Most aligners 
rely on using BWT together with a FM-index. Recently, a 
linear time algorithm BWT-IS for building BWT directly 
was developed by Okanohara and Sadakane [11]. It 
extends on the ideas of the recursive linear time SA-IS 
algorithm by Nong et al. [10] that uses induced sorting to 
build a suffix array. In practice, BWT-IS requires only up 
to 2.2n bytes of memory, which is a significant advantage 
over 4n required for building a SA. Building BWT directly 
(without building a SA) for a human genome size is also 
time efficient – it takes less than a half of an hour on a 
human genome of size 3Gb. To build an FM-index from 
BWT, first, a succinct data structure is built in linear time 
that stores for each position i of BWT the total number of 
occurrences of each character of the given alphabet in 
BWT from the beginning to i. This structure is used in the 
next step, LF-mapping, to retrieve and explicitly store 
genomic positions equidistant from each other at a fixed 
range, called step. In practice, O(n)-time LF-mapping is 
relatively time consuming (compared to the building of the 
BWT). Some algorithms (e.g. by Kärkkäinen [6]) build 
BWT and SA in consecutive blocks, so the genomic 
positions for each block are available for output on the fly. 
The downside of this approach is (nlogn) time 
requirement for building the BWT and FM-index. The 
linear time algorithm BWT-IS does not store genomic 
positions while constructing a BWT. In order to construct 
an FM-index, we must first build BWT and then use LF-
mapping to construct an FM-index, which requires 
additional time. Moreover, the existing implementation of 
BWT-IS provided by the authors and publicly available 
implementations of SA-IS have a limitation on the genome 
size of less than 4Gb. 

Here, we propose a practical, space-efficient, linear time 
algorithm, BWT-ISFM, that calculates the FM-index while 
building the BWT directly from a given genome. For two-
strands of human genome of 6Gb, it requires only 2.3n 
bytes of memory and builds the BWT and FM-index in less 
than an hour. Our algorithm supports genome size of up to 
233 characters long, 8Gb. In addition, it introduces a new 
algorithmic approach to optimize one step of SA-IS 
algorithm that may be used for a pool of ideas on 
optimization of BWT and SA constructions for small, 

978-1-943436-11-8 / copyright ISCA, BICOB 2018 
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constant alphabets. Thus, our algorithm offers a memory 
advantage over SA-IS algorithms, extends genome size 
limitation, and constructs an FM-index on the fly while 
building the BWT in practical time.  
 
2 Preliminaries and Related Work 

 
Let T be a string of length n over the given ordered 

alphabet  of size . Let $ be the sentinel character that is 
the smallest in  and occurs in T only once at the end of 
the string. Let T[i] be a character of T, for 0  i  n-1, and 
T[i…j] be a substring of T of consecutive characters 
starting with character T[i] and ending with T[j]. A suffix 
of T, denoted by Ti, is a substring T[i…n-1], i.e. Ti ends 
with $. A suffix array SA for a given string T is an array of 
size n such that SA[i] stores the starting position p of suffix 
Tp for 0  i  n-1 and TSA[0] < TSA[1] < …< TSA[n-1]. In other 
words, SA holds the starting positions of all suffixes of T 
sorted in lexicographic order. Given a string T of length n 
over alphabet  of size , a suffix array can be built in 
linear time. Some of the recently developed algorithms for 
SA construction that use recursion and induce sorting of 
suffixes are by Ko and Aluru [7] and by Nong et al. [10]. 
Hereafter, we will refer to the algorithm by Nong et al. [10] 
called SA-IS in our detailed discussion.  

SA-IS uses a concept of LMS substrings to induce-sort 
suffixes of a given string T. To understand an LMS 
substring, we need to categorize characters of T by L-type 
and S-type (stands for Large and Small). The sentinel 
character $ is of S-type. For 0  i  n-2, character T[i] is of 
S-type if it is lexicographically smaller than the next 
character T[i+1], and T[i] is of L-type if it is greater than 
T[i+1]. If T[i] and [i+1] are equal, then T[i] has the same 
type as T[i+1]. Enumeration of characters of T by S- or L-
type can be done in linear time by scanning T in Right-to-
Left fashion. An LMS character stands for the left most S-
type character and it is character T[i] of S-type that has 
previous character T[i-1] of L-type. Character T[0] is 
considered to have sentinel as the previous character, so 
T[0] cannot be an LMS character. Further, suffixes of T are 
named L-type, S-type and LMS-type after their first 
character’s type, e.g. if T[i] is of L-type, then Ti is an L-
type suffix. An LMS substring of T is a substring T[i…j] 
such that T[i] and T[j] are LMS characters and no other 
character between indices i and j are LMS characters. The 
sentinel character is the only LMS substring of length one. 

When suffixes of T are arranged in lexicographic order, 
suffixes starting with the same character c occur in 
consecutive range, and their positions are stored in 
consecutive entries of SA. We will refer to the consecutive 
range SA[i…j] that stores starting positions of all suffixes 
of T starting with character c as a c-bucket. Sorted in 
lexicographic order suffixes in the same c-bucket have the 
following order: L-type suffixes precede S-type suffixes in 
the c-bucket (please refer to the original paper for proof of 
this and other statements regarding SA-IS algorithm).  

Furthermore, SA-IS algorithm uses a notion of fronts 
and ends of c-buckets. If a SA[i…j] is a c-bucket, initially, 
index i is the head of c-bucket pointing to the front of the 
bucket and index j is the tail of c-bucket pointing to the end 
of the bucket; as entries of SA fill in, the heads and the tails 
of the buckets are incremented and decremented 
respectively.  

Figure 1 shows the outline of SA-IS algorithm and 
Figure 2 demonstrates the execution of the steps of SA-IS 
for a string T='DABRACADABRACABRAB$'. Given a 
string T, SA-IS calculates the type array t that stores S- and 
L-type for characters of T. Using t, it identifies the starting 
positions of LMS substrings and places them into ends of 
the corresponding c-buckets. This is done in linear time by 
scanning t Right-to-Left (see Figure 2, A and B). Next, 
InduceSort(T, SA, t) procedure consists of two steps: (1) 
Left-to-Right scanning of SA with head pointers initialized 
to the fronts of the corresponding c-buckets, and (2) Right-
to-Left scanning of SA with tail pointers initialized to ends 
of the corresponding c-buckets. During Left-to-Right 
scanning of SA, for each position p at SA[i], it checks 
whether the character T[p – 1] at the previous position p – 
1 is of L-type, and if so, it places position (p – 1) into the 
current front of the c-bucket, where c is T[p – 1], and 
increments the head of c-bucket (see Figure 2 C).  

During Right-to-Left scanning of SA, for position p at 
SA[i], it checks whether the character T[p – 1] at the 
previous position  p – 1 is of S-type, and if so, it places 
position (p – 1) into the current end of the c-bucket, where 
c is T[p – 1], and decrements the tail of c-bucket. By the 
end of this step, LMS substrings are correctly sorted in 
lexicographic order relative to each other.  

Figure 2 D shows SA after this step and shows LMS 
substrings sorted in lexicographic order relative to each 
other.  

ALGORITHM 1: SA by induced sorting 
0: Input: string T of length n over alphabet  of size  
    Output: Suffix Array for T 
1: Check for termination condition: if n is equal to , 

calculate SA directly  
2: Calculate S/L-type array t  
3: Place the starting positions of LMS substrings into 

the ends of c-buckets of SA 
4: InduceSort(T, SA, t) 
5: Assign names to LMS substrings 
6: Build the shortened string T1 
7: Recursively calculate SA1 for T1 
8: Induce positions of LMS substrings of T from 

positions of suffixes T1 stored at SA1 
9: Place the starting positions of LMS substrings in the 

sorted order in their corresponding c-buckets of SA 
10: InduceSort(T, SA, t) 
11: return: SA 
 

Figure 1: SA-IS outline 
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The next step of SA-IS is to assign a new integer-name 
to each LMS substring. The sentinel LMS is assigned name 
0. The naming of the rest of LMS substrings is done by 
Left-to-Right scanning of SA, and comparing two 
consecutive LMS substrings: if two substrings are the 
same, then they are assigned the same name, otherwise, the 
current LMS is assigned the next integer-name than the 
previous LMS. 

Finally, to build a shortened string T1 that consists of 
integer-names of LMS substrings of T, the integer-names 
must be placed in the same order as their corresponding 
LMS substrings occur in T. To clarify, if the i-th LMS 
substring of T has been assigned integer-name d1 and the 
k-th LMS substring of T has been assigned integer-name 
d2, then character T1[i] = d1 and T1[k] = d2. Figure 1 E 
shows the resulting T1 for the given T in our example.  

To make sure this step is done in linear time, the original 
algorithm [10] proposed to keep a bit array of length n with 
1s denoting the starting positions of LMS substrings. In 
addition, a succinct data structure supporting Rank(i) 
operation must be prebuilt in linear time, where given the 
starting position i of an LMS substring in T, Rank(i) in 
constant time returns the rank of the LMS substring in T 
(the order of the LMS substring in T from left to right). 

Thus, once the LMS substring T[i…j] is assigned name d, 
we set T1[ Rank(i) ] = d. 

The recursive call to SA-IS on the shortened string T1 
returns the suffix array SA1 for T1. The next step of the 
algorithm is to induce the positions of LMS substrings of 
T from the suffix positions of T1 stored in SA1. Since each 
character T1[j] corresponds to the j-th LMS substring of T, 
we can convert positions of suffixes of T1 to starting 
positions of the corresponding LMS of T as follows. Let j 
= SA1[i] be the position of the suffix of T1, starting with 
T1[j], which corresponds to the j-th LMS in T. Then we can 
use a prebuilt in linear time succinct data structure that 
supports operation Select(j) that returns the position of the 
j-th LMS in T in constant time, given j. After inducing the 
starting positions of the LMS substrings in T from suffix 
positions of T1, we have positions of LMS suffixes of T 
sorted in lexicographic order and place them into SA at the 
ends of the corresponding c-buckets.  

The last step InduceSort is used again to induce SA from 
the LMS positions. Each step of SA-IS takes linear time. 
Since two LMS characters cannot be consecutive 
characters by definition, then the length of T1 is at most n/2, 
half of the length of T, and, hence, the recursive algorithm 
SA-IS takes linear time. 

Figure 2: Execution of Algorithm 1 applied to the given string T='DABRACADABRACABRAB$'. (A) Type array t 
is shown for T and the starting positions of LMS substrings are marked with * character. (B) Suffix array SA is shown 
after the starting positions of LMS substrings have been placed at the end of the c-buckets, where c is the starting 
character of an LMS. (C) SA is shown after Left-to-Right scanning of SA and after the order of L-type suffixes has 
been induced from LMS and L-type suffixes. The induced L-type suffix positions are shown in bold. (D) SA is shown 
after Right-to-Left scanning and after the order of S-type suffixes has been induced from L-type and S-type suffixes. 
The induced S-type suffix positions are shown in bold. (E) The shortened string T1 is shown: each integer-character 
T1[i] corresponds to the i-th LMS substring of T, whose names have been assigned according to their lexicographic 
order in SA. 
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BWT-IS simulates InduceSort procedure with the help 
of four queues: LMS, L, S and LS (each of the four queues 
for each character in the alphabet). Instead of keeping a 
suffix array of size n that holds positions of all suffixes, 
BWT-IS keeps LMS substrings of T directly and uses 
circular shift of characters in LMS so that the front 
character directs the next step of induce-sorting. Initially 
all LMS substrings are reversed and placed into LMS 
queues (by their last character), e.g. the reverse of an LMS 
T[i…j] is stored in LMST[j] queue for T[j] character.  

Left-to-Right scanning of InduceSort procedure 
processes c-buckets in increasing order of characters c. 
BWT-IS simulates this step by considering characters of 
the alphabet in increasing order, and for each character c, 
first, it processes Lc queue and then LMSc queue (just as 
SA-IS algorithm processes L-type suffixes and then LMS 
suffixes of a c-bucket). While Lc queue is not empty, a 
current LMS is popped at the front of the queue, and if the 
front character b of the current LMS substring is greater 
than or equal to c, then b is of L-type, so the LMS substring 
is pushed to the back of Lb queue (in this case, b is shifted 
to the back of the LMS substring). Otherwise, the LMS 
substring is pushed to the back of LSc queue. This 
simulates processing of L-type suffixes of a c-bucket. Next, 
while LMSc queue is not empty, a current LMS substring 
is popped from the front of the queue, and the front 
character b of the current LMS substring is placed to the 
back of the LMS substring. The character b is of L-type, so 
the LMS substring is pushed to the back of the Lb queue. 
These two steps simulate Left-to-Right scanning of SA and 
induce sorting of L-type suffixes.  

The Right-to-Left scanning of SA of SA-IS algorithm is 
simulated by processing characters of the alphabet in 
decreasing order. Prior to this step, LS queues are reversed. 
Next, for each character c, first Sc queue is processed and 
then LSc queue is processed. In SA-IS this corresponds to 
processing of S-type suffixes and then L-type suffixes of a 
c-bucket during Right-to-Left scanning of SA. While Sc 
queue is not empty, pop a current LMS substring from the 
front of the queue, move the front character b of the LMS 
substring to the back of the LMS substring, and if b is less 
than or equal to c (i.e. b is of S-type), then push the LMS 
substring onto the back of Sb queue. Next, while LSc is not 
empty, pop a current LMS substring from the front of the 
queue, move the front character b to the back of the 
substring, and push LMS substring onto the back of Sb 
queue. During these movements involving the four types 
of queues, BWTs of L-type suffixes and of S-type suffixes 
are built separately for each character c, and at the end of 
the algorithm, BWT for T is constructed from these shorter 
BWT substrings.  

Hereafter, we will refer to BWT-IS as it is implemented 
by the authors of the original paper. Given a string T, (1) 
BWT-IS sorts LMS substrings using quick sort and builds 
a shortened string T1, then (2) calls SA-IS algorithm to 
recursively calculate SA1 for T1; (3) deduces positions of 

the LMS substrings of T from positions of suffixes of T1 in 
SA1; and finally, (4) simulates InduceSort using the four 
types of queues to build the BWT for T. BWT-IS saves 
space by avoiding storing SA for T. 

In the presented here algorithm, we use BWT-IS as the 
basis for our algorithm BWT-ISFM. The major difference 
between the proposed algorithm and BWT-IS is that we 
keep the starting positions of LMS suffixes in the queues 
instead of LMS substrings. This allows accessing induced-
sorted positions of suffixes directly on the fly while 
constructing the BWT, which allows building an FM-index 
on the fly. In addition, our implementation of sorting 
distinct LMS substrings and building a shortened T1 of the 
given string T differs from the BWT-IS’s implementation.  
The rest of the paper is organized as follows. In section 3, 
we describe our algorithm and analyze its time 
requirements. In section 4, we convey a benchmarking that 
demonstrates the performance of our algorithm in terms of 
time and RAM, and compares it with the performance of 
BWT-IS and existing FM-index building tools: the most 
popular tool Bowtie-2 by Langmead et al. [8] and another 
tool called BRAT-nova by Harris et al. [4], an aligner for 
bisulfite-treated reads used to identify methylation within 
a DNA sequence. 
 

3 Construction of BWT and FM-
Index 

 
3.1 Implementation of Induce Sorting and 

Calculation of Explicitly Stored Positions 
 

FM-index constructed by our algorithm BWT-ISFM 
consists of (1) a succinct data structure Character 
Occurrences that for each character c in  allows 
calculating of the total number of occurrences of c in 
BWT[0…i] in constant time, for 0  i  n-1; (2) a succinct 
data structure Positions Occurrences that consists of a bit 
array called bwtMarked  (with bit 1 at index i indicating 
that the suffix position corresponding to SA[i] is explicitly 
stored) together with a succinct structure that calculates 
Rank(i) in constant time; this structure is used to retrieve 
an explicitly stored genomic position; (3) an array called 
Positions with explicitly stored suffix positions. In addition 
to this classical FM-index, our program constructs a bit 
array called posBit with 1 at index i indicating that stored 
position corresponding to SA[i] is greater than maximum 
value of an unsigned integer, MAXUI = 232 – 1.  
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The array Positions stores unsigned integers (requiring 
4B per integer). To retrieve the correct position, algorithm 
uses 4B stored at Positions and one bit stored at posBit: if 
a bit at posBit is 1, then to the value stored at Positions, we 
need to add MAXUI. 

Our algorithm follows the outline of BWT-IS. Our 
algorithm uses four types of deques: LMS, L, S and LS 
(similarly to the queues used by BWT-IS described above). 
Each deque supports four operations: push front and push 
back (inserts a suffix position at front and back 
respectively), and pop front and pop back (removes a suffix 
position from the front and back of a deque respectively). 
At any time of the algorithm, there are at most X positions 
stored in all deques, where X is the total number of LMS 
substrings of the original string T.  

The procedure InduceSort of BWT-ISFM is shown in 
Figure 3. As in BWT-IS, InduceSort is used only once. We 
keep BWT array of length 2n bits (2 bits per character). 
Initially, the starting positions of sorted LMS substrings of 
T are pushed back onto the corresponding LMSc deques for 
each character c, the starting character of an LMS 
substring; and the head pointers for each character c in  
are set to the fronts of corresponding c-buckets. The moves 
of LMS positions between the deques exactly simulate 
induce sorting using an SA in SA-IS algorithm. First, 
characters of alphabet are processed in increasing order in 
the first for loop (simulating processing of c-buckets in 
Left-to-Right order), and then characters are processed in 
decreasing order in the second for loop (simulating 
processing of c-buckets in Right-to-Left order). In the first 
for loop, Lc deque is processed before LMSc deque. In each 
of these deques, a current front position p is popped from a 
deque, and if the character T[p-1] is greater or equal to 
T[p], then T[p-1] is of L-type, and position (p – 1) is pushed 
back onto LT[p-1] deque. The corresponding BWT character 
is calculated as T[p-2]. In addition, we check whether the 
position (p – 1) is a position that we explicitly store (mod 
step is equal to 0, where step is log(n)). If so, then we 
output to a file the position p – 1 and the BWT index, 
headT[p-1]. In addition, we set bits of bwtMarked (if position 
p – 1 is explicitly stored) and posBit (if p – 1 is greater than 
MAXUI) to 1. At the end, the head pointer is incremented. 
In case when the front of Lc deque induces position p – 1 
that corresponds to S-type suffix, then our algorithm 
pushes p to the back of LST[p] deque.  

To simulate Right-to-Left scanning of SA of SA-IS 
algorithm, our algorithm sets tail pointers to the back of c-
buckets for each character c in . Next, BWT-ISFM 
processes the second for loop, in which for each character 
c taken in decreasing order, Sc deque is processed first and 
then LSc deque is processed. Until a deque is not empty, a 
current suffix position p from the back of the deque is 
popped (scanning Right-to-Left), and if the previous 
position, p – 1, is of S-type, then the position p – 1 is pushed 
to the front of ST[p-1] deque. In addition, BWT character 
T[p-2] is set at index tailT[p-1] and if needed bits of 

bwtMakred and posBit at index tailT[p-1] are set to 1, and an 
explicitly stored position p – 1 together with index tailT[p-1] 
are printed to a file.  At the end, the tail pointer is 
decremented. 

Once InduceSort procedure is finished, we need to place 
explicitly stored SA positions in the correct order, i.e. in 
increasing order of BWT indices. First, BWT-ISFM pre-
builds in linear time the succinct data structure Positions 
Occurrences using bwtMakred. Recall that given a BWT 
index i, this structure calculates Rank(i) in constant time. 
Then, our algorithm reads in the outputted to the file 

ALGORITHM 2: InduceSort of BWT-ISFM 
0: Input: string T and for each character, four 
    types of deques: LMS, L, S and LS; 
    LMS deques are initialized with positions of LMS 
    substrings 
    Output: BWT, bwtMarked, posBit, explicitly stored  
    positions of suffixes of T 
1: for each character c := 0,1,2,…,-1, do 
2:      for Qc := Lc, LMSc  
3:           while Qc is not empty do 
4:                p  Qc.popFront() 
4:                if(T[p]  T[p-1]) then 
5:                     LT[p-1].pushBack( p-1 ) 
6:                     BWT[headT[p-1]] := T[p-2] 
7:                     if( (p-1) mod step = 0 ) 
8:                          bwtMarked[headT[p-1]] := 1  
9:                          write: (p-1) and headT[p-1] 
10:            if(p – 1 > MAXUI) 
11:  posBit[headT[p-1]] := 1 
12:                   headT[p-1] := headT[p-1] + 1 
13:             else if processing Lc queue,  

    and T[p] > T[p-1],  
then LST[p].pushBack( p )  

14:          end of while 
15:      end of for 
16: end of for 
17: for each character c := -1, …, 2, 1, 0, do 
18:      for Qc := Sc, LSc  
19:           while Qc is not empty do 
20:               p  Qc.popBack() 
21:               if(T[p-1]  T[p]) then 
22:                    ST[p-1].pushFront( p-1 ) 
23:                    BWT[tailT[p-1]] := T[p-2] 
24:                    if( (p-1) mod step = 0 ) 
25:                          bwtMarked[tailT[p-1]] := 1  
26:                          write: (p-1) and tailT[p-1] 
27:            if(p – 1 > MAXUI) 
28:  posBit[tailT[p-1]] := 1 
29:                    tailT[p-1] := tailT[p-1] – 1 
30:           end of while 
31:      end of for 
32: end of for 

 
Figure 3: InduceSort of BWT-ISFM 
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indices one at a time (suffix position and the corresponding 
BWT index). Using the BWT index i, it places the 
corresponding suffix position into the array Positions at 
index Rank(i). We chose to output positions and their BWT 
indices into the file to save memory. There are total of 
n/log(n) explicitly stored positions, and we need log(n) bits 
to store each position or BWT index. Hence, the total space 
to store positions and BWT indices would be 
2log(n)n/log(n), which results in 2n bits. In case of 
keeping these positions and indices in memory, I/O 
operations would not affect linear time of the algorithm. In 
practice, I/O operations do not add much to the total time 
(not more than about 3 minutes in our experiments – results 
are not shown), but printing out positions and BWT indices 
allows saving memory for larger genomes and offers extra 
flexibility for users (our program allows users to select the 
value for step, which regulates the total number of 
explicitly stored positions). 
 

3.2 Sorting Distinct LMS Substrings, 
Assigning Names and Building a 
Shortened String T1 

 

In SA-IS, the InduceSort procedure is used for the first 
time to sort LMS substrings in lexicographic order relative 
to each other. One can use InduceSort that guarantees 
theoretical linear time, but in practice, another method to 
sort all distinct LMS substrings is much faster. For 
example, in our experiments on a human genome using two 
strands, InduceSort takes about 20 minutes, whereas 
sorting distinct LMS substrings using a quick sort and 
building a shortened T1 string takes less than 2 minutes. 
Here, we will describe our method of building a shortened 
T1 using a quick sort. We used ideas similar to those of the 
BWT-IS algorithm, but devised a different implementation 
for this procedure.  

First, we collect the starting positions of distinct LMS 
substrings into a separate array. LMS are categorized as 
short substrings and long substrings dependent on their 
lengths. An LMS substring of length at most 12 characters 
is considered to be short, and the rest of LMS substrings 
are long. We would like to clarify that by the term all 
distinct LMS substrings we mean all long LMS substrings 
and distinct short LMS substrings. To identify the starting 
positions of distinct short LMS substrings, we keep a hash 
table of size 412 entries, where 4 is the size of the DNA 
alphabet {A, C, G, T}. The length 12 for a short LMS 
substring was chosen to keep a good balance between the 
space required for the hash table and the total number the 
long LMS substrings that is at most n/12. Each character is 
represented using 2 bits (A is 00, C is 01, G is 10 and T is 
11). We scan T Right-to-Left, and if T[i] is the starting 
character of a short LMS substring s, then we convert s to 
its hash index h equal to the complement of s. We must use 
the complement of s to distinguish between LMS 
substrings such as AATA and ATA; since A is represented 

as 0 in binary, both strings AATA and ATA in binary are 
represented as the same integer, namely, 12 (00001100 and 
001100 respectively). By taking the complement of these 
strings, their binary representations become 
distinguishable (11110011 and 110011 respectively). For 
all identical short LMS substrings whose hash index is h, 
we store a single position that is the greatest. For example, 
if T[i…i+m] and T[j…j+m] correspond to a short LMS 
substring s, and the position i is greater than j, then we store 
i at index h in the hash table and in the array with the 
distinct LMS positions. If a current LMS is long, we store 
its starting position in the array with distinct positions.  

Once the positions of distinct LMS substrings are 
collected, we sort the distinct LMS substrings using a quick 
sort. Dependent on implementation, theoretically, it takes 
(nlogn) time, but in practice, it is much faster than 
InduceSort that takes theoretical linear time (e.g. it takes 
on average 9 seconds to sort all distinct LMS substrings of 
two strands of human genome). Next, we assign names to 
the distinct LMS substrings by scanning the sorted array 
and comparing two consecutive LMS substrings. If the 
current LMS substring is the same as previous one, it is 
assigned the same integer-name, otherwise, it is assigned 
the next integer-name, starting with integer-name of 0 for 
the sentinel character. The integer-names are stored in 
another array such that the corresponding starting position 
of an LMS and its integer-name are stored at the same 
index of the corresponding arrays. 

Finally, to build a shortened string T1 whose characters 
are integer-names of LMS substrings of T, we use another 
quick sort that sorts the integer-names of all distinct LMS 
substrings according to the increasing order of their 
corresponding starting positions in T. To make it clear, we 
use quick sort to sort pairs <position, integer-name> in 
increasing order of positions. This places integer-names 

ALGORITHM 3: Building a shortened T1 
0: Input: string T, integer arrays positionsDistinctLMS  

and namesDistinctLMS, integer array hashTable 
Output: shortened string T1 of size equal to the total 

    number of LMS substrings in T 
1: Scan T Right-to-Left:  
 keep pointer p to point to the last position in  
 positionsDistinctLMS;  
 fill in T1 Right-to-Left using index j 
2: If index i is the starting position of LMS substring s 
3:  If i is equal to positionsDistinctLMS [p],  
4:       then T1[ j ] = namesDistinctLMS[p]; 
       j--; p--; 
5:  If current LMS substring s is short,   
      hashTable[~s] = namesDistinctLMS[p]  
6:  Else if i  positionsDistinctLMS [p]  
7:       then T1[ j ] = hashTable[~s];  j--;  
8: return: T1 
 

Figure 4: Building a shortened T1 
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into appropriate slots within T1. Figure 4 shows the 
procedure that builds T1. 

We fill in T1 Right-to-Left while scanning T Right-to-
Left. We maintain the pointer p that points to the currently 
processed position in the array positionsDistinctLMS 
(processed Right-to-Left). If the currently processed 
position i in T corresponds to the starting position of LMS 
substring s, we compare i with the current position stored 
at positionsDistinctLMS[p]. If these positions are equal, 
then this means that the currently processed LMS substring 
s is either long or the representative of identical LMS 
substrings. This also means that in case s is a short LMS, 
then no other LMS the same as s has been processed yet. If 
s is a short LMS, we retrieve the integer-name of s stored 
at namesDistinctLMS[p] and place this name in the 
corresponding entry of the hash table using hash index 
equal to ~s (the complement of s). Either s is long or short, 
we fill in the current slot of T1 with its integer-name stored 
at namesDistinctLMS[p]. In case, if the current starting 
position i in T corresponds to an LMS substring s whose 
position is not stored at positionsDistinctLMS, we extract s 
from T, and use the hash index ~s to retrieve its integer-
name stored in the hash table at index ~s and place the 
name into the current slot of T1. This procedure takes linear 
time.  

 

4 Experimental Result 
 

The major motivation for our algorithm was to time-
efficiently construct an FM-index together with BWT for a 
large genome in practical space (less than 16GB of RAM). 
Taken this into account, to benchmark the performance of 
our algorithm, we chose the existing tools that build an FM-
index or BWT for large genomes in practical space. We 
chose BWT-IS algorithm (implemented by the authors) 
because it can calculate the BWT for a human-size 
genome. We wrote our own script that given BWT-IS’s 
output BWT, calculates an FM-index. The other chosen 
tool was Bowtie-2, [8] that builds an FM-index using 
algorithm by Kärkkäinen [6]. Bowtie-2 can build FM-
index for small size genomes (less than or equal to 4Gb) 
and large genomes (greater than 4Gb). Finally, we show 
the results of BRAT-nova [4] that builds an FM-index 
exclusively for mapping bisulfite-treated reads to identify 
methylation, an important epigenetic marker.  

We intentionally did not choose any of SA-IS algorithms 
because they run in space greater than 16GB and because 
publically available implementations of SA-IS have 
limitation to work with strings less than 231. We used 
BWT-IS algorithm that was kindly provided by the 
authors, and we used versions bowtie2-2.3.2 (for a human 
genome) and bowtie2-2.2.5 (for two strands of a human 
genome). All programs were compiled using the provided 
Makefiles. No additional options were used with Bowtie2. 

We used total of three data sets. The first data set was the 
human genome GRCh38, from which we removed long 
runs of consecutive N characters leaving at most 49 of 
consecutive Ns. The size of this resulting genome was 
2,934,896,319. The second data set was concatenation of 
two strands (positive and negative) of the same human 
genome. We took the reverse of the negative strand 
concatenated with the reverse of the positive strand. The 
reason for this choice of concatenation was the way the 
DNA reads are mapped to the FM-index: this way allows 
mapping reads starting with the starts of the reads that have 
the least number of sequencing errors. Finally, we used two 
strands of GRCh38 just as in the second step, but with all 
Cs converted to Ts. This index is used to map bisulfite-
treated reads to identify methylation within a genome; in 
particular, this index is used in BRAT-nova, a mapping 
tool for bisulfite-treated reads. Hereafter, we will call these 
three data sets as hg-one-strand, hg-two-strands and hg-
two-strands-bs respectively. Table 1 shows the running 
time of the tools on all three data sets measured in seconds 
and RAM usage. For BWT-IS, the running time is the sum 
of the time needed to run BWT-IS and the time to build the 
FM-index from the resulted BWT. 

Bowtie-2 builds an FM-index for forward strand and 
reverse strands separately (first, it builds the FM-index for 
forward strand and then for the reverse strand). To make 
comparison fair, in Table 2 for Bowtie-2 we show time as 
reported by the program required to build the FM-index for 
forward strand only. For BWT-IS and our algorithm BWT-
ISFM, we report the time as reported by the Linux 
command /usr/bin/time -v by summing up user and system 
times, and for Bowtie-2 as reported by the tool. BWT-IS 
does not support strings of length greater than 232-1, so 
there are no results for data sets that use two strands of a 
human genome. To make our report complete, here we 
report time spent by BWT-IS to build BWT for hg-one-
strand: it took 728sec. The rest 1536sec is required to build 

 
Table 1: Time and RAM Usage 

Tool 
hg-one-strand hg-two-strands hg-two-strands-bs 

Time RAM Time RAM Time RAM 
BWT-IS + FM-index 2264sec 5.45GB   1.86n - - - - 
Bowtie2 3190sec 5.58GB   1.90n 7154sec 15.70GB   2.86n 7972sec 16.02GB   2.73n 
BRAT-nova - - - - 38826sec 7.56GB     1.29n 
BWT-ISFM 1397sec 6.15GB   2.10n 2736sec 13.00GB   2.22n 2429sec 11.47GB   1.95n 
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an FM-index. Our program BWT-ISFM shows the best 
time on hg-one-strand among the three tools compared. 
BWT-ISFM is 2.3, 2.6 and 3.3 times faster than Bowtie-2 
on these three data sets; and it is 15.9 times faster than 
BRAT-nova. It shows comparable results with BWT-IS, 
but in addition our tool supports larger input strings. 

All experiments were run on a 6-core Intel Xeon 
Processor 2.8GHz, 198GB RAM, and 216TB of raw 
storage space running Linux Ubuntu. RAM usage was 
measured as the maximum resident size. For BWT-IS we 
report memory usage while running BWT-IS. Space is 
reported in GB and as a function relative to the genome 
length n. For example, on hg-one-strand, BWT-IS used 
total of 5.45GB, which is 1.86n of bytes. 

On hg-one-strand, our program uses slightly more 
memory than BWT-IS and Bowtie-2. On two strands of a 
human genome, BWT-ISFM shows better results than 
Bowtie-2 in terms of RAM. Compared to BRAT-nova, 
BWT-ISFM uses 1.5 times more space, but is 15.9 times 
faster. Overall, our program demonstrates a good practical 
tradeoff between space and time performance. 

The source code for BWT-ISFM together with the 
scripts used in this benchmarking as well as the User 
Manual can be found at: 
https://drive.google.com/drive/folders/0Bx79W9h8ZBHe
ZTlZRzFPSVVaRjQ 

 

5 Conclusion and Future 
Improvements 

 

In our work we extended BWT-IS algorithm to build an 
FM-index on fly while constructing BWT. We tuned our 
implementation to achieve a good balance between the 
running time and RAM usage while running on large 
genomes (of size at most 232 - 1) as input. We think our 
algorithm can be extended to work with genomes of size 
up to 234 (instead of up to 233) as long as the total number 
of LMS substrings in a given genome-string T fits into 32 
bits. For the genome of size 234-1, this would mean that the 
total number of LMS substrings (i.e. the length of T1) 
should be no more than n/4. In this case, our algorithm 
instead of using 1 bit to indicate whether a position is 
greater than MAXUI, will have to keep 2 most significant 
bits of the position.  
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Abstract

We describe a global optimization approach for
genome assembly where the steps of scaffolding, gap-
filling, and scaffold extension are simultaneously solved
in the framework of a common objective function.
The approach is based on integer programming
model for solving genome scaffolding as a problem of
finding a long simple path in a specific graph that
satisfies additional constraints encoding the insert-size
information. The optimal solution of this problem
allows one to obtain new kind of contigs that we call
distance-based contig. We test the algorithm on a
benchmark of chloroplasts and compare the quality of
the results with recent scaffolders.

keywords: genome assembly, scaffolding, unitig,
contig, longest simple weighted path problem, integer
programming

1 Introduction

Modern Next-Generation Sequencing (NGS) tech-
niques output billions of short DNA sequences, called
reads, and the typical way to process this information is
by using de novo assembly. However, assembling these
fragmented raw data into complete genomes remains a
challenging computational task. This is a very complex
procedure, usually involving three main steps: (1)
generation of contigs, which are contiguous genomic
fragments issued from the overlapping of the reads;
(2) constructing scaffolds–set of ordered and oriented
contigs along the genome interspaced with gaps; (3)
finishing, which aims to complete the assembly by
inserting DNA text in the gaps between the ordered
contigs.

The first step generates a list of contigs that usually
represent the ”easily assembled regions” of the genome.
Building contigs is currently supported by methods us-
ing a specific data structure called de-Bruijn graph [13].

∗Corresponding author. Email: randonov@irisa.fr

Here we use unitigs–a special kind of high-confidence
contigs that represent maximal unambiguous paths in
the de-Bruijn graphs. Despite the progress done in the
domain, complex regions of the genome (e.g., regions
with many repeats) generally fail to be assembled by
these techniques. If the genome contains repeats longer
than the size of the reads, the entire genome cannot be
built in a unique way.

Whereas the main challenge of the first step relies
on handling huge volume of data, the scaffolding step
manipulates data of moderate size. However, the
problem remains largely open because of its NP-hard
complexity [9]). The goal here is to provide a reliable
order and orientation of the contigs in order to link
them together into scaffolds. Contigs can be linked
together using paired-end or mate-pair reads [16, 11].
This complementary data is due to the ability of the
sequencing technology to provide couples of reads that
are separated by a known distance (called insert size).
They bring a long distance information that is not
used in the first assembly stage, but is essential for the
second.

The scaffolding phase usually produces multiple scaf-
folds. Moreover, these scaffolds may contain regions
that have not been completely predicted. Hence,
two additional steps, gap-filling and scaffold extension
(elongating and concatenating the contigs after the
scaffolding step) are typically needed to complete the
genome.

The strategy proposed here differs significantly from
the approaches described in the literature. While
the latter apply various heuristics for tackling the
different assembly stages one after another separately,
our methodology consists of developing a global op-
timization approach where the scaffolding, gap-filling,
and scaffold extension steps are simultaneously solved
in the framework of a common objective function. Our
approach is based on integer programming models for
solving the genome scaffolding as a problem of finding
a long simple path in a specific graph that satisfies as
many as possible of the additional constraints encoding

978-1-943436-11-8 / copyright ISCA, BICOB 2018 
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the insert-size information [4].

We are not aware of previous approaches on scaffold-
ing based on longest path problem reduction. Most
previous work on scaffolding is heuristics based, e.g.,
SSPACE [2], GRASS [6], BESST [15] and SPAdes [1].
Such tools may find in some cases good solutions,
but their accuracies cannot be guaranteed or pre-
dicted. Exact algorithms for the scaffolding problem
are presented in [17], but the focus of that work is
on finding structural properties of the contig graph
that will make the optimization problem of polynomial
complexity. In [12], integer linear programming is used
to model the scaffolding problem, with an objective to
maximize the number of links that are satisfied. In
order to avoid sub-cycles in the solution, the authors
use an incremental process, where cycles that may
have been produced by the solver are forbidden in
the next iteration. Integrating the distances between
contigs and accounting for possible multiplicities of the
contigs (repeats, copy-counts) is indicated as future
improvement in [12], while it has been realized in our
approach.

This paper focuses on circular genomes and, in
particular, on chloroplasts. The reasons for this choice
are as follows. Chloroplasts possess circular and rel-
atively small genomes. The particularity of these
genomes is the presence of numerous repetitions, while
these are the main chalenges for the modern genome
assembly techniques. On the other hand, the size
of the chloroplast genome permits assembling them
rapidly (each one of the instances from the considered
benchmark except one, EuglenaGracilis genome, has
been solved for less that 1 sec.) and so we were able to
refine our strategy and to focus entirely on the quality
of the obtained results.

The contributions of this study are as follows:

• We adapt and further develop the general case
approach proposed in [4] to the case of circular
genomes. Using the specificities of this particu-
lar case we succeed to simplify significantly the
sophisticated mixed integer linear program (MILP)
described in [4].

• We propose an exact approach for scaffolding
in the case of circular genomes as a problem
of finding longest paths in specific unitig graphs
with additional set of constraint distances between
couples of vertices along these paths.

• We deeply analyze the reasons for the existence
of a huge number of multiple equivalent optimal
solutions. These solutions are mainly explained by
the presence of repetitions in the set of unitigs.
We find sufficient conditions for the existence of

multiple solutions zones and propose an algorithm
for identifying these zones.

• By using the optimal path found by the MILP
model, our algorithm permits merging a set of
unitigs satisfying the link distances into what we
call distance-based contigs. These contigs, together
with the other unitigs, are given to QUAST [7] for
assessment.

• We tested this strategy on a set of 33 chloroplast
genome data and compared the results with
some of the most recent scaffolders (namely
with SPAdes [1], SSPACE [2], BESST [15] and
SWALO [14]).

• Our numerical experiments show that our ap-
proach produces assemblies of higher quality than
the above heuristics on the considered benchmark.

2 Modeling the scaffolding
problem

In this section we adapt the optimization approach
proposed in [4] to the particularities and characteristics
of the circular genomes. Section 2.1 describes the graph
modeling that is common for both approaches, while
the mathematical programming formulation presented
in section 2.2 includes enhancements of the model
that, while making it less general, greatly increase its
efficiency for chloroplast genome scaffolding.

2.1 Graph Modeling

The input data for our approach are the following:

• A set of unitigs together with their copy-count
(multiplicity). Only unitigs larger than a prede-
fined threshold (cf section 4.1 ) are considered.
The copy-count is determined from k-mer counting
techniques (cf section 4.1.2).

• A list of overlaps between the unitigs. Two
unitigs overlap if they share a minimum of common
nucleotides at their extremities.

• A list of oriented couples of unitigs (links). Links
are determined from paired-end or mate-pair infor-
mation. Due to insert size fluctuation, an interval
distance is associated with any link from this list.

We follow the modeling from [4] where the scaffolding
problem is reduced to a path finding in a directed graph
G = (V,E), called a unitig graph, where both vertices
V and edges E are weighted. The set of vertices V is
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generated based on the set C of the unitigs according
the following rules: the unitig i is represented by at
least two vertices vi and v′i (forward/inverse orientation
respectively). If the unitig i is repeated ki times (this
value corresponds to the copy-count), it generates a set
Ci of 2ki vertices. If two different vertices v and w
belong to Ci and have the same orientations, we can
use the notation v ≈ w. Let us denote N =

∑
i∈C ki;

thus |V | = 2N .

The edges are generated following given patterns—
a set of known overlaps/distances between the unitigs.
Any edge is given in the graph G in its forward/inverse
orientation. We denote by eij the edge joining vertices
vi and vj and the inverse of edge eij by ej′ i′ . Let wv
be the length of the unitig corresponding to vertex v
and denote W =

∑
v∈V wv. Moreover, let the weight

le on the edge e = (vi, vj) correspond to the value of
the overlap/distance between unitigs represented by vi
and vj . The problem then is to find a path in the
graph G such that the total length (the sum over the
traversed vertices and edges) is maximized, while a set
of additional constraints is also satisfied:

• For any i, either vertex vi or v′i is visited (partici-
pates in the path).

• The orientations of the nodes does not contradict
the constraints imposed by the links. This is at
least partially enforced by the construction of G.

To any edge e ∈ E we associate a variable xe. Its
value is set to 1, if the corresponding edge participates
in the assembled genome sequence (the associated path
in our case), otherwise its value is set to 0. There are
two kinds of edges: edges corresponding to overlaps
between unitigs, denote them by O (from overlaps), and
edges associated with the links relationships, denote
them by L. We therefore have E = L ∪ O. Let le be
the length assigned to the edge e = (u, v). We define le
∀e ∈ O such that le < 0 and |le| < min {wu, wv} is the
overlap between the contigs corresponding to vi and vj ,
and le > 0 ∀e ∈ L, where le is the link distance between
unitigs represented by vi and vj .

Let δ+(v) ⊂ E (resp. δ−(v) ⊂ E) denote the sets of
edges outgoing from (resp. incoming to) v.

2.2 Mixed Integer Linear
Programming Formulation

The crucial observation in the approach proposed in
[4] is that the genome can be assembled by searching for
a particular longest path in the associated unitig graph.
However, the beginning and the end of this path are
unknown in the general case. This constraint leads to
the sophisticated model described in [4]. Here we use

the following facts/hypotheses for chloroplast genomes
in order to simplify the above general approach:

(1) Chloroplast genomes are circular;

(2) We assume that any input unitig is part of the
genome.

(3) We assume that the entire genome is sufficiently
covered (no gaps in its sequence).

In our runs we choose the largest unitig (say s) to play
the role of the beginning and the end of the genome.
Consequently, we introduce a supplementary vertex t
that gets all incoming edges from s. Specifically, each
edge (x, s) we replace by an edge (x, t) and set δ−(t) =
δ−(s), δ+(t) = ∅, and δ−(s) = ∅. Vertices s and t will
be considered respectively as the source (start) and the
sink (end) of the path we are looking for.

Furthermore, to any vertex v ∈ V \ {s} we associate
the variable iv s.t.

0 ≤ iv ≤ 1 (1)

encoding whether v is in the solution path. Moreover,
each vertex (or its inverse) should be visited at most
once, which we encode as

∀(v, v′) : iv + iv′ ≤ 1. (2)

We associate a binary variable for any edge of the
graph, i.e.,

∀e ∈ O : xe ∈ {0, 1} and ∀e ∈ L : ge ∈ {0, 1}. (3)

The two possibles states for a vertex v (to be (or not)
an intermediate vertex in the path) are enforced by the
following constraints

iv =
∑

e∈δ+(v)

xe =
∑

e∈δ−(v)
xe. (4)

It is then obvious that the real variables iv,∀v ∈ V
take binary values.

We introduce a continuous variable fe ∈ R+ to
express the quantity of the flow circulating along the
edge e ∈ E. Without this variable, the solution found
may contains some loops and hence may not be a simple
path. We put a requirement that no flow can use an
edge e when xe = 0, which can be encoded as

∀e ∈ E : 0 ≤ fe ≤Wxe, (5)

where W is as defined above (W =
∑
v∈V wv).

We use the flows fe in the following constraints, ∀v ∈
V \ {s},

∑

e∈δ−(v)
fe −

∑

e∈δ+(v)

fe = iv(wv +
∑

e∈δ−(v)
lexe), (6)
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while for the source vertex we require

∑

e∈δ+(s)

fe = W. (7)

We furthermore observe that, because of (4), the
constraint (6) can be written as follows

∀v ∈ V : (8)∑

e∈δ−(v)
fe −

∑

e∈δ+(v)

fe = ivwv +
∑
e∈δ−(v) lexe.

The constraint (8) is linear and we keep it in our
model instead of (6).

The model so far defines a solution to the longest
path problem. We need also to add information related
to the links distances. For that reason, we associate
a binary variable ge with each link e. For (u, v) ∈ L,
the value of g(u,v) is set to 1 only if both vertices u
and v belong to the selected path and the length of the
considered path between them is in the given interval
[L(u,v), L(u,v)]. Constraints related to links are :

g(u,v) ≤ iu and g(u,v) ≤ iv (9)

∀(u, v) ∈ L : (10)∑

e∈δ+(u)

fe −
∑

e∈δ−(v)
fe ≥ L(u,v)g(u,v) −M(1− g(u,v)),

∀(u, v) ∈ L : (11)∑

e∈δ+(u)

fe −
∑

e∈δ−(v)
fe ≤ L(u,v)g(u,v) +M(1− g(u,v)),

where M is some big constant.

Our goal is to find a long path in the graph such that
as many as possible link distances are satisfied. The
corresponding objective function hence is of the form

max

(∑

e∈O
xele +

∑

v∈V
wviv + p

∑

e∈L
ge

)
(12)

where p is a parameter to be chosen as appropriate
(currently p = 1).

3 Dealing with multiple optimal
solutions

By its nature, the information provided by the
overlaps and mate pairs is not always sufficient to
determine the assembly in a unique way. For instance,
the unitig graph G is symmetric by construction, e.g.,
if there is an edge (v, w) between vertices v and w, then

there is an edge (w′, v′) between their inverses w′ of w
and v′ of v. Moreover, it contains repeated identical
unitigs, which are modeled by different vertices of G.
For all the above reasons, for each optimal solution
(path) p∗ found by our algorithm, there are typically
multiple (exponential in the worst case) number of
equivalent solutions (paths). Such paths are different
from p∗ as sequences of vertices of G, but correspond
to the same set of unitigs (and their inverted copies)
and satisfy the same number of links, and hence
are equally ”optimal” from the point of view of the
optimization problem (1)–(12). This issue is especially
pronounced for chloroplasts due to their higher number
of repeated/symmetrical regions.

Choosing just any arbitrary path from the set of
equivalent optimal ones can result into an assembly
different from the genome reference, which is the main
criterion for evaluating the accuracy of the prediction.
Therefore, our strategy is to detect in the optimal
path multiple solution portions and to separate them
from subpaths that cannot be replaced by equivalent
ones. This latter type of subpaths will be merged in
what we call db-contigs (distance-based, i.e., contiguous
sequences that satisfy the link distances). Obviously,
none of the optimal solutions is eliminated while pro-
ceeding in such a manner. We call these zones ”unsafe”
and ”safe,” respectively.

In this section we describe a method to decompose
a solution path into safe and unsafe zones. Our algo-
rithm is heuristic, meaning that it does not necessarily
identify all safe zones, but, as our experiments show, it
works well in practice.

Formally, we call two paths p1 = (v1, . . . , vk) and
p2 = (w1, . . . , wk) of G equivalent, if they satisfy the
same set of links and their components are permuta-
tions of the same set of unitigs (and their inverted
copies). These paths can differ (or not) as sequences
of base pairs. If p is a path in the unitig graph
representing a solution of the optimization problem, we
call a subpath p′ of p a safe zone of p if there exists no
path in the graph G minus p\p′ that is equivalent to and
different from p′, and p′ is a maximal subpath with this
property. Safe zones are in fact subpaths containing
a number of satisfied links, since each such link adds
a constraint that reduces the number of subpaths that
may be equivalent to it. Removing all safe zones from
p leaves a set of paths that we call unsafe zones. We
call a path p link-closed if for any link that has as an
endpoint an intermediate vertex of p, its other endpoint
is also p.

Next, we will illustrate a method for identifying un-
safe zones by an example. Consider a unitig vs of mul-
tiplicity two. According to the graph-generation rules,
there are vertices vs0 and vs1 inG corresponding to vs in
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the forward orientation and their corresponding vertices
v′s0 and v′s1 in the opposite direction. Assume also that
there exists a link-closed subpath p = (vk, vk+1, . . . , vr)
of a solution to the optimization problem such that
vk = vs0 and vr = v′s1. Remember that, for each edge
(vi, vi+1) from p, the inverse edge (v′i+1, v

′
i, ) also exists

in the unitig graph. Then we show that the inverse of p,
i.e. the path p′ = inv(p) = (v′r, v

′
r−1, . . . , v

′
k) of inverted

unitigs is also an optimal solution of the optimization
problem. Obviously, length(p) = length(p′). Since
v′r = vs1 = vs0 and v′k = v′s0 = v′s1, the paths p and
p′ have the same sets of unitigs corresponding to their
vertices and have identical unitigs at the beginning and
their ends, but they are different as paths (sequences
of vertices). The subsequence p = (vk+1, . . . , vr−1) is in
this sense unsafe zone in the solution path. An example
of such unsafe zone is illustrated on Figures 1.

vs0 vi vt vk v
′
s1

vs1 v
′
k v

′
t v

′
i v

′
s0

Figure 1: Top: a path p containing
two links visualized with dashed lines;
Bottom: its reversible path p

′
. Note

that vs0(resp. v
′
s0) is identical to

vs1(resp. v
′
s1).

It turns out that the type of subpath illustrated in
the previous example is quite common and most of the
unsafe zones that we have identified in our experiments
can be captured using it. The algorithm for safe/unsafe
zones detection based on using this pattern works as
follows:

(1) The vertices belonging to any satisfied link from
the optimal path p∗ found by the model in section
2.2 are considered elements of a potential db-
contig.

(2) Potential db-contigs that overlap at least one
vertex are merged in new (longer) potential db-
contigs.

(3) Any vertex outside the potential db-contigs is
considered as unsafe.

(4) For any potential db-contig C we apply the follow-
ing algorithm.

(a) Any vertex vs ∈ C is initialized as safe.

(b) For any safe vertex vs ∈ C with multiplicity
of at least two, and such that exists a couple
(vs0, v

′
s1) belonging to C, and such that the

subpath between vs0 and v
′
s1 is link-closed do:

(i) indicate as unsafe both vertices vs0 and
v
′
s1; (ii) indicate the path between vs0 and
v
′
s1 as a new potential db-contig.

(5) All adjacent safe vertices are merged in true db-
contigs (new meta-vertices).

The algorithm is illustrated on Figures 2, 3 and 4.

v40 v
′
3 v

′
41

v2 v1 v
′
81

v6 v
′
7

v80

Figure 2: The initial solution.

v40 v
′
3 v

′
41

v2 v1 v
′
81

v6 v
′
7

v80
s s s s u s s s s

Figure 3: Steps 1, 2 and 3. Two potential db-contigs
are created (the first one is red colored, the second
is blue colored). Their vertices are initially labeled
as safe. The vertex v1 is labeled as unsafe since it is
outside the potential db-contigs.

v40 v
′
3 v

′
41

v2 v1 v
′
81

v6 v
′
7

v80
s s s s u u s s u

Figure 4: Step 4. Two repetitions are detected : the
couples (v40, v

′
41) and (v

′
81, v80). However, the path

(v40, v
′
3, v

′
41) is not reversible, since it is not link-

closed (because of the link (v
′
3, v2)). On the other

hand, the path (v
′
81, v6, v

′
7, v80) is reversible. The

vertices v
′
81 and v80 are labeled as unsafe. Finally,

two true db-contigs are created : the first one,
C1 (in red), contains the subpath (v40, v

′
3, v

′
41, v2),

the second one C2 (in blue), contains the subpath
(v6, v

′
7). These two db-contigs, together with

vertices/unitigs v2 (in white) and v80 (in yellow) are
given for assessment to QUAST.

In order to evaluate the quality of obtained solution
we use QUAST [7]. Note that this tool requires
for input just a set of contigs without indication
for their repetition and orientation (for example, the
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input concerning the instance from Figure 4 consists in
contigs C1, C2, v1 and v80 uniquely). QUAST maps any
of them to the reference genome on order to assess its
quality.

Note that this algorithm does not necessarily find
all unsafe/safe zones, but it works well in practice.
Correctly identifying all such zones is an interesting
research problem, whose solution can further improve
the quality of our tool. In the next section we report
some experimental results comparing our tool with
some of the best existing similar tools.

4 Experimental Analysis

4.1 Data Generation

4.1.1 Simulated Data

From 33 chloroplast reference genomes (cf Table 1), 33
datasets of mate-pairs or pair-ended reads are generated
with the art-illumina software with 100x depth of
coverage [8]. For each dataset, the two following
tasks are performed: (i) unitig generation; (ii) link
computation.

4.1.2 Unitig generation

Unitigs are generated with the Minia assembler [3]. A
range of different k-mer sizes are tried to find the one
that yields the best assembly.

For each unitig, its abundance (copy-count) is com-
puted, that is, the number of times it appears in the
genome. For that, we define the kmer abundance as the
number of times this kmer or its reverse-complement
appears in the read files. The abundance of a unitig
is then computed as the average abundance of all its
kmers. This abundance is computed and returned by
the Minia software.

In theory, the abundance of a unitig that is not
repeated in the genome should be equal to the depth
of coverage of sequencing, twice that amount for dupli-
cated unitigs, and so on. We assume that the longest
unitig is not duplicated, i.e. that its abundance is equal
to the depth of coverage. The multiplicity of each unitig
is then simply computed as its abundance divided by
the depth of coverage, rounded to the nearest upper
integer value.

This strategy provides an estimation of the coverage,
but its accuracy strongly depends of the length of the
unitigs. Longer the unitigs, better the estimation.
Actually, for very short unitigs, we can only provide
intervals of confidence or, at least an upper bound.

4.1.3 Link computation

Each mate-pair or pair-ended read is individually
mapped to unitigs with minimap [10]. We discard
reads that map ambiguously to several locations.
Reads of a pair that map to different unitigs indicate
a mate-pair link in the graph. To avoid false positives,
we only keep links that are validated by at least 5
pairs. The link size is estimated thanks to the known
inserts size and mapping position in each unitig, and
averaged over all pairs that confirm the link.

4.1.4 Computational results

We have generated a data set of 33 chloroplasts
genomes obtained from the NCBI website
(https://www.ncbi.nlm.nih.gov/genome). In order
to simulate mate-pairs and pair-ends sequencing, we
used the ART simulator Illumina [8].We have produced
reads with a length of 250bp and 100X coverage. Two
types of simulation were performed: for the pair-end
simulation the inserts size was 600bp, while, for the
mate-pairs simulation, we used an insert of 8000bp.
The reads were subsequently assembled in unitigs by
Minia [3] and the generated fasta file was input to the
scaffolders that needed it (SPAdes [1] and SWALO [14]
work directly with the reads and do not require it).
The unitigs were produced with an abundance of 4 and
a k-mer of 125.

The assemblies were evaluated by QUAST [7] tool by
comparison with the reference genome that was used
for the simulation. (More detailed experimental data is
given in the Appendix.) Our tool is denoted by GAT
(Genscale Assembly Tool). In our experiments, GAT
has been as good as, and often better, than the best
current scaffolding tools, while ensuring good coverage
of the reference genome (a parameter that tends to
degrade with other scaffolders). It has been particularly
good in case of pair-ends computations by ensuring a
regular and nearly optimal assembly.

During the mate pairs computations GAT performed
well by producing often the smallest number of contigs
and was outperformed only in the case of Atropa
genome. GAT produces on average fewer contigs than
its competitors. Moreover, it ensures the best genome
coverage. This indicates that the output produced
by our tool are reliable, complete, and don’t lose
information compared to the original genome. SWALO
failed to assemble 10 genomes out of 33, SSPACE
3 genomes, and BESST–one genome. SPAdes and
GAT where the only tools for which QUAST did not
indicate any missassemblies (these results are given in
the extended version of this paper [5] ).

In the case of pair-end simulations, we have obtained
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equally good results. The performance of GAT and
SPAdes are very close in term of average number of con-
tigs (cf. Figure 5). However, SPAdes is outperformed
by GAT, BESST and SWALO concerning the genome
coverage (cf. Figure 6). On this figure we also observe
that BESST is as reliable as GAT, but it couldn’t solve
Euglena (21)–something that GAT achieved.

Figure 5: Pair-ends data : Average number of contigs
comparison.

Figure 6: Pair-ends data : Average fraction of genome
left out comparison.

5 Conclusion

Here we design and test an algorithm for scaffolding
and gap filling phases in the case of circular genomes.
Our approach is based on a version of the longest path
problem solved by MILP modeling. It works both
in case of mate-pairs and pair-ends distances. On a
benchmark of 33 chloroplast genomes our algorithm
significantly outperforms four recent scaffolding heuris-

No Genomes Size |V | |O| |L| nsl

1
Acorus
Calamus

153821 8 16 16 3

2
AdiantumCapillus
Veneris

150568 20 24 24 5

3
Agrostis
Stolonifera

136584 20 52 24 6

4
Angiopteris
Evecta

153901 34 78 70 12

5
Anthoceros
Formosae

161162 16 32 24 5

6
Arabidopsis
Thaliana

161162 20 40 32 7

7 Arabishirsuta 153689 12 24 24 5
8 Atropa 156687 46 90 34 9

9
Capsella Bursa
Pastoris

154490 12 24 24 5

10
Chaetosphaeridium
Globosum

131183 8 16 16 3

11
Chara
Vulgaris

184933 24 56 24 7

12
Chlorella
Vulgaris

150613 52 50 50 24

13
Chlorokybus
Atmophyticus

152229 10 18 18 4

14
Citrus
Sinensis

160129 12 24 24 5

15
Cyanidioschyzon
Merolae

149067 72 82 46 22

16
Cyanidium
Caldarium

164921 38 36 32 15

17
Daucus
Carota

155911 8 16 16 3

18
Draba
Nemorosa

153289 12 24 24 5

19
Eimeria
Tenella

160604 10 18 18 4

20
Epifagus
Virginiana

70028 12 24 24 5

21
Euglena
Gracilis

143171 146 554 30 5

22
Gossypium
Barbadense

160317 12 24 24 5

23
Gossypium
Hirsutum

160301 14 28 24 5

24
Gracilaria
Tenuistipitata

183883 54 54 44 21

25
Guillardia
Theta

121524 44 88 24 5

26
Helianthus
Annuus

151104 10 18 18 4

27
Huperzia
Lucidula

154259 20 48 20 5

28
Lactuca
Sativa

152765 8 16 16 3

29
Lepidium
Virginicum

154743 24 48 48 11

30
Liriodendron
Tulipifera

159886 8 16 16 3

31
Lobularia
Maritima

152659 16 32 32 7

32
Lotus
Corniculatus

150519 20 80 32 7

33 Pinus 116864 58 128 12 6

Table 1: The benchmark containing 36 chloroplast
genomes whose names given in the first column. The
second column contains their lengths. We observed that
this value equals the value given by the first term of the
objective function (12). The third and fourth columns
give the size of the graph (i.e. number of vertices and
edges). |L| indicates the number of given links, while
nsl stands for number of satisfied links in the solution.
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tics with respect to the quality of the scaffolds. The
obtained results fully justify the efforts for designing
exact approaches for genome assembly. Regardless
of that, we consider the current results as a work
in progress. The biggest challenge is to extend the
method to much bigger genomes. We are currently
implementing advanced combinatorial optimization de-
composition techniques to increase the scalability of the
approach without sacrificing the accuracy of the results.
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Abstract

Association tests performed with the Likelihood-
Ratio Test (LR Test) can be an alternative to FST ,
which is often used in population genetics to find
variants of interest. Because the LR Test has several
properties that could make it preferable to FST , we pro-
pose a novel approach for modeling unknown genotypes
in highly-similar species. To show the effectiveness
of this LR Test approach, we apply it to single-
nucleotide polymorphisms (SNPs) associated with the
recent speciation of the malaria vectors Anopheles
gambiae and Anopheles coluzzii and compare to FST .

1 Introduction

Fixation index, or FST , has been used extensively in
population genetics analyses (see [5, 10, 15] for insect-
focused studies). FST is a score between 0 and 1 calcu-
lated from population frequencies of known alleles. To
identify variants for further analysis, researchers often
calculate FST for each single nucleotide polymorphism
(SNP) individually, average individual FST scores over
larger regions (windows), rank them using these scores,
and then select interesting SNPs or regions based on an
arbitrarily-chosen cutoff (e.g., top 500 or top 0.1%).

An alternative approach is performing Likelihood-
Ratio Tests (LR Tests) using Logistic Regression (Lo-
gReg) models [2]. For each SNP, a LogReg model is
trained, and then a LR Test is performed between the
LogReg model and a null model based on the class
probabilities [7]. LR Tests report p-values that can be
used to identify statistically-significant variants relative
to this null model. Note that LR Tests have been used
extensively in human genome-wide association studies
(GWAS) [1].

Population analysis of heterogeneous insect genomes
often faces two challenges: small sample sizes and
unknown genotypes. Because FST does not take
samples sizes into account, the same FST score could be
reported with 2 or 100 samples, as long as the observed

frequencies of the alleles are identical. In contrast, LR
Tests can account for sample sizes when determining
the p-value of a SNP, which helps control type I errors
(false positives).

Another concern is unknown genotypes that result
from a variety of challenges, both biological (i.e.,
high levels of heterozygosity) and experimental (i.e.,
lower sampling coverage than expected). In humans
and other organisms, unknown genotypes are often
imputed using tools such as IMPUTE2 [8, 11] before
performing single SNP association tests using tools
such as SNPTEST [12]. Unknown genotypes in insect
genomes, however, are rarely imputed because of the
difficulty in doing so accurately with limited samples.

Rather than imputing unknown genotypes, we pro-
pose a framework that handles unknown genotypes
directly. We make the conservative (uninformative)
assumption that each unknown genotype has an equal
probability of being each genotype. We then ensure
that this assumption is reflected in the conditional
class probabilities calculated by the LogReg models
(Section 2.3). Then, in Section 3.2, we validate
these resulting LogReg models by comparing predicted
probabilities to analytically-calculated probabilities.

In Section 3.3, we compare the properties of FST

and our LR Test approach using simulated data. We
demonstrate that the p-values computed by the LR
Test vary with the number of unknown genotypes and
underlying sample sizes, while the FST scores do not.

As a specific example of a real-world application, we
apply our LR Test framework to ≈1.7 million SNPs
from the recently speciated malaria vectors Anopheles
gambiae and Anopheles coluzzii from [5]. These data
derive from a single chromosome arm (2L) contain-
ing relatively strong regions of differentiation [10, 15].
Identifying specific sequence-based differences is highly
valuable for molecularly characterizing such closely-
related species and ultimately to help understand spe-
ciation in these model systems [13]. Even though PCA
analysis of samples from the two species has shown
strong evidence for strong similarity within species
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and clear differences between species [15], localizing
key variants is ongoing work [14]. At a significance
level of 1%, we find that as many as 522 positions on
chromosome arm 2L are statistically significant after
correcting for multiple comparisons. Of 1,633 positions
with the highest possible FST score (1), only twenty
overlap with this set of 522 significant positions.

This result suggests that the adjusted LR Test may
be more specific than averaging SNP FST values across
larger windows as performed by [10] and can better
address unknown and heterogeneous genotypes than
FST alone. We provide a reference implementation
using scikit-learn in Asaph, a variant analysis toolkit.
Note that since this framework uses common methods,
it can also be easily implemented using alternative
programming language/libraries if needed.

2 Methodology

2.1 Data sets

Details on the sequencing and variant calling (in-
cluding filtering) for the 16 mosquito samples from
Cameroon studied here are given in [5, 10,15].

As part of the assessment of our method vs. FST ,
we simulated a single variant. We used fifty individuals
per population for the sweep over unknown genotypes,
and for each combination, we converted the appropriate
number of samples’ genotypes to unknown genotypes
before computing the two metrics. For the sweep
over population sizes, we increased population sizes in
multiples of two.

2.2 Analytical Equations for
Probabilities

In diploid organisms, SNPs for individual samples can
be thought of as multi-sets over the nucleotides A, T, C,
and G. For example, the homozygous A, homozygous
T, and heterozygous genotypes would be represented as
the following multi-sets, respectively: {A,A}, {T, T},
and {A, T}.

We can calculate the probability that an individual
belongs to population one of two conditioned on its
genotype as follows:

P (y = 1|gt) =
P (gt|y = 1)P (y = 1)

P (gt)

=

Ngt,1

N1
· N1

N
Ngt

N

=
Ngt,1

Ngt
(1)

For unknown genotypes, we make the uninformative
assumption that the unknown genotype could be any
of the possible genotypes with equal probability. In
particular, we do not want to assume that we can
accurately infer the true genotype of an unknown
genotype from the known genotypes among sampled
individuals. Additionally, we do not want to infer
the class probability based on the distribution of the
unknown genotypes across the classes. Note that
this is a significant difference between this method
traditional human GWAS analysis, because in the latter
imputation is often required prior to running LR Tests.

Mathematically, we can define the conditional class
probability for the unknown genotype as the union of
of the conditional class probabilities for each of the
known genotypes. Note that the known genotypes are
mutually exclusive.

P (y = 1|gt) =
P (gt|y = 1)P (y = 1)

P (gt)

=
Ngt,1 + 1

3N{},1
Ngt + 1

3N{}
(2)

P (y = 1|{}) =
P ({}|y = 1)P (y = 1)

P ({})

=
N1

N
(3)

2.3 Logistic Regression Model

Assume that we have N samples with V biallelic
positions. Each position has a reference allele and an
alternative allele, and at each position, each sample
has one of three genotypes (homozygous reference,
homozygous alternate, or heterogyzous).

For each position, we encode the variants as a feature
matrix X with dimensions N × 3. We represent each
genotype for each position as one of three categorical
variables. If sample i has the homozygous reference
genotype at position k, then we set Xi,1 = 1. If sample
i has the homozygous alternate genotype at position k,
then we set Xi,2 = 1. If sample i has the heterozygous
genotype at position k, then we set Xi,3 = 1. If the
genotype of sample i is unknown at position k, then
the row contains zeros in every column.

From the samples’ population labels, we define a
N -length vector y of class labels. We then fit the
parameters of a Logistic Regression model with the
form [7]:

P (yi = 1|Xi) =
1

1 + exp(−β ·Xi + β0)
(4)

where yi is the class label and Xi is the feature vector
for a single sample i and β is the P -length weight vector
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and β0 is the intercept. We trained the model using
Stochastic Gradient Descent (SGD) and an L2 penalty.
(For the experiments in this paper, we performed 10,000
epochs of training for each model.)

In the “standard case”, we fit a LogReg model on the
feature matrix X for each position and vector y of class
labels described above.

To adjust the conditional class probabilities, we
employ the following revised training procedure. We
form a new 3N × 3 feature matrix X̃ and a new 3N
vector ỹ of class labels by duplicating each data point
three times (since there are three possible genotypes).
For unknown genotypes, we set each copy to one of
the three known genotypes. Thus, the conditional class
probabilities for the known genotypes will incorporate
a key assumption of our method: that each unknown
genotype has an equal probability of being one of the
known genotypes (i.e., “uninformative prior.”). We
also set the LogReg model intercept to the fraction of
samples in class one versus all of the samples and fix the
intercept so it is not altered during the SGD training.
This ensures that the conditional class probabilities for
the unknown genotypes are determined by the ratio of
class one samples to all samples. Lastly, we train the
weights of the LogReg model using SGD.

Note that for predicting the conditional class prob-
abilities, we utilize the original feature matrix X and
class labels y, regardless of training method.

2.4 Likelihood-Ratio Test

The log likelihood for the Logistic Regression model
is given by [7]:

logL(β, β0|X, y) =

N∏

i=1

log yiP (yi = 1|Xi)+

(1− yi) log(1− P (yi = 1|Xi))
(5)

To perform the Likelihood-Ratio Test, two LogReg
models are trained. The first model (the alternative),
trained as described in Section 2.3, contains additional
independent variables (features) not in the null model.
(In our case, the null model only contains the intercept
and thus, predicts the conditional class probabilities
using the ratio of class one samples to all samples.)
The weights (β1, β0) from the two models are used to
compute the log likelihoods. The difference G between
the two is calculated by:

G = 2(logL(β1, β1
0 |X1,y)− logL(β0, β0

0 |X0,y)) (6)

The p-value for the difference in log likelihoods is
calculated using the χ2 distribution:

p = P [χ2(df) > G] (7)

where df is the difference in the number of degrees of
freedom (weights) between the two models.

2.5 Corrected Significance Level

We used a significance level of α = 0.01 (1%).
Following the method of [6], we performed a PCA
analysis of the Anopheles SNPs and found that 15
principal components were needed to explain 99.9% of
the variance. Using their modified version of Bonferroni
correction, we used 0.01/15 = 6.66×10−4 as the cutoff.

2.6 Ranking SNPs with FST

To rank the SNPs, we first calculated the the FST

score for each position using VCFTools [3]. Scores
which were invalid (nan) or negative were to set to zero.
Then, we sorted the SNP positions in descending order
by their FST scores.

2.7 Asaph

Our method was evaluated using Asaph, our toolkit
for variant analysis. Asaph was implemented in Python
using Numpy / Scipy [18], Matplotlib [9], and Scikit
Learn [16] and is available at https://github.com/

rnowling/asaph under the Apache Public License v2.

3 Experimental Results

3.1 Genotypes for Many Anopheles
Variants are Unknown

To motivate our work, we analyzed the prevalence of
unknown genotypes among the ≈1.7 million positions
described in Section 2.1. For each site, we counted
the number of unknown genotypes per species, which is
given as a 2D histogram (with log counts) in Figure 1a.
The unknown genotypes seemed to occur equally in
both species. Fewer than 3% of all positions have known
genotypes for each sample, while for as many as 25%
of the positions, none of the genotypes are known for
any of the samples in at least one population (data not
shown).

We also analyzed the presence of unknown genotypes
across the 2L chromosome arm. We counted the
number of unknown genotypes per site and computed
averages over non-overlapping 100 Kbp windows (see
Figure 1b. While, the number of unknown genotypes
was highest from the beginning of the inversion region
(at 25 Mbp) to the end of the arm, on average more
than half of the genotypes per site are unknown. Thus,
unknown genotypes are highly common for this data
set, which makes downstream analysis challenging.
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Figure 1: Analysis of Sites on 2L with Unknown
Genotypes. (a) Histogram (log10) of Unknown
Genotypes Per Site By Species (b) Average Number of
Unknown Genotypes Per Site in non-overlapping 100
Kbp Windows

(a) (b)

3.2 Mean Absolute Error of Proposed
Training Method

We also evaluated the agreement of the conditional
class probabilities computed by Logistic Regression
(LogReg) models. For each of 800 SNPs with between
zero and all-but-one unknown genotypes sampled from
the Anopheles data set, we trained models with the
standard approach and with our proposed approach
described in Section 2.3. We calculated the probability
for each of the four possible genotypes using each of
the models. Lastly, we calculated the mean absolute
error (MAE), broken down by genotype, between the
probabilities from the LogReg models and the analyti-
cal probabilities.

The MAEs are reported in Table 1. With the
standard training method, the LogReg model achieves a
MAE as large as 0.23. With the new training approach,
the largest MAE is as low as 0.0081. For the case of
the unknown genotype, the error is reduced to 0, as
expected.

Table 1: Mean Absolute Errors (MAE) of Analytical vs
Logistic Regression-Estimated Probabilities

Standard Corrected
Homo. 1 1.3× 10−1 1.5× 10−4
Homo. 2 1.3× 10−2 8.1× 10−3

Het. 1.7× 10−2 8.1× 10−3
Unknown 2.3× 10−1 0.

3.3 Varying of the Number of Samples
and Unknown Genotypes

The Likelihood-Ratio Test (LR Test) differs from FST

in two significant ways: its p-value incorporates the
number of the samples and, because of our proposed
training method, the percentage of unknown genotypes

is also factored in. We illustrate these differences in
comparisons on simulated data (see Section 2.1).

First, we considered a fixed difference where samples
in one class have one homogeneous genotype and
samples in the second class have the other homogeneous
genotype. We swept over different combinations of
percentages of samples with unknown genotypes from
each population. Except for cases where all of the
samples in a single class have unknown genotypes, the
FST scores for all combinations are one. In contrast, the
LR Test p-values increase as the percentage of unknown
genotypes increase, as desired (see Figure 2).

In the second comparison, we re-considered the fixed
difference, but with different combinations of sample
sizes in each class. We calculated the LR Test p-value
and FST score for each combination (see Figure 3). As
before, the FST scores for each combination were one,
except when one of the populations had zero samples.
The LR Test p-values decreased as the number of
samples increased.

Figure 2: Adjusted Likelihood-Ratio Test p-Values
(− log10) and FST Scores for Different Percentages of
Unknown Genotypes for a Fixed Difference
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Figure 3: Adjusted Likelihood-Ratio Test p-Values
(− log10) and FST Scores for Different Combinations
of Sample Sizes for a Fixed Difference
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3.4 Analysis of SNPs from the
Anopheles Data set

We applied the adjusted Likelihood-Ratio Test (LR
Test) to perform single SNP association tests on two
data sets of SNPs from the Anopheles gambiae and
Anopheles coluzzii species. We first calculated q-values,
a measure of significance in terms of the false discovery
rate (FDR) [17, 19]. None of the SNPs, however,
satisfied a q-value threshold of 0.01 (FDR of 1%).

Next, we then used the PCA-based method of [6] to
determine a less conservative significance threshold (see
Section 2.5). Our chosen significance level of α = 0.01
(1%) was corrected to 0.01/15 = 6.66 × 10−4. At that
level, 522 SNPs passed the revised threshold.

For initial validation, we “binned” these 522 SNPs
across the 2L chromosome in non-overlapping 10 Kbp
windows—combining our method with that of [10]—
and found three interesting regions: 10 Mbp, 25
Mbp, and 40 Mbp. Significantly, the 25 Mbp region
and 40 Mbp region corresponds to the 2La inversion
boundaries, the frequencies of which are known to differ
between these samples [10,15]. The high concentration
in the 10 Mbp region is a novel result, and has been
provided to our biological collaborators.

We also briefly analyzed the top 20 (as ranked by
their p-values) statistically-significant SNPs individu-
ally. The first- (position 25,396,564), third- (posi-
tion 21,707,904), and fifth-ranked (position 25,403,885)
SNPs are located within the resistance to dieldrin
(Rdl) gene, which has been previously associated with
insecticide resistance in A. gambiae and other insects
[4, 10].

Figure 4: Counts of 522 Statistically-Significant SNPs
Appearing in 10 Kbp Windows Across 2L Chromosome

We compared the adjusted LR Test p-values to the
FST scores for the SNPs (see Figure 5). Notably, 1,633
SNPs have FST scores of 1, but only 20 were found in
the set of 522 statistically-significant SNPs. The small
number of statistically-significant SNPs with FST = 1
was most likely due to unknown genotypes.

Additionally, the FST scores of some of the 522
statistically-significant SNPs were as low as 0.2. We
attribute this result to our categorical encoding scheme,
which considers genotypes, not alleles. In fact, the
uncovered 2La inversion breakpoints are only fixed in
one species and by definition have non-ideal FST scores.

Figure 5: Likelihood-Ratio Test p-Values vs FST

Scores. Red dashed line indicates significance
threshold.

4 Discussion and Conclusion

The Likelihood-Ratio Test (LR Test) has several
properties that make it desirable for population genetics
analysis. In particular, unlike the more commonly used
FST metric, the LR Test provides p-value that can be
used to identify statistically-significant variants relative
to a null model based purely on class probabilities.

Challenges in the sequencing and assembly of insect
genomes results in a high propensity for unknown
genotypes, as illustrated in Section 3.1. Significantly,
we demonstrated in Section 3.3 that our LR Test
framework can adjust the calculated p-value in line
with the percentage of unknown genotypes and smaller
sample sizes to address unknown values without re-
quiring highly difficult and often impossible genotype
imputation these species.

Using the adjusted LR Test, 522 Anopheles SNPs
were found to be statistically significant. Since FST

only uses population frequencies and ignores unknown
genotypes in their calculation, only 20 of the 1,633 SNPs
with FST = 1 were among the 522 significant SNPs.
Significantly, treating the heterozygous genotype sepa-
rately may help uncover important non-fixed differences
such as the ecologically important 2La inversion [10]
rediscovered here.

When used in place of FST , the adjusted LR Test
has the potential to substantially reduce false positives
without requiring combining multiple loci together, as
is often down with window analysis (see [10]). As
such, the adjusted LR Test could significantly impact
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population genetics by ranking specific sequence-based
differences, which will be essential to quickly character-
izing and ultimately helping understand speciation in
highly similar species.
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Abstract 

Most common diseases are complex genetic traits, with 

genetic contributing to susceptibility to the diseases. Knowing 

the genes and their variations that involved in a disease is 

crucial for early intervention and the identification of 

techniques that can cure the disease. Experimental methods 

for determining gene–disease associations are laborious and 

time consuming. This created the need for computational 

methods to predict the candidate genes associated with 

diseases, which will be verified using experimental methods. 

However, most current computational methods may return a 

large spectrum of candidate genes, which makes their 

verification by the experimental methods to be time 

consuming and laborious. We propose in this paper a state-of-

the-art biological system called GDL that can overcome the 

above-mentioned limitation.  It does so by short-listing the 

likely candidate genes involved in a disease to a small and 

tightly defined group that elicits the disease when work in 

concert. Since the number of predicted genes is small, the 

verification of their involvement in the disease by 

experimental methods will be highly efficient. GDL will help 

biologists focus their investigation on a small and tightly 

defined group of genes. 

 
Keywords: Biomedical literature, Gene-disease associations, 

Genetic illnesses, Information extraction, Text mining.  

1     Introduction 

Most current computational methods for predicting gene-

disease associations may return a large spectrum of candidate 

genes, which makes their verification by the experimental 

methods time consuming and laborious. Some of these 

promising methods take advantage of the exponential 

explosion of biomedical literature. They extract gene-disease 

associations that appear within the literature. Despite the 

strength of these methods, however, they suffer the following 

limitations: (1) they may be suited for only certain classes of 

diseases, and (2) they may predict a large number of 

candidate genes as associated with the disease.  

      We propose in this paper a state-of-the-art biological 

system called GDL “Gene-Disease Linker” that can 

overcome the above-mentioned limitations of current 

computational methods.  GDL does so by short-listing the 

candidate genes to be involved in a disease to a small and 

tightly defined group that will elicit the disease when work in 

concert. Since the number of predicted genes is small, the 

verification of their involvement in the disease by 

experimental methods will be highly efficient. To ensure that 

the predicted genes will likely elicit the disease when work in 

concert, these genes should possess the characteristics of all 

the Functional Categories associated with the disease under 

consideration. GDL will help biologists focus their gene-

disease investigations on small and tightly defined groups of 

genes. First, GDL extracts the genes that appear within the 

biomedical literature associated with the Functional 

Categories involved in the disease. Then, it short-lists these 

genes by employing the following triple techniques: decision 

tree [11], logistic regression [3], and chi-squared analysis [9]. 

      First, GDL needs to classify the genes that are likely to 

be involved in a disease under consideration into the 

Functional Categories that define the classes of these genes. 

Towards this, GDL will extract the genes that appear within the 

biomedical literature associated with each Functional 

Category involved in the disease. Then, GDL will rank the 

Functional Categories based on their Information Gains [7]. 

Subsequently, GDL will construct a decision tree by placing 

each node representing a Functional Categories in a 

hierarchical level in the tree that corresponds to its rank. GDL 

uses logistic regression to estimate the linear decision 

boundary (i.e., threshold) that divides the class of genes 

defined by each Functional Category in the decision tree. 

Finally, GDL will compute the chi-squared value for each path 

(i.e., branch) in the decision tree to identify the nodes of the 

path p that yields the highest chi-squared value. Our 

hypothesis is that the leaf node of the path p contains the 

smallest short-listed group of genes that are most likely to 

elicit the disease when work in concert. 

        The gene-disease associations predicted by GDL can 

enhance the development of new techniques for preventing, 

diagnosing, and treating genetic diseases. Below are more 

specific contributions of the proposed system GDL:  

  GDL can help in studying phenotype-genotype 

relationships, which facilitates genetic testing, 

monitoring of symptoms, and prognosis. It can be used 

by medical research centers to develop applications 

that allow linking existing genetic associations to 

structured knowledge of phenotypes. This can be done 

by linking the associations between a group of genes 

predicted by GDL to structured knowledge of 

phenotypes. Recall that GDL identifies such a group of 

genes by locating the leaf node of the path in the 

decision tree with the highest chi-squared value. The 

applications can be used for determining which 

genomic variants affect phenotypes [6, 10]. This will 
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help in explaining diseases, health, and evolutionary 

fitness.  

 After medical research centers verify the gene-disease 

association predicted by GDL, they can use this 

information to find new techniques that will improve 

the quality of life for patients affected by genetic 

disorders and rare diseases, which increases the life 

span of the patients. 

 It can be used for investigating gene-gene interactions 

and gene-environment interactions. 

        To the best of our knowledge, this is the first study that 

advocate the prediction of the smallest and tightest defined 

group of genes involves in a disease, where the group has the 

following properties: (1) it possesses the characteristics of all 

the Functional Categories associated with the disease, and (2) 

it is likely to elicit the disease when work in concert. 

Moreover, this is the first study that investigates the 

employment of the following triple techniques to short-list the 

likely genes involved in a disease: decision tree, logistic 

regression, and chi-squared analysis.  

        The following is an overview of the sequential 

processing steps taken by GDL to short-list the likely candidate 

genes to be involved in a disease d: 

1) Determining the set of genes annotated with all the 

Functional Categories involved in the disease d: For 

each Functional Category f associated with d, we select 

the biomedical literatures associated with f from high-

quality biological databases (e.g., [17]). GDL will extract 

the genes that occur within these literatures. It will 

classify the extracted genes into the Functional 

Categories that define the classes of genes annotated 

with their functions. GDL uses Stanford Named Entity 

Recognizer [12] to tag gene terms in texts. It employs a 

tokenizer and a stemmer to align the sequence of words 

in the texts and the names of genes [13].  

2) Constructing a decision tree: GDL will rank the 

Functional Categories based on their Information Gains 

[7]. Then, it will construct a decision tree [11] by placing 

each Functional Category in a hierarchical level in the 

decision tree that corresponds to its rank.  

3) Using logistic regression to estimate the linear decision 

boundary of a Functional Category: GDL uses logistic 

regression [3] to estimate the linear decision boundary 

(i.e., threshold) that divides the class of genes defined 

by a Functional Category f into two subclasses. It will 

represent the decision boundary of f by a Z-Score [1].  

4) Using chi-squared analysis to short-list the likely genes 

to be involved in the disease d: Finally, GDL will 

compute the chi-squared value [9] for each path (i.e., 

branch) in the decision tree. Our hypothesis is that the 

path p that yields the highest chi-squared value contains 

the likely genes involved in the disease d. Specifically, 

the leaf node of the path p will contain the smallest 

short-listed group of genes that are most likely to elicit 

the disease d when work in concert 

2      Constructing a Decision Tree 

GDL employs ID3 algorithm [11] for building decision trees. 

ID3 measures impurity through entropy. The following are 

GDL’s sequential processing steps for building a decision tree:  

1) First, biologists need to construct a table. Each column 

represents a Functional Category. Each row holds a list 

of genes annotated with all the Functional Categories 

involved in the disease.  

2)  The biologists will need to add a column to the table. 

In each field of this column, the biologists indicate the 

likelihood that the combination of all the genes in the 

corresponding row will elicit the disease when work in 

concert. The biologists can determine this based on the 

following: (a) the information in the row, and (b) their 

own domain knowledge and expertise. 

3) The table described in steps 1 and 2 will be broken into 

sub-tables according to the Functional Categories. 

Each sub-table holds the likelihoods of the genes 

annotated with only one Functional Category to elicit 

the disease. 

4) For each of the sub-tables described in step 3, GDL will 

calculate the entropy of each distinct gene in the sub-

table. Entropy (ENT) is computed using Equation 1.    

                              
f ff ppENT 2log            (1) 

where pf is the probability of each Functional Category 

f.  ENT measures the uncertainty. The higher the 

uncertainty, the higher the entropy is. ENT of a pure 

table that consists of a single Functional Category is 

zero, since pf = 1 and log2pf = 0 (hence, we achieve 

minimal impurity). Maximal impurity can be achieved 

when we have n Functional Categories and each 

happens with equal probability. 

5) GDL computes the Information Gain (IG) [2] for each 

Functional Category f based on the entropies of f that 

were calculated in step 4. IG measures the difference in 

entropy for f before and after the data is split on the data 

of f (i.e., before and after the table described in steps 1 

and 2 is broken on the data of f as described in step 3). 

It measures the degree of reduction of uncertainty after 

the data is broken. It is computed as purity degrees of 

the parent table and weighted summation of impurity 

degrees of the subset table. IG is computed as follows:                         

IG = ENT(parent) - Weighted Sum of ENT(Child)  (2) 

          Finally, the Functional Categories are ranked 

based on their IG values. Then, a decision tree is 

constructed by placing each node representing a 

Functional Category f in the hierarchical level in the 

decision tree that corresponds to the rank of f. Thus, the 

root node of the decision tree represents the Functional 

Category that has largest IG. 
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Running Example: As a running example throughout the 

paper, we illustrate how GDL can short-list the likely genes 

involved in the disease “deletion syndrome”, using the 

following five Functional Categories involved in the disease:  

- Di-trihydroxycholestanoic acid oxidation/Bile acid (DAO). 
- Fatty acid oxidation (FAO). 
- Fatty acid synthesis (FAS). 
- Peroxisomal membrane proteins (PMP). 
- Straight chain fatty acids oxidation (CFAO).  

      Example 1: We show how GDL builds the decision tree 

of the running example based on the likelihood data in Table 

1 of genes involvement in the disease. Table 2 shows Table 1 

after being broken into 5 sub-tables. Table 3 shows the ENT 

of each gene. The IG of each Functional Category is 

calculated based on the data in Table 3, as shown in Table 4. 

Finally, the Functional Categories are ranked based on their 

IGs. The decision tree shown in Figure 1 is constructed by 

placing each node representing a Functional Category in the 

hierarchical level in the tree that corresponds to its rank. 

Table 1: The Likelihood that the combination of the genes in 

each row elicits the disease “Deletion Syndrome” when 

work in concert. The set of genes in each row is annotated 

with all the Functional Categories involved in the disease 

PMP FAS FAO DAO CFAO Likelihood to Elicit the Disease 

g6 g12 g17 g19 g14 Yes 

g6 g36 g17 g19 g38 No 

g35 g53 g25 g8 g20 Yes 

g15 g36 g17 g11 g14 Yes 

g15 g36 g44 g19 g37 Yes 

g6 g12 g17 g19 g38 Yes 

g35 g53 g25 g8 g14 No 

g35 g12 g17 g19 g14 Yes 

g15 g12 g44 g8 g3 No 

g15 g53 g44 g19 g37 No 

 
Table 2: Breaking table 1 into sub-tables according to the 

Functional Categories. Each sub-table shows the likelihoods 

of the genes of one Functional Category elicits the disease 

PMP L.E.D. FAS L.E.D. FAO L.E.D. DAO L.E.D. CFAO L.E.D. 

g6 Yes g12 Yes g17 Yes g19 Yes g14 Yes 

g6 No g12 Yes g17 Yes g19 No g14 Yes 

g6 Yes g12 Yes g17 Yes g19 Yes g14 Yes 

g35 Yes g12 No g17 Yes g19 Yes g14 No 

g35 No g36 No g17 No g19 Yes g14 No 

g35 Yes g36 Yes g25 Yes g19 No g17 No 

g15 Yes g36 Yes g25 No g8 Yes g17 Yes 

g15 Yes g53 Yes g44 Yes g8 No g25 Yes 

g15 No g53 No g44 No g8 No g25 Yes 

g15 No g53 No g44 No g11 Yes g25 No 
L.E.D. denotes “Likelihood to Elicit the Disease”. The genes are represented 
numerically for easy reference. 

Table 3: ENT of each distinct gene annotated with a 

Functional Category involved in the disease “Deletion 

Syndrome”. ENT is calculated based on Tables 1 and 2 

PMP ENT FAS ENT FAO ENT DAO ENT CFAO ENT 

g6 0.918 g12 0.811 g17 0.722 g19 0.918 g14 0.971 
g35 0.918 g36 0.918 g25 1 g8 0.918 g17 1 
g15 1 g53 0.918 g44 0.918 g11 0 g25 0.918 

 
Table 4: The IG of each Functional Category, calculated 

based on Table 3 

Functional Category PMP FAS FAO DAO CFAO 

IG 0.0202 0.0958 0.1346 0.1448 0.0101 

 

 
Figure 1: The decision tree of the running example. Y, N, and 

g denote “Yes”, “No”, and “gene” respectively. The linear 

decision boundary for each Functional Category is 

represented by a Z-score as described in Example 2. The 

figure shows also the number of genes satisfying the Y and N 

outcomes of Functional Categories. For example, Y (127 g) 

denotes that the number of genes satisfying the “Yes” 

outcome of Functional Category DAO is 127. 

3     Using Logistic Regression to Estimate 

the Linear Decision Boundary of a 

Functional Category 

GDL uses logistic regression to estimate the linear decision 

boundary of a Functional Category, based on the coefficients 

B0 and B1 [15] for the (multi)linear regression of variables, 

which are computed as shown in Equations 3 and 4. Equation 

5 is used for determining the value of x that makes y zero 
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          In the framework of GDL, the decision boundary of a 

Functional Category f is represented by a Z-Score [1]. First, 

biomedical texts are divided into partitions, where each 

partition is an incremental percentage of the texts. Let Si be 

the set of texts in partition i. The estimators B0 and B1 of the 

coefficients for the (multi)linear regression of variables x1,..., 

xn  are computed for sets S1, …, Sn, respectively. In the 

framework of GDL, xi denotes the Z-score for set Si. That is, 

we use Z-Score to identify the set of genes in set Si that 

significantly possesses the characteristics of f. This is done by 

computing the differences between the probabilities of genes 

occurrence across all function classes. Let: (1) )( if SN  be the 

number of genes that occur in set Si and are annotated with 

Functional Category f, which is involved in the disease under 

consideration, (2) )( iSN  be the mean of the number of genes 

that occur in Si and are annotated with any Functional 

Category, and (3) be the standard deviation of the 

population. The Z-score of set Si is computed as Equation 6:                                                                                                 

         


)()(
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iif

i

SNSN
SscoreZ


              (6) 

          Example 2: We show how GDL can determine the 

linear decision boundary for Functional Category DAO (i.e., 

the Z-score = 0.69 for DAO shown in Figure 1). The decision 

boundary is determined based on the data in Table 6 (which 

is in turn calculated from Table 5). Table 5 is constructed as 

follows. First, the biomedical texts associated with DAO are 

divided into partitions. Each partition Si is an incremental 

percentage of the texts. The following are calculated for each 

Si and recorded in the table: (1) NDAO (Si) (the number of genes 

that occur in Si and are annotated with DAO), (2) N (Si) (the 

number of genes that occur in Si and are annotated with any 

Functional Category), and (3) Z-score (Si) (the Z-score for Si 

calculated using Equation 6, where )( iSN is the mean of the 

number of genes that occur in Si and are annotated with any 

Functional Category). The coefficients B0 and B1 are 

computed using Equations 3 and 4 based on the intermediate 

data in Table 6 (which is in turn calculated from Table 5). 

 
Table 5: The Z-score of each partition Si of texts selected in 

an incremental percentage of all the texts associated with 

Functional Category DAO, which is involved in the disease 

of the running example. 

Z-score (Si) )( iDAO SN  )( iSN  Percentage of selected texts 

0.107 17   47 20% 

0.872 38    83 40% 

-0.625 41     137 60% 

-1.08 48      184 80% 

-2.64 62 268 100% 

Table 6: Intermediate data for calculating B0 and B1. The 

data is computed using equations 3 and 4 based on Table 5 

Z-score P(E) odd(P(E)) ln(odd(P(E))) 
0.107 0.266 0.362 -1.016 
0.872 0.314 0.458 -0.781 
-0.625 0.230 0.299 -1.207 
-1.08 0.207 0.261 -1.343 
-2.64 0.188 0.232 -1.461 

x and y in equations 3-5 denote Z-score and ln(odd(P(E))), respectively 

in the table 

4    Using Chi-Squared Analysis to Short-

List the Genes that are Likely to be 

Involved in a Disease 

A chi-squared value (χ2) is computed as follows: χ2 = (O−E)2/E 

, where O and E are the observed and expected frequencies of 

the data, respectively. The expected frequency (E) for each 

possible value of the variable is computed as follows: E = np , 

where n is the size of the sample and p is the relative 

frequency (or probability).  

        Example 3: Using the decision tree in Figure 1, we 

show how GDL uses chi-squared analysis to identify the leaf 

node containing the likely short-listed genes involved in the 

disease “deletion syndrome”. As Figure 2 shows, there are 16 

paths in the tree. GDL computed the chi-squared value for each 

path. Path 6 achieved the highest chi-squared value. Thus, the 

leaf node of path 6 contains the short-listed genes. The 5 genes 

satisfying outcome Y of Functional Category CFAO within 

the leaf node of path 6 are the short-listed genes that are: (1) 

likely to be involved in the disease, and (2) annotated with all 

Functional Categories involved in the disease. 

 
Figure 2: The 16 paths in the decision tree of the running 

example. Each path is denoted by a combination of: an arrow

 , a letter “p” underneath the arrow, and a digit underneath 

the letter. The digit represents the path’s number. For 

example,    denotes path number 3. GDL identified the 5 genes 

that satisfied outcome Y of Functional Category CFAO 

within the leaf node of path 6 as the short-listed genes that 

are: (1) likely to be involved in the disease, and (2) annotated 

with all the Functional Categories involved in the disease 

“deletion syndrome”. Path 6 is marked with blue background. 

3

p
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5      Experimental Results 
We implemented GDL in Java, run on Intel(R) Core(TM) i7 

processor, with a CPU of 2.70 GHz and 16 GB of RAM, under 

Windows 10. We experimentally evaluated the quality of GDL 

for predicting and short-listing the likely genes involved in 

the disease “Acyl-CoA Oxidase Deficiency”. We evaluated 

the quality of GDL by comparing the list of genes it predicted 

as the likely to be involved in the disease with the actual list 

of genes already known to be involved in the disease. We 

considered the actual list of genes known to be involved in the 

disease as ground-truth data. Table 7 shows the list of 

Functional Categories involved in the disease. We retrieved 

217 PubMed texts associated with the five Functional 

Categories according to their entries in the UniProtKB 

database [17]. Let f be one of the five Functional Categories 

in Table 7. GDL extracted the list Lf of genes that occur within 

the texts associated with f among the 217 PubMed texts. GDL 

stored this information in a genes table with an entry for each 

of the five Functional Categories.  
 

 

Table 7: List of Functional Categories involved in the 

disease “Acyl-CoA Oxidase Deficiency” and their abbreviations 

Functional Category Abbreviation 

Di-trihydroxycholestanoic acid beta-oxidation DABO 

Long-chain dicarboxylic acids oxidation LDAO 

Fatty acid synthesis/PUFAS synthesis FAPS 

Straight chain fatty acids beta-oxidation SFABO 

Branched-chain fatty-acid oxidation BFAO 

 

        GDL ranked the paths in the decision tree based on their 

chi-squared values. As Figure 3 shows, path 15 achieved the 

highest chi-squared value. GDL identified the 5 genes satisfied 

outcome Y of Functional Category LDAO within the leaf 

node of path 15 as the short-listed group of genes that are 

likely to elicit the disease “Acyl-CoA oxidase deficiency” 

when work in concert. 
 

 
Figure 3: The paths in the decision tree of the disease “Acyl-

CoA oxidase deficiency”. GDL identified the 5 genes satisfied 

outcome Y of LDAO within the leaf node of path 15 as the 

most likely to be involved in the disease. 

        For each of the top-3 paths ranked by GDL, we measured 

the Recall, Precision, and F-value of the predicted genes 

contained in the leaf node of the path. We used the following 

metrics: Recall=Cg/Ng , Precision = Cg/Mg , and F-value = (2 Recall 

* Precision)/(Recall+ Precision), where Cg is the number of 

correctly predicted genes in the path’s leaf node, Ng is the 

number of actual genes involved in the disease, and Mg is the 

number of predicted genes in the lead node. As Figure 4 

shows, the F-value of a path increases as its rank increases 

(i.e., the top-ranked path achieved the highest F-value). This 

is an evident of the accurate identification, classification, and 

ranking of paths. 
 

       Recall                                  Precision                             F-value 
 

 
Figure 4: The Recall, Precision, and F-value for predicting 

the genes contained in the leaf node of each of the top-3 

ranked paths in the decision tree. 
 
          We also evaluated the accuracy of GDL in terms of the 

distances between the positions of the genes in the list ranked 

by GDL and the positions of the same genes in lists ranked by 

the standard network metrics (i.e., Degree, Closeness, and 

Betweenness metrics [16]), using the disease-specific gene 

interaction network. Specifically, we measured the distances 

between: (1) the positions in the list ranked by GDL that belong 

to the genes contained in the leaf nodes of the top-3 ranked 

paths, and (2) the positions of the same genes in the lists 

ranked by the standard network metrics using the disease-

specific gene interaction network. Intuitively, the smaller the 

distances the better GDL. The following is the procedure we 

considered for ranking the list of genes predicted by GDL: 

 Each of the 5 genes in path 15 (which is ranked first) 

is considered to be in position # 1 in the list. 

 Each of the 6 genes in path 3 (which is ranked second) 

is considered to be in position # 6 in the list. 

 The gene in path 16 (which is ranked third) is 

considered to be in position # 12 in the list. 

A ranking is a permutation of the integers 1, 2, .... For each of 

the top-3 ranked paths, we measured the average Euclidean 

Distance between the positions in the list ranked by GDL that 

belong to the genes contained in the leaf node of the path, and 

the positions of the same genes in the lists ranked by the 

standard network metrics. We used the Euclidean Distance 

measure shown in Equation 7. Figure 5 shows the results.  
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where: 

 ),( mpd : The average Euclidean Distance between 

the positions of path p and network metric m. 

 )(gp : The position in the list ranked by GDL that 

belongs to gene g, which is contained in the leaf 

node of path p.  

 )(gm : The position of gene g in the list ranked by 

network metric m.  

       Closeness                    Betweenness                       Degree                

 
Figure 5: The average Euclidean Distance between the 

positions of the genes contained in each of the top-3 ranked 

paths and the positions of the same genes in each of the lists 

ranked by standard network metrics. Intuitively, the smaller 

the average distance the more accurate the path. 
 

      As Figure 5 shows, the Euclidean Distances between the 

positions of the genes in the list ranked by GDL and the 

positions of the same genes in the lists ranked by the standard 

network metrics are small. Moreover, these distances tend to 

decrease as the rank of a path increases, where the top-ranked 

path (i.e., path 15) achieved the smallest distances. 

6      Conclusion 
We proposed in this paper a state-of-the-art biological system 

called GDL that can help biologists short-list the candidate 

genes that are likely to elicit a disease when work in concert. 

This helps biologists focus their investigation of the likely 

genes involved in a disease on a small and tightly defined 

group of genes. This overcomes the limitations of most 

current approaches that predict a large spectrum of candidate 

genes, which makes the verification of these genes by 

experimental methods time consuming and laborious. 

Moreover, these approaches may be suited for only certain 

classes of diseases. First, GDL constructs a decision tree by 

ranking the Functional Categories involved in the disease. 

After employing logistic regression to estimate the linear 

decision boundaries of the Functional Categories, GDL uses 

chi-squared analysis to identify the path p that yields the 

highest chi-squared value. Our hypothesis is that the leaf node 

of p contains the smallest and tightest defined group of genes 

involves in a disease, where the group has the following 

properties: (1) it possesses the characteristics of all the 

Functional Categories involved in the disease, and (2) it is 

likely to elicit the disease when work in concert. We 

experimentally evaluated the quality of GDL for predicting the 

likely genes involved in the disease “Acyl-CoA Oxidase 

Deficiency”. Results showed high prediction accuracy. 
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Abstract

Gene expression associations play an essential role to
decipher functions of genes and their interactions. Cor-
relation score between pairs of genes is usually utilized
to associate two genes. However, the relationship
between genes is often more complex; multiple genes
might collaborate to control the transcription of a gene.
In this paper, we introduce the problem of searching
pairs of genes, which collectively correlate with another
gene. This problem is computationally much harder
than the classical problem of identifying pairwise gene
associations. Exhaustive search is infeasible for the en-
tire human transcriptome also; since for m genes, there
are O(m3) possible gene combinations. Our method
builds three filters to avoid computing the association
for a large fraction of gene combinations, which do
not produce high correlation. Our experiments on a
prostate cancer dataset demonstrate that our method
produces accurate results at the transcriptome level
in practical time. Moreover, our method identifies
biologically novel results which classical pairwise gene
association studies are unlikely to discover.

Keywords: Pearson’s correlation, pairwise correla-
tion, joint correlation, prostate cancer.

1 Introduction

Gene expression analysis is key for understanding the
mechanisms of central biological processes, which often
small changes in gene transcription levels may have pro-
found effects such as cancer. Analysis of gene transcrip-
tion patterns has been shown to be helpful in numerous
applications such as understanding cellular functions

of genes [2], progression of major disorders [16] and
cellular responses to external stimulants [8]. One of
the first steps in studying gene expression is to explore
the associations between genes. Two standard ways
to formulate such associations mathematically are to
compute the correlations between gene transcription
levels using Pearson correlation [15, 18] or Spearman
correlation [17, 4, 9]. In this paper, we focus on
Pearson’s correlation function as it is arguably the most
commonly used correlation function, and as it takes the
gene transcription levels into consideration.

Although correlation studies on transcription
datasets are frequently done, many exhibit a major
limitation; the correlations are often computed
only for pairs of genes. This is a natural outcome
of the correlation functions, including Pearson’s
correlation, as they work only for two genes at a
time. The relationships between genes however are
more complex as sets of genes collaboratively can
affect the transcription of other genes. Particularly
in a cohesive expression network, the identification of
subtly interacting gene sets that comprise networks
remains to be a challenging task. In the literature,
a subset of such collaborative relationships are
defined as SSL (Synthetic Sickness and Lethality)
interactions [23, 13, 7]. As such, many existing
gene expression networks in popular usage have
been defined on the basis of biological inference, not
through computational search [19]. SSL interactions
describe how groups of genes affect an outcome, such
as survivability and mobility of cells, instead of the
transcription of other genes. As we explain later in
detail, here we consider a mathematically different
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problem, and aim to find groups of genes which
collectively correlate with a target gene rather than
an outcome in phenotype. Exhaustively searching
for groups of genes which collectively regulate or are
associated with others is a computationally challenging
task. Some attention has previously been given to gene
expression pairs that jointly correlate with a binary
phenotype [6]. However, to the best of our knowledge,
no algorithms have been proposed to efficiently seek
gene expression pairs that jointly correlate with a
third transcript. In the following, we briefly present
a conceptual description of the problem considered
in this paper. We present a mathematically precise
definition in Section 2.1 after defining proper terms
and variables.

Problem definition. Consider a dataset of n samples
with each sample having the transcription levels of a set
of m genes. Consider three genes gi, gj , and gk from
this set. We say that gi and gj jointly correlate with gk
if the following three conditions hold:

(i) gi and gk do not correlate.

(ii) gj and gk do not correlate.

(iii) Cumulative transcription levels of gi and gj
correlate with gk.

Figure 1 explains this problem on a real example.
In this example, we focus on three genes: CLOCK,
MED4 and RB1. We obtained gene expression levels
from 333 prostate cancer patients from the The Cancer
Genome Atlas (TCGA) [1] database (See Section 3 for
details on this dataset). We present the scatter plots
of the transcription levels for different combinations
and compute their correlations. We observe that
CLOCK and MED4 genes have low correlation with
RB1. However, the sum of the transcription levels of
CLOCK and MED4 genes, highly correlate with RB1.
Thus, genes CLOCK and MED4 jointly correlate with
gene RB1. In this paper, we would like to find all such
jointly correlated genes.

Joint correlations between genes may reveal subtle,
yet important relationships, which govern transcription
of genes. Because the relevant gene triads cannot be
identified through classical pairwise gene correlation
analyses, this is a computationally challenging task.
The challenge arises due to the geometric increase in
the number of combinations of genes. More specifically,
there are m ×

(
m−1
2

)
(i.e. O(m3)) gene combina-

tions. For instance, the human transcriptome has
around 20,000 well-annotated genes, which translates
into about 4 × 1012 possible combinations, making it
infeasible to use an exhaustive approach.

Our Contributions. In this paper, we address the
problem of finding jointly correlated gene combinations.
We develop three efficient filters to avoid an exhaustive

search. We perform extensive experiments on a real
gene expression dataset obtained from TCGA database.
Our results demonstrate that our method has very high
accuracy, and it is dramatically faster than the classical
exhaustive approach. Further analysis of the results
obtained by our method reveals that there are many
substantial joint correlations between genes that are
impossible to determine using existing strategies.

We outline the rest of the paper as follows. We
formally define the problem and present our method
in Section 2. We discuss our experimental results in
Section 3 and conclude in Section 4.

2 Methods
We developed three efficient filters to dramatically

reduce the time to find joint correlations. Section 2.1
provides the key terms used in our method. Section 2.2
describes our three filters.

2.1 Preliminary terms

Here, we define the key terms which are needed to
describe our method. We start by taking a look at
the calculation of the Pearson’s correlation between two
genes.

Assume that we are given a dataset containing the
transcription levels of m genes for n samples. We
denote the transcription of the ith gene, gi, for all the
n samples with vector Xi = [xi1, xi2, . . . , xin], where
xij is the transcription level of gi for the jth sample.
Let us denote the standard deviation of vector Xi

with σ(Xi), and the covariance between vectors Xi

and Xj with cov(Xi, Xj) respectively. We denote the
Pearson’s correlation function between genes gi and gj
with f(gi, gj) and calculate it as:

f(gi, gj) =
cov(Xi, Xj)

σ(Xi)σ(Xj)
.

Next, we define a key term which is needed to
formulate the problem considered in this paper.

Definition 1. (Joint correlation). Given three
genes gi, gj and gk, two real valued parameters α >
0 and β > 0, and the correlation thresholds ε, ε′ ∈
[0, 1] (ε′ 6 ε), we define the joint correlation between
the pair (gi, gj) and the target gene gk as the Pearson’s
correlation between vectors αXi + βXj and Xk, and
denote it with f(αgi ⊕ βgj , gk). We say that genes gi
and gj jointly correlate with gk if all of the following
three conditions hold:

(1) |f(αgi ⊕ βgj , gk)| > ε,

(2) |f(gi, gk)| < ε′,

(3) |f(gj , gk)| < ε′.
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Figure 1: An example of jointly correlated gene combination. Left: scatter plot of the expression levels of genes
CLOCK and RB1 over 333 samples (Pearson’s correlation = 0.569). Middle: same scatter plot for genes MED4
and RB1 (Pearson’s correlation = 0.527). Right: scatter plot of the cumulative transcription of CLOCK and MED4
against RB1 (Pearson’s correlation = 0.864).

An important observation following from Definition 1
is that scaling the coefficients of gene combinations by
a constant κ does not change their joint correlation. In
other words,

f(αgi ⊕ βgj , gk) = f(καgi ⊕ κβgj , gk).

Thus, using κ = 1/(α+ β), we get

f(αgi ⊕ βgj , gk) = f(g′i ⊕ g′j , gk),

where g′i = α
α+β gi and g′j = β

α+β gj .

The above equation implies that after preprocessing
(i.e., multiplying the transcription value of genes gi and
gj with α

α+β and β
α+β , respectively), we simplify the

calculation of the joint correlation by getting rid of the
parameters α and β. To simplify our notation, in the
rest of this paper, unless otherwise specified, we assume
that the transcription values of all genes are already
multiplied with these constants, and thus α = β = 1.

Next, we derive the formulation for the joint correla-
tion of three genes:

f(gi ⊕ gj , gk) =
cov(Xi +Xj , Xk)

σ(Xi +Xj)σ(Xk)

=
cov(Xi, Xk) + cov(Xj , Xk)

σ(Xi +Xj)σ(Xk)

=
σ(Xi)

σ(Xi +Xj)

cov(Xi, Xk)

σ(Xi)σ(Xk)
+

σ(Xj)

σ(Xi +Xj)

cov(Xj , Xk)

σ(Xj)σ(Xk)

=
σ(Xi)f(gi, gk) + σ(Xj)f(gj , gk)

σ(Xi +Xj)
.

From the above formulation, we obtain the rela-
tionship between the joint correlation and pairwise
Pearson’s correlation.

Notice that finding the jointly correlated sets of genes
can be solved by exhaustively trying all combinations
of three genes gi, gj and gk. Although, this would
yield correct results, it is computationally prohibitive
as the number of combinations is massive when scaled
to the entire transcriptome for many organisms. Next,

we describe how we solve this problem efficiently. Our
method avoids exhaustively testing the geometrically
growing search space by developing three filters to
quickly remove a substantial fraction of gene combi-
nations, which are guaranteed to not jointly correlate.
We discuss these three filters next.

2.2 Filters

In this section, we describe our three filters in detail.
Among these, the first two are unconditional; the
decision to filter gi does not depend on gj . The third
filter is conditional as it considers the gj level while
making a decision on gi. All these filters utilize the
relationship between the joint correlation of three genes
and pairwise Pearson’s correlation (see section 2.1 for
the derivation).

f(gi ⊕ gj , gk) =
σ(Xi)f(gi, gk) + σ(Xj)f(gj , gk)

σ(Xi +Xj)
(1)

Filter 1. We obtain our first filter directly from
the problem definition. We only consider gi for joint
correlation with gk if

|f(gi, gk)| < ε′

as neither gene in the gene combination correlates with
the target gene individually if they jointly correlate with
the target gene.

This filter gives the filter condition for every gene
without considering their relationship with others.
Thus, it has small computational cost. However, the
bound for this filter is loose, and thus we expect to
have many gene combinations to remain for the next
two filters.

Filter 2. The second filter takes gene gj into consider-
ation, which leads to a tighter bound. To do this while
ensuring that the filter is unconditional, it considers the
maximum possible absolute correlation value between
gj and gk as well as the minimum standard deviation
between gi and gj . It works as follows.

39



For each target gene gk, consider the genes in the
group which have positive correlation values with gk.
For gene gi, we only consider the genes whose standard
deviations are smaller than that of gi. It is worth
mentioning that no combination of gi and gj is missed in
this way. Given σ(Xj) 6 σ(Xi), we have the following
formulation:

f(gi ⊕ gj , gk) =
σ(Xi)f(gi, gk) + σ(Xj)f(gj , gk)

σ(Xi +Xj)

6σ(Xi)[f(gi, gk) + f(gj , gk)]

σ(Xi +Xj)
.

(2)

Then, we obtain our second filter by replacing two
terms in this inequality. We explain how we do this
next. Let us denote the set of genes with standard
deviation less than or equal to that of gene gi with

Ai = {gt| σ(Xt) 6 σ(Xi)}.

Also, let us denote the set of genes which are in the
same group as gi with respect to the target gene gk
with

Bi,k = {gt| f(gt, gk) · f(gi, gk) > 0}.
Consider

gr = argmaxt{f(gt, gk)| gt ∈ Ai ∩Bi,k}.

We have f(gr, gk) > f(gj , gk) since gj ∈ Ai∩Bi,k. Now,
consider

gs = argmint{σ(Xi +Xt)| gt ∈ Ai}.

Similarly, we have σ(Xi+Xs) 6 σ(Xi+Xj) as gj ∈ Ai.
Using these inequalities, we replace the terms f(gj , gk)
and σ(Xi+Xj) in Equation 2 with f(gr, gk) and σ(Xi+
Xs), respectively. Thus, our second filter removes gi
from consideration if

f(gi ⊕ gj , gk) 6 σ(Xi)[f(gi, gk) + f(gr, gk)]

σ(Xi +Xs)
< ε.

Notice that, the transformation above eliminates the
term gj from the inequality. This transformation seems
more complicated than the original one in Equation 1,
however, it allows for a much more efficient implemen-
tation.

Filter 3. We expect our second filter to yield false
positives when the standard deviation of gi, σ(Xi),
becomes too large. Our third filter deals with such false
positives by actually taking the transcription values of
gj into account. Instead of introducing the two terms
gr and gs into Equation 2 as we did in Filter 2, we
only replace the term f(gj , gk) with f(gr, gk). Thus,
our third filter removes the combination gi and gj if

f(gi ⊕ gj , gk) 6 σ(Xi)[f(gi, gk) + f(gr, gk)]

σ(Xi +Xj)
< ε.

That is, gi and gj cannot jointly correlate with gk if

σ(Xi +Xj) >
σ(Xi)[f(gi, gk) + f(gr, gk)]

ε
.

An interesting question at this point would be: why
do we need to use Filter 3 if we need to use the
transcription of all the three genes gi, gj and gk?
In other words, why do we not simply compute the
joint correlation f(gi ⊕ gj , gk) directly and resort to a
filter? The answer lies in the final inequality of Filter
3 above. It gives us a lower bound for the standard
deviation if gi and gj do not jointly correlate with gk.
As we precompute the standard deviation for all gene
pairs, we utilize this information to avoid computing the
joint correlations of all candidate combinations. Recall
that in total there are only

(
m
2

)
pairs as compared to

m×
(
m−1
2

)
three gene combinations. Thus, this filter has

the potential to eliminate many false joint correlations
at a little expense which is already computed as a
preprocessing step to our algorithm.

Now that we have demonstrated our method; we next
describe an application of this method to a real gene
expression dataset.

3 Results
In this section, we experimentally test our method

on a real dataset, and measure its performance in
terms of accuracy and running time. Moreover, we
also discuss the biological characteristics of jointly
correlated gene combinations we have found. Notice
that, in all experiments, we set the parameter α and β
to 1. In the following, we describe the dataset used in
our experiments.

Real dataset. We use the processed Prostate Ade-
nocarcinoma (PRAD) RNA-seq data [12] downloaded
from TCGA. This dataset consists of transcription
levels of 20,531 genes for 333 samples. Notice that, all
transcription levels of genes have been normalized using
log transformation. We remove genes with consistently
low expression throughout a large majority of the
samples in the following way. If the transcription level
of a gene is less than 10 for more than 95 percent of
samples, we say that this gene is not expressed at a
sufficient level, and remove it. After the preprocessing
step, a total of 16,513 genes remain in our dataset.

3.1 Evaluations on real datasets

In this section, we measure the performance of our
method on the real dataset described above in terms of
its running time and accuracy.

3.1.1 Evaluation of running time

In the real dataset, three parameters affect the running
time of our method: the number of genes, and the
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two correlation thresholds ε and ε′. Out of these three
parameters, only the first and the third affect the run-
ning time of the exhaustive search. We experimentally
evaluate the impact of all of the these parameters on
the performance of our method next.

Impact of number of genes. As the exhaustive
approach does not scale to the entire dataset, we
run experiments on small subsets of our dataset with
varying number of genes. In particular, we vary the
dataset size from 200 to 2000 at increments of 200.
For each dataset size, we construct 10 different gene
sets by randomly selecting a subset of genes and report
the average and the standard deviation of the running
time for each dataset size. We fix the thresholds ε and
ε′ to 0.75 and 0.6 respectively. Figure 2a reports the
results for our method and exhaustive search. When
the number of genes reaches 800, exhaustive search
takes excessively long time (i.e., more than 10 hours).
Thus, we do not report the running time of exhaustive
search when number of genes exceeds 800. We observe
a huge difference in the running time of the two
methods. Our method runs several orders of magnitude
faster than the exhaustive search. As the number
of genes increases, the gap between the running time
of exhaustive approach and our method grows much
faster. It is worth noting that the standard deviation
of the running time in this experiment is very low (less
than 0.005 times the mean) for both exhaustive search
and our method for all dataset sizes, as such the error
bars indicating the standard deviation in Figure 2a
are almost overlapping. This is very promising, as it
suggests that our results are stable, and thus the gap
between the running time of our method and that of
exhaustive search does not change by altering the gene
set.

In summary, we observe that the exhaustive search
is not practical for large number of genes, whereas our
method scales to large datasets.

Impact of joint correlation threshold. Next, we
turn our attention to the effect of the threshold ε. We
vary the threshold ε from 0.7 to 0.95, and fix the size of
gene set and ε′ to 500 and 0.6, respectively. We repeat
the experiment on 10 different datasets and report the
average running time. Figure 2b plots the results for
our method. We do not plot the running time of the
exhaustive method as the parameter ε has no influence
on its performance. It takes about 2 hours 40 minutes
for exhaustive search to run on a dataset of this size.
Similar to the previous experiment, our method runs
several orders of magnitude faster than the exhaustive
method for all values of ε. Moreover, we observe that
the threshold ε has slight effect on the running time of
our methods. As the value of ε increases, the running
time of our method slightly reduces.

Impact of pairwise correlation threshold. Finally,
we explore the effect of the threshold ε′. We vary
the value of threshold ε′ from 0.4 to 0.7 at increments
of 0.1. We set the number of genes and ε to 500
and 0.75, respectively. We repeat the experiment on
10 different datasets and report the average running
time. Figure 2c shows the results for both methods.
Similar to the previous experiments, our method runs
several orders of magnitude faster than the exhaustive
method for all values of ε′. Moreover, we also observe
that when ε′ grows, the running time slightly goes up.
This is expected as smaller ε′ value makes Filter 1
remove more gi. However, the increase of the running
time is not notable. This is because the effect of
the threshold ε′ mainly depends on the distribution of
pairwise correlation values. In other words, a large
number of pairwise correlation values on our dataset
are smaller than 0.4.

In summary, our experiments demonstrate that both
methods depend mainly on the number of genes. As
the number of genes grows, the running time of both
methods increases. However, our method runs several
orders of magnitude faster than the exhaustive search.
The joint correlation threshold does not affect the
running time of exhaustive search, but has negligible
impact on our method. Moreover, the pairwise correla-
tion threshold does have some effect on the running
time of both methods. However its effect mainly
depends on the distribution of pairwise correlation
values. Furthermore, compared with our method,
exhaustive search is more susceptible to this parameter
value. Based on above analysis, in terms of running
time, we find our method to be more desirable in
practice.

3.1.2 Evaluation of accuracy

Here, we observe whether our method misses any joint
correlation in practice. To do this, we compare the
results found by our method with those of exhaustive
search, which guarantees to find all the joint correla-
tions. Notice that, only one parameter, the threshold ε,
has the potential to affect the results. To this end, we
design our experiment as follows. We set the dataset
size to 500 genes, and the threshold ε′ to 0.6. We
vary the threshold ε from 0.7 to 0.76 at increments
of 0.02. For each parameter setting, we repeat the
experiment 10 times by randomly selecting a different
subset of genes. We report the average and the standard
deviation of the total number of joint correlations found
by each method. Figure 2d shows the results. A notable
observation is that for all ε values, our method yields
the same number of joint correlations as the exhaustive
one. In other words, our method yields 100% accuracy.
Moreover, we also observe that the number of joint
correlations decreases as we increase the threshold ε.
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Figure 2: Performance of our method on a real dataset. (a) Effect of gene set size on running time of filter
method and exhaustive method. ε and ε′ are set to 0.75 and 0.6 respectively.(b) Effect of threshold for the joint
correlation on running time of filter method. The number of genes is 500 and ε′ is 0.6. (c) Effect of threshold for the
pairwise correlation on running time of filter method and exhaustive method. The running time of the filter method
corresponds to the left y scale while that of the exhaustive search corresponds to the right y scale. The number of
genes is 500 and ε is 0.75. (d) The number of joint correlations obtained by filter method and exhaustive method.

This is expected because large ε value enforces more
stringent condition for joint correlation.

In summary, the exhaustive method is not practical
for large dataset, whereas our method finds gene com-
binations in a much faster time with the same quality
as the exhaustive method.

3.2 Biological significance of the joint
correlations

In this section, we explore the biological significance
of the joint correlations. For the entire human tran-
scriptome, we set the correlation thresholds ε and ε′

to 0.8 and 0.6, respectively. Using these thresholds,
our filter method reports 6,740 jointly correlated gene
combinations in one day. As Pearson’s correlation is
sensitive to outliers, while Spearman correlation is not,
we use Spearman correlation to recalculate the joint
correlation for those 6,740 combinations, and keep the
ones which have correlations greater than or equal to
0.8. Finally, we obtain 482 gene combinations.

Pathways in jointly correlated genes. In our
first experiment, we evaluate whether joint correlations
reveal functional pathways which cannot be identified
through the standard pairwise correlation analysis. We
do this in two steps.

(1) We run the Gene Set Enrichment Analysis
(GSEA) [19] to find the statistically significant
functions and biological processes among 530
unique genes in 482 jointly correlated combinations
our method reports. Table 1 shows the significant
pathways for these genes.

(2) We obtain the pairwise associated gene sets as
follows. First, we build a gene expression corre-
lation network where each node is a gene and an
edge links two genes if their Spearman correlation
is greater than or equal to the joint correlation
threshold ε. We then find the maximal cliques on
this network [26, 24]. We take the union of genes

Table 1: Summary of GSEA results of jointly correlated
gene combinations with comparison to KEGG gene sets.

Description p-value
FDR

q-value
Regulation of actin cytoskeleton 6.58e−10 1.22e−7

Vascular smooth muscle contraction 9.27e−9 8.62e−7

Focal adhesion 6.55e−7 4.06e−5

Leukocyte transendothelial migration 1.13e−6 5.23e−5

Prostate cancer 8.64e−6 3.21e−4

Pathways in cancer 3.01e−5 9.33e−4

MAPK signaling pathway 6.37e−5 1.79e−3

Dilated cardiomyopathy 9.25e−5 2.15e−3

Alzheimer’s disease 1.54e−4 2.74e−3

Melanoma 1.65e−4 2.74e−3

in all cliques, resulting in totally 2,919 genes. We
conduct GSEA on this set. Table 2 presents the
result.

We highlight the pathways common to the two sets
in Tables 1 and 2.

We notice that one important pathway that joint
correlation finds while the pairwise associated gene
groups fails to report is the prostate cancer pathway.
This is significant as the samples in our real dataset are
taken from tissues with prostate adenocarcinoma. This
suggests that joint correlations have the potential to
reveal markers for complex disorders like cancer while
pairwise correlations can miss due to noise introduced
by many false pairwise positive correlations.

Moreover, we observe that joint correlation also yields
significant gene enrichment values in other pathways,
such as the actin cytoskeleton, Alzheimer’s disease
and melanoma. The overlapped gene set in actin
cytoskeleton has been implicated in prostate cancer [10,
25]. It has been found that there is an inverse
association between Alzheimer’s disease and cancer
presence [3]. Nead et al., [11] demonstrate an as-
sociation between the use of androgen deprivation
therapy (ADT) in the treatment of prostate cancer
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Table 2: Summary of GSEA results of pairwise
correlated gene sets with comparison to KEGG gene
sets.

Description p-value
FDR

q-value
Ribosome 2.58e−64 4.8e−62

Focal adhesion 1.09e−40 1.02e−38

Cytokine cytokine receptor
interaeraction

6.39e−31 3.96e−29

Regulation of actin cytoskeleton 2.91e−24 1.35e−22

Pathways in cancer 6.51e−24 2.42e−22

Chemokine signaling pathway 2.14e−23 6.65e−22

Hematopoietic cell lineage 4.92e−23 1.31e−21

Ecm receptor interaction 9.21e−22 2.14e−20

Cell adhesion molecules cams 9.36e−21 1.93e−19

Oxidative phosphorylation 2.05e−16 3.81e−15

and an increased future risk of Alzheimer’s disease.
There also exists an association between prostate cancer
and malignant melanoma, that is men with prostate
cancer have a significantly increased risk of malignant
melanoma [21]. In summary, the results suggest that
complex processes and disorders such as prostate cancer
and melanoma are governed through nontrivial gene
regulations. Joint correlation has the potential to
identify such relationships.

Next, we focus on the genes found by our method
belonging to the prostate cancer pathway. Some of
the genes in this set are SOS1, CREB1 and RB1.
Among them, SOS1 is overexpressed in prostate cancer
epithelial from African American men [22]. CREB1 is
a critical driver of pro-survival, cell cycle and metabolic
transcription program, and it has been found that
its target gene panels predict prostate cancer recur-
rence [20]. In castration-resistant prostate cancer,
genomic loss of RB1 is the most frequent cell cycle aber-
ration [14]. As a result, RB1 status can be a predictive
biomarker to hormonal blockade and cytotoxic taxane
therapy.

Finally, we investigate RB1 gene, one of the fre-
quently targeted genes we found. To do this, we build
RB1 association network by linking pairs of genes which
jointly correlate with it. For instance, assume that gk
denotes a frequently targeted gene for which we build
an association network. Also assume that genes gi and
gj jointly correlate with gk. We construct two nodes;
one for gi and the other for gj and connect them with
an edge. We repeat this for all such pairs of genes gi
and gj . Figure 3 presents RB1 association network.
We observe that the association network contains one
hub node MED4. This hub node jointly regulates RB1
target with many other genes. Thus, these genes can be
considered as potential drug targets, as altering them
will influence target gene RB1 with a high likelihood.
When the transcription of any gene other than the
hub node MED4 changes, we expect to have little or

(a) RB1

Figure 3: RB1 gene’s association network.

no influence on the joint regulation of RB1 as MED4
jointly correlates with many other genes. Alteration of
MED4 on the other hand disrupts all potential joint
regulations of RB1 and thus has a higher likelihood to
alter the transcription of RB1. This is evidenced as it
has been found that RB1−/− cells cannot survive in the
absence of MED4 [5].

In summary, our proposed method has a great po-
tential to yield biologically significant, yet subtle as-
sociations, which cannot be revealed through tradi-
tional pairwise association studies, and finding joint
correlation of genes is a promising strategy to decipher
the functions of genes which are governed through
nontrivial interactions.

4 Conclusions

In this paper, we introduced the problem of searching
jointly correlated gene combinations. To the best of our
knowledge, this is the first computational study in this
direction. Finding joint correlation is computationally
much harder than the classical pairwise gene correlation
problem. The number of combinations for the classical
pairwise correlation problem is O(m2) while that for
joint correlation is O(m3). Exhaustively searching for
all jointly correlated gene combinations is infeasible.
For example, on a dataset with 800 genes, exhaustive
search took more than 10 hours, not to mention that
the entire human transcriptome has around 20,000
genes. We developed a novel method for searching such
combinations efficiently. This method uses three filters
to remove unnecessary gene combinations. Our exper-
iments demonstrated that our method could produce
accurate results in a short amount of time. For the
entire human transcriptome, our method finished in a
day. This shows the efficiency of our methods and its
applicability in a real large dataset. We also observed
that joint correlations yield biologically significant yet
computationally subtle relationships.
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Abstract 
Genes with multiple functions are very important in an 
organism as they deliver essential roles. Studying and 
understanding genes with multiple functions is an important 
task that can help other problems like gene-disease 
associations.  In this paper, we study gene multifunctionality 
of all genes in the human genome using the gene ontology 
and gene functional annotations from GOA database.  We 
propose two gene multifunctionality scoring techniques 
based on gene annotations from the molecular function mf 
and biological process bp aspects. The proposed techniques 
were examined in estimating and scoring multifunctionality 
of all human genes, and evaluated the results using four 
criteria: gene-disease associations; protein-protein 
interactions PPI; gene studies with PubMed publications; 
and using published known multifunctional gene sets. The 
evaluation results confirm the validity and reliability of the 
proposed methods. For example, the proposed methods 
confirm that multifunctional genes tend to be associated 
with diseases more than other genes, with significance 
p<0.01, as also proved by previous studies. Moreover, 
consistent with all previous studies, proteins encoded by 
multifunctional genes, based on our method, are involved in 
PPI interactions significantly more (p<0.01) than other 
proteins. 
  
 
1. Introduction 
Studying and understanding the function, or set of functions, 
that a gene is involved in is a central step in functional 
genomics [1, 2, 16, 17, 26]. In particular, multifunctional 
genes are important to study as they convey essential roles 
in an organism [1, 26]. A gene is multifunctional if it is 
involved in more than one distinct function in human body. 
Studying and uncovering multifunctional genes is important 
for various tasks like gene-disease associations, drug 
discovery, and functional genomics studies.  
In this paper, we study human genes in the entire human 
genome to examine gene multifunctionality and identify the 
most likely multifunctional genes. Determining if a gene is 
multifunctional is not a trivial task as many genes can 
conduct more than one functionality. A gene involved in two 
functions may not be a multifunctional if the two functions 
are not distinct (i.e., not diverse) enough [1].  In this work, 
we use a computational methodology to determine whether 

or not a gene is multifunctional with distinct functions. 
Specifically, we present two scoring methods based on the 
functional annotations of the gene from the Gene Ontology 
(GO) for examining gene multifunctionality. We use the GO 
annotations from the molecular function mf and biological 
process bp aspects of GO. The proposed gene 
multifunctionality scoring methods extract and examine all 
paths between all mf and pb functions and processes that a 
gene is annotated with. We examined the proposed methods 
in scoring and estimating the multifunctionality of all genes 
in the human genome. We evaluated the results with four 
different criteria as compared with previous related work in 
this problem. The four evaluation criteria are: –gene-disease 
association; –protein-protein interactions PPI; –gene studies 
and PubMed publications; and –using published sets of 
confirmed multifunctional genes. The evaluation results of 
our proposed methods are encouraging and prove that both 
scoring methods are valid and reliable indicators of gene 
multifunctionality. For example, the proposed methods 
confirm that multifunctional genes tend to be associated 
with diseases more than other genes, with significance 
p<0.01, as also proved by previous studies. Moreover, 
consistent with all previous studies, proteins encoded by 
multifunctional genes, based on our method, are involved in 
PPI interactions significantly more (p<0.01) than other 
proteins. 
  
2. Related Work 
One of the most important aspects of multifunctional genes 
that motivate more work is the gene-disease association. 
Gene-disease association is significantly higher in 
multifunctional genes compared to all genes as confirmed 
by all previous studies in this domain [1–4, 8–10, 26].  
Therefor the relationships of diseases and multifunctional 
genes are signification and proved [1, 10, 26]. 
A multifunctional gene is a gene that is involved in several 
functions and activities, including molecular and cellular 
tasks, inside the cell [1-3, 8].  Pritykin, Ghersi, and Singh 
(2015) presented a comprehensive study of genome-wide 
multifunctional genes in human [1]. They found that 
multifunctional genes are significantly more likely to be 
involved in human disorders [1]. Also, they found that 32% 
of all multifunctional genes produced by their method are 
involved in at least one OMIM disorder, whereas the 
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fraction of other annotated genes involved in at least one 
OMIM disorder is 21% [1, 7].  
Ballouz, Pavlidis, and Gil (2017) studied various gene sets 
for functional genomics and enrichment [17]. They found 
that heavily functional genes are highly likely to appear in 
many genomic study results [21]. They leave it as an ‘open 
question’ to biologist to assess if their finding of gene 
multifunctionality is a true biological property. Khan and 
Kihara (2016) extracts a domain of features including GO, 
protein-protein interaction, and more, to classify protein into 
moonlighting (i.e. multifunctional) versus non-
moonlighting proteins [15]. Kim et al. (2017) in their 
system, DigSee, found that genes that interact with more 
genes in a PPI network are involved in more disease 
categories than those with fewer neighbors in the protein 
interaction network [25] 
 
3. Methods for Gene Multifunctionality  
The GO is highly regarded as the main source for gene 
functional information and functional genomics [16, 26]. 
The proposed gene multifunctionality method is based on 
the set of annotation terms from the GO for each target gene. 
The structure of the GO can be used reliably as a function 
for the relationships among the various functions encoded 
in the ontology. For example, the path length between two 
GO terms has been used extensively as a metric in 
computing semantic similarity between genes [16, 20, 26]. 
A semantic similarity measure is a function that estimates 
the similarity between two genes or two GO terms as a 
numeric value [19, 20]. Moreover, many gene similarity 
measures use the depth of the lowest common subsumer 
(LCS) in computing gene similarity [19, 20].  In our 
previous work, we investigated and explained the 
relationship between GO annotation terms of a gene and 
gene-disease relationship [16].   
In this paper, we propose and present two methods derived 
from the gene ontology for scoring gene multifunctionality. 
Typically, the similarity between two genes is computed as 
a function of the similarity between their annotation terms 
from the Gene Ontology (GO) using the mf (or the bp) 
aspect. That is, the similarity 𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔(𝑔𝑔1,𝑔𝑔2) between two 
genes 𝑔𝑔1 and 𝑔𝑔2 can be a similarity function between the 
annotations of 𝑔𝑔1 and 𝑔𝑔2: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔(𝑔𝑔1,𝑔𝑔2) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡(𝑡𝑡1𝑖𝑖 , 𝑡𝑡2𝑖𝑖)…………… (1) 
where 𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔(𝑔𝑔1,𝑔𝑔2)  is the similarity between genes 𝑔𝑔1and 
𝑔𝑔2; and 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡(𝑡𝑡1𝑖𝑖 , 𝑡𝑡2𝑖𝑖) is the similarity between GO terms 
𝑡𝑡1𝑖𝑖, 𝑡𝑡2𝑖𝑖  annotating 𝑔𝑔1and 𝑔𝑔2 respectively. 
The gene ontology consists of 3 aspects: Molecular Function 
mf, Biological Process bp and Cellular Component cc. Each 
one of these aspects {mf, bp, cc} is a complete ontology in 
itself [6, 16, 20, 26]. For gene multifunctionality it is normal 
to rely only on mf and pb aspects.  
Let 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) be the maximum path length between all 
pairwise mf annotation terms of gene 𝑔𝑔𝑥𝑥; that is: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) = 𝑆𝑆𝑀𝑀𝑀𝑀
𝑡𝑡𝑥𝑥,𝑡𝑡𝑦𝑦∈𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓(𝑔𝑔𝑥𝑥)

𝑀𝑀𝑀𝑀(𝑡𝑡𝑥𝑥 , 𝑡𝑡𝑦𝑦)   …….. (2) 

where 𝑀𝑀𝑀𝑀(𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦) is the shortest path length between the two 
GO terms 𝑡𝑡𝑥𝑥 and 𝑡𝑡𝑦𝑦, and 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓(𝑔𝑔𝑥𝑥) is the set of all GO mf 
annotation terms (annotations) of gene 𝑔𝑔𝑥𝑥. For example, in 
Figure 1, there are two different paths shown between 
GO:0000001 and GO:0006996 one of them is of length 2 
(through GO:0048308) and the second path is of length 3 
(through the two GO terms GO:0048311 and GO:0007005). 
The multifunctionality of a gene increases with the increase 
in the distinctiveness (i.e., diversity) of the functions that the 
gene in involved in [1, 3]. The path length between two mf 
(or bp) annotation terms of a target gene can be utilized as 
an indicator of the distinctiveness of the functions that the 
gene is part of. Based on this, we employ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓  as 
defined in equation (2) as a multifunctionality scoring 
method based on the max path length between the mf 
annotation terms. Likewise, we compute multifunctionality 
score based on bp annotation terms as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝(𝑔𝑔𝑥𝑥) = 𝑆𝑆𝑀𝑀𝑀𝑀
𝑡𝑡𝑥𝑥,𝑡𝑡𝑦𝑦∈𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝(𝑔𝑔𝑥𝑥)

𝑀𝑀𝑀𝑀(𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦)   …….. (3) 

where 𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝(𝑔𝑔𝑥𝑥) is the set of all pb annotations of gene 𝑔𝑔𝑥𝑥.  
In the biological process aspect (bp) of GO, each annotation 
term is basically a node in the ontology graph and is a 
biological functionality upheld by certain genes. When two 
bp annotation terms (i.e., graph nodes) are far apart with 
relatively large path length between them then we can 
consider that these two terms represent two distinct (diverse) 
biological functionalities. That is, our hypothesis is that, two 
highly far apart bp annotation terms can be considered as 
two distinct biological processes. Therefore, a gene 
annotated with two such terms can be considered as 
multifunctional.  
The computations of multifunctionality scores with mf 
annotations for human genes go through the algorithm 
shown in Figure A1. This algorithm explains the steps for 
the mf-based multifunctionality scoring, and the bp-based 
scoring is computed similarly by replacing mf annotations 
with bp annotations. For each gene, we extracted all its 
annotation terms from the Gene Ontology Annotation GOA 
database for human [26].  
By considering only mf annotations we found a total of 
~35,800 genes annotated with at least one mf terms. Overall, 
there are ~4.3 mf terms annotated per gene. By considering 
bp annotations in GOA, there is on average 5.2 bp terms per  
 

 
Figure 1: a small part of the GO.  
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Algorithm 1: Compute multifunctionality scores for all genes 
Input: -GOA_human: set of all human gene annotations. 

-GO.obo:set of all gene ontology annotation terms with their 
parents 

Output: -Set {𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) }𝑔𝑔𝑥𝑥∈G : multifunctionality score for every 
human gene based on mf annotations. 

Algorithm: 
(1) Create the set G 
       1a) G = ∅ : let G be the set of all genes annotated in GOA_human 
       1b) For each annotated gene 𝑔𝑔𝑖𝑖 from the set GOA_human: 

i) 𝐺𝐺 = 𝐺𝐺 ∪ 𝑔𝑔𝑖𝑖  : add 𝑔𝑔𝑖𝑖 to G 
(2) Create the set MF 

2a) MF = ∅ : let MF be the set of all mf annotation terms in GO.obo 
2b) For each mf annotation term 𝑡𝑡𝑖𝑖  in GO.obo: 

i) 𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀 ∪ 𝑡𝑡𝑖𝑖  :add 𝑡𝑡𝑖𝑖  to MF along with its parents 
(3) Create the set GOA_human_mf 

3a) Extract all mf annotations from GOA_human and add them to 
GOA_human_mf 

(4) For each gene 𝑔𝑔𝑥𝑥 in the set G 
4a) Extract the set 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓(𝑔𝑔𝑥𝑥) of all annotations of 𝑔𝑔𝑥𝑥 from 

GOA_human_mf  
4b) Set 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥)= 0 
4b) If �𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓(𝑔𝑔𝑥𝑥)� < 2 go to step (4)  
4c) For each pair 𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗  of annotation terms in 𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓(𝑔𝑔𝑥𝑥): 

 i) Compute the shortest path length 𝑀𝑀𝑀𝑀(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗) between pair 𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗 
ii) If 𝑀𝑀𝑀𝑀�𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗� > 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) then set 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) = 𝑀𝑀𝑀𝑀(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗) 

Figure A1: Algorithm for 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓() of all human genes 
 
gene with a total of ~35,700 genes annotated with at least 
one bp term. Among all genes with mf annotations (~35,800 
genes) in GOA database, almost 42% of them (or 15,142 
genes) are annotated with only one mf annotation term.  
Clearly, each gene with only one mf term will have 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 = 0  (and similarly for bp). Therefore, in mf we 
have 42% of the genes do not count in the computations of 
the multifunctionality scoring method  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 . In the 
human annotations in GOA, ~80% of the genes (= 28,904 
genes) have 4 or fewer mf terms. Thus, we extracted all 
genes from the GOA human annotation database. We 
computed the maximum path length among all terms for 
every gene as per our proposed technique. For evaluation, 
we would like to verify the reliability of our 
multifunctionality scoring techniques, MaxPLf and MaxPLp, 
in estimating the whether or not a gene is multifunctional. 
We could not find any gold standard dataset to evaluate our 
methods. So, we used four criteria for multifunctionality [1, 
26, 15]. These four criteria are: (1) Gene-disease association 
is more in multifunctional genes compared with other non-
multifunctional genes; (2) Multifunctional genes are more 
evolutionary conserved; (3) Multifunctional genes tend to 
be highly studied with relatively higher number of 
publications; and (4) Using previously tested and published 
multifunctional gene sets as criteria to test our method.  
We analyzed all human genes having mf annotations using 
proposed 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) multifunctionality scoring system. 
After computing 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) value for each gene, we 
grouped all genes into clusters of 1000 genes in each cluster 
after being sorted based on 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥); see Table 1. 

Table 1: Average MaxPLf with clusters of 1000 genes 
in each cluster. 

After sorting all genes 
based on MaxPLf() 
(descending order) 

mean 
MaxPLf() 

Top 1000 13.987 
1001 – 2000 12.189 
2001 – 3000 11.250 
3001 – 4000  10.427 
4001 – 5000  9.576 
5001 – 6000  8.487 
6001 – 7000  7.505 
7001 – 8000  6.336 
8001 – 9000  2.030 
9001 – 10000  3.189 
10001 – 11000   0.880 
11001 – 12000  0.498 
Lowest 1191 0 

 

 
For example, as shown in Table 1, the top 1000 genes have 
an average 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) of 13.99 whereas the next cluster 
(next 1000 genes) have MaxPLf average of 12.19. 
Criteria 1. Gene-disease associations: 
One of the most important criteria of multifunctionality of a 
gene is its disease associations [1-3, 16, 25, 26, 27]. That is, 
multifunctional genes are more highly likely to be 
associated with human diseases than non-multifunctional 
genes [1, 16, 25]. We analyzed all human genes from the 
GOA database and from OMIM morbid map for disease 
information. We wanted to investigate if the number of 
phenotypes, according to morbid map, exhibits any 
meaningful relationship with our multifunctionality scoring 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(). The results are in Table 2 and illustrated in 
Figure 2.  As it is shown in both Table 2 and Figure 2, as the 
MaxPLf increases the average number of associated 
phenotypes increases; thus there is a clear strong correlation 
between MaxPLf and average number of phenotypes. Hence, 
our MaxPLf is a reliable indicator of multifunctionality of 
genes. Next, we examined the behavior of MaxPLf with the 
increase of phenotypes for all human genes and the results 
are illustrated in Figure 3. 
We repeated the same evaluation for MaxPLp, that is, using 
bp annotations (instead of mf annotations). Table 3 and 
Figure 4 show the correlation between MaxPLp and average 
number of phenotypes for all human genes.  
Next, we examined MaxPLp for each group of genes 
associated with the same number of phenotypes and the 
results are in Table 4. For example, there are 2572 genes 
associated with only one phenotype and their average 
MaxPLp is 11.22 whereas the group of genes associated with 
exactly two phenotypes (648 genes) have an average 
MaxPLp of 12.33; Table 4. We mention here that groups of 
genes associated with 7 or more phenotypes are very small 
and do not affect the results. For example, there are only 11 
genes associated with 7 disease, and only 7 genes associated 
with 8 diseases. Figure 5 shows the relationship of the 
average number of phenotype for each value of MaxPLp.  
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Table 2: Average number of phenotypes for genes with 
each value of MaxPLf  

MaxPLf No. of genes Avg. of No. of 
phenotypes 

0 2630 0.23 
1 244 0.26 
2 490 0.27 
3 467 0.37 
4 557 0.36 
5 578 0.36 
6 890 0.30 
7 831 0.41 
8 1018 0.44 
9 911 0.49 

10 1148 0.46 
11 1182 0.52 
12 1057 0.49 
13 512 0.68 
14 475 0.68 
15 126 0.77 
16 53 0.66 
17 10 1.10 
18 11 0.73 
19 1 0.00 

 
 
 

Figure 2: from Table 2 above: average number of 
phenotypes increases as a function of MaxPLf 

 
 
Criteria 2. Protein-protein interactions:  
Multifunctional genes are typically involved more than 
normal in protein-protein interactions (PPI) [1, 22, 23, 25, 
17]. We used this criterion in evaluating our proposed 
multifunctionality methods. We retrieved and compiled PPI  
data from the Hippie database [23-24]. The obtained data 
include PPI data involving ~14,800 genes with a total of 
~250K experimentally documented P-P interactions [22–
24]. We analyzed the average number of PPI’s that a gene 
involved in with respect to both MaxPLf and MaxPLp and 

there is a clear relationship as illustrated in Figure 6. These 
results prove again that the proposed methods are in line and 
consistent with this criteria for gene multifunctionality.  
 
Criteria 3. Using PubMed publications as indicator of 

highly studied: 
It has been shown that multifunctional genes are highly 
studied genes and have relatively more publications in the 
biomedical literature [1, 21]. So, we use publication counts 
of genes as a criteria of multifunctionality. That is, 
multifunctional genes tend to have relatively higher number 
of publications compared to all genes. We relied on PubMed 
since it is the most comprehensive repository of biomedical 
literature with more than 24 million citations and references 
to articles (with abstracts, and some with full texts).  We 
analyzed number of publications related to each gene in 
PubMed as it is published by NCBI/PubMed and freely 
available with file name: gene2pubmed.gz, (link: 
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA;downloaded Sept.2017). We 
examined genes with our multifunctionality scores versus 
number of publications.  The analysis results shows a clear 
straightforward proportionality between number of 
publications and both scoring methods (MaxPLf  and 
MaxPLp) for all human genes as illustrated in Figure 7.  
 
Criteria 4. Using published multifunctional genes: 
We retrieved two lists of experimentally tested and known 
multifunctional genes [1].   
Source 1: http://moonlightingproteins.org/proteins/, which 
includes 361 moonlighting proteins (74 for human). 
Source 2:  http://wallace.uab.es/multitask/ which includes 
288 proteins (88 of them for human). 
This test was not reliable as we are considering only 162 (74 
from set1 and 88 from set2) human genes (out of ~35000 
annotated genes); however, these genes exhibit higher 
MaxPLf and MaxPLp values than expected by chance with 
significance (p<0.01) confirming multifunctionality. 

 
 
 

  
Figure 3: This figure shows that the MaxPLf of genes is 

directly proportional with average no. of phenotypes. 
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Table 3: For each value of MaxPLp this table shows how 
many genes and the average number of phenotypes 

MaxPLp  No. of 
genes 

Avg. of No. of 
phenotypes 

0 1399 0.15 
1 71 0.32 
2 141 0.21 
3 158 0.19 
4 204 0.26 
5 266 0.21 
6 356 0.35 
7 497 0.31 
8 578 0.31 
9 733 0.31 

10 919 0.35 
11 1319 0.32 
12 1490 0.36 
13 1541 0.45 
14 1512 0.48 
15 1166 0.58 
16 725 0.64 
17 455 0.85 
18 217 0.76 
19 113 0.73 
20 13 1.00 
21 2 3.00 

 

 
 

Table 4: The average value of MaxPLp for seven groups 
of genes where each group have the same number of 
phenotypes. 

No. of 
phenotypes 

No. of 
genes 

Avg. of 
MaxPLp 

0 10234 10.09 
1 2572 11.22 
2 648 12.33 
3 226 12.96 
4 84 13.67 
5 51 13.86 
6 29 15.45 

 
 

 
Figure 4: The relationship between MaxPLp and 

number of diseases for all human genes. 

 
Figure 5: The relationship of the average number of 

phenotype for each value of MaxPLp 
 
 
  

 
 

Figure 6: Number of protein-protein interactions increases as 
the gene multifunctionality score increase. 

 
 

 
Figure 7: Analyzing number of PubMed publications 

against multifunctionality scores with both 
MaxPLf and MaxPLp for all human genes show 
a direct proportional relationship. 
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4. Discussion 
The results in Table 2 (and Figure 2) confirm that there is a 
direct proportional relationship between gene 
multifunctionality scores and the number of diseases 
associated with gene. For example, genes with MaxPLf =2 
(490 genes) have on average 0.27 associated diseases 
whereas genes with MaxPLf =3 (467 genes) are on average 
associated with 0.37 diseases; and this is significant p<0.01 
(using hypergeometric test). Also, the average number of 
phenotypes for 1182 genes with MaxPLf of 11 is 0.52, and 
when the MaxPLf increases to 13 the average number of 
phenotypes increases to 0.68 (Table 2) which is significant 
result (p<0.01). 
We observed that for genes with one phenotype (2442 
genes) the average MaxPLf is 7.40 whereas for those genes 
with 2 phenotypes the average MaxPLf increases to 8.39 and 
this is significant with p<0.01; as follows: 
 

No. of phenotypes No. of genes Avg. MaxPLf 
1 2442 7.40 
2 619 8.39 

 
Similarly, for MaxPLp, we see that the 10234 genes 
associated with 0 phenotypes have MaxPLp average of 
10.09, and for the genes associated with one phenotype 
(2572 genes) the value of MaxPLp increases to 11.22 (as 
shown below) which is significant p<0.01.  
 

No. of phenotypes No. of genes Avg. MaxPLp 
0 10234 10.09 
1 2572 11.22 

  
Regarding number of publications, criteria 3, we confirmed 
that as our multifunctionality score of a gene tend to 
increase, the number of PubMed publications related to the 
gene also increases as illustrated in Figure 7. We should 
mention here that higher number of publications implies that 
the gene is highly studied [1]. One of the main reason of 
being highly studied is the gene is highly likely associated 
with one or more diseases. We should mention here that 
there are genes with fairly high number of publications but 
with low (≤ 7) multifunctionality score for which reason we 
relied on the aggregate averages. For example, considering 
genes with MaxPLp of 12; their average number of PubMed 
publications is ~133; when we increase the score to 14 the 
average increases to  ~181 and this is significant (p<0.01). 
Finally, if we consider a multifunctional every gene with 
MaxPLp≥15, we get 2691 multifunctional genes (genes 
having MaxPLp of 15 or more). Among these 2691 genes, 
we found 46% (or 1231 genes) of them are also mf 
multifunctional with mf annotations only using threshold 
Tf=10 (MaxPLf  ≥ 10), and this is significant p<0.01 with 
hypergeometric test. 
 

5. Conclusion 
For future studies of this research, we would like to 
investigate the number of maximum path lengths between 
the annotations of the target gene. For instance, consider the 
following case: If  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) = 16 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓�𝑔𝑔𝑦𝑦� =
16 but 𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) =  1 while 𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓�𝑔𝑔𝑦𝑦� =
 3, where 𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓(𝑔𝑔𝑥𝑥) is the number of paths with max 
length. In this case, both genes 𝑔𝑔𝑥𝑥 and 𝑔𝑔𝑦𝑦 have MaxPLf of 
16 but this MaxPLf of 16 occurs and repeated three times in 
gene 𝑔𝑔𝑦𝑦 and once in 𝑔𝑔𝑥𝑥 making 𝑔𝑔𝑦𝑦 more multifunctional.   
In addition, in the future work in this direction, we would 
like to investigate a multifunctionality score (mfs) that relies 
on both mf and bp annotations normalized by some 
maximum value, e.g. fp, as follows: 

𝑆𝑆𝑚𝑚𝑚𝑚(𝑔𝑔𝑥𝑥) =  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚(𝑔𝑔𝑥𝑥) + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑔𝑔𝑥𝑥)

𝑚𝑚𝑀𝑀
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Abstract

Building a phylogenetic tree for a number of species
is a very important step towards understanding the
evolutionary history of those species. If some of these
species are hundreds of times more closely related than
others, then the subtree(s) (or clade) of more closely
related species may have a very low level of resolution
and may not accurately represent their evolutionary
history. Identification of the informative regions con-
taining important variations in the genome of those
species is important in constructing their evolutionary
history. Here we introduce a novel approach for
selecting informative regions in an effort to construct
a phylogenetic tree of these closely related subspecies
(isolates) with high resolution. This approach is based
on the observation that the likelihood of informative
columns are sensitive to changes in the tree topology.
We also propose a method for identifying clades with
low resolution in the tree using branch lengths and like-
lihoods. We show that reconstructed phylogenies from
the informative columns (identified by our method) are
more accurate for the closely relates isolates than the
phylogenies constructed from the whole alignment.

keywords: Maximum Likelihood, Phylogenetic Tree,
Resolution of Tree, Informative Regions of Alignment.

1 Introduction

Inference of phylogeny from nucleotide or protein
sequences of a number of species has been studied
extensively for a long time. Distance methods (e.g.
Neighbor-Joining [17]) and maximum parsimony meth-
ods [20] have been applied for building phylogenetic
trees. As distance methods are more efficient, trees
constructed by these methods are often used as an
initial tree in other methods. Maximum likelihood [3]
and Bayesian inference [16] are two commonly used
methods where a mathematical model of substitution
like Jukes-Cantor (JC69) [9], F84 [4] or the General
Time-Reversible model (GTR) [21] is applied. Multiple

studies [7, 10, 14] have shown that maximum likelihood
methods produce accurate trees. Therefore, maximum
likelihood trees are frequently used to derive the phy-
logenetic relationships among species. Programs like
PhyML [6], RAxML [19], and MEGA [11] have been
developed to construct maximum likelihood trees from
sequence data.

A tree constructed by the maximum likelihood ap-
proach is built from a multiple sequence alignment.
Sometimes one or more groups of isolates contain all the
variations in a small region of the whole alignment. As
a result, those isolates are so close that their phylogeny
is considered unresolved in one study [18]. It has been
shown that small regions or few columns of the align-
ment can significantly affect the resolution and topology
of a particular clade [18, 2]. Therefore, identifying those
small regions in the alignment is helpful in constructing
their phylogeny. Determining the influence of an outlier
site (or column) [2] on the phylogeny has been studied
by removing the column from the alignment and by
constructing topology and likelihood from the resulting
alignment. Tens of thousands of microbial genome
sequences are publicly available. Some of them have an
extremely low rate of single nucleotide polymorphism
(SNP), e.g., one SNP in a million base pairs [1]. On
a data set of 101 whole genome sequences with low
pairwise SNP rates, existing programs were able to infer
up to 71% of the clade structure [1]. To the best of
our knowledge, none of the exsiting programs has been
designed to handle whole genome sequences with both
high and low SNP rates.

In a common approach to constructing a phylogenetic
tree of isolates, multiple gene datasets for the isolates
are selected based on human knowledge, each gene
dataset is used to build a gene tree, and the gene
trees are reconciled to obtain a specie tree [5]. This
approach has been used for isolates that are not highly
similar. Note that isolates with an extremely low
SNP rate are identical in sequences over most loci.
We take a complementary approach by eliminating
human involvement in deciding which genome regions
are selected. Our approach uses computational and
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statistical techniques to decide which genome positions
are informative for which part of the species tree. Below
we describe a method for identifying a group of isolates
with low resolution using informative columns. Then
we reconstruct the phylogeny (cladistic relationship) of
those closely related isolates using informative columns.
Results from our method on simulated data show that
the trees constructed from the whole alignment are less
accurate than the trees constructed from informative
alignment columns for the closely related isolates.

2 Methodology

We address the problem of constructing a phyloge-
netic tree of isolates by building an unrooted bifurcating
tree [3] from a multiple alignment of genome sequences
of the isolates. An important feature about the multiple
genome alignment is that the rate of substitution be-
tween some genome sequences can be hundreds of times
smaller than that between other genome sequences in
the alignment. Below we first describe a method for
selecting informative regions for a group of isolates and
then we present a method for detecting subtrees of
isolates with low resolution.

2.1 Detection of Informative Regions

There are well-known programs for building a tree
from an alignment using the maximum likelihood ap-
proach. Our method begins with one of such programs.
First, a maximum likelihood tree T is created using
RAxML from a given multiple sequence alignment
S. The program seeks to find a tree with maximum
likelihood. The likelihood of a tree with respect to
the given alignment is the product of the likelihood
with respect to each column in the alignment. The
likelihood value of each column of the alignment can
also be computed using this program for any given tree.
We use the following idea to evaluate the importance of
a column:

If a column is informative for a particular clade, then
there must be a significant change in the likelihood
value of that column with respect to a nonrepresentative
topology for that clade.

We use the following two methods for generating
these nonrepresentative topologies:

(1) Performing the nearest neighbor interchange (NNI)
operation [12, 22] on any edge (in the clade)
connecting two non-leaf nodes

(2) Randomly permuting the isolates so that it creates
a random distribution of the isolates in the clade

Let N be the number of isolates in a clade. We can

generate 2 nonrepresentative topologies by applying the
NNI operation on each of the N − 3 edges connecting
two non-leaf nodes. We also generate k (k ≤ N)
random permutations of those isolates. Then we find
the maximum deviation of likelihood for a column with
respect to these nonrepresentative topologies.

An example of deviation of likelihood values for one
informative column and one noninformative column
is shown in Table 1. Here, T is the maximum
likelihood tree (representative topology) constructed
from an alignment S and TNNI is the nonrepresentative
topology generated by an NNI operation on one edge of
T . We can observe that the deviation of likelihood of
the informative column is 19.56 times that of the non-
informative column with respect to this NNI operation.

Table 1: Deviation of Likelihood for Alignment S
Log Likelihood

Informative Noninformative
Column Column

T −5.661510 −1.867485
TNNI −7.524911 −1.962215

Deviation 1.853401 0.09473

Now we need to check whether this deviation is
statistically significant or not. We introduce the
concept of noise alignment to make this decision. The
noise for a particular column is generated through a
random permutation (different from the alignment S)
of the rows. Thus we choose a random permutation of
rows for each column to form a noise alignment S′. We
do not expect a large difference between the deviation
of likelihood values for informative and non-informative
columns with respect to S′.

For example, we can look at the deviation of likeli-
hood values in Table 2 for the informative and nonin-
formative columns (presented in Table 1) with respect
to noise alignment S′. Both T and TNNI are the
same trees mentioned in Table 1. Here, the difference
between the deviation of likelihood values for the
informative and noninformative columns is not very
large. Moreover, the deviation of likelihood for the
noninformative column with respect to S shown in
Table 1 is also close to the values of deviation shown in
Table 2. We formulate the following criteria to select
informative columns based on these observations:

If a column generates a significantly higher deviation
in likelihood value than the average deviation of the
columns when they are subjected to a noise alignment
(i.e. the p-value of the deviation of a column computed
from the distribution of deviations with respect to noise
is less than the significance level α), then we classify
that column to be informative for a clade.
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Table 2: Deviation of Likelihood for Noise Alignment
Log Likelihood

Informative Noninformative
Column Column

T −6.974545 −1.839750
TNNI −6.953124 −1.795106

Deviation 0.021421 0.044644

The key steps of our algorithm for selecting infor-
mative columns for N taxa from an alignment S are
summarized below. Here, T is the maximum likelihood
tree constructed from S and L is the number of columns
in S.

(1) A set Tn of nonrepresentative phylogenies is con-
structed, which contains k trees generated by
random permutation of N taxa and 2 ∗ (N − 3)
trees generated by NNI operation on T .

(2) A noise alignment S′ is generated from S.

(3) The maximum deviation of likelihood value of each
column over |Tn| nonrepresentative phylogenies
with respect to S′ is computed. These values of
maximum deviation for each column form the noise
distribution.

(4) The maximum deviation of likelihood value of each
column over |Tn| nonrepresentative phylogenies
with respect to S is computed. If the maximum
deviation of likelihood of a column is statistically
significant with respect to the noise distribution,
then this column is selected as informative.

Here, steps 3 and 4 are the dominating steps of the
algorithm. In both steps, we compute the deviation
for each of the L columns in the alignment S with
respect to |Tn| nonrepresentative topologies generated
from T . Computing the likelihood value of a column
with respect to a topology t requires a traversal over t,
which requires O(N) operations because of 2 ∗ N − 1
nodes in the tree. Now, |Tn| = 2 ∗ (N − 3) + k,
where we choose k ≤ N . Therefore, the complexity
of this algorithm is O(L ∗ N2). As the complexity
of this algorithm is linear in terms of the number of
columns in the alignment, this method is efficient on
large alignments.

2.2 Selection of Clades with Low
Resolution

We use a likelihood based method for selecting clades
with low resolution in the tree T . For each edge
connecting two non-leaf nodes with at least 4 taxa as

each of their descendants, we can form two components
by removing the edge. We consider each component as a
clade. Then for each clade, if the number of informative
columns (identified by the method described earlier)
is less than a certain threshold, then that clade is
considered to have low resolution in the tree.

We have also used a heuristic based on the distri-
bution of branch lengths to make this step faster. If
the average branch length of one clade is less than the
average branch length of the tree, then we consider this
clade to be a candidate for having low resolution. Thus
we can avoid finding informative columns for every
clade in the tree.

2.3 Reconstruction of the Phylogeny of
Closely Related Isolates

After the identification of closely related isolates with
low resolution, we form a multiple sequence alignment
Sc for those closely related isolates. Then we construct
a phylogeny Tc from Sc using RAxML. Then we
find informative columns and construct a phylogeny
Tci (tree of closely related isolates from informative
columns).

3 Results

Our results are divided into two parts. First, we show
that our method produced a tree with high resolution
from a large sequence alignment of 11 Fusarium iso-
lates. Then we show that our method produced a more
accurate tree of closely related isolates on simulated
data. We have used 0.01 for the significance level α on
both real and simulated data.

3.1 Real Data

We used a sequence alignment of 11 Fusarium isolates
[8] that cause diseases in soybean. The maximum
likelihood tree in Figure 1 was constructed by RAxML.

Here the clade containing 4 F. virguliforme isolates
has low resolution. Our method for selecting clades
with low resolution correctly identified this group of
F. virguliforme isolates. Then we applied the likeli-
hood based column selection method to identify 319
informative columns from the alignment of 137,718
columns. Then we reconstructed their phylogeny using
these columns with high resolution (Figure 2).

3.2 Simulated Data

We used the Seq-Gen program [13] to generate a
large number of sequence alignments for 8 species (or
taxa) from the tree with two groups in Figure 3. Each
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Figure 1: The maximum likelihood tree of 11 Fusarium
Isolates from an alignment of 137,718 columns

Figure 2: The maximum likelihood tree of 4
F. virguliforme Isolates from an alignment of 319
informative columns

Figure 3: The topology used to generate the sequences
for all cases

Figure 4: Maximum Likelihood Tree of 8 taxa
constructed by RAxML from an alignment of 4, 000, 000
columns with R set to 5000

group consists of 4 isolates. The data show a scenario
where the species in each group have little variations
among themselves (about 100 − 1000 informative sites
in an alignment of 4 or 5 million columns), but any
two isolates from different groups have many variations
(20% of the total alignment). The generalized time-
reversible process (GTR) model [21] was used as the
nucleotide model of substitution to generate these
nucleotide sequences.

We used alignments of 2 different lengths: 4 and 5
million columns. Let R denote the ratio of the number
of informative columns between taxa from different
groups to the number of informative columns between
two taxa from the same group. For each of the two
alignment lengths, we used 4 different values of R: 1000,
2000, 5000 and 10, 000. For each of these 8 data types,
1000 alignments of that type were generated. On each
of these alignments, a tree like the one in Figure 4 was
constructed by RAxML.

Figure 4 shows two groups of taxa with low resolution.
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Our method for selecting taxa with low resolution was
applied on this tree. It correctly identified the two
groups for all the alignments.

Then our method for finding informative columns
from the alignment was used for these closely related
taxa. A large percentage of informative columns
within those groups were identified by our method.
The average number of columns (over 1000 alignments
and 2 groups with low resolution for each alignment)
identified as informative are listed in Table 3. We know
the number of columns generated by Seq-Gen for each
of those groups. The percentages indicate the fraction
of those columns identified as informative.

Table 3: Number (Percentage) of Informative Columns
Value of R Length of the Alignment

4, 000, 000 columns 5, 000, 000 columns
1000 623 (77%) 730 (73%)
2000 297 (74%) 386 (77%)
5000 127 (79%) 148 (74%)
10000 53 (66%) 77 (77%)

Then the phylogeny of those closely related taxa
was constructed from the alignment consisting of only
informative columns. For all the alignments, the
reconstructed phylogeny correctly grouped Taxon01
with Taxon02, Taxon03 with Taxon04, Taxon05 with
Taxon06, and Taxon07 with Taxon08.

We computed the Robinson-Foulds distance [15] of
the trees Tw (constructed from the whole alignment)
from the tree in Figure 3. We also computed the
same distance for reconstructed trees from informative
columns (Tr). The average distances over 1000 align-
ments for 8 data types are presented in Table 4.

Table 4: Robinson-Foulds Distance of Trees Built from
Whole Alignment (Tw) and from Informative Columns
(Tr)

Value of R Length of the Alignment
4, 000, 000 columns 5, 000, 000 columns
Tw Tr Tw Tr

1000 3.998 0 3.998 0
2000 3.998 0 3.996 0
5000 3.982 0 3.994 0
10000 3.986 0 3.996 0

From Table 4, we can conclude that the trees con-
structed from the whole alignment have a Robinson-
Foulds distance of 4 for most of the alignments. The
evolutionary history presented in the phylogeny con-
structed from the whole alignment does not completely
agree with the tree used to generate the alignment. If
we identify informative columns for the closely related

taxa and reconstruct the phylogeny of those groups
using only informative columns, we get the trees with
a Robinson-Foulds distance of 0 from the tree used to
generate the alignment.

4 Conclusion

Sequence-based methods for constructing phylogeny
of many species have been widely used to understand
the evolutionary relationships among them. Sometimes
one or more specific regions for some species contain
more variations than other parts of the genome [8].
Detection of these regions and identification of the
species (with variations among themselves in a small
part of the genome) is important for constructing
the representative history of evolution. We have
demonstrated that our method works properly for
identifying such clades with low resolution in the tree
on both real and simulated data. And our method
selected many informative columns for those clades.
Our method for finding informative columns does not
require repeated construction of maximum likelihood
trees from the whole alignment. Due to its linear
complexity in the length of the alignment, our method
is efficient in finding informative columns from large
alignments.

All the instances of simulated data presented in
this paper are built from the tree in Figure 3. This
tree has a simple structure where each subtree with
low resolution contains only 4 isolates. Besides this
simple structure, our method is expected to work on a
complex branching structure of many subtrees, where
the main branches connecting the subtrees have high
resolution but each subtree has low resolution. This
complex structure is expected to cause difficulty to
existing methods based on maximum likelihood and
parsimony. We are currently working on generating
simulated datasets from such a complex structure and
on obtaining results on the performance of our method
and existing methods.

In this work, we have assumed that closely related
isolates have a single history of evolution, i.e. all in-
formative columns support one history. In future work,
we will address a problem in which informative columns
support different histories of evolution. Construction
of multiple trees for different genome regions from
informative columns is useful in revealing the different
evolutionary histories of these genome regions.

References

[1] Johanne Ahrenfeldt, Carina Skaarup, Henrik
Hasman, Anders Gorm Pedersen, Frank Møller

56



Aarestrup, and Ole Lund. Bacterial whole
genome-based phylogeny: construction of a new
benchmarking dataset and assessment of some
existing methods. BMC Genomics, 18(1):19, Jan
2017.

[2] Avner Bar-Hen, Mahendra Mariadassou, Marie-
Anne Poursat, and Philippe Vandenkoornhuyse.
Influence function for robust phylogenetic re-
constructions. Molecular biology and evolution,
25(5):869–873, 2008.

[3] Joseph Felsenstein. Evolutionary trees from
dna sequences: a maximum likelihood approach.
Journal of molecular evolution, 17(6):368–376,
1981.

[4] Joseph Felsenstein and Gary A Churchill. A hidden
markov model approach to variation among sites in
rate of evolution. Molecular biology and evolution,
13(1):93–104, 1996.
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Abstract 

We develop a data-driven computational model that 

reliably classifies individual patient into one of 7 non-

overlapping lung disease clinical types within our dataset: 

healthy non-smokers, smokers diagnosed with and without 

chronic obstructive pulmonary disease (COPD), 

adenocarcinoma, squamous cell carcinoma, cystic fibrosis, 

and acute lung injury. Panels of 12 cytokine blood serum 

biomarker measurements precisely classify both known and 

unknown patients into one of these distinct clinical types. 

Our model classifies clinical types and patients directly from 

the conditional relationships of noisy, incomplete, and 

variable protein concentration measurements, including 

outliers. Biomarker concentration measurements induce 

discrete state variables through a binning algorithm that 

exposes the conditional relationships and dependencies 

among the concentration data. A unique application of an 

XOR operation on the state space extracts the patterns 

identifying the set of distinctive features for each clinical 

type. Our model builds a discrete topological structure from 

a baseline data set, and is developed using several novel 

schemes designed specifically for this analysis. The result is 

a multidimensional space representing a characteristic set of 

states within each clinical type population. 

Keywords: cytokine proteomic biomarkers; computational 

model; lung disease. 

1 Introduction 

According to the American Lung Association, an 
estimated 158,080 Americans are expected to die from lung 
cancer in 2016 [1]. The 7 lung diseases analyzed here 
account for some of the most frequent forms of lung disease, 
with COPD as the fourth leading cause of death in the United 
States [2]. Respiratory diseases are of multiple origin, and 
the selected clinical types cover a wide spectrum of 
suspected causes. More accurate and cost-effective diagnosis 
is needed so that people with lung diseases are accurately and 
cost-effectively diagnosed and then treated accordingly, 
given that Guarascio et al declare that not enough is known 
regarding ideal therapy selection [3].  

The use of protein-based biomarkers of lung disease is 
rapidly advancing, as reviewed by Jun-Chieh et al [4], but 
reliably measuring proteomic biomarker concentrations is 

difficult due to technical and biological variation, their wide 
dynamic range of concentrations and numerous post-
translational modifications [5]. Despite these variations, we 
have developed a data-driven Biomarker Computational 
Model for Lung Disease Classification (BCM-LDC) that 
reliably distinguishes among various clinically diagnosed 
lung disease types within our dataset. BCM-LDC 
hypothesizes that biomarker interactivity induces a 
distinctive set of host-response protein concentration values 
for each clinical type, and that certain concentration patterns 
revealed by these proteins remain characteristically 
invariant.  

BCM-LDC uses a data-driven, supervised-selection 
learning model; that is, constrained by the limited amount of 
training data, the model enumerates all possible 
combinations of biomarker state spaces, then selects that 
space which most accurately classifies the data into their 
known clinical types. 

In the background §2, we review the suitability of 
cytokine proteins as host-response biomarkers, the sources 
of analyzed data, and the difficulties in modeling biological 
variation given the constraints governing the model, 
including the issues of overfitting and working within a high-
dimensional parameter space. The computational model §3 
describes how protein concentrations are topologically 
modeled and analyzed. §4 presents the experimental results. 
§5 describes several validation studies, and §6 concludes the 
paper. 

2 Background 

2.1 Host-Response Biomarkers 

We investigate whether targeted protein variables act as 

disease state signals due to the existence and modulating 

strength of their relative and mutual effects upon each other. 

Our data-driven computational model, BCM-LDC, 

classifies clinical types and patients directly from the 

marginal and conditional relationships of biomarker 

concentration measurements. BCM-LDC selects the unique 

set of biomarkers – given a small number of biological and 

statistical assumptions – whose protein host-response 

topology corresponds to a patient’s clinical type. BCM-

LDC represents a space of concentration distributions built 

upon computable discrete states which classifies patients 

into clinical types, despite significant data variation.  
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Cytokine proteins are secreted by components of the 

adaptive immune system, and they act as effectors and 

modulators of lung tissue inflammatory response [6]. The 

12 baseline cytokine biomarkers used in this study {EGF, 

IFNG, IL1A, IL1B, IL2, IL4, IL6, IL8, IL10, MCP1, TNFA, 

VEGF} (EGF: epidermal growth factor; IFNG: interferon γ; 

IL: interleukin; MCP: monocyte chemo-attractant protein; 

TNF: tumor necrosis factor; VEGF: vascular endothelial 

growth factor) were chosen because of their known 

sensitivity in host-response to various lung diseases [7], so 

that concentrations of circulating cytokines in blood serum 

may be associated with lung disease survival [8].  

2.2 Data Sources 

BCM-LDC is constructed using host-response cytokine 

biomarker concentration data from 343 patients given to us 

in standard units of pico-grams 1012 grams per milliliter 

(pg/ml). Any other data sets obtained from the literature – 

such as Healthy Serum – are standardized to these units. 

This baseline data set includes 7 clinical types from which 

the 12 protein biomarkers are measured. The number of 

patients per clinical type ranges from 24 to 56 (see Table 4). 

The Q=12 baseline biomarkers {EGF, IFNG, IL1A, IL1B, 

IL2, IL4, IL6, IL8, IL10, MCP1, TNFA, VEGF} measured 

from each patient’s blood serum are chosen because of their 

known or suspected relationship to lung disease. Two 

specimens are collected from each patient at the same time, 

and these two specimens are averaged over each biomarker 

to provide a single biomarker panel of 12 measurements per 

patient, except in cases of missing data. Each of the 343 

patients are expertly diagnosed as belonging to only one of 

7 lung-related clinical types 𝑪𝒕, 𝟏 ≤ 𝒕 ≤ 𝟕 adenocarcinoma, 

squamous cell carcinoma, never smokers, smokers with 

chronic obstructive pulmonary disease (COPD), smokers 

without COPD, acute lung injury, or cystic fibrosis [9]. We 

then sequestered a random 10% of these baseline data for 

subsequent model validation, leaving 310 patients to train to 

model. There are 659 missing biomarker measurements out 

of a possible 𝟑𝟏𝟎 ∗ 𝟏𝟐 = 𝟑𝟕𝟐𝟎  (82.3% complete) for a 

total of 3061 measured values. Only 39 of the 343 patients 

(11.4%) have all 12 biomarker measurements, but 85.4% 

have 9 or more biomarkers. A total of 17.7% biomarker 

values are missing from the baseline data set. The mode of 

the measurements per patient panel is 10. The mean is 9.84. 

No data was interpolated or averaged to fill in missing data.  

Standard protein 2-D gel electrophoresis assay 

techniques are used to consistently collect homogeneous 

blood serum specimens. The first five data sets are all from 

the same unpublished set of experiments 

[Acknowledgement A] conducted at laboratories at the 

University of Colorado Health Sciences Center (UCHSC). 

The last two data sets, cystic fibrosis and acute lung injury, 

are from different experiments although the wet-lab 

protocols and analytics are performed in the same way as 

the first five data sets [Acknowledgement B]. To minimize 

batch effects, both laboratories incorporated a standard 

sample in each electrophoresis gel which was subsequently 

subtracted during analysis, and both used the Cy2 channel 

from each gel to normalize spot intensities and for 

automated matching between gels. All patients underwent 

expert pathology review and have been histologically 

assigned to one and only one clinical type, provided with the 

original data sets. The small error bars in Figures 2 and 3 

below suggest these data were produced precisely and with 

quantitative accuracy. 

There are many more data values than targeted variables, 

the 12 biomarkers, which avoids the issue of overfitting. We 

are working directly with precise concentrations of secreted 

proteins expressed in blood serum. Even though differences 

have been uncovered in protein expression between normal 

and diseased tissues that may have specificity for different 

tumor types [10], tissue extraction is both costly and 

invasive. We justify our sampling strategy because it is non-

invasive, generates a large set of data with quantitative 

accuracy involving a small number of targeted variables, 

and works with a homogeneous composition indicative of 

the entire organism.  

During our initial experiments, we found that any 

method based upon averaging – such as logistic regression, 

cosine similarity, or the machine learning Classify function 

in Wolfram Mathematica© v11.1 – did not classify the 

baseline clinical types with a sufficient degree of accuracy. 

Therefore, our subsequent work focused on developing a 

computational model that processed the entire set of 

individual concentration values and not just population 

averages.  

3 Computational Model Details 

BCM-LDC hypothesizes that interactivity among the 
biomarkers induces a distinctive concentration distribution 
as conditioned by the relative concentrations of the other 
biomarkers. A binning algorithm discretizes the 
concentration values of every combination of paired 
biomarkers variables into fixed-sized bins that produces a 
characteristic multidimensional state space for each clinical 
type. The binning algorithm is designed to produce both 
occupied and empty discrete bin states, what we call a 
discrete topological structure (DTS). The bin state pattern 
that best distinguishes among the clinical type populations is 
computed by an XOR operation on each possible state space, 
which also extracts the set of distinctive variable bin states 
for each clinical type. The distinctive bin state space is then 
used to assign new patients into one population type given a 
patient’s set of biomarker concentration values. BCM-LDC 
is briefly presented below. 

3.1 Formulating the Computational Model 

Our goal is to develop a model that represents the 
conditional relationships of expressed host-response 
biomarkers. The first problem is to discretize the biomarker 
concentration values for every clinical type – paired 
biomarker combination CBr, producing a set of bin sizes and 
number of bins (Wr, Nr, 1 ≤ r ≤ R). A CBr is defined as the 

59



aggregate concentration data from each of these pairs of 
biomarkers within each clinical type. Each clinical type has 
77 different combinations of pairs of biomarkers, including 
pairs of the same biomarker. The binning algorithm bin size 
computation maximizes the number of occupied bins Ô (O-
hat), separating concentration data values by the highest 
possible resolution, while minimizing the number of gaps or 
empty bins Õ (O-tilde) where no data values reside. Empty 
bins are considered non-permissible data states. BCM-LDC 
computes a different total number of bins (states) Nr, and bin 
size Wr, for each combination CBr. The model computes the 
probability of each concentration data point belonging to its 
bin within each CBr combination.  

3.2 Formulating the Discrete Topological 

Structure (DTS) 

The interactive relationships between each pair of 

biomarkers {B1, B2} are represented by three types of 

probability. The model computes the pair’s joint occurrence 

matrix MC-joint – the probability that biomarker B2 measured 

at concentration [c2] occurs at the same time biomarker B1 

is measured at concentration [c1]. The model also computes 

their conditional probabilities where, given concentration 

measurement [c1] for B1, how likely is the measured 

concentration [c2] for B2. Call this matrix Mβ. The model 

uses marginal probabilities to represent the influence of 

individual biomarkers – the probabilities of various 

concentration values of a subset of biomarker variables 

without reference to the values of the other variables being 

considered. Call this matrix Mα. These three types of 

computed probability taken together express the mutual 

interactivity and distribution of the biomarker concentration 

measurements to reveal concentration patterns characteristic 

of each clinical type. We equate these probability concepts 

to a discrete topological structure (DTS) matrix with 

equation 1. A data-driven DTS matrix is computed for each 

CBr. and the matrix (i.e., the specific set of paired 

biomarkers) that produces the most accurate set of patient 

classifications per clinical type is designated MC for that 

population. 

 

In equation 1, MC-joint is the population joint occurrence 
matrix, 1 is a complete matrix of ones (not the identity 

matrix), Mα is the α interaction matrix of marginal 
probabilities, and Mβ is the β interaction matrix of 
conditional probabilities for the clinical type. The DTS 
equation is implemented in terms of matrices of conditional 
and marginal probabilities involving bivariate pairs of 
biomarkers, each of which are indexed by their respective set 
of discrete bin states as computed by the binning algorithm. 
Pseudo-code for the binning algorithm is given in Algorithm 
1 below, where Dr refers to as the combined set of observed 
concentration data values within each CBr, for a specific 
clinical type and biomarker pair {Bi, Bj}. 

 

Algorithm 1: Pseudo-code for the Bin-Min-Max algorithm. 

Inputs: Dr: set of concentration data for given CBr ; 

maxNbins: max number of bins. Outputs: returns Wr, Nr 
1. foreach combination Dr = { D(Bi), D(Bj) } 
2. # Initialize number of bins (Nr), bin step 

size (binInc), bin size (Wr), number of 

empty bins (emptyBins), tmp = 0. 

3. Nr ← binInc ← √maxNbins
4

 

4. Wr ← |max(Dr) - min(Dr)| / Nr 
5. emptyBins ← Count_Empty_Bins(Dr, Nr, Wr) 
6. result ← |Wr - loge(emptyBins)| 
7. while (result < tmp and Nr < maxNbins - 

binInc) do 

8.   Nr ← Nr + binInc 
9.   Wr ← |Max(Dr) - Min(Dr)| / Nr  
10.  emptyBins ← Count_Empty_Bins(Dr, Nr, Wr) 
11.  tmp ← result 
12. If (emptyBins > 0) result ← |Wr - 

loge(emptyBins)|) else result ← 1 

13. end while  
14. Return (Wr, Nr) 
15. end foreach 

The output of the Max-Bins-Min-Empty-Bins binning 
algorithm is a bin size Wr and the number of bins Nr for each 
clinical type – paired biomarker combination CBr. Each 
value in a set of combined concentration values is assigned 
to a single bin, but multiple concentration values can be 
assigned to the same bin, as plotted in Figure 1 for 
Adenocarcinoma biomarkers {Bi = IFNG, Bj = IL1A}. The 
top 2 [c] rows in Figure 1 refer to their actual concentration 
values measured in pg/ml. These [c]values are mapped to 
specific bin states in the Bin Intervals row. Many of the [c] 
values are grouped in the first few bins. The first 6 states are 
labeled numerically, and bin 5 is the first empty bin out of 
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the 23 bins. Bins 1 through 4 illustrate the joint probabilities 
of IL1A and IFNG values occupying the same state. 
Additional details for computing each DTS matrix are given 
in the next section. 

3.3 Computing the DTS Matrix MC 

BCM-LDC computes the population joint probabilities 
for Dr for each clinical type Ct, combination CBr ∈ Ct, 
biomarker Bi ∈ CBr, bin b from 1 to Nr using equation 2, 
where Gb is the number of [c] values of Bi in bin b. The result 
Pi is the vector of probabilities for observing the biomarker 
concentrations in each bin, oftentimes zero. A bin probability 
equals the number of concentration values Gb grouped in 
each bin divided by |Dr| so that the sum of probabilities over 
the set of bins is 1. 

 
The population joint occurrence matrix MC-joint is 

computed by multiplying each bin probability Pi for 
biomarker Bi with each bin probability Pj for biomarker Bj, 
where Bi is indexed by i from 1 to the number of bins NBi for 
biomarker Bi and Bj is indexed by j from 1 to the number of 
bins NBj for biomarker Bj. Equation 3 multiplies two vectors 
(one row vector and one column transposed) together 
element-wise as an outer product to form a 2-dimensional 
matrix for that biomarker combination of Bi and Bj. The 
dimensions of MC-joint, one for each CBr, is NBi x NBj. Bins 1 
through 4 in Figure 1 illustrate joint occurrence values 
greater than zero. 

 

The population marginal distributions Mi-marg and Mj-

marg. are computed by equations 4 and 5. 

 

 
The α interaction matrix Mα – the matrix from equation 

1 with dimensions NBi x NBj – is composed as the 

transposition of Mi-marg repeated NBj times. The population 

conditional probability matrix MC-cond for a pair of 

biomarkers {Bi, Bj} – one per CBr – is computed as an 

element-by-element matrix division in equation 6.  

 
The β interaction matrix Mβ is defined in equation 7 as Pi 

divided element-wise by Pj (from equation 2). 

 

Equation 1, derived from equations 2–7, computes a 

DTS matrix MC for each CBr that represents the conditional 

probability relationship between all pairs of biomarkers 

within each population. Each CBr combination has a 

characteristic vector of occupied bin states Ô and empty bin 

states Õ out of a possible number of bins Nr as calculated 

by the binning algorithm. Each CBr combination now 

composes an object with the following properties, which 

will be used to find out the set of distinguishing biomarkers 

per clinical type: 

• clinical type population Ct, 

• biomarker pair {Bi, Bj}, 

• bin size Wr, 

• number of bins Nr, 

• bin state vector [Pi, Ô, Õ, Gb], 

• set of observed concentration values Dr, 

• matrices MC, MC-cond, MC-joint, MC-marg, Mα, Mβ. 

The main advantage of using calculated DTS values 
instead of raw concentration [c] values is the normalization 
of scale. Figure 2 plots all biomarker concentration 
measurements for clinical type Adenocarcinoma, covering a 
wide range of scales. Figure 3 plots the corresponding 
Adenocarcinoma DTS values. The binning algorithm 
calculates the DTS values to all lie within one order of 
magnitude for every clinical type, and the DTS values are 
more regularly spaced. 

 
Figure 2: All 12 biomarker Adenocarcinoma [c] values. 

 
Figure 3: All 12 biomarker Adenocarcinoma DTS values. 
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3.4 Distinguishing Biomarkers 

To reveal the distinguishing biomarkers for each clinical 
type, BCM-LDC forms a coordinate system of the bin state 
probability values and the DTS values per biomarker instead 
of comparing concentration values. The bin states are 
transformed to matrix form to expose their characteristic and 
distinguishing states. These integer matrices are constructed 
by first standardizing the bin state probability and DTS 
values. The probability values are multiplied by 100 and 
rounded to integers as percent values along the x-axis to form 
a standard 100 cells. The corresponding DTS values are 
raised as exponents to the natural logarithm and rounded to 
integers, standardizing the y-axis to 256 cells, and starting 
from the upper left corner. This forms a cellular structure 
where a whole integer in a cell indicates the presence of a 
probability–DTS value and 0 otherwise. An element-by-
element XOR operation between the cellular structures of 
any two clinical types of the same biomarker reveals which 
clinical type probability–DTS bin values are unique between 
those two clinical types. An elaboration of this logic obtains 
the complete list of distinguishing bin states of the same 
biomarker among all clinical types. The objective is the same 
– to identify those matrix cells that are occupied by one and 
only one clinical type for that biomarker, as described next. 

BCM-LDC replaces the occupied matrix integer values 
with unique 2n clinical type identifiers (e.g., 
Adenocarcinoma: 21=2), and then adds every matrix together 
per biomarker so that each matrix cell contains zero, one, or 
more than one clinical type identifier. An element-by-
element log2 operation that returns a whole integer identifies 
a single clinical type occupying that cell. This method 
depends upon the fact that a binomial coefficient (m choose 
n) (mod 2) is computable using an nXORm operation. Figure 
4 plots the integer matrix for biomarker IFNG for all clinical 
types, where Adenocarcinoma is distinguished by 3 (red) 
circled cells. The (blue) circled value of 34=2+32 indicates 
that both Adenocarcinoma and Smokers without COPD 
(25=32) exist in the same cell. 

 

Figure 4: Partial integer matrix for biomarker IFNG for all 7 clinical types. 

The 12 individual integer matrices produced for each 
clinical type can be consolidated into 3 dimensions to plot 
their distinguishing biomarkers with respect to the 
aforementioned probability cell and DTS cell states. Figure 
5 plots the distinguishing probability cell and DTS cell states 

of all the clinical types together. We observe that the range 
of probability values is low in the Probability dimension – no 
single biomarker overwhelms any of the others in terms of 
frequency. It is also clear that the DTS coordinate effectively 
separates out the clinical types. Interestingly, Never Smokers 
(blue) displays the most variation among all the clinical types 
– one is “normal” in a wide variety of states.  

4 Experimental Results 

Table I lists the common distinguishing biomarkers per 
clinical type over the 10-fold cross-validation study (see 
§5.1). 

 

Figure 5: Clinical types distinguished by Probability and DTS states. 

TABLE I.  DISTINGUISHING BIOMARKERS PER CLINICAL TYPE IN THE 

PROBABILITY – DTS DIMENSIONS. 

Clinical Type 

Classification Ct 

N Distinguishing 

Biomarkers  

Patient 

Counts 

Total 

Bins 
At  

Adenocarcinoma 6: IL1B IL4 IL6 IL8 

MCP1 VEGF 

53 444 0 

Squamous 6: IL1B IL2 IL8 IL10 

MCP1 TNFA 

44 1664 0 

Never Smokers 4: EGF IFNG TNFA 
VEGF 

55 624 3 

Smokers with 

COPD 

4: EGF MCP1 TNFA 

VEGF 

49 492 0 

Smokers without 
COPD 

2: EGF VEGF 53 386 0 

Acute Lung 

Injury 

12: EGF IFNG IL1A 

IL1B IL2 IL4 IL6 IL8 

IL10 MCP1 TNFA 
VEGF 

62 572 0 

Cystic Fibrosis 1: IL1A  27 360 0 
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5 Validation Studies 

We can now assign an unknown patient sample z to a 
known clinical type by computing the patient’s DTS matrix 
Mz and comparing it to every MCt. Comparing Mz to every 
MCt uses a fitness function (equation 8) that decides which 
clinical type is closest to the unknown sample state.  

 

Assigning a unique bin number and bin probability for 
each sample biomarker value simply involves looking up the 
corresponding bin number in the known population 
probability list for that biomarker. The probability of a 
sample’s concentration value is the expected probability of 
its assigned bin.  

5.1 10-Fold Cross-Validation 

We conducted a 10-fold cross-validation study on the 

343 baseline patients, where 10% of the samples were 

randomly extracted 10 times using SQL Server’s NewID 

function and then running BCM-LDC over each of the 

different data partitions. Those distinguishing biomarkers 

that were present in every one of the 10 runs per clinical type 

are listed in Table I, column 2. The total number of incorrect 

baseline patient assignments At over the 10 runs is given in 

the column 5. Three Never Smokers baseline patients over 

the 10 runs were incorrectly assigned, of which 2 were the 

same sample. We account for these incorrect assignments by 

the large variation present in the Never Smokers patients (see 

the last part of §3.4) and not by missing biomarker values. 

During the same 10-fold cross-validation, each of the 

10% sequestered (33) patients were correctly assigned to 

their respective clinical types with the exception of one (the 

same) Cystic Fibrosis patient assigned as Acute Lung Injury 

twice. We account for this incorrect assignment by the tiny 

sample size of the sequestered Cystic Fibrosis patients, 

which was the smallest to begin with. 

5.2 Healthy Serum Validation 

Whereas the baseline clinical types were collected by 
standard 2-D PAGE gel electrophoresis protocols, 
measurements from 144 “Healthy Serum” serum samples 
were taken from a different sampling protocol and 
experimental design (Luminex® fluorescent bead-based 
immunoassay [11]). Data was not collected for the EGF or 
IL2 biomarkers, but included the other 10 biomarkers. When 
processed along with the baseline data sets, all samples were 
correctly assigned to their Healthy Serum clinical type. 

6 Conclusions 

We have developed a computational model, BCM-

LDC, that reliably distinguishes among 7 given lung 

pathologies by assigning biomarker concentration values to 

discrete states despite significant data variation and 

technical challenges. BCM-LDC distinguishes the set of 

biomarker variables that uniquely characterize the clinical 

types under analysis. The source data – concentration values 

of host-response serum cytokines – serve as adequate 

biomarker variables. Excluding Cystic Fibrosis and 

Smokers without COPD, there is no single biomarker pair 

that distinguishes among all clinical types, though 

EGF~VEGF does for 4 types. The minimal biomarker pairs 

that distinguish among the remaining 5 clinical types are 

{EGF~TNFA or EGF~VEGF or TNFA~VEGF} and 

{IL1B~IL8 or IL1B~MCP1 or IL8~MCP1}. Whereas the 

distinguishing biomarkers extracted are data-driven, patient 

samples are classified into their single clinical type with 

reliability greater than 99%.  

The Discrete Topological Structure computational 

model distinguishes among the clinical type populations by 

discretizing concentrations values to populate only certain 

bin states. The resulting DTS model simplifies the high-

dimensional biomarker concentration space so that some 

distinguishing features of the lung disease space are 

revealed. 
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Abstract

We perform multiscale model simulations to study the
role of slow varying mammalian circadian oscillations (in
hrs) and Gaussian noise in modulating the rapidly varying
firing patterns (in ms) exhibited by the ionic channels
of suprachiasmatic nuclei under DD (constant darkness)
conditions. Hodgkin-Huxley model near subcritical Hopf
bifurcation exhibits noise-induced firing patterns and
these patterns, modulated by slow varying circadian gene
regulatory network, are highly circadian phase dependent.
The simulated firing patterns are also very close to the
experimentally observed patterns with a firing rate of 3-10
HZ during subjective day and 0-3 HZ during subjective
night. Further, for certain noise intensity, the model’s
response is maximal, a characteristic feature of stochastic
resonance, but surprisingly, we observe it only at certain
circadian phases. This is the first instance where it is shown
that the slow-varying gene regulatory circadian oscillation
along with noise modulates the firing patterns of fast
varying voltage gated channel as observed in experiments
and exhibits stochastic resonance only in certain circadian
phases.

Keywords: Stochastic resonance, multiscale model,
circadian firing patterns, signal to noise ratio

1 Introduction

In mammals, Suprachiasmatic nuclei (SCN) is the master
oscillator with ≈20000 neurons that exhibit endogenous
oscillations with a period close to 24h in gene expres-
sion under constant DD conditions [1]. On the other
hand, SCN neurons also fire spontaneously due to the
opening and closing of ionic channels but with varying
frequencies during the 24h cycle. It is well known that
electrophysiological properties of neurons are controlled
by ionic channels, which in turn depends on the conduc-
tance of ionic current. The mean value of conductance
varies in a circadian manner [2]. During subjective day,
firing frequencies in the range between 3-10 Hz reaches
the maximum, while during subjective night, the firing

frequency reaches a nadir that ranges between 0-3 Hz [3].
Presently, the mechanism responsible for modulation of
firing pattern variations during the 24h cycle is not known
and importantly, the bonafide circadian genes like per1/2,
Bmal1, Cry1/2, Rev-Erbα responsible for interacting with
the ionic channels in SCN is not fully elucidated. However,
recently, Jones et al. [3] reported that the gene per1 plays
an important role in modulating the firing rate rhythm in
SCN neuron. Therefore, we intend to examine the following
questions through multiscale model simulations; (i) How
slow varying gene regulatory network (GRN) of circadian
rhythm of 24 h modulate the fast varying firing patterns (0-
10 HZ) of voltage gated channels in SCN (ii) What is the
role of noise in modulating the firing patterns in SCN and
(iii) How the interplay of noise, slow varying GRN and fast
varying ionic channels contribute to different firing patterns
during the subjective day and night in circadian systems.

In this work, an attempt has been made to provide plausi-
ble explanation for the above questions by building a multi-
scale model and interestingly, we also study the role of noise
in providing optimal firing response in a circadian phase-
dependent manner by invoking the concept of stochastic
resonance (SR), a paradigm concept in a noise-induced
phenomena wherein the presence of noise enhances the
quality and detection of weak signals and has a wide range
of application particularly in neuronal system. The response
of a nonlinear system to noise reaches a maximum for an
optimum value of noise intensity is the typical characteristic
feature of stochastic resonance. Benzi et al. [4] first showed
the SR phenomenon in a dynamical system subjected to both
periodic and random perturbation, however, noisy nonlinear
systems can display SR even in the absence of external
forcing signal [5, 6], called coherence resonance (CR).

Further, we also show through in-silico multiscale model
simulations that for the choice of optimal noise intensity,
the simulated firing patterns in SCN closely follow the
experimental results of Jones et al. [3] and importantly, for
a particular circadian time exhibits stochastic resonance.
Interestingly, this is the first instance wherein the interplay
of different natural signals with two varying time scales
emanating from a single neuron in the presence of noise
that arises due to random opening and closing of voltage
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gated channels are used to explain the modulation of firing
patterns.

2 Methodology

2.1 Two models with different timescales

We choose two models that have disparate time scales in
SCN: (i) a variant of Hodgkin-Huxley (HH) model built
by Diekman et al. [7] specifically for SCN neurons and
we use this model to capture the dynamics of firing rates
in SCN (Figure 1). This model has a timescale in the
order of milliseconds (ms) and this model is a slow-fast
system with voltage having a slow timescale while the gating
variables have a fast timescale. (ii) Gene regulatory model of
Goodwin type captures the dynamics of mRNA and proteins
and has a time scale in the order of hours. We couple
both these models of disparate timescale unidirectionally
with per1 mRNA regulating specific ion channels in the HH
model. This is the forcing term of our model. We also
add delta-correlated Gaussian noise to the HH model and
determine the noise intensity for which SNR is maximum.
We describe below in detail the two models, simulations,
and validation with the experimental data.

Figure 1: Schema of multiscale SCN model. GRN is
based on the Goodwin oscillator model, where the clock
concentration varies in circadian manner with a period close
to 24 h. The slow varying GRN (in the left column) drives
the fast varying electrophysiological HH model, which is
below the threshold and in steady state (in the middle
column), generates action potential in the presence of noise
with a period close to millisecond scale (in the last right
column). Note that the firing pattern is highly circadian
phase dependent and it is shown here for CT0, 6, 12 and
18 hrs.

2.2 Electrophysiological model of SCN

The current balance equation of SCN by Diekman et
al. [7] is provided below, and to this we add Gaussian noise.

C
dV
dt

=Iapp− INa− ICaL− ICaNonL− IKCa− IK−leak

− INa−leak +D∗w (1)

where V and C are the membrane potential and capacitance
respectively, and Iapp, INa, ICaL, ICaNonL, IKCa, IK−leak,
and INa−leak are the external, sodium, leakage calcium,
non-leakage calcium, calcium activated potassium, leakage
potassium, and leakage sodium currents respectively. Here
w is the Gaussian white noise with zero mean and unit vari-
ance. D is the intensity of noise, which has the dimension
of current. Here we assume that w represents the com-
bined stochastic activity of the ion channels on the voltage
dynamics of the SCN neuron. Remaining equations are
same as that appeared in the original model [7]. Parameter
values used for simulations are also the same as that of
in the original model [7] except that gNa−leak = 0.052nS,
gKCa = 180nS, gK−leak = 0.15nS and τs = 0.01ms.

2.3 GRN model of SCN

The GRN model is a Goodwin type oscillator [8] con-
sists of the dynamical variables per1 mRNA (MP), PER1
protein (P) and phosphorylated PER1 protein (Pp). The
model describes the production of mRNA and protein, their
degradation and importantly, to oscillate a delayed-negative
feedback of phosphorylated protein is integrated to describe
the negative regulation of transcription rate and it is given
by Hills equation. These equations are highly nonlinear in
nature. The full GRN model is given as follows:

dMP

dt
=a(

0.001nc

0.001nc +Pnc
p
−MP) (2)

dP
dt

=a(MP−P) (3)

dPp

dt
=a(P−Pp) (4)

There are two parameters in the above coupled set of
nonlinear equations; the scaling parameter a (= 4.46E-8)
and the Hills coefficient nc (= 9). The model exhibits limit
cycle oscillations with a period of 23.6 h and this is taken to
be the free-running period of mammalian SCN neuron [1]
for all the simulations.

3 Simulation results

3.1 Coherence resonance in HH model of
SCN without periodic forcing by GRN

Codimension-1 bifurcation diagram for the membrane
potential V as a function of gNa−leak is conducted in the
absence of noise (D = 0, Figure 2). As gNa−leak increases
the stable steady state becomes unstable through subcritical
Hopf bifurcation, where the stable steady state is surrounded
by the unstable limit cycle, which in turn is surrounded by a
stable limit cycle. Further increase in gNa−leak leads to a loss
of periodic orbits through supercritical Hopf bifurcation that
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has unstable steady state surrounded by stable limit cycle.
To simulate the noise induced firing of action potential in
our model, we choose a subthreshold value of gNa−leak =
0.052 that exhibits only stable steady state. Addition
of noise provides a transition of the system from steady
state to limit cycle oscillations randomly thus producing
the train of action potential. The maxima between two
spikes is the interspike interval (ISI) and the histogram of
the ISI’s for all the spikes gives rise to Interspike interval
histogram (ISIH). This is done for various noise intensities
D, numerical integration has been carried out in Xppaut [9]
using stochastic Euler’s method [10] with the integration
time step ∆t = 0.02ms and the resulting ISI histograms are
shown in Figure 3A. For a low value of D, the time taken
by the membrane potential to cross the activation threshold
of firing is large and hence the number of spike around the
mean interspike interval (ISI) is small. With the increase in
the noise intensity, membrane potential quickly crosses the
activation threshold and as a consequence, the frequency of
the ISI peak increases.

Figure 2: Codimension-1 bifurcation diagram of HH model
with gNa−leak as the bifurcation parameter. For lower
values of gNa−leak the system is in the stable steady
state (Red lines, SS). As gNa−leak increases oscillations
appears via subcritical Hopf bifurcation (HB1). Black
lines are the unstable steady state (US), blue circles are
unstable oscillation amplitude (UO), and green circles are
stable oscillations amplitude (SO). Sustained oscillations
disappeared via supercritical Hopf bifurcation (HB2) and the
system enters the stable steady state. Xppaut [9] was used
for simulating the bifurcation diagram.

To measure the system’s response to noise, power spectral
density (PSD) of the membrane potential, V was computed
by averaging out 25 runs of the firing patterns of membrane
potential with a duration of 5 min using fast Fourier trans-
form. The averaged PSD is further smoothed by applying
Savitzky-Golay filtering method with 100 number of points

using MATLAB®(’sgolay’). The height of the peak in
the power spectra is very small for lower values of noise
intensity (Figure 3 B, D = 1, black curve). With the increase
of noise intensity height of the power spectral peak increases
and starts to saturate. To characterize the system response,
we compute the measure of signal to noise ratio (SNR)
defined in [5] as

βs =HQs, Qs =
ωp

∆ω
(5)

where H is the height of the peak, ωp is the frequency
at which peak occurs and ∆ω is the width of the peak at
half maximum height. SNR for different noise intensity is
shown Figure 3C, coherence resonance occurs at optimum
noise intensity (D = 2), where system response is maximum
and further increase in noise, SNR starts to decrease. Even
though there is a shift in the peaking frequency in power
spectra, frequency variation in firing pattern is very less.
Hence the coherence resonance is not sufficient to induce
experimentally observed circadian variation of firing rate at
SCN.

Figure 3: ISIH, PSD, and SNR for HH model without
forcing. (A) ISIs are not randomly distributed, most firing
periods are near the intrinsic periods of the model (≈ 200ms)
but the number of spike increases with increase in the
noise intensity. (B) Averaged power spectra of membrane
potential for different noise intensity. Height of the spectra
increases with increase in D and saturated for higher values.
Smooth PSD curve is obtained by applying Savitzky-Golay
filtering method with 100 number of points. (C) The
SNR is calculated from power spectra using the equation 5.
SNR reaches a maximum then decreases, characteristics of
stochastic resonance.
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3.2 Role of slow frequency circadian GRN in
regulating firing frequency variations:
Multiscale Coupled oscillator model

Now we introduce the slow forcing signal of the gene
regulatory network, namely the clock variable Mp that
regulates the HH model through the conductance of sodium
leak (gNa−leak) variable as follows:

gNaleak = gNaleakpp
MPNormalized +gNaleakbase

where gNaleakpp
= 0.032nS, gNaleakbase

= 0.02nS,
and MPNormalized is the normalized value of MP

(MPNormalized =
MP−MPmin

MPmax−MPmin
). The value of gNa−leak is

varied in near the subcritical Hopf bifurcation. This
circadian coupling with the conductance generates a
subthreshold circadian rhythmicity on membrane potential
in the absence of noise (D = 0) as shown in Figure 4A.

Figure 4: Simulations of the firing pattern in coupled GRN-
HH-noise model. (A) Only subthreshold oscillations are
observed in the absence of noise. (B-E) Noise-induced
subthreshold oscillation that produces spikes at different
circadian time. For the same noise intensity system shows
different firing rates at various circadian phases. Black
broken lines indicate the activation threshold of the HH
model.

We examine the effect of noise at different circadian
phases and the corresponding firing patterns for the noise
intensity D = 3. Instead of performing stochastic simulation
over continuous 24 h, we simulated the model only for
desired circadian phases (CT0, 6, 12, and 18). At a
particular circadian phase, we first set the integration time
step to 0.02ms and run the system without adding the
noise for one second. We then add the noise and perform
the stochastic simulation for the desired time duration.
Summary of the procedure for solving multiscale coupled

oscillatory model is given in algorithm 1. The firing patterns
recordings (5s in duration) at desired circadian times (CTdes)
CT0, CT6, CT12, and CT18 are shown in Figure 4B-E. CT6
is the peaking time of GRN component MP which is the
mid of subjective day and CT18 is the subjective night. The
number of spikes at CT18 is less compared to CT6, and this
indicates that the firing frequency is less during subjective
night compared to the subjective day as observed in the
experiments. This important result indicates clearly that the
slow varying circadian rhythm regulates the firing patterns.

Algorithm 1: Solve the multiscale coupled oscillatory
model at desired circadian time to get the firing patterns
Input: multiscale coupled oscillatory model
Input: Gaussian noise w
Input: noise intensity D
Input: step size (∆t), ∆t1, ∆t2 (∆t1� ∆t2)
Input: window size (window) which compute
from experiments
Input: desired circadian time, CTdes

If CT ≤CTdes

∆t = ∆t1
D = 0

}

else if CT >CTdes & CT < (CTdes +window)
∆t = ∆t2
D > 0

}

end if
v′ = f (v)+D∗w ——— (I)
print firing pattern according to (I)

Figure 5: ISIH for GRN-HH-noise model. ISIs are
randomly distributed at CT0, CT12, and CT18 for D = 2 (A)
and D = 4 (B). At CT6 most of the firing periods is regular
and concentrate near the intrinsic period.

ISIH for two other D values (D = 2,4) at different cir-
cadian phases are shown in Figure 5, and clearly, it un-
veils the difference in ISI distribution over the circadian
time. Membrane voltage firing periods show a spread of
distribution at CT0, CT12, and CT18, whereas a narrow
distribution is exhibited at CT6, while the firing periods at
CT6 are distributed near the intrinsic period of the system.
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The value of conductance gN−leak is also very near to Hopf
bifurcation point at CT6 so that the HH system crosses
the threshold easily and results in a narrow and high ISI
distribution. However, when the gN−leak value is far away
from Hopf bifurcation point at CT0, CT12, and CT18 and
hence the activation time is large resulting a wide and short
ISI distribution.

3.3 Validation with experimental data

In order to verify the simulated firing data with experi-
mentally observed circadian firing rate in SCN, we compute
the firing frequency at different circadian time for different
noise intensities. The results are shown Figure 6, which
displays a clear circadian variation in the firing rates. During
the subjective day, firing rates are between 3-10 Hz while
during the subjective night it is found to be in the range 0-
3 Hz under DD conditions. This is in excellent agreement
with the experimental observation of Jones et al [3].

We also compute the power spectral density (PSD) of the
membrane potential for various noise intensity at different
circadian time, and the results are shown in Figure 7.
Power spectral density of the membrane potential V was
computed by averaging out 25 runs of the firing patterns
of membrane potential with a duration of 5 min using fast
Fourier transform. The height of the peak at CT6 increases
with increase in noise intensity and the height starts to
saturate and width of the peak increases for higher values
of D (Figure 7B). Importantly, this trend is not observed at
CT0, CT12, and CT18 (Figure 7A, C, D).

Figure 6: Circadian variation of firing frequency. Firing
rates show circadian variation that is in good agreement with
the experimental results [3]. CT6 is the peaking time of
GRN component MP which is the mid of subjective day
and CT18 is the subjective night. On each box, the central
mark indicates the median, and the top and bottom edges of
the box indicates the 75th and 25th percentiles, respectively,
and the outliers are plotted individually using the red ‘+′

symbol.

We also quantify the system’s response to noise at dif-
ferent circadian phases for which we calculate the SNR
from power spectral density (Figure 8). At CT6, the model
exhibits stochastic resonance for the optimum value of noise
intensity D = 2 and at CT12 stochastic resonance occur for
D = 4. We did not observe stochastic resonance at CT0 and
CT18 for any value of D and presently we do not know why
this the case. Taking together, the effect noise in SCN are
circadian phase dependent and we speculate that stochastic
resonance is circadian phase dependent because, at CT6, the
peak time of the oscillator during the subjective day is close
to the bifurcation point, whereas at other phases it is far away
from the bifurcation point.

Figure 7: PSD for GRN-HH-noise model. With the increase
of noise the height of the peak increases (A,C,D). However,
at CT6 for a high value of noise, the growth of the height
saturates and width of the peak increases (B).

Figure 8: SNR for GRN-HH-noise model. At all circadian
phases system did not exhibit stochastic resonance. (A, D)
At CT0 and CT18, SNR increases with increase in the noise
intensity, where gNa−leak value is far from the bifurcation
point. (B, C) At CT6 and CT12 SNR is maximal for some
value of noise intensity, exhibit stochastic resonance.
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4 Conclusion

Previous studies have shown that the firing rate at SCN
exhibit circadian rhythm with a period close to 24 h [3,
11]. However, the origin of firing pattern variations during
subjective day and night are not known. Mechanisms of
mutual regulation of slow varying gene regulatory networks
and fast varying ionic channels in SCN are still under study
and therefore, hardly there are any strong experimental
evidence exists to understand the origin of firing pattern
variations. Though channel noise plays an important role in
inducing action potentials, this is inadequate to explain firing
pattern variations that occur selectively at one frequency
during day and night in a circadian phase dependent manner.
We speculated and showed through multiscale simulations
the role of noise and the slow varying circadian gene
regulatory network in modulating the firing rates at different
circadian phases by building coupled nonlinear ODE model
that incorporates both GRN and electrophysiological part
of SCN. Importantly, we find that the noise induced firing
rate is circadian phase dependent, and the firing rate is
higher/lower during subjective day/night respectively. This
is also in excellent agreement with the experimental ob-
servations. From the dynamical system point of view,
we hypothesize that the firing is rapid during subjective
day because the peaking of per gene occur during the
subjective day which in turn takes the ionic channel close
to the bifurcation point and thereby facilitates noise induces
coherent firing pattern. On the other hand, when per
concentration during subjective night is at nadir/trough the
ionic channel is far away from the bifurcation point and
therefore, firing rate is subdued and noisy. We have also
not looked into the role of window-size and the window-
size we took is based on the experimental data and in this
window-size, only during certain circadian phase, stochastic
resonance is seen. Presently, we do not have any explanation
why stochastic resonance is seen only in select circadian
phases and not in other phases. We intend to look into
this aspect closely in the future work. We are particularly
interested in modeling the firing pattern variations from the
morning and evening oscillator point of view for which the
mathematical model of morning and evening oscillators are
already studied detail [12]. In future, we would also like
to extend this work further to study thoroughly the role of
stochastic resonance in circadian rhythms.
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Abstract

Pharmaceutical companies rely on the ability to
analyze the effects of protein mutations to develop
medicines for treating a variety of diseases. Although
mutagenesis experiments performed in a physical pro-
tein can provide insights about the role of a single
amino acid, such experiments are laboriously difficult
and may require months of wet lab work. Consequently
conducting exhaustive mutagenesis screens which in-
volve mutating all residues to all other amino acids,
is impractical. To help guide such wet lab experiments,
computational approaches are available, but most do
not permit an exhaustive screening of all residues
and their impact on a protein when mutated. For
this work we have integrated into a compute pipeline
and server our in silico mutation analysis method for
quickly generating protein variants. We leverage a
quick computational algorithm to assess the rigidity of
the wild type and mutants, and use the results to infer
which residues are most sensitive to an amino acid sub-
stitution. Our server and pipeline leverage concurrency
principles permitting an exhaustive screening of all
mutations for all residues in a protein in as little as a few
minutes. We report here on the performance and utility
of the pipeline, and present a case study to highlight
the utility of Mutation Maps generated by our server,
cMutant, available at https://cmutant.cs.wwu.edu/.

Introduction

Experimentalists mutate and analyze proteins to de-
velop better medicine for treating a wide range of
diseases [27]. Conducting mutation analyses in a
physical protein can require months of wet-lab work,
with the aim to provide information to help engineer
pharmaceutical drugs targeting specific proteins [22].

A variety of computational approaches and in silico
protein mutation analysis tools aim to provide a screen
to help guide wet lab experimentalists where they
might focus their attention for conducting mutagenesis
experiments on physical proteins. The majority of most

existing screening software tools permit exploring the
effect of only a single mutation at one specific residue
in a protein, while the few approaches that permit
exhaustive in silico studies for a protein have a variety
of limitations due to their dependencies on homology
or energetics data that may not always be available.

In our previous work [7, 2], we have motivated the use
of a fast combinatorial approach called rigidity analysis,
in combination with our custom in silico mutation
engine for generating mutant structure files, in assessing
the effects of amino acid substitutions.

For this work, we present a compute pipeline and
publicly available server, cMutant, that relies on con-
currency principles to greatly reduce the runtime of per-
forming an exhaustive mutation screen for all residues
in a protein. We reduce the runtime of in silico muta-
tion experiments from days to hours – and sometimes
to minutes. We achieve such a speedup by executing
our pipeline concurrently on multiple cores available
on our server. To permit a user to perform a visual
inspection of the effects of the exhaustive mutation
experiments, we generate a mutation map which is
presented via a graphical user interface, and which is
stored in a database for future retrieval. The utility
of our mutation maps we have demonstrated in our
previous work [28].

Related Work

To help complement and inform wet lab work, various
modeling and computational methods, including some
available via web servers, are available. They strive
to predict the effects of mutations. Early algorithms
ranged from those that searched for best side-chain
conformations as a measure of the impact of a muta-
tion [6, 16, 25], to those that relied on heuristic energy
functions [10, 19]. Yet others relied on large data sets of
homologous proteins [30, 3, 31]. More recently, machine
learning (ML) approaches have gained notoriety, with
some having high prediction rates upwards of 80% [4,
14, 17, 20]. However, the energy-, homology- and ML-
based approached have several limitations. Many of
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5. Pebble Game 
Algorithm output

6. Prediction which atoms and 
residues are in rigid clusters

1. Stabilizing Interactions 2. Identify Rigid Units 3. Build Molecular Model 4. Associated Graph

Input PDB structure Rigidity Prediction

Figure 1: Rigidity analysis involves modeling a
biomolecule as a mechanical model, which is analyzed
using an efficient pebble game algorithms. The results
are used to infer the rigid and flexible regions of a
biomolecule.

them are dependent on large data sets [21, 32], some
require costly energy calculations [5, 24, 26], and others
still are dependent on free energy calculations as well
as access to propensity tables [23], data which is not
always available, or which is computationally costly to
calculate.

In our previous work, we developed several compu-
tational approaches for quickly generating large data
sets of in silico mutants. Incipient experiments enabled
mutating a residue to only one of Alanine, Glycine, or
Serine [15], but more recently our mutation software has
been expanded to permit in silico mutating a residue
to all possible other amino acids [2].

To help reason about the effects of mutations, we
take an approach that does not rely on propensity
tables, costly energy calculations, nor is dependent on
homology data. Instead we rely on a fast combinatorial
approach for assessing the rigidity of a protein [9,
13]. In rigidity analysis, atoms and their chemical
interactions are used to construct a mechanical model.
A graph is constructed from the model, and pebble
game algorithms [12] are used to analyze the rigidity
of the associated graph. The results are used to infer
the rigid and flexible regions of the protein (Figure 1).

Rigidity Distance

In this work cMutant compares the rigidity analysis
results of the wild type (WT), non-mutated form of
a protein, to the rigidity analysis results of the mutant.
This builds on our previous work [1, 8], in which
we developed and utilized aRDWT→mutant rigidity
distance metric to quantitatively assess the impact of
mutating a residue to one of the other 19 naturally
occurring amino acids:

RDWT→mutant :
∑i=LRC

i=1 i× [WTi −Muti]

where WT refers to Wild Type, Mut refers to mutant,
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Figure 2: Comparing the rigid cluster distributions
(sizes and counts) for the Wild Type and Mutant
structures enables assessing quantitatively the effect of
an amino acid substitution via the Rigidity Distance
RDWT→mutant metric.

LRC is the size of the Largest Rigid Cluster (in atoms).
Each successive summation term of the RDWT→mutant

metric calculates the difference in the count of a specific
cluster size, i, of the wild type and mutant, and weighs
that difference by i (Sample in Figure 2).

Server & Software Design

Our contributions for this work includes a concurrent
implementation of our mutation and analysis software
and the auto-generation of mutation maps [28] to aid
in the visual analysis of an exhaustive mutation screen.
In this section we describe the server and compute
pipeline, as well as the analysis methodology that
culminates in a mutation map.

Overview

cMutant offers features that are not available via
other tools and web services. Upon invocation, the
server generates all mutant structures as asked-for by
the user via the front-end. The infrastructure leverages
principles from concurrency theory to vastly reduce
the execution time needed for conducting exhaustive
mutation experiments. cMutant offers a graphical
user interface (GUI), that enables a user to view all
mutations via a mutation map which permits a user
to investigate individual point mutations and download
specific results. The system design is summarized in
Figure 3.

Back-End Infrastructure

The computational infrastructure integrates a variety
of our in-house custom software, as well as off-the shelf
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Figure 3: cMutant includes front-end (GUI) and back-
end functionality, enabling a user to interface with our
custom mutation and analysis software.

and freely available tools. These include KINARI [9]
and ProMuteHT[2], along with SCWRL [18]. The
pipeline is invoked when a user interacts with the GUI
to specify the PDB ID (protein structure file), along
with parameters designating which residues are to be
mutated. Use of concurrency principles enabled by the
threading capabilities of the multi-core server allows for
each unique in silico point mutation to be invoked in
a separate thread. The count of threads is limited by
the number of available processors, and the output data
files of each experiment are stored to files locally on the
server for archiving and retrieval by the user.

The back-end infrastructure performs concurrent ex-
ecution of KINARI and proMuteHT for quickly gener-
ating and processing of a large set of protein mutants
(Table 1). cMutant is able to decrease exhaustive
protein mutation run times by a factor equal to that
of the number of cores available on the server, with
additional speed-up obtained through allowing muta-
tions to take advantage of the pipelining ability of the
CPU architecture. Each experiment requires analyzing
the wild type protein once, before any in silico protein
mutations are performed. This first step is not run
concurrently. Run-times were determined by clock time
at initialization of the compute pipeline through execu-
tion of all intermediate steps, until pipeline termination
resulting in a mutation map.

Front-End Infrastructure

The front-end GUI of cMutant includes an Experi-
ment (and Results) section. There users specify ex-
periment parameters, and view results as they become

Table 1: Run-times (minutes) for threaded (thread) and
serial (ser) invocations of cMutant, and speedup ratios
(sr) resulting from use of concurrency. # res=num. of
residues; # muts=num. mutants generated.

PDB File # res # muts thread ser sr
1PLW 5 100 0.65 4.37 6.72
1DPK 20 400 3.32 22.7 6.84
2LK0 30 600 7.35 45.3 6.16
1HN3 40 800 10.8 65.4 6.06
1YUG 50 1000 19.2 103 5.39
5NHQ 71 1420 36.9 190 5.15
1A1Z 83 1660 63.7 301 4.72
1HHP 99 1980 95.9 426 4.44

available. A Retrieve Experiments section permits
retrieving data from past computation runs, as well as
viewing the current server load.

The Experiment section offers a GUI (Figure 4)
with options for a user to:

(1) specify a PDB ID for which a mutation screen is
to be performed

(2) which residues to mutate (an all option is available
for designating an exhaustive screen)

(3) specifying what each selected residue(s) should
be mutated to, for which an all options is also
available.

Figure 4: cMutant’s GUI offers the option to specify an
exhaustive mutation screen, or to mutate a subset of
the residues (range of residues). Each selected residue
can be mutated to all other possible amino acids, or a
custom subset (mutation targets).
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When an experiment is initiated, a user is provided
with an alphanumeric experiment ID which can be used
for later retrieval of the experiment data which is stored
to a database.

Server-side technologies such as NodeJS and Ex-
pressJS provide the functionality for transmitting data
between the back-end software and GUI. As data
is being generated by the multiple threads that are
invoked, the results are displayed and updated in real
time. Communication between the cMutant pipeline
and GUI is accomplished by using the in-memory data
structure store Redis.

The Result pane presents a Mutation Map, which
is a heat map generated from the distance metric
values (See section Rigidity Distance) computed for
each residue that was mutated. A full explanation can
be found in [28]. The color in each cell in a Mutation
Map corresponds to a rigidity distance, which is a
measure, based on the rigid clusters of the mutant and
wild type. A user can mouse-over a specific cell in the
Mutation Map to view the rigidity distance score for
that residue, or to download the data for that specific
in silico mutation. A rigidity distance far greater or far
less than zero indicates that the mutant is structurally
vastly different than the wild type, while a rigidity
distance score near zero specifies that the wild type
and mutant are structurally similar, as inferred using
the rigidity cluster data. The magnitude of the rigidity
distance can be used to indirectly infer the magnitude
of the impact of an amino acid substitution.

Figure 5: Mutation Maps : for each residue number
(y-axis), a color at each target residue (x-axis) specifies
the rigidity distance metric score for a mutation.

A sample Experiment results pane, for experiment
ga5a0maq, is shown in Figure 5. That mutation map
is for an exhaustive in silico mutation screen for the
30-residues PDB file 2LK0, which is the structure of
a RanBP2-type zinc finger of RBM5. A dynamically
updated color legend indicates that a red cell has a high
rigidity distance, while a blue cell has a low rigidity
distance score, and that the average, minimum, and
maximum Rigidity Distance scores are 40, -126, and

164. Most telling in the Mutation Map for 2LK0 is
that specific residues upon their in silico mutation to
certain residues yield very low (highly negative), or
very high (highly positive) rigidity distance scores. A
very low rigidity distance score for a residue’s mutation
to a specific amino acid indicates that that mutation
results in a mutant that has far more large rigid clusters
than the WT. Such a mutation can be inferred to be
stabilizing. The converse is true for very high positive
rigidity scores. In the case of 2LK0, using the Mutation
Map, the blue spots identify that residues 7, 9, 14, 21,
24, 27, and 30, have strong stabilizing effects on the
protein as inferred using rigidity analysis.

Case Study, 1HHP

To assess the speed and usefulness of cMutant, we
exhaustively in silico mutated all residues of PDB
structure 1HHP, which is the monomeric form of the
99 amino acid HIV-1 Protease. A zoomed in portion
(residues 15 to 40) of the Mutation Map for 1HHP is
shown in Figure 6.

Figure 6: Zoomed in Mutation Map for 1HHP, residues
15-40. Residues 22-26, as well as 28, and 30 and 31 are
especially sensitive to mutations as evidenced by the
red Rigidity Distance scores for nearly all mutations
performed at those residues.

Residues 24-26 of HIV-1 Protease constitute a cat-
alytic triad, the active site of the protein, on which
a host of wet lab experiments have been conducted
and for which there is a lengthy literature [11, 29].
The residues near the active site of HIV-1 Protease
are known to be critical to the protein’s function,
and indeed are highly resistant to mutations. Specific
residues at those locations must be present in order for
the protein to perform its catalytic function. As a first
proof-of-concept result, we consider it encouraging that
cMutant identified those residues near the active site
as being least resistant to mutations, because in silico
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mutations performed on them in nearly all cases highly
disrupted the protein’s structure. See [28] for a more
detailed example of the utility and use, including a box
plot analysis, of Mutation Maps.

Future and On-Going Work

Future and-going work on cMutant involves three
main avenues, including 1) improving the server’s
speed by leveraging additional concurrency principles,
2) adding additional front-end GUI features, and 3)
assessing and improving the accuracy of the predictions
doled up by the Mutation Map. In our most recent
work, we have developed machine learning models
capable of predicting at up to 80% accuracy the effect
of mutations [8]. That predictive capability is being
integrated into cMutant.

For improving the GUI, we are developing addi-
tional UI elements to allow the user to quickly access
important trends and details of the results from a
computation experiment run. In addition to the mutant
and WT structure files, along with the rigidity data,
for each cell in a Mutation map that can be currently
downloaded, we aim to integrate a protein viewer
visualization engine that will color code the 3-D surface
of a protein to display rigidity metrics of those residues
on the surface.

A current limitation of the server is that it is able
to perform exhaustive mutation screens for single chain
proteins only. Current work in our lab has culminated
in an improved mutation engine, ProMuteHT, which is
being integrated into the cMutant pipeline allowing it
to reason about any protein in the PDB.

For further validation of the use of Mutation Maps
beyond what we have reported previously [28], we are
correlating our rigidity distance scores for point mu-
tations against ∆∆G data attained from experiments
on physical proteins, which gives empirical evidence
of the effects of mutations. We are tallying Pearson
Correlation coefficients, and aim to supplement the
Mutation Map data with that information.

Conclusions

We have developed a compute pipeline and server,
cMutant, for performing a rigidity-based mutation
screen that exhaustively generates and analyzes all
possible mutant structures with a single amino acid
substitution. We achieve fast run-times by leveraging
concurrency principles, and also generate a Muta-
tion Map which aids in a visual analysis enabling
identification of residues that are highly sensitive to
mutations. We present a case study for HIV-1 Protease,

and correlate our interpretation of the analysis of the
Mutation Map with known biological properties of the
protein’s active site.
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Abstract 
 
Efficiency in dealing with batch effects will be the 

next frontier in large-scale biological data analysis, 
particularly when involving the integration of different 
types of datasets. Large-scale omics techniques have 
quickly developed during the last decade and huge 
amounts of data are now generated, which has started to 
revolutionize the area of medical research. With the 
increase in the volume of data across the whole spectrum 
of biology, problems related to data analytics are 
continuously increasing as analysis and interpretation of 
these large volumes of molecular data has become a real 
challenge. Tremendous efforts have been made to obtain 
data from various molecular levels and the most recent 
trends show that more and more researchers now are 
trying to integrate data of various molecular types to 
inform hypotheses and biological questions. Tightly 
connected to this work are the batch-related biases that 
commonly are apparent between different datasets, but 
these problems are often not tackled. In present study the 
ComBat algorithm was applied and evaluated on two 
different data integration problems. Results show that the 
batch effects present in the integrated datasets efficiently 
could be removed by applying the ComBat algorithm.   

 
1. Introduction 

 
Effective integration and analysis of high-throughput 

data are expected to deliver novel clinical insights and 
promising therapeutic options. However, technical 
variation inherent in these datasets makes the integration 
task problematic and dealing with technical heterogeneity 
or batch effects during data integration has proven to be a 
real challenge [1]. Nevertheless, to combine datasets 
without adjusting for batch effects is in general 
inappropriate with risks of misinterpretation of results. 
Given the large amount of data that are generated daily 
and that need to be considered synergistically instead of 
independently, batch-effect mitigation is foreseen to 
become the next big challenge in mega biological data 
analysis. Without effective management, it is impossible 
to take full advantage of the vast amount of information 
already available, and use it synergistically for building 

better classifiers, performing better functional analysis, 
and producing clinically useful outcomes [1]. 

 
1.1. Sources of batch effects  
 

Systematic non-biological differences between 
different datasets are commonly referred to as technical 
variation, also termed “batch effects” [2]. There are many 
different sources of variations in biomedical data, 
regardless if dealing with large-scale or small-scale 
datasets. Many different platforms are available for data 
generation and different techniques are used. However, 
the lack of standardization makes it challenging to 
compare and integrate data from the different technologies 
due to the introduced platform-dependent systematic 
variation. Several studies have demonstrated that pooling 
data derived from different platforms is a complex task 
with numerous pitfalls. In addition to platform variation 
there are also other factors known to introduce systematic 
variation for example analysis conducted at different sites, 
by alternating personnel, differences in experiments, 
reagents, instruments, and lots, or simple day-to-day 
variation, and all these are well-known factors that 
inevitably result in introduction of batch differences [1, 2]. 

 
1.2. Microarray data 

 
    The microarray technology has been extensively used 
for genome-wide gene expression analysis for almost two 
decades now and is a well-established, cost-effective, 
high-throughput technology that makes it possible to 
measure the expression levels of thousands of genes 
simultaneously, and thus offers an efficient way to 
generate a snapshot of the entire transcriptome [3]. The 
workflow of a microarray transcription analyses in itself 
consists of multiple steps such as RNA extraction, 
labeling, hybridization, washing, and scanning, and each 
of these steps is a potential risk of introducing variation in 
the data. I addition, several different microarray platforms 
are commercially available, and these differ with respect 
to for example the fabrication methodologies and length 
of the oligonucleotide probes. There are huge amounts of 
microarray data available in public biological databases 
such as ArrayExpress [4] and GEO database [5]. To fully 
utilize these enormous resources effective and reliable 
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methods for both normalization and reduction of batch 
effects are required, which manage to reduce the non-
biological variation while maintaining the true biological 
differences in the data. Although newer techniques such as 
next generation sequencing in many cases now are 
replacing the microarray technology, microarrays are still 
routinely used in many different types of large-scale 
analysis due to its well-established nature, cost-
effectiveness, and the availability of extensively 
developed analysis frameworks [6].  
 
1.3. The need for integration of datasets  

 
The rapid development of advanced techniques for 

generation of biomedical big data has turned life science 
research into a data driven field. The generation of data is 
no longer a challenge and terabytes of data can be 
produced at relatively low investment costs.  The data 
available in public biological databases for peer 
researchers to use in their research increases rapidly and 
constitute a valuable resource, which also facilitates larger 
meta-studies in which many datasets are integrated and 
used in combination. The term data integration refers to 
the situation where, for a given system, multiple sources 
(and possible types) of data are available and we want to 
study them integratively to improve knowledge discovery 
[7]. Integration of gene expression data obtained from 
multiple experiments provides opportunities to increase 
the statistical power of the analyses since commonly, 
these datasets in isolation are characterized by a low 
number of samples and a high number of variables. Thus, 
integrating several smaller datasets theoretically boosts 
power and better reflects the underlying population. 
However, proper integration requires resolving the 
technical heterogeneity, including batch effects.  

 
1.4. Batch effects reduction methods 
 

Several batch effect correction algorithms are available 
but there is still limited knowledge about effective batch 
effect mitigation, and new batch effect-associated 
problems are still emerging [1]. These include false effects 
due to misapplying batch effect correction algorithms and 
positive bias during model evaluations. Depending on the 
choice of algorithm and experimental setup, biological 
heterogeneity can be mistaken for batch effects and 
wrongly removed [1]. The batch reduction methods can be 
classified based on their area of use. In the simple linear 
models a biological feature is modeled as a linear 
combination of class and batch effects. Examples of 
simple linear model methods are mean-scaling and zero-
centering. Another class of methods are the ones that use 
Bayesian inference to estimate biological features in a 
batch, e.g. the ComBat method which applies the 
empirical Bayes approach [8]. These two classes of 
methods described above require that all known batch 

factors are specified to make a reliable batch effect 
estimation. In contrast to these methods other approaches 
use the full data matrix for estimation of batch-related 
against class-related variation. Examples of methods in 
this class are the Surrogate Variable Analysis (SVA) and 
the Removed Unwanted Variation (RUV) methods. The 
SVA method first requires the specification of the class 
factor and assumes that consistent sources of variation not 
associated with the class factor are likely associated with 
some unknown batch factor. The method then estimates 
the batch effect via singular value decomposition and 
removes the batch effect from data using regression [9]. 
The RUV method is similar to SVA, but incorporates 
information from endogenous control genes or i.e. 
housekeeping genes, which are expected to be unaffected 
by class effects and therefore used to estimate batch 
effects [10]. However, specifying housekeeping genes can 
be controversial and, in some cases, so-called 
‘housekeeping genes’ are directly related to disease or 
tissue specific expression and therefore inappropriate to 
use for batch effect estimations [1].   

 
1.5. The ComBat algorithm 

 
In the present study the ComBat algorithm has been 

used for batch effects reduction and this method is based 
on the empirical Bayes (EB) method. EB methods are 
robust for adjustment of batch effects in data whose batch 
sizes are small and is very appealing in various microarray 
problems because of their ability to robustly handle high-
dimensional data with small sample sizes. These methods 
are typically designed to “borrow information” across 
genes and experimental conditions in hope that the 
borrowed information will lead to better estimates or more 
stable inferences [8]. The EB methods have usually been 
designed to stabilize the expression ratios for genes with 
very high or very low ratios, stabilize gene variances by 
shrinking variances across all other genes, possibly 
protecting their inference from artifacts in the data [8].  

Systematic batch biases common across genes are 
incorporated in making adjustments, assuming that 
phenomena resulting in batch effects often affect many 
genes in similar ways, for example with increased 
expression or higher variability. The ComBat method 
estimates the model parameters that represent the batch 
effects, by “pooling information” across genes in each 
batch to “shrink” the batch effect parameter estimates 
toward the overall mean of the batch effect estimates 
across all genes. These EB estimates are then used to 
adjust the data for batch effects, providing more robust 
adjustments for the batch effect on each gene [8]. The 
method is divided into three steps, (i) standardization of 
the data, (ii) estimation of EB batch parameters using 
empirical priors, and (iii) batch effect adjustment, as 
described in detail in [8]. 
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1.6. Perspectives of omics data integration 
 

As compared to studies of a single omics type, multi-
omics data offers the opportunity to better understand the 
flow of information that for example underlies various 
diseases. Integrating omics datasets are thus expected to 
provide additional guidance in e.g. personalization of 
treatments [11]. Moreover, multi-omics data provides 
promising opportunities to increase the understanding of 
the regulatory mechanisms in the cells and the functions 
of genes and proteins. However, standardized methods for 
performing multi-omics data integration is still in its 
infancy. Due to the high level of complexity of these 
datasets, multi-omics data integration is considered one of 
the major future challenges in this era of precision 
medicine [11]. Integrative omics approaches often rely on 
a “holistic” view, which attempts to interrogate a 
sufficiently large number of individuals and incorporate 
the many sources of variability into statistical models [12]. 
Thus, a crucial aspect for success of integrative omics 
studies is the availability of large datasets of various 
molecular types, and high-throughput techniques for 
large-scale data generation have made collection of such 
data feasible. In this context appropriate batch effect 
reduction methods that also can handle different types of 
data (genomics, transcriptomics, proteomics, and/or 
metabolomics) will be critical for proper multi-omics data 
integration.  
 
2.  Methods 
  
    In this paper we applied the ComBat algorithm and 
investigated the performance of this method for removal 
of batch effects in two different study setups. In these 
setups the combination of multiple datasets was required 
in order to perform the subsequent expression analysis. In 
the first dataset, the batches of data were generated at 
different time points but with the same molecular 
technique. In the second study design, different molecular 
techniques were used to generate the two batches of data 
and they were also generated at different time points.  
 
2.1     The cardiac biopsy study 
 
     This study extends our previous work on cardiac 
biopsies where transcriptional profiling of biopsies from 
two different cardiac locations of five different male 
patients that were under cardiac surgery was performed 
[13]. The purpose of that study was to investigate 
differences in gene expression between left ventricular 
(LV) and right atrial (RA) cardiac tissue. Interesting 
transcriptional differences between these two locations 
were reported and next step was to extend this study to 
also include female patients to be able not only to analyze 
location dependent transcriptional differences but to 
explore putative differences related to the gender of the 

patient as well. Thus, the same experimental setting was 
repeated on five additional female patients resulting in 
two datasets from paired biopsies from the LV and the 
RA. Transcriptional analysis was performed on the biopsy 
samples using the whole transcript Gene ST 1.0 arrays 
(Affymetrix, www.affymetrix.com). Since the same 
technical platform was used for both these experiments, 
minimal variability attributed to technical aspects was 
expected. However, the experiments were performed at 
different time point and slightly different procedures were 
applied for the cDNA synthesis. These differences, or the 
fact that the experiments were run at different time points, 
or a combination of both, introduced large batch effects 
that complicated the downstream bioinformatics analysis 
of the data. In this study design the known putative batch 
effects were differences in time point for performance of 
the wet-lab experiments and slightly different procedure 
for the cDNA synthesis. Quality control of the datasets 
revealed large batch effects that needed to be adjusted for. 
  
2.2     The hepatic differentiation study 
 
     In the second study design data from hepatic 
differentiation of human pluripotent stem cells (hPSCs) 
was analyzed with respect to transcriptional patterns 
during human hepatic development. The main study 
included cells harvested at defined time points during the 
differentiation of the hPSCs towards the hepatic lineage 
[14, 15].  Four different time points were sampled 
including day 0, day 5, day 14, day 25, and two reference 
samples from adult liver tissue (AL) where included as 
controls. The differentiation experiments were repeated 
for six different stem cell lines, and for each cell line, 
duplicated samples were analyzed. No fetal liver (FL) 
samples were available for the project by the time of the 
transcriptional analysis. However, FL would have been a 
relevant control since the stem cell derived hepatocytes 
are known to have an immature phenotype. To still be able 
to benchmark the hPSC-derivatives to control samples 
from FL and AL for assessment of their maturation, a 
public dataset generated with the Illumina platform were 
downloaded and merged with our Affymetrix dataset. 
Expectedly, a strong batch effect was observed due to the 
issue of different technical platforms, which are known to 
have large affects on the gene expression measurements. 
Thus, the known putative batch effects were different 
technical platforms and differences in time point for the 
performance of the experiments. 
 
2.3 Merging of datasets 
 
    The merging of the cardiac biopsy dataset was 
performed on probe set ID since identical arrays were 
used to generate both the input datasets. In total 33,297 
probe sets were included in the merged dataset. For the 
hepatic differentiation study the merging of datasets was 
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performed on gene symbol since that was the common 
identifier across the two datasets. In total of 12,921 unique 
gene symbols were common across both the input datasets 
in this study design. 
  

 
Figure 1: Boxplot of the expression range of the arrays in the merged 
dataset from the cardiac biopsy study before batch effect reduction. Blue 
boxes represents arrays from the male patients and yellow boxes 
represent data from the female patients. 

2.4 QC analysis of the merged datasets 
 
    The expression range, the distribution of data, and the 
correlation between samples in the merged datasets were 
explored using boxplots and hierarchical clustering, and 
significant batch effects were observed in both the cardiac 
biopsy dataset and in the hepatic differentiation dataset. 
Fig. 1 and Fig. 2 illustrates identified differences between 
the two batches in the cardiac biopsy study and in Fig. 3 
and Fig. 4 differences between the two different array 
platforms in the hepatic differentiation study design are 
shown.  
 
2.5 Batch effect reduction using ComBat 
 
    To facilitate modeling of the batch effect two 
overlapping samples across both batches were used in 
each of the study designs. In the cardiac biopsy study two 
identical RNA samples were added to the global 
transcriptional experiments and used as overlapping 
samples when applying the ComBat algorithm. The batch 
factor specified as input to the algorithm was the two 
different transcriptional experiments, one including 
cardiac biopsies from male patients and the other one 
including cardiac biopsies from female patients. For the 
hepatic differentiation study no overlapping RNA samples 
were available but samples from AL were available in 
both the input datasets, and although these samples were 
not from identical biological material they still represented 
similar tissue material. Thus, the two AL control samples 

in the differentiation dataset were defined as overlapping 
samples and used by the ComBat algorithm for modeling 
of batch differences. The batch factor specified as input to 
the algorithm was difference of technical platforms.  
 

  
Figure 2: Hierarchical clustering before reduction of the batch effect. 
The clustering shows two distinct clusters reflecting that the time point 
of the experiment represents the main transcriptional difference in this 
merged dataset.  

 
Figure 3. Boxplot showing the expression range of the arrays in the 
merged dataset from the hepatic differentiation study before the batch 
effect reduction. Green boxes represents arrays from the Affymetrix 
platform and orange boxes represent data generated with the Illumina 
platform. Notice the big platform related differences in the first quartile 
of the data. 
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Figure 4. Hierarchical clustering before reduction of the batch effect. 
The dendrogram shows two distinct clusters reflecting that experimental 
platform is the main difference in this merged dataset since the two AL 
samples (AL_796 and AL_529) that where run on the Affymetrix 
platform clustered with the stem cell derivatives instead of with the other 
AL samples. 

3.  Results 
 
Results from this study demonstrated that the ComBat 

algorithm managed to reduce the batch effects present in 
the two study designs explored in this work. Both these 
study designs contained merged large-scale omics data, 
and represent two different sources of batch effects that 
commonly are faced in various types of omics data 
analysis. In the first example the data generation were 
divided into two experimental runs, with the risk of 
introduction of batch effects in the merged dataset. The 
second situation represents batch effects that source from 
adding extra samples needed in subsequent downstream 
analysis. In our case the purpose with adding data was to 
add specific control samples to a present dataset by 
utilizing data from a public database.  

 
3.1 Results from the cardiac biopsy dataset 
 

The boxplots and the hierarchical clustering after 
applying the ComBat algorithm to the merged cardiac 
biopsy dataset show that the main proportions of batch 
effects successfully were eliminated and the merged 
datasets demonstrate similar distribution of the expression 
range across all arrays. As shown in the boxplot in Fig 5 

the distribution of the expression values are now at similar 
range for all the included arrays in this merged dataset. 
Notably, also the data points in the first quartile and in the 
fourth quartile (those data points that fall outside the 
boxes) show highly similar expression range across all the 
arrays. And the median value for each array harmonized 
across the merged experiment. A hierarchical clustering of 
the adjusted data showed that the reduction of batch 
effects did not eliminate true biological differences since 
the known differences between the LV and the RA are 
still preserved in the data. This is demonstrated by the 
grouping of samples according to tissue location as shown 
in Fig. 6.  

 
 

 
Figure 5. Boxplot showing the expression range of all the arrays in the 
merged dataset of cardiac biopsies. The major visible batch effects are 
now removed from the dataset. 

3.2 Results from the hepatic differentiation 
dataset 

 
Also for the hepatic differentiation dataset the 

elimination of batch effects was successful although the 
variation of the values in the fourth quartile was slightly 
higher for the FL samples as shown in the boxplot in Fig 
7. A putative explanation is that this may reflect a true 
biological variation that perhaps can be addressed to the 
different developmental weeks of the embryo from which 
the FL samples were derived. After reduction of the batch 
effect between the technical platforms an biologically 
relevant grouping from the hierarchical clustering was 
achieved which showed a perfect classification of the 
different groups of samples in the merged dataset as 
illustrated in Fig 8. 
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Figure 6. Hierarchical clustering after batch effect reduction resulted in 
more biologically relevant groups in the cardiac biopsy dataset. Two 
distinct clusters based on localization of the analysed biopsies rather than 
the gender were generated. 

 

 
Figure 7. Boxplot showing the expression range of all the arrays in the 
merged dataset of hepatic differentiation, including the samples from FL 
and AL for benchmarking. 

 
Figure 8: Hierarchical clustering of samples in the hepatic 
differentiation study after successful reduction of the batch effect 
introduced in the merged dataset. Perfectly biologically relevant 
grouping was achieved after the batch effect adjustment. 

4. Discussion and conclusion 
 
Huge quantities of global omics datasets are now 

routinely generated and the amount of available 
biomedical big data is increasing exponentially. If utilized 
in an optimal way the availability of these vast data 
provides an incredible resource that will likely 
revolutionize the area of medical research. Moreover, the 
increasing number of data repositories for storage of 
biomedical big data greatly facilitates various types of 
meta-studies, in which many different datasets can be 
merged and analyzed in combination. However, 
combining data from multiple experiments and sources, 
generated using different platforms and molecular 
techniques are not trivial and increases the risk to 
introduce batch effects in the merged datasets as well. 
Putative batch effects that may have been introduced 
during data integration processes needs to be identified 
and corrected for before performance of the subsequent 
downstream data analysis. However, there is always a risk 
that during elimination of batch effects, true biological 
variation is also mistakenly removed. Thus, more 
investigations are needed to evaluate and compare 
different approaches for reducing batch effects introduced 
during data integration. 

 
In this study the ComBat algorithm has been applied 

on two types of study designs representing two common 
batch effect issues in omics data analysis. Results from 
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our work demonstrated that the ComBat algorithm could 
successfully reduce the observed batch effects in both the 
merged datasets while at the same time preserving the true 
biological variation. The importance of correction for 
batch effects before continuing with the downstream 
analysis has also been emphasized by the results from the 
hierarchical clustering analysis, where improved 
biologically relevant groupings were achieved after the 
batch effect reduction was performed.  

In conclusion, the results from this study demonstrate 
the applicability of the ComBat method to correct for 
various types of batch effects introduced during merging 
of large-scale omics data. Through this work the 
importance of exploring expression range and data 
distribution after merging of large–scale datasets has been 
highlighted.  
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Abstract

We propose an approach for predicting active pathways
from untargeted metabolomics data by minimizing the num-
ber of pathways needed to fully explain the features of
the data. The approach was tested on data taken from
cells infected with yellow fever virus and compared with
alternative approaches from literature. Our methodology
yielded predictions that were validated by data separate
from metabolomics and were a more complete description
of the infection phenotype. We also introduce an alterna-
tive formulation that would allow leveraging the retention
time information provided by liquid chromatography-mass
specrometry.

1 Introduction

Untargeted metabolomics is a useful tool in providing
an unbiased representation of cell metabolism. However,
to match current metabolic models, spectra resulting from
metabolomics must be mapped to known metabolites. These
metabolites yield insight into which metabolic pathways are
active and indicate the functional state of the cell.

Obtaining metabolite identities from spectra has become
a bottleneck in metabolomics studies, requiring further ex-
periments to verify metabolite identities before pathway ac-
tivities can be deduced. There can be thousands of features
that require identification, creating the need for approaches
that can automate either active metabolic pathway inference
or metabolite identification.

2 Related Work

We give a brief overview of pathway enrichment analysis
from metabolomics data. Assessing enrichment directly, i.e.
without mapping the spectral features to metabolites prior
to analysis, is a relatively recent development. Previously,
enrichment analyses had been developed for other “-omics”
data or required metabolites rather than spectra as input. An
overview of these is given in [12].

To the best of our knowledge, mummichog [7] has become
the standard approach to pathway enrichment analysis from
LC-MS (liquid chromatography coupled to mass spectrom-
etry) data. First, LC-MS data is obtained using a wide
range of mass-to-charge ratios to capture as many features
as possible. A subset of those features is then identified as
differing significantly between the experimental and control
groups. The authors of [7] denote this subset Lsig, and the
full feature set Lref. Samples from Lref are then used to
estimate the likelihood that a pathway will contain features
if the samples are of size |Lsig|. Over many samples, a
distribution is generated that can then be used to gauge
which pathways have an abnormally large intersection with
Lsig. These are the enriched pathways.

A recent approach, PIUMet, infers metabolites from un-
targeted LC-MS spectra using a prize-collecting Steiner
tree [6]. This is an optimization problem on a graph,
where the solver must select a set of edges to form trees
that connect prize nodes while minimizing the total edge
cost. From an input of LC-MS features, PIUMet defines
the problem by letting the prize nodes of the graph be
the m/z values of features, connecting them via a network
of proteins and metabolites. Specifically, there is are
nodes for each metabolite and protein, and edges between
a protein-protein or protein-metabolite pair exist if there is
evidence they interact. Edge costs represent the confidence
of the interaction, with a higher cost representing a lower
confidence. The optimal set of trees with respect to cost and
penalty represent active pathways. We refer the reader to [9]
for further details. We briefly discuss PIUMet in §7.

3 Problem Definition

Inferring active pathways from untargeted metabolomics
requires reconciling the LC-MS data, consisting of a set
of mass-to-charge ratio and retention time pairs, to the
model, a collection metabolites connected by reactions in
pathways. Metabolites must, either implicitly or explicitly,
be matched with mass-to-charge ratio (also denoted m/z
value) and retention time pairs. Our approach matches
the metabolites implicitly, by selecting the minimal set of
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pathways that contain enough metabolites with the observed
mass-to-charge ratios to represent the different retention
times observed.

We will refer to this problem as the Minimum Pathway
Cover problem and abbreviate it as MPC. We define MPC in
terms of pathways, LC-MS data and retention times. Here
we note that MPC is an instance of a more general prob-
lem that can be adapted to leverage data about metabolite
properties if it is available. We explain this problem and its
applications in §9.

To define MPC, let

• Z be the set of observed m/z values, and

• R be the set of observed retention times.

The LC-MS data is therefore a subset X ⊆ Z ×R. Note
that there is often a tolerance associated with m/z values;
in enrichment analyses it is common to consider m/z values
that differ by less than 10 p.p.m. the same value. In this
case, Z would be a set of m/z value intervals. More details
are given in §6. The model consists of

• a set M of metabolites,

• a mapping m : M → Z, where m(tj) = zi iff
metabolite tj has m/z value zi, and

• a collection of pathways P ⊆ 2M, where 2M is the
powerset of M.

A set of pathways C ⊆ P is capable of generating X if

⋃

p∈C
{m(tj) | tj ∈ p} = Z.

MPC finds the smallest C that generates X with enough
metabolites to cover (see Fig. 1) the distinct retention times.
Let c(zi) be the number of distinct retention times observed
to occur with zi in the data,

c(zi) =
∣∣{rk | (zi, rk) ∈ X}

∣∣.

Given C ⊆ P , the metabolites matched to zi by C are

⋃

p∈C
m−1(zi) ∩ p.

For all zi ∈ Z, the number of metabolites matched to zi
must be at least the number of distinct retention times for zi:

c(zi) ≤
∣∣∣∣
⋃

p∈C
m−1(zi) ∩ p

∣∣∣∣.

4 Implementation

MPC can be encoded as an integer linear program (ILP).
The variables of the ILP are defined by letting

• x be a binary vector of length |P |, and

• for each zi ∈ Z, ci be a binary vector of length |M|.

We use x and the collection of ci to encode a valid solution
C. We assign each p ∈ P an index n and let x be a
binary representation of C, where xn = 1 if pn ∈ C and
0 otherwise. We assign each metabolite t ∈ M an index j
and let cij = 1 if tj ∈ pn, pn ∈ C, and m(tj) = zi. We let
cij = 0 otherwise.

Given these variables, the ILP representation of MPC is:

min
x
||x||1 (1)

cij ≤
∑

{n | pn∈P,tj∈pn}
xn ∀i, j (2)

c(zi) ≤
∑

{j | tj∈M }
cij ∀i (3)

xn ≤ cij if tj ∈ pn,m(zi) = tj (4)

(1) sets as the objective the minimizing of the number of
pathways in C by minimizing the sum of the xn. Since xn is
a binary vector, this is equivalent to minimizing the number
of xn with value 1. Constraint (2) ensures that cij = 0
unless some pathway pn that contains metabolite tj has been
chosen as part of C. Note that all cij are binary variables,
so even if multiple pathways in C assign metabolite tj to
zi the value of cij is at most 1 in that case; it is 0 if no
such pathways are part of C. Constraint (3) sets the lower
bound on the number of metabolites assigned to zi to the
number of distinct retention times observed for that m/z
value. Constraint (4) ensures that if pathway pn contains a
metabolite tj that has m/z value zi, then whenever pathway
pn ∈ C (i.e. whenever xn = 1), metabolite tj is assigned to
zi (i.e. cij = 1). The ILP was solved using CPLEX [5].

5 Experiments

We tested our approach on previously published data ob-
tained from monocyte-derived dendritic cells (moDC) stim-
ulated by yellow fever virus (YF-17D vaccination strain).
This data was chosen because (i) the presence of key
metabolites was verified by tandem mass spectrometry,
and (ii) gene expression analysis with direct measurement
confirmed the occurrence of phenotypes associated with
YF-17D infection, and (iii) it was analyzed in-depth with
mummichog by its authors [7].

The moDCs were infected, mock-infected, or used as
baseline controls. Metabolome samples were taken at 0,
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6, and 24 hours. LC-MS was full-scan (m/z between 85
and 2000) using a reverse phase C18 column, and samples
were ionized using positive electrospray ionization. [11,
7] Tandem mass spectrometry was performed using LTQ-
FTMS. Features associated with infection were identified by
comparing the intensities of features in infected samples at
6 h. to intensities of those features in both mock-infected
samples (also 6 hours post mock infection) and baseline con-
trols (0 hours) and selecting those that differed significantly.
Those features significantly different (according to Student’s
t-test) between the infected samples and both the baseline
controls and the mock-infected samples were selected for
pathway enrichment analysis. A comprehensive description
of significant features detection, from the statistical methods
used to the LC-MS extraction, can be found in [7].

Figure 1: Heatmap illustrating the m/z each pathway covers.
Rows correspond to patwhways and columns to m/z values.
If a pathway can cover an m/z value that square is black, and
white otherwise. Rows and columns clustered by similarity.

Experiments were run using the pathways in the model
used in [7] to prevent the comparison of MPC to mummichog
from being affected by model discrepancies. A heatmap
showing the coverage of each pathway to the m/z values in
X is shown in 1 As mentioned, X was chosen to be the
features deemed significantly different between the infected
and non-infected groups. At p = 0.05, this consists of 601
features (m/z value and retention time pairs). Pathways were
obtained using the “human model mfn” model provided
with version 1.0.5 of mummichog. Also provided with
the software are a mapping from metabolites to masses
and a function that generates m/z values resulting from the
ionization process from a base mass. These were used to
define m : M → Z. The mapping c : Z → N was defined

using X as described in §4, except in those cases where
∣∣m−1(zi)

∣∣ <
∣∣{rk | (zi, rk) ∈ X}

∣∣,
i.e. there were more retention times associated with zi in the
data than metabolites in the model that could map to zi. In
these cases, |m−1(zi)| was used as the lower bound c(zi).

6 Results

MCP identified a total of 43 active pathways. Infec-
tion with YF-17D is known to induce cellular stress re-
sponse, namely, interleukin cytokines (IL)-12p40, IL-6, and
interferon-α via toll-like receptors (TLRs) 2, 7 , 8 and 9.
[10] Viral infection may trigger the production of nitric
oxide from arginine precursors as a defense mechanism,
activated via TLRs. [8] Infection also causes nucleotide
synthesis as part of viral replication. Confirmation of
these processes was obtained from measurements inde-
pendent of metabolomics [7]. The presence of IL-6 was
confirmed via direct measurement. Negative feedback of
nitric oxide synthesis was detected by direct measurement.
Downregulation of glutathione synthesis was detected by
transcriptomics. Tandem mass spectrometry confirmed the
presence of, among others, arginine, citrulline, AMP, GMP,
glutamate, xanthine, inosine, glutathione, GMP, and GSSG.

These measurements confirm the correctness of path-
ways in C. For example, the “Aspartate and arparagine
metabolism” pathway covers m/z values corresponding to
arginine, citrulline, AMP, glutathione, and GSSG; this path-
way, along “Purine metabolism” (covers m/z values of
inosine and xanthine) contain a network of reactions that
synthesize, from arginine, glutathione and purine precur-
sors. Additionally, citrulline is a by-product of nitric
oxide synthesis. While both of these pathways are in
mummichog’s enriched set, MCP allowed for the inclusion
of pathways ancillary, but important, to these processes. For
example, including the pentose phosphate pathway, as it is in
MCP, gives a likely explanation of how fatty acid synthesis
factor NADPH is regenerated. [3] Fatty acid synthesis is an
important response to infection in dendritic cells, as cytokine
production demands a larger endoplasmic reticulum and a
larger Golgi apparatus. [4] Indeed, many other the pathways
found by MCP were parts of fatty acid metabolism.

A comparison summary is given in Table 1. The statistics
used for comparison come from [7] and accompanying
supplementary material Dataset S1 and Table S1. Solving
MPC resulted in 43 pathways identified as active, in contrast
to mummichog’s 21. Of these, 14 were common to both
approaches. The greater number of pathways generated
by MPC is expected. MPC requires, via lower bounds
c(zi), that all features that can be explained by the model
be explained by choosing a relevant pathway. However,
mummichog’s more conventional enrichment analysis iden-
tifies as active pathways only those that have a statistically
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anomalous presence of m/z values in the significantly dif-
ferent feature list. The full set of 7995 features observed
in all samples is used to derive an empirical distribution
on the presence of features in each pathway. This set of
features, denoted Lref, contains the set of 601 significantly
different features, referred to as Lsig. The distribution
is generated by selecting samples of 601 features from
Lref. A variant of Fisher’s exact test is then used to,
for each pathway, record a p value corresponding to the
likelihood that this pathway has the observed overlaps with
Lsig and the sample from Lref under the null hypothesis
that there is no relationship between a metabolite being
present in the pathway and whether it belongs to Lsig
or the sample from Lref. This method is adapted from
[2]. Over multiple samples from Lref, a distribution of p
values is observed. Those pathways with p values below
some threshold are deemed active. This distribution is
necessary to detect significant pathways. A study we ran
(not shown for conciseness) using Fisher’s exact test with
random metabolite assignments from possible biological
candidates to m/z showed low significance for all pathways
(pathways had many elements from Lref even if they had
elements from Lsig). We refer the reader to [7] for more
details.

Table 1: Approach Summary
mummichog MPC

Total pathways 21 43
Unique pathways 7 29
m/z matched 132 188
m/z matched per pathway (avg.) 6.29 4.37
Metabolites per feature (avg.) 1.71 1.34

Some features in Lsig may therefore be left unexplained
by the pathways selected by mummichog. Specifically, these
are features corresponding to metabolites found only in
those pathways that relate to Lsig and Lref to similar degree,
i.e. the features that correspond to metabolites only found
in pathways whose p value is not low enough. This was
observed empirically in the number of features matched. In
Dataset S1, 330 m/z values are given metabolite predictions
based on the pathways selected. Of these 330 values, 138
belong to features in Lsig. The number of features matched
by MPC is the sum of the lower bounds c(zi), in this case
192; these features have 188 distinct m/z values. Note that
this is not 601, as might be expected, since c(zi) is often
zero: there are no metabolites in the model that correspond
to the given mass. Enforcing full coverage of features
where possible, MPC will tend to select more pathways than
mummichog and match more features.

We also observed that, on average, fewer metabolites were
assigned per mass by solving MPC when compared to mum-
michog. Comparing the number of metabolites assigned per
m/z value shows that, though the distributions are similar,
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Figure 2: Distribution of the number of metabolites assigned
to m/z values for A) MPC and B) mummichog. MPC tends
to assign less overall.

the fraction of m/z that match to a single metabolite is higher
for MPC than for than for mummichog. (Fig. 2) This is
expected if we consider that c(zi) = 1 in the majority of the
cases. This means that there was a single feature observed
per m/z value and so MPC only requires a single metabolite
assignment to be satisfied. Interestingly, the majority of
these one-to-one masses are m/z values that are contained in
pathways unique to MPC. When considering only those m/z
values that are common to both approaches, the distributions
are more similar. Since pathways are considered enriched
only if they have a relatively high number of metabolites
from Lsig, mummichog will tend to explain only those
m/z values that occur in groups. Enrichment also has the
implication that if a group of metabolites from Lsig tends to
repeat throughout the pathways in the model, the pathways
that contain them will all be reported as active. This can
be observed when comparing the average overlap within
pathways in MCP (Fig. 3) to that within the enriched
pathways (Fig. 4). Pathways in mummichog tend to
overlap more with each other, both when comparing masses
explained and metabolites in those pathways.

7 PIUMet

We also include PIUMet results with some caveats. First,
we limit our discussion to m/z value matching to metabo-
lites. PIUMet is a pathway inference, rather than pathway
enrichment, tool. As such, the pathways returned are net-
works of proteins and metabolites and may not correspond
to known catabolic or anabolic pathways or may match
pathways ambiguously. Second, the algorithm was run
from the PIUMet website[1], forcing the use of the PPMI
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Figure 3: Average size of the intersection of a pathway
selected by MCP with another selected by MCP, where a
pathway is either A) a set of m/z values or B) a set of
metabolites.
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Figure 4: Average size of the intersection of a pathway
selected by MCP with another selected by mummichog,
where a pathway is either A) a set of m/z values or B) a
set of metabolites.

network, a different model than the one used throughout the
rest of this paper.

The prize wi of each feature zi in Lsig was defined as

wi = − log pi, (5)

where pi is the p value obtained from the t-test measuring
the significance of the difference in zi between the infected
cells and the other two groups. This definition of wi is

used in [9]. All other parameters were left as the defaults
provided by the website.

The metabolites inferred by PIUMet and confirmed by
tandem mass spectrometry include GSSG, citrulline, and
xanthine, PIUMet output includes a top metabolite match
for each m/z value. Of these 103 metabolites, 36 were also
inferred by MCP. These include metabolites in pathways
shared by all approaches (e.g. Methionine and cysteine
metabolism, Pyrimidine metabolism). Overall, PIUMet
matched more m/z values (257) to metabolites than MCP
or mummichog, though this is likely due to its use of a larger
model (114,100 vs. 3,565). Considering all possible (927)
matches returned by PIUMet emphasizes this difference
as each m/z value is assigned 3.6 metabolites on average,
compared to the 1.71 and 1.34 by mummichog and MCP,
respectively. Despite the much larger number of possible
matches, the intersection with the metabolites assigned by
MCP increases only to 62. We conclude that PIUMet shows
its ability to formulate de novo pathways, while agreeing
with established literature.

8 Conclusions

We have shown that choosing the smallest set of path-
ways capable of producing the spectral features observed in
untargeted metabolomics data from cells infected with YF-
17D yields pathways consistent with known phenotypes of
infection. We introduced this problem as Minimum Pathway
Cover and show it can be solved by solving an integer linear
program using CPLEX, a popular optimization suite. Setting
a requirement for full coverage explains those features that
would be ignored by enrichment analyses, and requiring a
minimal set of pathways reduces the ambiguity in the results
by selecting fewer metabolites per feature observed. These
potentially ignored features also related metabolic pathways
known to be active during infection. These initial results
encourage further investigation into which combinations of
data and metabolic network topologies will cause either
MCP or enrichment analyses to be more effective.

9 Future Work

To allow comparison to mummichog, we have considered
selecting a cover as an assignment of metabolites to m/z
values. However, setting lower bounds c(zi) allows for a
mapping of metabolites to features. For example, if c(zi) =
2, then two features (zi, r1), (zi, r2) with distinct retention
times r1 6= r2 were observed in the data set X . Then,
knowing C has pathways with at least two metabolites with
m/z value zi, an attempt may be made to map metabolites to
either (zi, r1) or (zi, r2).

However, metabolites with similar chemical properties
will elute at the same time, meaning that multiple metabo-
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lites may correspond not only to the same m/z value but to
the same (zi, rk) pair. In these cases, even though more than
c(zi) metabolites may be mapped to c(zi), not all the rk
have been covered. However, with an alternative definition
of MCP we may address the problem.

MCP may be defined in generic terms. Since this is
a variant of the Set Cover problem, we will denote this
generic version Color Set Cover and abbreviate it CSC. We
let Z,R,M be generic sets and P ∈ 2M be a set of subsets
of M. LetX ⊆ Z×R be the problem input. In terms of Set
Cover, X is the universe and P is the family of sets a cover
will be selected from. In ordinary Set Cover, P ∈ 2Z and a
cover C ⊆ P is selected such that

⋃

p∈C
p = {zi | (zi, rk) ∈ X} = Z.

In CSC, the mapping m : M→ Z determines whether a set
p ∈ P covers a value in X . As in §3, p covers zi ∈ Z if
p contains an element tj ∈ M such that m(tj) = zi. We
denote M as the set of colors. Choosing a cover therefore
implicitly assigns a set of colors to each zi. Moreover, CSC
imposes a further constraint on C, namely that the number
of colors assigned to each to each zi be greater than or
equal to the number of rk paired with it in X . We have,
for MCP, chosen the sets Z, R, and M as described in §3.
To address the problem of multiple metabolites having the
same retention time, we let Z be the set of m/z values as
before, but change R and M. We let R be retention time
classes and M classes of metabolites, both determined by
the LC-MS method. For example, HILIC columns separate
metabolites according to polarity. Then, we can label each
metabolite with an element tj ∈M, where metabolites have
the same label tj if their polarity is very similar. Set R
could be the set of retention times, or it could be a set of
non-overlapping retention time ranges observed in the data
(e.g. R = { 100-120, 50-70}). While it may be intuitive
to let R = M, letting them be different allows us to select
the appropriate number of metabolites with distinct retention
times while not assigning them to any particular range of
retention times, since the retention time of a metabolite is
very difficult to predict a priori. Once a cover is obtained,
the metabolite classes may be sorted according to polarity
and a tentative feature matching be obtained. We plan to
implement this strategy in future studies.
Acknowledgment: This work was funded by NSF-CMMI
1554708 and NSF-ABI 1542262.
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Abstract

Research Domain Criteria (RDoC) is a recently in-
troduced framework for accurate diagnosis of mental
illness. Developing a method to automate the process
of labeling biomedical articles with RDoC constructs
is highly useful to advance research efforts in the
area of mental illness. Therefore, this study focuses
on exploring the feasibility of developing a tool for
this purpose. Using a gold-standard dataset of about
40,000 Medline abstracts annotated with 26 RDoC
constructs, we model this both as a binary and a
multilabel classification problem, to perform document
classification using several supervised learning algo-
rithms. We use a simple bag-of-words model with
standard preprocessing steps such as stemming and
stop words removal. According to a performance
evaluation obtained through 5-fold cross validation,
we observe that overall, multilabel Artificial Neural
Networks classifier performs best with an excellent
average AUROC of 96% across all the constructs.
Interestingly, all the binary classifiers also show a very
high-level of performance. However, the cohort of
binary classifiers take significantly longer times to train
compared to their multilabel counterparts, showing the
utility of modeling this as a multilabel problem. This
is the first study that focuses on predicting RDoC
constructs for biomedical literature.

keywords: Research Domain Criteria, mental illness,
machine learning, document classification, Artificial
Neural Networks, Support Vector Machines.

1 Introduction

Research Domain Criteria (RDoC) is an under-
development framework for a more effective
classification of mental illness, introduced by The
National Institute of Mental Health (NIMH) [9].
Current clinical approaches to mental illness
classification such as ICD-10 [12] and DSM-V [2]

are primarily dependent on the signs and symptoms,
which tend to overlook the underlying mechanisms
of brain disorders [5]. Therefore, they fail to yield
results similar to those found in recent developments
in genetics and neuroscience. The RDoC approach
employs more comprehensive measures taking into
account neuroscience of the brain, molecular biology,
and behavioral science, among many others, to analyze
mental disorders [8].

Figure 1: A part of the Positive Valence Systems
domain. The term specificity increases downward.
Level 1 and Level 2 constructs are depicted in blue and
green, respectively.

The National Institute of Mental Health has de-
veloped a matrix for aggregating RDoC data1. The
rows of the RDoC matrix represent different con-
structs/categories of mental illness, while the columns
represent different methods or units of analysis (such
as molecules and cells) used to measure the extent to
which a patient can be diagnosed with certain RDoC
categories. These constructs (39 in total) are grouped
into five different domains of interest, where each
domain contains a number of constructs that are closely
related. For example, Reward Learning construct in the
Positive Valence Systems domain refers to “a process
by which organisms acquire information about stimuli,

1https://www.nimh.nih.gov/research-priorities/rdoc/
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actions, and contexts that predict positive outcomes,
and by which behavior is modified when a novel reward
occurs or outcomes are better than expected.”. Part
of the Positive Valence Systems domain is depicted
in Figure 1. The content of this matrix is manually
updated periodically by domain experts.

In order to facilitate mental illness research and
advance the expansion and/or refinement of the RDoC
framework, all existing biomedical documents need to
be curated with RDoC concepts. Given how expensive
manual curation of articles is, the ability to automat-
ically curate biomedical articles with RDoC concepts
will be crucial [6]. Therefore, in this study, we tackle
this problem with natural language processing (NLP)
and Machine Learning (ML) techniques to conduct
document classification experiments in order to ex-
amine the feasibility of automating this task. We
model this task as a supervised learning problem in
which biomedical article abstracts are used as examples
and the class labels are the RDoC constructs. We
apply several popular supervised learning algorithms
to this data and demonstrate their high-level perfor-
mance in both binary and multi-label classification
settings. To the best of our knowledge, this is the
first study on automated prediction of RDoC constructs
for biomedical literature. The outcomes of this study
have implications for the various groups including
psychiatrists as well as other practitioners who are
interested in automated tools for RDoC.

Although there are no previous attempts at auto-
mated biomedical text classification with RDoC data,
there has been many prior studies on performing doc-
ument classification with similar types of data and
ontologies [4, 11, 7, 15, 14]. Some of these studies
include biomedical text classification on data from the
TREC 2005 Genomics track with an SVM classifier us-
ing bag-of-words and biological entity names as features
[4]. Also, text classification based on journal names
for a dataset of biomedical articles was performed by
Mishra et al. [11], using an SVM classifier with features
based on concept graphs, which have the advantage
of containing the semantic relationships between the
features. In other similar tasks, authors used Naive
Bayes classifiers with a simple bag-of-words represen-
tation, in addition to sentiment analysis features and
chi-squared feature selection [7] to determine whether
a thread in an online health forum needs moderators’
assistance. Similarly, Wang et al. [15] uses Naive
Bayes to determine the relevancy level of articles to im-
mune epitopes. Most interestingly, tagging biomedical
articles with Medical Subject Headings (MeSH) terms
was attempted with deep learning elsewhere [14], where
a convolutional neural network (CNN) was used to
achieve a significant improvement over other traditional

approaches.

The rest of the paper is organized as follows: Section
2 describes the data, features and models used as well
as the experimental setup. Section 3 discusses the
key observations from the experiments, and Section 4
presents conclusions and future directions.

2 Methodology

2.1 Data

As mentioned above, we formulate the task of auto-
mated text classification with RDoC as a supervised
learning problem. We obtained a labeled data set of
42,936 Medline abstracts manually curated by human
curators at National Alliance on Mental illness (NAMI)
Montana. Each one of these has been manually labeled
with at least one of 26 RDoC concepts used for this
study; about 5% of the abstracts are annotated to
more than one construct. A list of RDoC constructs
is indexed in Table 1, showing the number of articles
for each construct and to which domain each construct
belongs. Some of the figures in later sections will refer
to the constructs by their indices in Table 1.

2.2 Preprocessing and Features

We apply three basic steps to preprocess our dataset:
1) Stemming, 2) Removing Stop words, and 3) Remov-
ing non-ASCII characters. These steps help reduce
the dimensionality of the feature space. Stemming
combines different variants of each word into one
standard form. Stop words is a small set of very
common terms that is removed due to their limited
information nature.

After performing the preprocessing steps, we trans-
form our datasets using a bag-of-words model, where
each feature indicates the presence of a word in a pre-
defined vocabulary. In our case, the vocabulary is all
the unique words in our dataset.

2.3 Models

Given that 5% of the abstracts in our dataset are
annotated to more than one label, we attempt to solve
this problem using both (a) binary classification and
(b) multilabel classification approaches. In the first
stage, we apply five supervised learning algorithms: 1)
Artificial Neural Networks (ANNs), 2) Support Vector
Machines (SVMs), 3) Logistic Regression (LR), 4)
Decision Trees (DTs), and 5) Naive Bayes (NB). In this
initial set of experiments, we use the aforementioned
algorithms to perform the binary and multilabel tasks
and assess their effectiveness to consider them for
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Domain Index Construct Level # Articles

Negative Valence Systems

1 Potential Threat 1 1,919
2 Sustained Threat 1 1,949
3 Loss 1 1,900
4 Frustrative Nonreward 1 2,153

Positive Valence Systems

5 Approach Motivation: Effort Valuation/Willingness to Work 2 241
6 Approach Motivation: Expectancy Reward/Prediction Error 2 595
7 Approach Motivation: Action Selection/Preference Based Decision Making 2 302
8 Initial Responsiveness to Reward Attainment 1 513
9 Sustained Longer Term Responsiveness to Reward Attainment 1 1,891
10 Reward Learning 1 1,904
11 Habit 1 2,055

Cognitive Systems

12 Attention 1 2,017
13 Perception 1 2,996
14 Declarative Memory 1 2,134
15 Language 1 2,001
16 Cognitive Control 1 2,266
17 Working Memory 1 2,011

Social Processes

18 Affiliation and Attachment 1 2,436
19 Social Communication 1 1,962
20 Perception and Understanding of Self: Agency 2 1,018
21 Perception and Understanding of Self: Self Knowledge 2 2,049
22 Perceptions and Understanding of Others: Animacy Perception 2 309
23 Perceptions and Understanding of Others: Action Perception 2 2,103
24 Perceptions and Understanding of Others: Understanding Mental States 2 560

Arousal and Regulatory Systems
25 Circadian Rhythms 1 2,966
26 Sleep Wakefulness 1 3,581

Table 1: Summary of RDoC data used in this study. The constructs are grouped by domain to show related concepts.
Level 2 constructs are more specific, while level 1 construct are more general.

further analysis.

2.4 Model and Feature Selection

The second stage of this process is to take the
best multilabel classifiers, selected after conducting
the paired t-tests, and optimize their performance
using feature and model selection. Outcomes of this
stage demonstrates a more genralizable accuracy of our
models.

We perform a comprehensive grid search, based on
feature transformers, as well as learning algorithms
parameters. A subset of these parameters that will
likely influence the performance is chosen. These
parameters include:

• Features: {Bag-of-Words n-gram range:((1,1),
(1,2), (1,3))}
• ANN : {Activation function:(relu, tanh, logistic),

Network Architecture: ((5,2),(10,3))}
The n-gram range specifies the minimum and maximum
of how many words represent a single feature. For
example, (1,2) indicates that the features will be single
and two word features. Obviously, this option can
increase the feature space significantly. Therefore, we
limit the feature size to the 125,000 most occurring
features.

The parameters of the learning algorithm that were
selected are three different activation functions and two
different network architectures for ANNs. The first
number in network architecture options represents the
number of hidden units in each hidden layer, while the
second number gives the count of the hidden layers in
those networks. We perform a grid search with this
set of parameters in a five-fold nested cross validation
setting to report on the optimized performance of the
tuned classifiers.

2.5 Experimental Setup and
Evaluation

We evaluate the performance of each classifier using
their AUROC (Area Under the Receiver Operating
Characteristic Curve) scores [3] averaged over a 5-
fold cross validation setting [1]. Ideal performance
corresponds to a score of 1, while the performance of a
random classifier corresponds to a score of 0.5. In order
to compare the overall performance of the classifiers, we
use the Macro AUROC score, which is defined as the
AUROC score averaged across the RDoC constructs.

In addition to this, we apply a paired t-test between
each pair of the 5 multilabel classifiers, and report the
p-values of each comparison.

We use linear kernels with SVMs in this study
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because in a preliminary experiment we observed that
Gaussian kernels take at least five-fold the training
time of linear kernels while producing very similar
performance to linear kernels (data not shown). All
the learning algorithms were trained and evaluated
using scikit-learn toolkit [13]. All the experiments were
executed on a machine running Fedora Linux operating
system with Inter Xeon 3.7 GHz processor.

3 Results and Discussion

We note that except for the ANNs, the binary classi-
fiers considerably outperform their multilabel counter-
parts (Figure 2). Although these results suggest using
binary classifiers is better suited for this problem, they
will be very limited in how much they can improve. On
the other hand, multilabel classifiers have the capability
to learn the inter-relationships between different labels,
which puts them at an advantage with regards to
optimizing their performance with model tuning. Also,
using a stack of binary classifiers will not be nearly as
time-efficient as the multilabel ones (Figure 3). And
when it comes to multilabel classifiers, ANN is the
clear winner, which significantly outperforms all other
classifiers (Table 2). Based on the above observations,
we used ANN multilabel classifiers for the rest of our
experiments and analysis.

Another key observation is that, the less frequent
a label (i.e. construct) is, the easier for the ANN
classifiers to make predictions for it (Figure 4). We can
see that the least frequent constructs (i.e. in the range
0-1000) in Figure 4 correspond directly to those that
are more specific (i.e. level 2) in Figure 5. Thus, the
specificity of terms can explain the seemingly counter-
intuitive results presented in Figure 4, noting that
abstracts labeled with more specific constructs likely
have more specific information in them which makes
it relatively easier to learn than the more general (i.e.
level 1) constructs.

Category SVM LR DT NB

ANN 8.96E-05 1.12E-04 1.00E-09 2.29E-09
SVM - 4.52E-01 3.96E-08 3.77E-04
LR - - 3.49E-08 1.92E-04
DT - - - 7.20E-05

Table 2: P-values obtained through two-tail paired
t-tests for all the multilabel classifiers pairs. ANN:
Artificial Neural Networks, SVM: Support Vector
Machines, LR: Logistic Regression, DT: Decision
Trees, and NB: Naive Bayes. We use 0.05 as our
alpha/significance level.

As mentioned earlier, in order to obtain more general-
izable and robust performance, we carried out a nested

Figure 2: Macro averaged Area Under Receiver
Operating Characteristic curve (AUROC) scores for
binary and multilabel classifiers. ANN: Artificial
Neural Networks, SVM: Support Vector Machines, LR:
Logistic Regression, DT: Decision Trees, and NB: Naive
Bayes.

Figure 3: Runtime for each binary and multilabel
classifier. ANN: Artificial Neural Networks, SVM:
Support Vector Machines, LR: Logistic Regression, DT:
Decision Trees, and NB: Naive Bayes.

cross validation procedure with model selection using
multilabel ANNs (Figure 6). The individual AUROCs
for all constructs surpass 90% AUROC. The following is
the most frequently used parameter combination during
this process: n-gram range - (1,2), activation function
- relu and architecture - (10,3).

Similarly, an analogous experiment was performed
with separate ANN classifiers trained for each of the five
domains (i.e. domain specific classifiers), to determine
if performance for some domains can be further im-
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Figure 4: Scatter plot showing Area Under Receiver
Operating Characteristic curve (AUROC) scores for
different ranges of article counts for the binary and
multilabel Artificial Neural Networks (ANN) classifiers.

Figure 5: Scatter plot showing Area Under Receiver
Operating Characteristic curve (AUROC) scores by
level of constructs for the binary and multilabel
Artificial Neural Networks (ANN) classifiers.

proved with such approach (Figure 7). Although, using
domain specific classifiers for this task did not present
an overall improvement, it did provide improvements
in some of the individual constructs, most of which lie
under the cognitive systems domain (constructs 12-17).
However, performance of few of the other constructs
declined (e.g. Reward Learning).

4 Conclusions and Future Work

In this work, we perform the first study on document
classification with RDoC constructs. Thorugh a series

of experiments we demonstrate that overall, applying
text classification with RDoC concepts in biomedical
articles is very viable alternative to manual curation.
Although this work employs standard methods to the
problem, the excellent results indicate that automat-
ing this process can be accomplished, which can aid
researchers interested in studying mental disorders from
the RDoC vantage.

One of the interesting results was that the more
specific RDoC concepts (i.e. level 2) were easier to
predict, even though they appear significantly less
frequently. We expect that the same difficulty in
identifying the general constructs (i.e level 1) affected
the manual curation of these articles.

There is still a considerable room for improvement
with regards to this problem. First, we plan to improve
our models by introducing task-specific engineered fea-
tures. As reported elsewhere [15], using less strict
stemming, and adding MeSH [10] terms could improve
the performance of the classifiers. Other types of
features that have the potential to improve the RDoC
classification problem include using a set of elements
from the RDoC matrix, molecules for instance, as
features, which is similar to what was done elsewhere
[4]. In addition, we will consider formulating this
task as a structured prediction problem, given the
hierarchical structure of the RDoC framework.

Furthermore, we aim to expand this study and
explore the feasibility of developing a complete biocu-
ration pipeline for RDoC. Given the high performance
of the ANNs, we plan to incorporate neural networks
with deep architectures and word/sentence/paragraph
embeddings which would likely further improve the
overall performance. It would also be very interesting
to apply a topic modeling technique to identify a list
of words/topics that can be used as features to further
improve the performance.
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Abstract 
 

  Epileptic seizures are abnormal discharges of 
neuronal populations causing sudden disturbances in the 
brain’s cerebral electrical activities. The electrical activity 
of the brain is measured via sensors placed on the scalp, or 
implanted on the brain tissue that produce a stream of non-
stationary Electroencephalography (EEG). Epileptic 
seizures are well known to have high inter and intra-patient 
variability, making their classification via EEG a complex 
task.  

The aim of this research is to design and develop a real-
time seizure prediction model (Flashing Decision Trees) 
that is capable of identifying seizures before their onset. The 
Flashing-Decision-Trees classification model for EEG data 
(FDT-EEG) diminishes the classification errors that are 
caused by the intra-patient variability of the seizure patterns 
by exploiting and adapting two bio-inspired metaheuristics, 
namely the genetic algorithm and the firefly optimization at 
different stages of the proposed model.  

Keywords: Seizure detection, Epilepsy, 
Electroencephalography (EEG), Bio-inspired 
metaheuristics, firefly optimization, genetic 
algorithm. 

 
1 Introduction 

 
Epilepsy is one of the prevalent and diverse neurological 

disorders affecting people of all ages. Approximately 50 
million people worldwide are diagnosed with epilepsy, in 
which 30% of these patients don’t respond to medication 
[1]. Epilepsy is a chronic disorder of the brain characterized 
by recurrent unprovoked seizures. A seizure can be defined 
as a brief episode of uncontrolled excessive activity of a part 
or all of the central nervous system that may cause abnormal 
movements or behavior sometimes accompanied by loss of 
conscious [2]. These unpredictable seizures are a major 
source of anxiety for individuals with epilepsy due to the 

possibility of experiencing injuries or even life-threating 
situations if an episode strikes in the middle of a critical 
daily life activity such as driving or swimming. As a result, 
many researchers devoted their efforts toward evaluating 
seizures and predicting its occurrences, with the motivation 
that any system capable of predicting the occurrence of 
seizures in advance can improve the therapeutic treatments 
and improve the quality of epilepsy patients’ life by helping 
them to adjust their preventive behavior.  

Electroencephalography (EEG) is the recording of 
electrical activity along the scalp. It is the most convenient 
technique for predicting epileptic seizure episodes [3].  

In this research, we propose a novel self-learnable seizure 
prediction system capable of discovering on-line patient 
specific classification models. The learning phase of the 
model uses two bio-inspired metaheuristics, namely the 
genetic algorithm [4] and the firefly optimization algorithm 
[5] that both have been adapted to fit the classification task.  

The remaining of this paper is organized as follows: The 
following section describes the methodology and the basic 
algorithm of the proposed model. Section three summarizes 
the experimental results. The last section concludes our 
work. 

 
2 Methodology 

 
 In this section we explain the Flashing-Decision 

Trees algorithm, which is an adaptable self-learnable 
classification model that has the required intelligence to 
produce patient specific classifiers capable of predicting 
epileptic seizures before their occurrence. The proposed 
approach solves both the problem of intra-patient variability 
and the class imbalance problem resulting in a more accurate 
classifier. Moreover, the pre-processing, feature extraction, 
and classification process uses techniques having minimal 
time complexity, allowing the classifier to provide results in 
real-time.  
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2.1 Data Acquisition 

The Intracranial EEG (iEEG) data used in this study was 
recorded from five epileptic canines with naturally 
occurring generalized seizures. The dogs were maintained 
on anti-epileptic medications during this study. The 
recorded signals were read and transmitted by an implanted 
mobile intracranial EEG monitoring devices.  

 

Figure1.  Approximate placement of the 16 implanted electrodes 
[6]  

The implanted telemetry device contains a bilateral of 16 
electrodes arranged in a set of two strips of 4 electrodes that 
were placed on either side of the cortex. All iEEG data was 
recorded at 400Hz. The electrodes placement is illustrated 
in Figure1.  

The data is sequentially recorded and organized into 600 
-second data segments, each segment belonging to a single 
seizure stage. Expert readers annotated the entire iEEG data. 
Provided preictal segments cover one hour preceding the 
seizure onset, leaving out a 5 minute horizon directly before 
the seizure to ensure that seizures can be predicted with 
enough time for the subject to take appropriate action.  

This dataset was developed by the University of 
Pennsylvania and the Mayo Clinic and is freely available on 
the iEEG portal.[6]  

Several clinical studies have highlighted the high 
similarities between the symptoms and underlying nature of  
elliptical episodes experienced by dogs and humans[7-9]. 
Due to the limited and restricted availability of annotated 
human EEG signals, we used the elliptical canines for the 
proof of concept. 

2.2 Feature Extraction 

First, the iEEG stream was segmented using a 200-
second sliding window. Each window was preprocessed in 
three different ways: 

Differential Window:  

To remove artifacts, a low pass Gaussian filter with a 

frequency equal to the EEG sampling frequency was applied 
separately on every channel of the raw EEG signals. Then, 
the second derivate of each channel was calculated 
separately using a normalization factor of 1/1000.  

Fourier Transformation:  

Fourier transformation was applied on each channel 
separately. It is clearly evident that the similarity between 
all EEG signals tends to increase as they reach their Direct 
Current (DC) component, making the higher frequencies 
more descriptive. Thus to decrease the dimensionality only 
d largest frequencies where used to extract the feature vector 
(where d is a design parameter that have been set to provide 
the maximum efficiency). 

Wavelet Transformation: 

Wavelets are mini waves that tend to fade to zero. The 
concept was first introduces by Haar in the early 1900s [10]. 
Adeli et. [11] Observed that the Daubechies order 4-wavelet 
is the most suitable mother wavelet for EEG analysis. In our 
research, continuous wavelet transformation was applied 
separately on every channel, using the Daubechies order 4-
wavelet as mother wavelet.  

Second, three feature vectors (one for each preprocessing 
method) was created. Each feature vector consists of 
appropriate statistical measures measured over each sliding 
window.  

A genetic-based feature selection approach adopted from 
the work proposed by Oluleye B. etc. [4] is then used to 
choose the most significant features for the current patient 
from each class of features.  

2.3 Classification Model 

The C4.5 algorithm [12]  is used to construct three 
different rule-based classification models, each using a 
single subset of features obtained from the genetic 
algorithm. The single decision trees are formulated as a 
decision forest, which is then combined and reduced to a 
single classification tree using a firefly optimization 
algorithm that is adapted to suit the classification task.  

2.4 The firefly optimization phase 

The firefly optimization algorithm (FA) [5] is a 
population-based algorithm that mimics the flashing and 
communication behavior of fireflies. In the simulating 
algorithm, every firefly represents a full decision tree and a 
potential classification model. The amount of light produced 
by the firefly is proportional to its fitness function. 
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Fitness	(FFi)	=	accuracyRatio	x	(#	true	positive	
+	#	true	negative)/	total	number	of	instances	+	

#true	positive/	number	of	preictal	x	
sensitivityRatio	

(1) 

 

The fitness function in our proposed model is given by 
equation (1) in which a higher ratio is assigned to the 
accuracy. The accuracy and sensitivity ratios are randomly 
selected at each iteration with restricting the sensitivity 
ration to be in the range [0, 0.4] and the accuracy ratio to be 
the complement of the sensitivity ratio calculated as: 1 – 
sensitivity ratio.  

Fireflies are attracted, and thus move towards brighter 
fireflies. The amount of light a firefly perceives is inversely 
proportional to the distance between the two fireflies, due to 
natural phenomena of light loss as it travels through a 
horizon. The base algorithm is listed in Algorithm1 .[5]  

Algorithm 1: Firefly optimization  
generate initial population of 
fireflies xi(i=1,2,3,...,n)  
while (t < MaxIterations)   

Measure and update the light 
intensity of all  fireflies. 

  Sort the fireflies (descending 
order) based on their light 
intensity  

 for i=1:n (all fireflies)  
 for j=1:n (all fireflies)   

 if (LightIntensityi < 
LightIntensityj – 
Distance(fireflyi, fireflyj) 
&& fireflyi has moved < 
maxAllowedMovment)  

   Move fireflyi towards 
fireflyj  
   End If  
 End for j  
     End for i  
End while  
Rank all fireflies and find the best 
solution  

 

Finally, upon termination of the firefly algorithm the 
firefly having the highest fitness is announced as the 
resulting combined decision tree and is then used to classify 
new data instances into interictal or preictal signals.  

3 Experimental Setup 

Experiments were conducted on all five subjects of 
the dataset explained in section 2.1. Two thirds of each 
subject’s EEG stream is used for training the model and the 
remaining third is reserved as a blind testing sample. The 
performance measures are based on ten different executions. 
All classifiers used in the comparison are given the same 
feature set (chosen by the genetic algorithm) as an input. 

4 Experimental Results 

Compared to other work in the literature the Flashing-
Decision Trees algorithm for EEG signals (FDT-EEG) have 
proven its effectiveness in balancing the sensitivity and 
specificity ratios regardless of how great the imbalance 
between the classes was in the original data. Although the 
work proposed by An.J etc. [10] selects a poor sample of the 
data consisting of 5 hours of preictal recordings along with 
equal duration of interictal data (i.e balancing the classes 
prior to the learning phase), and the FDT-EEG uses the 
entire recordings consisting of 5 hours of preictal signals and 
75 hours of interictal data, the results are almost comparable. 
The FDT-EEG model was able to tackle the class imbalance 
problem; providing even better overall accuracy, and falling 
back by around only 10% in sensitivity.  

Moreover, various experiments conducted on the same data 
set have proven that given a feature set, the FDT-EEG model 
constructs a more balanced and effective model than its 
benchmark competitors: The Weka implementation of the 
C4.5 decision tree based classifier allowing pruning with a 
confidence factor of 0.25 [12] and the Weka implementation 
of the cost sensitive support vector machine classifier LIB-
SVM with a Radial Basis Function kernel of degree 3 [14]. 
Performance measures including accuracy, sensitivity, and 
specificity detailed in Table 1 have been used to compare 
these models. 

Table 1 Performance comparison of the FDT-EEG with 
benchmark classifiers 

Subject Classifier Accuracy Sensitivity Specificity 

   Dog 1 

C4.5 88.89% 0.00% 93.33% 
SVM 95.24% 0.00% 100% 

FDT-EEG 
(Best) 88.49 % 20.83 % 91.88 % 

FDT-EEG 
(Average) 87.66 % 10.83 % 91.50 % 

  Dog 2 

C4.5 92.82% 21.43% 98.80% 
SVM 92.27% 0.00% 100% 

FDT-EEG 
(Best) 82.32 % 33.33 % 86.43 % 
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FDT-EEG 
(Average) 83.02 % 16.90 % 88.56 % 

  Dog 3 

C4.5 93.78% 0.00% 98.47% 
SVM 95.24% 0.00% 100% 

FDT-EEG 
(Best) 92.46 % 16.67 % 96.25 % 

FDT-EEG 
(Average) 91.49 % 9.03 % 95.62 % 

  Dog 4 

C4.5 85.60% 8.08% 95.15% 
SVM 89.04% 0.00% 100% 

FDT-EEG 
(Best) 86.27 % 21.21 % 94.28 % 

FDT-EEG 
(Average) 84.46 % 13.23 % 93.23 % 

  Dog 5 

C4.5 91.46% 26.67% 95.78% 
SVM 93.75% 0.00% 100% 

FDT-EEG 
(Best) 92.08 % 66.67 % 93.78 % 

FDT-EEG 
(Average) 91.88 % 41.67 % 95.22 % 

  

The final classification accuracy of the produced model is 
highly dependent on the used feature vector. In which the 
FDT-EEG heuristically selects an optimal highly 
descriptive, patient specific feature vector using the genetic 
algorithm. Moreover, the simple IF- THEN representation 
of the final model adds understandability to it, and allows 
the justifiability of the classification results.  

5 Conclusion 

In this research we proposed a novel seizure prediction 
system (FDT-EEG) that combines metaheuristics namely, 
the genetic algorithm and the firefly optimization algorithm 
along with the rule-based classifier to produce an intelligent 
classification model capable of transferring and customizing 
a base classification model into patient specific classifiers, 
diminishing the classification error caused by the broad 
intra-patient variability of the seizure patterns. Several 
modifications were applied on both metaheuristics to fit 
their purpose in the proposed model. Results and 
observations prove the effectiveness of the proposed model 
in the classification of class imbalanced problem especially 
when the minor class is of much more importance, as in the 
problem of seizure prediction. 

As for future work, The Flashing-Decision-Trees 
classification can be enhanced in several ways. We would 
like to investigate the effect of changing the formulation of 
the initial population of the firefly optimization step making 
it consist of initial decision trees constructed from a single 
rule. We would also like to investigate the possibility of 
using other linear bimodal feature selection methods and 

bivariate features such as pearson correlation that may 
provide better description of the preictal signals.  

Obtaining real clinical data from epileptic patients and using 
it to evaluate the performance of the FDT-EEG model, and 
measure its applicability in remote health care is of high 
interest, and is among the near future plans.  
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Abstract

Protein sequence classification has been a major
challenge in bioinformatics and related fields for some
time and remains so today. Due to the complexity
and volume of protein data, algorithmic techniques
such as sequence alignment are often unsuitable due
to time and memory constraints. Heuristic methods
based on machine learning are the dominant technique
for classifying large sets of protein data. In recent years,
unsupervised deep learning techniques have garnered
significant attention in various domains of classification
tasks, but especially for image data. In this study, we
adapt a k-means-based deep learning approach that was
originally developed for image classification to classify
protein sequence data. We use this unsupervised
learning method to preprocess the data and create
new feature vectors to be classified by a traditional
supervised learning algorithm such as SVM. We find
the performance of this technique to be superior to
that of the spectrum kernel and empirical kernel map,
and comparable to that of slower distance matrix-based
approaches.

keywords: Protein classification, Unsupervised learn-
ing, K-means

1 Introduction

Identifying protein functionality is one of the prin-
ciple challenges of modern biological sciences. While
there do exist precise alignment techniques such as
Smith-Waterman [15], due to their highly complex
structures and behaviors, modeling large sets of pro-
teins using deterministic methods is impractical, if
not impossible, with currently available technology.
Therefore, we must rely on heuristic techniques for
analyzing proteins. One way to elucidate the behavior
of a protein is to compare it to proteins with known
properties, via protein classification [14].

Over the course of evolutionary history, genes and
proteins with similar functionality diverge due to the
accumulation of mutations. As a result, analogous

proteins may become difficult to recognize. Through
the use of machine learning techniques, it is possible to
find relationships between protein sequences that would
otherwise be obscured.

2 Related Work

K-means is a clustering algorithm that is used to
partition points into k clusters based on the nearest
cluster mean, or centroid [10]. The use of K-means
clustering in image classification is based upon the
principle of representation learning. An image is broken
up into fragments by a sliding window, and these
fragments, along with fragments of all the other images
in the dataset, are then clustered by similarity. The
centroids of the clusters represent features learned from
the images, such as corners or diagonal lines. A new
feature vector representation of the original image can
then be created based on the presence or absence of
the various features [3] [4]. This technique has been
successfully employed in image classification tasks such
as distinguishing between bacterial colonies of different
species or identifying weeds [6] [17].

3 Methodology

3.1 Data & Materials

The data we use in this study originate from the
SCOP, CATH, COG, and 3PGK protein datasets [2]
[11] [18] [13]. The datasets and classification tasks were
obtained from the Protein Classification Benchmark
collection [16]. There are a total of 3242 classification
tasks across all the datasets. For the SVM classifier we
use the Scikit-learn Python library[12]. See Table 1 for
details.

The 3PGK dataset, which consists of sequences of
3-phosphoglycerate kinase from various species, has 10
tasks that consist of classifying sequences into kingdoms
based on phyla.

The SCOP dataset has three standard classification
task categories: Classification of sequences into super-
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Table 1: Datasets

Dataset # seqs average # frags tasks task types
seq len (len 14)

3PGK 131 411 52137 10 1
CATH95 11373 150 1562581 1414 8
SCOP95 11944 173 1916986 1629 6

COG 17973 373 6467745 189 2

families based on families (246 tasks), classification
into folds based on superfamilies (191 tasks), and
classification into structural classes based on folds (377
tasks). There are also three 5-fold cross validation task
sets. The first consists of 98 superfamilies with five
random splits each of training and test data where the
positive examples come from one superfamily and the
negative examples are taken from all other superfamilies
for 490 total tasks. The same 5-fold split technique was
used for 58 folds for 290 total tasks, and for 7 structural
classes for 35 total tasks.

The CATH dataset has four standard classification
task categories: Classification into homology groups
based on similarity groups, with 165 tasks; classification
into topology groups based on homology groups (199
tasks), classification into architecture groups based on
topology groups (297 tasks), and classification into
structural classes based on architecture groups (33
tasks). There are also four 5-fold cross validation task
sets: By homology (375 tasks), by topology (235 tasks),
by architecture (95 tasks), and by structural class (15
tasks).

The COG dataset has two types of classification task.
In the first task category, the positive training sets
consist of prokaryote protein sequences representing a
particular biological function (COG), and the positive
test sets consist of eukaryote protein sequences rep-
resenting the same COG. The negative training set
consists of sequences representing other COGs. There
are a total of 117 tasks of this type. The second
category involves separating proteins belonging to the
kingdom Archaea from proteins belonging to any other
kingdom. There are 72 of these tasks.

These datasets also came with published benchmarks
that were computed by creating all against all BLAST
and Smith-Waterman distance matrices and an SVM
classifier.

3.2 Empirical and Spectrum Kernels

The first baseline method we use for this study is the
empirical kernel map. For this we use 3364 reference
protein sequences from the seed pairwise alignments in
PREFAB 4.0 [7]. The feature vector for each protein in
the dataset is created by aligning it to each reference

protein using BLAST [1]. Each dimension of the
final vector is the BLAST score of the alignment to a
different reference protein; therefore, the feature vector
for each protein has 3364 dimensions.

The second baseline we use is the spectrum kernel,
which creates a feature vector by counting the number
of occurrences of every possible amino acid triplet in
each sequence [9]. Both the spectrum kernel and
empirical kernel methods used an SVM classifier [5].

3.3 String-based K-means Feature
Learning

In this method we first produce fragments of every
protein sequence in a given dataset using a sliding
window approach (see Figure 1). We then cluster all
fragments using a string-based k-means (see number
of fragments in each dataset in Table 1). To compute
the centroid of each cluster, we find the mode of each
character position across all the fragments in that
cluster (Figure 2).

To compute the distance from a fragment to a
centroid we examine two different measures. First, we
use Hamming distance, where we compare the fragment
and centroid at each character position and count the
number of mismatches. A larger count represent more
dissimilar strings and therefore a greater distance. The
second distance measure we examine is based on the
BLOSUM62 matrix, which is derived from empirical
observations of amino acid substitution probabilities
[8]. The distance is represented by the negative of
the BLOSUM62 alignment score of the two strings.
The negative is used so that this algorithm optimizes
for the minimization of the distances between points
(fragments) and their nearest centroids, just as the
traditional K-means algorithm does.

Figure 1: An example of the fragmentation process with
fragment length 4 and a stride of 1.

To create a feature vector from the clusters, we use
a method that is a cross between the triangle encoding
and hard encoding schemes employed by Coates, Ng,
and Lee [4], as described in Equation (1). For each
fragment, we create a vector with k dimensions, where
k is the number of clusters. For the feature f that
corresponds to the index of the nearest centroid, the
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Figure 2: The centroid sequence is created by taking
the mode character at each position.

Algorithm 1: String K-means Pseudocode

choose k random fragments as starting centroids
while i = 0; i < max iter; i+ + do

for Each fragment do
Find distance to each centroid
Assign to closest centroid

for Each cluster do
Calculate new centroid

if No change in centroids then
Break

value is set to the mean of the distance to that centroid
plus the mean of the distance to all centroids; for all
other features, the value is set to zero to create a
sparse vector with k dimensions. The vectors for all the
fragments of a protein sequence are then sum-pooled to
create the final feature vector for the sequence (Figure
3).

fk(x) =

{
µ(z) + zk if k = arg minj‖c(j) − x‖22
0 otherwise

(1)

where zk = ‖x− c(k)‖2.

We then train a linear support vector machine clas-
sifier on the feature vectors of the training dataset and
evaluate it on the test dataset. This is done for each
task in each task category based on the cast matrices
obtained from the benchmark database.

4 Results

4.1 Comparison of Parameters

We ran the deep K-means algorithm with 2000, 4000,
8000, and 16,000 clusters on the CATH dataset (Figure
4) and with 2000 and 8000 clusters on COG (Figure 11).
The results show a trend of improvement as the number
of features increases. We also found that fragment
length had little impact (Figure 5). These effects
mirror those of Coates, Lee, and Ng [4]. However,
unlike in Coates and Ng’s later analysis of the K-means
method for image classification, we did not experience

Figure 3: An illustration of how the feature vectors are
created. Hamming distance and hard encoding are used
in this example.

problems with imbalanced or empty clusters [3]. We
found that fragments became well distributed across
clusters without the need for any additional processing
(Figure 13). Additionally, we found that BLOSUM
distance was superior to Hamming distance (Figures
6 and 7). Clustering made up most of our run time
and, as expected, run time is longer for larger datasets
(Table 2).

Figure 4: Effect of number of features (centroids) on
CATH data.

4.2 Comparison to other Methods

We found that our K-means feature learning method
outperformed the empirical and spectrum kernels on
nearly every category of tasks. With 16,000 clusters,
the K-means approach outperformed the empirical
kernel map and the spectrum kernel on every task in
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Figure 5: Effect of number of fragment length on CATH
data.

Figure 6: Effect of Hamming distance vs. BLOSUM
distance on 3PGK.

Figure 7: Effect of Hamming distance vs. BLOSUM
distance on CATH.

Table 2: Runtimes for clustering on Intel Xeon E5-2630-
v4 with 20 cores.

Dataset time (minutes)
3PGK (600 clusters) 4
CATH (16k clusters) 799
SCOP (16k clusters) 1068
COG (8k clusters) 4493

Table 3: Average areas under the ROC curve for various
methods. BLAST and SW are all vs. all BLAST and
Smith-Waterman distance matrices classified with SVM

Dataset K-means Empirical Spectrum BLAST SW
3PGK 0.964 0.906 0.887 0.919 0.923
CATH 0.870 0.819 0.847 0.860 0.924
SCOP 0.842 0.810 - 0.841 0.896
COG 0.949 0.910 0.944 0.923 0.931

CATH, and outperformed the all against all BLAST
matrix on all the standard classification task sets,
while under-performing slightly on the cross-validation
sets (Figure 9). Our method also outperformed the
empirical kernel on both COG sets and all but one
SCOP sets (Figure 10), and beat the spectrum kernel
on the Eukaryotes-Prokaryotes COG task set (Figure
11). Overall, our method had a higher average ROC
AUC than all other methods on the 3PGK (Figure 8)
and COG datasets, and beat all methods but all-vs-
all Smith-Waterman alignment on CATH and SCOP
(Table 3).

5 Discussion

Our K-means-based representation learning method
performs on par with state of the art protein classifica-
tion techniques. Overall, our method tends to outper-
form established methods on the standard protein clas-
sification tasks in the CATH and SCOP datasets, which
generally seem to be more difficult by virtue of the
lower performance by all methods, while slightly under-
performing against BLAST similarity matrix methods
on the 5-fold cross validation tasks (Figures 9 and
10). Our method under-performed against Smith-
Waterman similarity matrices on CATH and SCOP, but

Table 4: Wilcoxon p-values for CATH. K-means
performs significantly better than the spectrum kernel
and empirical kernel map.

CATH 16k clusters Spectrum Empirical
16k clusters - 0.008 <0.0001
Spectrum 0.008 - 0.003
Empirical <0.0001 0.003 -
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Figure 8: Comparison of K-means to empirical kernal
map, spectrum kernel, and BLAST similarity matrix on
3PGK data.

Figure 9: Comparison of K-means to empirical kernal
map, spectrum kernel, and BLAST similarity matrix on
CATH data.

outperformed them on COG and 3PGK. This may be
due to the higher average sequence length of COG and
3PGK (as seen in Table 1).

Our method also shows promise in its ability to
generalize. Despite low similarity between the CATH
and COG sequence data, the features learned from the
COG data were nearly as useful in learning to classify
CATH proteins as features learned from CATH proteins
(Figure 12). This suggests that the features being
learned are generic protein features, though further
testing is required to establish just how general they are.
When applied to image data, K-means-based feature
learning is able to learn generic visual features such
as corners or lines or a particular orientation [4]. In
principle, the same should be possible for proteins.

Furthermore, our method has potential utility for

Figure 10: Comparison of K-means to empirical kernal
map and BLAST and Smith-Waterman similarity
matrices on SCOP data.

Figure 11: Results on COG data.

Figure 12: Comparison of classification performance
on CATH dataset of centroids trained on CATH vs.
centroids trained on COG.
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Figure 13: Distribution of 3PGK fragments across 600
clusters.

protein alignment as well. It may be possible to use
it to classify and rank alignments to find the best ones.

Our code for fragmenting, clustering, and classifying
protein sequences is available at https://web.njit.

edu/~usman/kmeans_fl_protein/
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Abstract

Discerning how a mutation affects the stability of
a protein is central to the study of a wide range of
diseases. Machine learning and statistical analysis
techniques can inform how to allocate limited resources
to the considerable time and cost associated with wet
lab mutagenesis experiments. In this work we explore
the effectiveness of using a neural network classifier to
predict the change in the stability of a protein due to
a mutation. Assessing the accuracy of our approach
is dependent on the use of experimental data about
the effects of mutations performed in vitro. Because
the experimental data is prone to discrepancies when
similar experiments have been performed by multiple
laboratories, the use of the data near the juncture
of stabilizing and destabilizing mutations is question-
able. We address this later problem via a systematic
approach in which we explore the use of a three-way
classification scheme with stabilizing, destabilizing, and
inconclusive labels. For a systematic search of potential
classification cutoff values our classifier achieved 68
percent accuracy on ternary classification for cutoff
values of -0.6 and 0.7 with a low rate of classifying
stabilizing as destabilizing and vice versa.

Introduction

Performing an amino acid substitution in a protein may
induce a structural change that can have wide ranging
effects on the protein’s function. Discovering which
mutations are destabilizing and which are stabilizing
provides insights into many types of disorders, such as
sickle cell anemia [16] and some types of cancer [7],
and is important for understanding communicable and
highly mutable diseases (e.g. HIV [9], influenza [17]).

In vitro experiments are necessary to determine how
a mutation affects a protein’s function. However, these
experimental efforts come at considerable time and cost,
as a single mutagenesis experiment followed by X-ray
crystallography work may require weeks of wet lab

work. Moreover, because each residue in a protein can
in principle be one of 20 naturally occurring amino
acids, the set of all possible mutations is vast, so
computational tools for screening likely candidates for
investigation in a wet lab setting are desired.

We explore the use of a neural network classifier
for automatic inference of the effects of mutations.
The ground truth, obtained from wet lab experiments
recorded in the Protherm database [15], is in the form
of change of the Gibbs Free Energy (∆∆G) indicating
whether a mutation is destabilizing (negative ∆∆G)
or stabilizing (positive ∆∆G). Typical approaches
either predict the ∆∆G value given a specified mutation
(regression) [3, 6], or predict whether a mutation is
stabilizing or destabilizing (binary classification) [3].

Here we deal with ternary classification in which a
third “inconclusive” class is introduced. That class is
important because all available ∆∆G data is from wet-
lab work, and as with any physical experiment, there
is the chance of some inherent error. The use of a
∆∆G value close to 0 might cause a classifier to mis-
classify a stabilizing mutation as destabilizing or vice
versa, if indeed the reported true label is erroneous.
Mislabeled data is detrimental to training a model,
so we systematically performed many computational
experiments, testing the range of indeterminate values
to find an optimal inconclusive range for ∆∆G.

We trained deep neural network classification models
across a systematic search of the ∆∆G cutoff space.
Using the results of these experiments we generated
confusion matrices in order to assess the utility and
classification performance for each cutoff range. We
found several interesting trends and potential cutoff
ranges, which we present here via case studies.

Related Work and Motivation

The use of experimental stability data (∆∆G) is
prevalent in research that aims to offer computa-
tional techniques for assessing the effects of muta-
tions [14, 4, 12]. An often-cited source is the ProTherm
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∆∆G lower val ∆∆G upper value Num Entries
-10 10 4184
-1 1 2157

-0.5 0.5 1364
-0.1 0.1 390

Table 1: Distribution of ∆∆G values among ProTherm
entries for which stabilizing information is available

database [15]. It provides information about the
proteins, mutations performed, wet lab conditions, and
stability measurements for 25,820 mutation experi-
ments reported on in the literature. Of those ProTherm
entries for which stability data is provided, the ∆∆G
values range from about -10 kCal/mol (indicating a
strongly destabilizing mutation), to approximately +10
kCal/mol (strongly stabilizing). The single inflection
value of zero ∆∆G designates that point on the real
number line where the effect of a mutation changes from
stabilizing to destabilizing.

In Table 1 we show the count of entries in ProTherm
for three separate ranges of ∆∆G values. Of the 4,184
entries with ∆∆G ranges between -10 and 10 kCal/mol,
1,364 of them are in the range [−0.5,+0.5]. Thus, a
large portion of ProTherm entries are for values where
experimental errors or instrument discrepancies might
mean that a recorded stabilizing mutation is indeed
destabilizing, and vice versa. It is for this reason
that experimental data for ∆∆G values in the range
[−0.5,+0.5] is often not used.

In addition, there are a number of entries in the
ProTherm database where identical experiments per-
formed by different labs have recorded opposite (stabi-
lizing versus destabilizing) results. Two examples :

• Cold shock Protein, ProTherm Entries 21797 and
21839, ∆∆G = -0.05 and +0.7, respectively

• Myoglobin Sperm Whale, ProTherm Entries 2092
and 2814, ∆∆G = -0.9 and + 0.1, respectively

The use of ∆∆G data, therefore, as values for
assessing and training a predictive model, must be done
with care. For this reason, we report the predictive
power of our machine learning model in the context of
a systematic approach of varying the ∆∆G values des-
ignating boundaries between three classification labels.

Methodology

Here we summarize rigidity analysis and describe
how we generate features and labels for training our
neural network classifier machine learning model, and
the experiment setup for evaluating the model.

(a) Cartoon (b) Rigidity Analysis

Figure 1: Rigidity analysis (PDB 1HVR) identifies rigid
clusters. Orange is the largest cluster with 1,371 atoms.

Rigidity Analysis

To help reason about the effects of mutations, we
take an approach that relies on a fast algorithm for
assessing the rigidity of a protein [8, 11]. In rigidity
analysis, atoms and their chemical interactions are used
to construct a mechanical model, a graph is constructed
from the model, and pebble game algorithms [10] are
used to analyze the rigidity of the associated graph.
The results are used to infer the rigid regions of the
protein (Figure 1). We rely on the KINARI rigidity
software for performing rigidity analysis [8].

Mutants, Rigidity Distance

To generate in silico mutant structures corresponding
to the mutation data in ProTherm, we used our
ProMuteHT [2] software. In this study, we rely on
the rigidity analysis results of the wild type (non-
mutated protein), and a mutant, to assess the effects
of a mutation. In our previous work [1, 6], we
used an RDWT→mutant rigidity distance metric to
quantitatively assess the impact of mutating a residue
to one of the other 19 naturally occurring amino acids:

RDWT→mutant :
∑i=LRC

i=1 i× [WTi −Muti]

where WT refers to Wild Type, Mut refers to mutant,
and LRC is the size of the Largest Rigid Cluster (in
atoms). Each term of the summation RDWT→mutant

metric calculates the difference in the count of a specific
cluster size, i, of the wild type and mutant, and weighs
that difference by i.

Wet Lab Mutation Data – ∆∆G

Labels (∆∆G) and metadata (pH, temperature, etc.)
of mutations were retrieved from the ProTherm [15]
database of mutation experiments. The rigidity fea-
tures for each mutant and wild type were generated by
rigidity analysis using the KINARI software. A total
of 2, 072 data points from ProTherm meet the criteria
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Figure 2: The form of a feature vector as input
to the DNN. It consists of experiment meta data,
such as Solvent Accessible Surface Area (SASA), pH,
and temperature, concatenated with the rigid cluster
frequencies of both wild type and mutant proteins.

for our experimental setup (i.e., single chain proteins,
single mutations, any value of ∆∆G). The input to
our model is shown in Figure 2. The data set of 2,072
proteins is split into a training set of 1,438 proteins for
fitting a classifier, a development set of 324 proteins
for finding the best neural network configuration, and
a test set of 310 proteins to test generalization error.

Deep Neural Network Classifier

A deep neural network (DNN) classifier is a param-
eterized function mapping a real valued vector to a
probability distribution over a set of classes. We model
the probability distribution over classes of mutation as
stabilizing, destabilizing, or inconclusive, as a function
of the rigidity analyses and experimental conditions,
using a DNN with L hidden layers, h(1),h(2), . . . ,h(L).
This neural network classifier takes as input a feature
vector x (Fig. 2) which we alternatively denote as as
h(0). The classifier outputs a probability vector p ∈ R3,
the elements of which are calculated as:

pk =
exp(ok)∑3
j=1 exp(oj)

, where (1)

o = Uh(L) + a and (2)

h(`) = f(W(`)h(`−1) + b(`)). (3)

where hidden activation function f is one of three non-
linear functions operating elementwise on matrices; the
hyperbolic tangent function (tanh), the logistic sigmoid
function, or the rectified linear unit function (ReLU).
The trainable parameters are the L hidden weight
matrices (W), L bias vectors (b), and the output layer
weights and bias U and a.

All model parameters were trained with the Adam
optimization algorithm [13], a variant of stochastic
gradient descent. The training loss is the cross-entropy
between the true distribution as determined by incon-
clusive bounds and the DNN’s predicted distribution.

The DNN hyper-parameters are model choices which
cannot be learned via the training data through gra-
dient descent. They are instead selected by evaluating
models on the held out development set which is distinct
from the training data and the testing set. The model

choices we select in this fashion are the number of
hidden layers, the size of each hidden layer (dimensions
of the weight matrices W), the hidden activation
function, and finally, the mini-batch size and learning
rate used in stochastic gradient descent optimization.

We developed and trained our model architecture
using the Tensorflow [5] Python library. Due to the
small data set and GPU acceleration for computation,
it takes under a minute to train a typical model.

Class Labels

As already mentioned, the ∆∆G values in ProTherm
– especially those near zero – must be used with caution.
To help determine which range of ∆∆G values should
delimit stabilizing, destabilizing, and inconclusive mu-
tations, we employed a principled approach by training
models across a systematic set of different inconclusive
ranges to train the best predictive model.

Class labels are represented as probability distribu-
tions over the three classes, i.e. real valued vectors in
R3 that contain non-negative values and sum to one. A
label for ∆∆G classification has one element as 1 and
the other elements are zero. So, [1 0 0]T corresponds
to a ∆∆G score which is negative and outside the range
of indeterminacy (a destabilizing mutation), [0 1 0]T

corresponds to an inconclusive ∆∆G score inside the
range of indeterminacy, and [0 0 1]T corresponds
to a ∆∆G score which is positive and outside the
range of indeterminacy (a stabilizing mutation). To
make a prediction from our model’s predicted class
distribution, p, we pick the most probable index.

Our ultimate goal is to find a pair of ∆∆G values for
which a model can be trained to correctly predict the
true labels that those cutoffs would create. For example
if the ∆∆G value of an experiment is reported to be -
0.8, and our model’s ∆∆G cutoffs were -0.6 and 0.7,
the true label for that mutation would be destabilizing
and a correct prediction from our model would also be
destabilizing. For our best model, predictions should
match true labels as closely as possible.

Experimental Setup

In order to assess our model’s effectiveness at clas-
sification for different inconclusive bounds, we trained
100 DNN models with random hyper-parameter con-
figurations (the same configurations were used for all
cutoff ranges). We normalized ∆∆G by dividing all
values by 10, and executed a triangular grid search of
cutoff ranges equivalent to -2.0 to 2.0, stepping by 0.1,
in unnormalized ∆∆G, for a total of 820 cutoff ranges.
All 100 hyper-parameter configurations were assessed
for each range, for a total of 8,200 configurations.
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Figure 3: Test set confusion matrix for cutoffs -0.5, 0.5.

Confusion Matrices

For each of the 820 cutoff ranges, we identified the
DNN model which achieved the best development set
accuracy, and generated a confusion matrix for those
model’s predictions on the held out test set. Confusion
matrices are a method of visualizing the performance
of the classification algorithm. They contain the same
classes on the vertical and horizontal axis, with the
vertical axis indicating true labels for each class and the
horizontal axis indicating the model’s class predictions.
Figure 3 is the confusion matrix generated by the classic
heuristic for inconclusive ∆∆G of -0.5 to 0.5. The
darker the color the more predictions fall into that
intersection of true label and predicted label. A perfect
classification model would have predictions only in the
top left, center, and bottom right squares.

In addition to the standard metrics of a model’s
accuracy in predicting the correct class, the confusion
matrices offer insights in cases when a model is mis-
classified. They allow us to assess Type I and Type II
errors, false positive and false negative classifications,
and also permit seeing how those incorrect classifica-
tions are being classified. This additional information
enables assessing whether a particular mis-classification
is more detrimental than another. For instance it may
be better if a model is less accurate overall, but predicts
very few unstable mutations as stabilizing and vice
versa, but has a slightly higher than ideal tendency to
label mutations as inconclusive.

Results and Discussion

Table 2 reports hyper-parameters as well as several
performance metrics for our models. The confusion
matrices shown in Figures 3–6 further elucidate these
models’ performances.

Figure 4: Test set confusion matrix for cutoffs -2.0, -1.9.

Figure 5: Test set confusion matrix with an unrealistic
inconclusive range (-2.0,2.0) where most mutations are
labeled as inconclusive.

We first note that when the vast majority of the
∆∆G values fall within a single region determined
by the cutoff boundaries, a classification model can
trivially achieve high accuracy by learning to predict
the majority class. However, labels thus determined
may be impractical for scientific pursuits. These
situations are characterized by a high proportion of
data points which fall into the majority class giving a
high majority class accuracy (macc), which is indicated
in Table 2. One such example is given in Figure 4 which
has a small range of indeterminacy, [−2,−1.9], with a
large negative offset. For these bounds, macc = 91%,
with only 6 inconclusive examples and 21 destabilizing
examples. We can see from the confusion matrix that all
examples were predicted as stabilizing mutations giving
a 91% accuracy which amounts to a clearly unhelpful
classifier. Another example of ill-conditioned labeling is
shown in Figure 5. In this case the indeterminate range
is ostensibly too large, [−2, 2] as the model has learned
to classify most examples as inconclusive.
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Hyper-parameters Range Metrics

Model mb lr hs nl ha L U loss acc macc ratio

Figure 3 64 0.01 689 1 sigmoid 0.5 0.5 0.96 0.54 0.36 1.51
Figure 4 64 0.01 63 1 sigmoid -2.00 -1.9 0.29 0.91 0.91 1.00
Figure 5 32 0.09 854 3 ReLU -2.0 2.0 0.31 0.92 0.92 1.0
Figure 6 64 0.07 361 1 sigmoid -0.5 0.7 1.15 0.61 0.48 1.28
Figure 7 128 0.01 604 1 sigmoid -0.4 0.4 0.84 0.60 0.37 1.61

Table 2: Configuration and results for case study models. mb denotes minibatch size; lr denotes learning rate; hs
denotes hidden layer size; nl denotes number of layers; ha denotes hidden activation function; L and U denote lower
and upper cutoff ranges; loss denotes average test set cross-entropy between true and predicted values; acc denotes
accuracy; macc denotes majority class accuracy; ratio is acc/macc.

Figure 6: Test set confusion matrix for cutoffs -0.5 and
0.7, where false positive and false negative errors (top-
right and bottom-left, respectively) are minimized.

Figure 3 shows performance for ternary classification
using the traditional ∆∆G range for exclusion of
examples, [−0.5, 0.5]. If we exclude the somewhat
innocuous mistakes of examples which are incorrectly
classified as inconclusive, along with the examples
labeled as inconclusive which would be excluded in
the traditional approach in the first place, and attend
only to egregious mis-classification of stabilizing as non-
stabilizing and vice-versa we achieve a 92.2% accuracy.
From this method of preference, running counter to
common practice, the optimal ranges for excluding
∆∆G are not necessarily centered on zero.

For instance, based on this criterion of binary pre-
dictions within the ternary classification schema, the
best cutoff classification range from our experiments is
shown in Figure 6 with an inconclusive range [−0.5, 0.7],
giving a 94.4% accuracy for the binary subset classifi-
cation task. On the same test set, for the ternary task,
that model achieved an accuracy of 61%. Upon initial
assessment this performance does not seem great on
its own, but we are more concerned with the model’s
classification of a destabilizing mutation as a stabilizing

Figure 7: Test set confusion matrix for cutoffs -0.4 and
0.4, where the ratio of accuracy to majority class is
maximized.

one, and vice versa, than we are of it mis-classifying
an inconclusive mutation. In this case we see that
for this cutoff range the model yields impressive mis-
classification rates of 2% for destabilizing to stabilizing
and 4% for stabilizing to destabilizing. Such low rates
of mis-classification across the inconclusive zone help
motivate these findings and suggest that this range is a
potentially good ∆∆G cutoff set.

On the other hand, another promising criterion for
optimal cutoff is be the ratio of accuracy (acc) to
majority class accuracy, ratio = acc

macc
, also displayed in

Table 2. For any acceptable model this value should be
greater than 1, with larger values being better. Figure 7
shows performance for a model with inconclusive range
[−0.4, 0.4] and a significantly higher ratio value than
the traditional cutoff

Conclusion and Future Work

As an extension on our prior work we were interested
in assessing the potential of a deep neural network
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for classifying the effects of mutations. We performed
a systematic search of the ∆∆G classification cutoff
ranges in order to assess the potential viability of a
deep neural network ternary classification approach to
predicting of mutation affects. Rather than simply
accept the general heuristic for classification boundaries
of stabilizing, destabilizing or inconclusive, we strove for
a more systematic approach. While our findings suggest
that the heuristic of -0.5 to 0.5 is not a poor choice by
any means, we proposed some compelling arguments for
choosing other ranges as boundary conditions for ∆∆G
values, namely it is most important to minimize false
positive and false negative rates on the ternary task,
and maximizing the ratio of accuracy to majority class
accuracy are both more important metrics to consider
besides accuracy.

For future work we plan to develop robust algorithmic
approaches to assess the likely cutoff ranges in ML-
based models. We are currently in the development of
an end-to-end differentiable approach to jointly learn
an optimal cutoff range alongside DNN parameters,
as opposed to relying on a parameter sweep as in
the current work. Also, expanding our data set with
additional mutation ∆∆G data – data for proteins with
multiple mutations – will likely enhance the DNN’s
learning and ultimately increase accuracy. We also
hope to expand our study into other machine learning
algorithms.
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Abstract
Decoy selection is the task of automatically

extracting near-native structures from an ensemble
of low-energy structures generated in silico by a
template-free method. Current research shows that
discriminating by energy misses near-native structures
and allows the inclusion of too many non-native struc-
tures. The predominant strategy is to ignore energy
and cluster structures by their similarity, offering the
top-populated clusters as prediction. In this paper we
show that energy can improve accuracy in decoy se-
lection when its inclusion is carried out under the en-
ergy landscape view. Specifically, we identify basins
in the energy landscape and demonstrate basin selec-
tion schemes to outperform clustering. The results are
promising and point to further directions of research
for improving decoy selection and decoy generation.

1 Introduction

The three-dimensional structure of a protein is
central to its biological activities in the cell. The native
structure to which the chain of amino acids constitut-
ing a protein molecule folds determines to which other
molecules the protein sticks and how stably it does
so [2]. With protein structure governing recognition
events, there is a growing need in the post-genomic
era for computational methods to predict native struc-
tures of millions of uncharacterized protein-encoding
gene sequences [1].

Template-free methods play an important role
in determining native protein structures [9]. They
operate in the absence of a template structure and
generate many low-energy structures (decoys) of a
given protein sequence under the umbrella of stochas-
tic optimization. Popular methods include Rosetta [6],
Quark [16], and others (e.g, based on evolutionary
computation [11, 12]). After generating decoys, one
needs to conduct decoy selection; the goal is to auto-
matically extract from the generated ensemble of de-
coys, those that are near-native. In a true blind pre-
diction setting, the true native structure is absent.

Decoy selection remains a challenging problem in
computational structural biology. Setting an energy

threshold either misses near-native structures or al-
lows the inclusion of too many non-native ones. The
predominant strategy is to organize decoys by their
structural similarity via clustering. The premise is
that structures most similar to others in a dataset are
more likely to be drawn from the region containing
the native structure. Once clustering has been per-
formed, the top k clusters, with common values of
k varying from 1 to 10, are typically offered as the
ones possibly containing the unknown native struc-
ture [8]. This strategy has varied success, and its util-
ity is tightly related to the quality of decoy generation
in the first place [8]. Recent, complementary lines of
research on decoy selection utilize machine learning
models trained on expert-constructed structural fea-
tures [10] or discriminate by protein-specific scoring
functions [5]. Currently, these lines of research suffer
from model transferability.

In this paper we show that energy is an important
aspect that can be leveraged to improve accuracy in
decoy selection. We show that the inclusion of energy
needs to be carried out in the context of the energy
landscape probed by the ensemble of decoys generated
by a template-free method. Specifically, utilizing spa-
tial data analytics, we identify basins in the energy
landscape and propose selection schemes that prove
superior to clustering. Our evaluation is stringent and
relies not only on the percentage of near-native struc-
tures contained in the top k basins or clusters, but on
the purity, which operationalizes the idea of minimiz-
ing the presence of false positives in what is offered
as prediction. The results are promising and point
to further directions of research not only for further
improving decoy selection but even the computational
methods generating decoys in the first place.

2 Method

A molecular energy landscape is a fitness land-
scape. A fitness landscape consists of a set X of points,
a notion N (X) of neighborhood, distance, or accessi-
bility on X, and a fitness function f : X → R≥0 that
assigns a fitness to every x ∈ X. The neighborhood
function N : X → P(X) assigns neighbors N (x) to
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every x ∈ X. In molecular modeling problems, points
x ∈ X correspond to structures of a molecule, and the
fitness function measures the internal energy of a struc-
ture. The concept of fitness landscapes originated in
theoretical biology more than eighty years ago [15] but
has since become a useful construction in many scien-
tific disciplines, from the physics of disordered systems
such as spin-glasses, molecular biology [3], character-
ization of optimization problems in AI [14], and the
broader study of complex systems [13].

A fitness landscape can be high-dimensional and
multimodal. It may contain many local structures,
such as basins and basin-separating barriers. In
molecular landscapes, a basin corresponds to a long-
lived, thermodynamically-stable or semi-stable struc-
tural state of a molecule [3]. The native state of a
protein is a basin, though it may not be the deepest
one due to artifacts in the current functions designed
to measure the internal energy of a protein structure.
For this reason, the focus of the rest of the activities
is on extracting basins from the landscape probed by
a decoy sampling method during decoy generation.

2.1 Elucidating Basins via Graph Embed-
dings of Landscapes

The notion of a basin is tied to a local, focal opti-
mum: a local optimum in the landscape is surrounded
by a basin of attraction, which is the set of points on
the landscape from which steepest descent/ascent con-
verges to that focal optimum. In molecular landscapes,
the focus is on local minima. In lieu of observing
a molecule rearranging itself (hopping between struc-
tures) and reaching a local minimum, one can enrich
the landscape with connectivity information to iden-
tify focal minima and their basins.

Consider an ensemble of decoys Ω generated by a
decoy sampling method. The decoys can be embedded
in a nearest-neighbor graph (nngraph) G = (V,E) as
follows. The vertex set V is populated with the decoys;
that is, V ← Ω. The edge set E is then populated
by inferring the neighborhood structure of the land-
scape. Given a selected distance function measuring
the distance between two decoys, each vertex u ∈ V is
connected to other vertices v ∈ V if d(u, v) ≤ ε, with ε
being a user-defined parameter. A small ε may result
in a disconnected graph in the presence of non-uniform
sampling of the landscape. This can be remedied by
increasing ε or the number of nearest neighbors of u.

Designing an effective distance function for
molecular structures remains an open problem. The
root-mean-squared-deviation (RMSD) is commonly
used. To remove differences due to rigid-body mo-
tions, the RMSD is reported after an optimal super-
imposition that returns the least RMSD (lRMSD) [7].
To reduce computational costs, the decoys can first be

superimposed onto some arbitrarily-chosen reference
one, and then only RMSD is used to determine the
distance between any two decoys to populate E.

The resulting nngraph can now be analyzed to
detect local minima. Let u ∈ V , and let v ∈ N(u),
where N(u) denotes the neighborhood of u. u is a
local minimum if ∀v ∈ V f(u) ≤ f(v). Each local min-
imum becomes a focal minimum of some basin. The
rest of the vertices are assigned to basins as follows.
First, each vertex u is associated a negative gradient
estimated by selecting the edge (u, v) that maximizes
the ratio [f(u)−f(v)]/d(u, v). Then, from each vertex
u that is not a local minimum, the negative gradient
is iteratively followed (i.e., the edge that maximizes
the above ratio is selected and followed) until a local
minimum is reached. Vertices that reach via this pro-
cess the same local minimum are assigned to the basin
associated with that minimum.

2.2 Characteristics of Basins for Selection
and Evaluation

For the purpose of identifying the basin that rep-
resents the native state among many others possibly
revealed by the above analysis, a detailed description
is needed in terms of basin characteristics that can
help discriminate among basins. We consider three:
size, depth, and persistence. Basin size refers to the
number of decoys assigned to the same basin. Basin
fitness/energy is measured via the fitness/energy of its
focal minimum. Basin persistence is a concept used in
spatial statistics in the context of filtering out basins
attributed to noise in fitness functions [4]. Specifically,
the persistence of a basin B is f(saddle)− f(B), where
f(B) refers to the fitness of B. A (pseudo-)saddle
is identified as a vertex u from which the iterative
process of following the negative gradient, described
above, leads to the focal minimum of B but has a
neighbor v with f(v) < f(u) from which the iterative
process leads a different local minimum. Effectively,
persistence measures how shallow a basin is. In spatial
statistics, a persistence threshold p thresh can be spec-
ified as a way of retaining only basins with persistence
above p thresh (merging those with lower persistence
into the surviving basins).

For the purpose of evaluation, two more charac-
teristics can be associated with each basin. The first
measures the extent to which a basin captures the na-
tive state. For a protein with a known native struc-
ture, all decoys with lRMSD within a user-set thresh-
old dist thresh can be deemed to be near-native (thus,
populate the native state). Given a basin B, n(B)
measures the percentage of near-native decoys in the
ensemble Ω that are in B. Effectively, this measures
the proportion of true positives. One can trivially in-
crease this by increasing the size of a basin. When
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filtering out basins by persistence, smaller basins get
merged into larger ones and can trivially increase the
proportion of true positives in the larger basins. How-
ever, what is more important in a selection strategy is
to identify basins with a low number of false positives.
For this purpose, we associate a purity p with each
basin and define it as the proportion of near-native
decoys relative to the size of a basin (thus, penalizing
large basins with many false positives).

Implementation Details We use the Structural
Bioinformatics Library (SBL) [4] to organize a decoy
ensemble Ω into basins. We initialize ε to be 1Å, and
increase the number of nearest neighbors (per the con-
formational analysis protocol in SBL) until the nn-
graph is connected. For the purpose of analysis, we
vary p thresh ∈ [1, 10], but uniformly on all test cases,
low persistence values ∈ [1, 3] result in better basins
(according to our evaluation metrics).

Experimental Setup Leader clustering is used as
the baseline; decoys are shuffled and then either form
a new cluster (becoming its representative) or are
assigned to the first cluster whose representative is
within εÅ. The dist thresh parameter for determina-
tion of near-native conformations is set on a per-case
basis, as there are difficult proteins on which Rosetta
does not get close to 3Å of the native structure. If
the lowest lRMSD (over all decoys), which we refer to
as min dist ≤ 1, dist thresh is set to 2. Otherwise,
dist thresh is set to the minimum value that results
in a nonzero number of near-native decoys populating
the largest-size cluster. Two basin selection strategies
are proposed and compared to leader clustering and
each-other. First, basins are sorted by their size, and
the top three basins are considered for selection. Al-
ternatively, basins are sorted by size, and the the top
ten basins are sorted by their energy; the top three
basins in this sorted order are then considered for se-
lection. The evaluation is based on the proportion of
true positives (n) and purity (p).

Twelve proteins of different folds and lengths have
been selected as test cases, listed in Table 1. They rep-
resent easy, medium, and difficult cases for Rosetta.
The Rosetta abinitio protocol is used to generate
decoys for each protein sequence. While Rosetta de-
velopers argue for a decoy ensemble to be between 10-
20K, we generate around 50, 000 decoys per protein so
that dataset size is not an issue for decoy selection.

3 Results

Two sets of results are related. First, we provide
visualization of the three top clusters and basins (un-
der each selection strategy) over the generated decoys.
Second, we provide a summary comparative analysis
that evaluates the three selection strategies.

Table 1: Testing Dataset
PDB
ID

Fold Length |Ω| min dist
(Å)

1ail α 70 53, 568 0.50
1dtdb α+ β 61 57, 839 0.51
1wapa β 68 51, 841 0.56
1tig α+ β 88 52, 099 0.60
1hz6a α+ β 64 57, 474 0.72
1c8ca β 64 53, 322 1.08
2ci2 α+ β 65 52, 220 1.21
1bq9 β 53 53, 663 1.30
1fwp α+ β 69 53, 133 1.56
1sap β 66 51, 209 1.75
2h5nd α 123 51, 475 2.00
1aoy α 78 52, 218 3.26

3.1 Visualizing Top Clusters and Basins

Fig 1 selects two test cases and shows decoys gen-
erated for each of them as two-dimensional dots, with
the x axis tracking the lRMSD of each decoy from
the known native structure, and the y axis tracking
the Rosetta score12 (all-atom) energy (measured in
Rosetta Energy Units – REUs). Decoys belonging to
a cluster or a group are colored in red, green, or blue,
so as to visualize the top three clusters and basins (un-
der each basin selection strategy).

Fig 1 indicates that the protein with known native
structure under PDB id 1dtb is a trivial case for decoy
selection, as the top three clusters capture the major-
ity of the near-native conformations. The top three
basins under each selection strategy capture similar
regions of the decoy space. The protein with known
native structure under PDB id 1fwp presents a more
difficult case. The top three clusters have many decoys
with large lRMSDs from the native (low purity). The
purity of the top three basins, when selecting by size
or selecting by size and energy, is much higher.

A detailed comparative visualization of the top
three basins in each basin selection strategy is shown
for four more proteins in Fig. 2. Fig. 2 shows that se-
lecting basins by size and then energy results in the
top three basins better discriminating against non-
native decoys. Even in cases that seem challenging
for basin selection (the proteins with native structure
under PDB ids 2ci2 and 1aoy), sorting basins both by
size and energy results in purer basins. These graphi-
cal results suggest that not ignoring focal energy in the
selection scheme may prove promising, and the com-
prehensive analysis over all test cases, detailed below,
supports this conclusions.

3.2 Summary Comparative Analysis

Table 2 compares the three selection strategies as
follows. It considers the scenario where G1−x groups
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1dtdb 1fwp

Figure 1: Visualization of the three largest clusters
(top panel) versus the three largest basins (middle
panel) and the three largest and lowest-energy basins
(bottom panel) for two selected proteins with known
native structures under PDB ids 1dtdb and 1fwp. De-
coys are plotted by their lRMSD from the native struc-
ture and their Rosetta score12 all-atom energy.

of decoys are offered as prediction in a decoy selec-
tion setting. Based on the selection strategy, a group
indicates a cluster or a basin. For instance, C1−x indi-
cates that the top (largest) x clusters are selected and
evaluated. Similarly, B1−x indicates that the top x
basins (under each ordering, size only, or size and en-
ergy) are selected and evaluated. Table 2 limits x = 3
and shows the percentage of near-native conformations
and the purity in each setting; note that the purity of
G1−x is determined by merging all decoys in G1−x. In
addition, the relative size of each G1−x (proportional
to |Ω|), is shown for reference.

Table 2 allows reaching a few conclusions. First,
there are proteins on which a clustering-based selection
strategy does well in terms of purity (1dtdb, 1wapa,

1hz6a, size 1hz6a, size+energy

1sap, size 1sap, size+energy

2ci2, size 2ci2, size+energy

1aoy, size 1aoy, size+energy

Figure 2: Visualization of the three largest basins
(left) and the three largest and lowest-energy basins
(right) for four more selected proteins (indicated by
the PDB id of their native structure). Decoys are plot-
ted by their lRMSD from the native structure and their
Rosetta score12 all-atom energy.

1tig, and 2ci2). On these 4 cases, at least one basin
selection strategy does similarly well. On 7/12 cases,
clustering is outperformed by both selection strategies
in terms of purity (1ail, 1hz6a, 1c8ca, 1bq9, 1fwp,
1sap, 1aoy), particularly when restricting to the top
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or top two clusters/basins. By achieving higher pu-
rity, the basin selection strategies confer higher likeli-
hood that drawing at random from them will result in
a near-native decoy (rather than a false positive). The
results in Table 2 also show that considering energy in
the basin selection strategy does not result in lower pu-
rity; instead, in 8/12 cases, selecting by both size and
energy results in higher or same purity over selecting
only by size (B1−3 in 1ail, 1dtdb, 1c8ca, 2ci2, B1−2

and B1−3 in 1bq9, B1−2 and B1−3 in 1hz6a, B1−2 and
B1−3 in 1sap, and B1−2 and B1−3 in 1aoy).

4 Conclusion
The results presented here suggest that basins in

the energy landscape probed by a template-free struc-
ture prediction method hold promise for automatically
detecting near-native structures of a protein. While
energy is often ignored in favor of structural similarity
in decoy selection, the presented work indicates that
energy can be reliably employed to organize structure
data into basins. The results support that selection
of basins is more effective than selection of clusters
for decoy selection. Considering not just the size but
also the energy of a basin is more effective in yield-
ing high-purity basins. This is an important contri-
bution of this paper, as it suggests a landscape-based
way of selecting decoys that lowers the number of false
positives (non-native decoys) reported. The presented
work opens many lines of enquiry regarding probing
additional characteristics of basins for selection and
extending the analysis to landscapes of reduced dimen-
sionality, as well as beyond structure prediction.
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Table 2: Comparison of cluster- and basin-selection strategies: The top G1−x groups of decoys selected from each
selection strategy, with x limited to 3, are analyzed. Recall that C1 refers to the top cluster selected by the cluster-
based strategy, whereas B1 refers to the top basin selected by a basin-based strategy. When analyzing B1−x, the
top x basins are merged. The analysis lists the percentage of near-native decoys (n), the purity (p), which is the
proportion of near-native decoys relative to the size of a group), and the relative size (s, which is proportional to
|Ω|) of each group (cluster or basin).

Cluster Size Basin Size Basin Size + Energy
C1 C1−2 C1−3 B1 B1−2 B1−3 B1 B1−2 B1−3

1ail (0.5Å)
n:12.1% n:93.2% n:93.2% n:47.2% n:48.4% n:48.4% n:1.2% n:48.4% n:61.9%
p:10.3% p:45.2% p:34.4% p:100% p:52.8% p:44.8% p:2.8% p:52.8% p:58.6%
s:7.4% s:13.1% s:17.5% s:3% s:5.8% s:6.9% s:2.8% s:5.8% s:6.7%

1dtdb (0.51Å)
n:99.5% n:99.5% n:99.5% n:85.3% n:95% n:95% n:85.3% n:95% n:95.9%
p:99.6% p:95% p:91.7% p:99% p:98.9% p:94.8% p:99% p:98.9% p:98.9%
s:22.8% s:23.9% s:24.7% s:19.7% s:21.9% s:22.9% s:19.7% s:21.9% s:22.1%

1wapa (0.56Å)
n:98.1% n:98.1% n:98.1% n:76.8% n:81.8% n:86.3% n:76.8% n:79.1% n:84.1%
p:98% p:88.2% p:81.4% p:98.9% p:98.8% p:98.7% p:98.9% p:98.9% p:98.8%
s:10.2% s:11.3% s:12.3% s:7.9% s:8.4% s:8.9% s:7.9% s:8.2% s:8.7%

1tig (0.6Å)
n:50.4% n:93.5% n:93.5% n:28.8% n:40.1% n:50.2% n:2.7% n:31.5% n:42.8%
p:94.5% p:94.8% p:80.2% p:100% p:99.6% p:99.7% p:88.4% p:98.9% p:98.8%
s:7.9% s:14.9% s:17.6% s:4.4% s:6.1% s:7.6% s:0.5% s:4.8% s:6.5%

1hz6a (0.7Å)
n:0.06% n:9.4% n:9.4% n:55.5% n:55.5% n:55.5% n:55.5% n:55.6% n:55.7%
p:0.07% p:7.1% p:5% p:85.5% p:50% p:39.3% p:85.5% p:66.6% p:55.7%
s:8.7% s:15% s:21.1% s:7.3% s:12.6% s:16% s:7.3% s:9.4% s:11.3%

1c8ca (1.1Å)
n:31.3% n:31.3% n:75.7% n:1.9% n:29.3% n:29.8% n:1.7% n:29.2% n:32.7%
p:7.8% p:6.6% p:13.9% p:4.2% p:36.1% p:26.5% p:10.1% p:55.2% p:53.4%
s:17.8% s:21% s:24.2% s:2% s:3.6% s:5% s:0.8% s:2.3% s:2.7%

2ci2 (1.2Å)
n:3% n:5.5% n:7.9% n:0.3% n:0.3% n:0.3% n:0.4% n:0.7% n:1.1%
p:100% p:95.4% p:95.6% p:47.2% p:23.6% p:15.9% p:100% p:68.9% p:76.9%
s:0.7% s:1.3% s:1.9% s:0.1% s:0.3% s:0.4% s:0.1% s:0.2% s:0.3%

1bq9 (1.3Å)
n:0% n:0% n:0% n:60% n:60% n:64% n:60% n:64% n:64%
p:0% p:0% p:0% p:15.5% p:7.9% p:5.9% p:15.5% p:9.2% p:6.5%
s:1.1% s:1.9% s:2.5% s:0.2% s:0.4% s:0.5% s:0.2% s:0.3% s:0.5%

1fwp (1.6Å)
n:99.9% n:99.9% n:100% n:5.6% n:9.1% n:10.7% n:3.5% n:3.7% n:9.3%
p:20.2% p:19.3% p:18.7% p:97.7% p:97.2% p:84.2% p:96.4% p:58.4% p:77%
s:3.7% s:6.1% s:7.5% s:0.3% s:0.5% s:0.7% s:0.2% s:0.4% s:0.7%

1sap (1.75Å)
n:0% n:61.9% n:72.1% n:0% n:32.4% n:51.4% n:32.4% n:51.4% n:51.4%
p:0% p:7.2% p:6.8% p:0% p:9.3% p:11.5% p:20.2% p:20% p:18.2%
s:12.5% s:19.9% s:24.4% s:4.4% s:8.1% s:10.3% s:3.7% s:5.9% s:6.5%

2h5nd (2.0Å)
n:0% n:0% n:34.2% n:0% n:0% n:16.1% n:0% n:0% n:16.1%
p:0% p:0% p:27% p:0% p:0% p:13.4% p:0% p:0% p:13.7%
s:0.2% s:0.4% s:0.5% s:0.3% s:0.4% s:0.5% s:0.1% s:0.4% s:0.5%

1aoy (3.26Å)
n:0% n:0.02% n:0.02% n:0% n:0.2% n:0.2% n:0.05% n:0.23% n:0.3%
p:0% p:0.13% p:0.09% p:0% p:4.9% p:3.4% p:3.5% p:6.9% p:6.1%
s:0.9% s:1.48% s:2.1% s:0.2% s:0.4% s:0.6% s:0.2% s:0.4% s:0.5%
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Abstract 

 
Heart failure is one of the diseases that may require 

frequent physician visit and checkups. Automatic 

monitoring of specific biomedical signals and using signal 

analysis techniques, one can assess the patient health 

condition at his/her own residence and/or work in real 

time.  

In this paper, classification of myocardial infraction 

condition was diagnosed using measurement from several 

biomedical sensors by rule based hierarchal decision fusion 

technique to provide a biomedical heart health assessment 

technique. The proposed approach combined the progress 

in signal analysis, sensor data fusion, and rule based simple 

adaptive threshold decision to process the data in real time 

and assesses the patient heart condition with low false 

alarm rate.  

Data from ECG, blood pressure (BP) and pulse 

oximeter (SpO2) have been used for analysis and diagnosis. 

Testing using biomedical data form 150 persons were 

carried out with sensitivity, specificity and accuracy were 

94.92%, 92.31% and 93.33% respectively. The Physoinet 

ECG database was used for evaluation of the methods. 

Keywords— Myocardial infarction, data fusion, simple 

adaptive threshold method, blood pressure, SpO2. 

 

1      INTRODUCTION  

 
Given the high percentage of current elderly population 

prone to hypertension and risky heart conditions (such as 

heart attack), monitoring as well as analyzing real time 

biomedical signals are needed to avoid unnecessary visits 

to physician or emergency room.  This would save time, 

money, and the hassle of traveling to a physician due to 

false alarm conditions.  

During myocardial infarction, tissue death due to lack of 

oxygen can eventually contribute to severe consequences if 

supply of oxygen is not restored within 90 to 120 minutes 

[1]. Many researchers studied heart disease classification 

by improving Electrocardiogram signal analysis. In [2], a 

method of combining ECG signal from Lead-I and arterial 

blood pressure to detect premature supraventricular and 

ventricular contractions (PSC and PVC) which are pre-

cursor of serious arrhythmia and other heart diseases. The 

use of information from one lead gives only heart rate  

 

 

which is not sufficient to detect complex heart diseases. A 

self-administered functional health infrastructure for data 

collection and storage using remote monitoring of vital 

signs such as ECG, blood pressure, respiration, movement, 

etc. has been proposed in [3]. This work was limited to 

collection as well as storage of biomedical data and didn’t 

involve processing the data in real time and had to deal 

with the challenge of data security, storage, and retrieval.  

With same limitation, [4] used stand-alone medical 

wireless (or modified to become wireless) devices/sensors 

to a cell phone using blue tooth communication.   

 Wavelet transform was used to detect QRS complex 

(main three deflection in every ECG wave) [5]-[6]. 

Rothwell et al. showed that the blood pressure variability 

can be used as an independent variable for strong predictor 

of ischemic stroke ,even after exclusion of previous stroke 

patients it provided prediction of myocardial infarction, 

angina, and heart failure[7] .With the invent of machine 

learning algorithms, different feature types were used in 

order to recognize abnormalities in ECG automatically. A 

common shortcoming of all these approaches is that they 

are computationally extensive and didn’t deal with 

myocardial infarction detection [8] - [14]. Some recent 

approaches were based on interval length, amplitude of 

QRS complex, etc. for pattern recognition but their ability 

to detect useful patterns decreased when the morphology of 

the ECG changed [15] - [16]. Currently, most of the 

methods used to detect potential heart attack scenarios 

were done by a physician using physical examination 

(heart rate and chest pain) with ECG or cardiac markers 

from specific blood tests [17]. Research has been done to 

perform automatic detection of heart arrhythmia or 

comparatively simpler heart rhythm related abnormality by 

analyzing the ECG signal but myocardial infarction 

detection needs complex algorithm and additional 

information from complimentary biomedical sensors to 

perform robust diagnosis decisions.  

In this paper, the goal is to use heterogeneous 

complimentary biomedical sensors to automatically detect 

symptoms of myocardial infarction. This automated 

detection system should help the patient monitor his/her 

heart condition remotely without rushing to hospital when 

it is not necessary. In available research, arrhythmia or 

irregular beat detection were done using ECG signal, 

which were sufficient to provide heart rate.  This work 

goes beyond relying on heart beat detection only. It rather 

attempts to detect/predict the symptom of heart attack. To 

accomplish this goal, blood pressure and pulse Oximeter 
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measurements are proposed to complement the information 

provided by the ECG signals. 
 

2      PROPOSED HEART ATTACK 

PREDICTION TECHNIQUE 

 
For a potential MI patient the elevation of ST segment 

(flat isoelectric section of the ECG between the end of the S 

wave and start of T wave) is one of the first symptom which 

comes with chest pain [18]. Another sign for MI can be 

pathological Q wave which once starts to be visible and 

doesn’t go away. The ECG findings of a pathological Q 

wave include a Q wave with magnitude of > 25 percent of 

QRS magnitude. High blood pressure (BP) has consistently 

been associated with an increased risk of MI.Also the 

control of hypertension with appropriate medication has 

been shown to reduce the risk of MI significantly [19].To 

develop a technique that has low probability of false alarms 

for MI detection, Figure 1 shows a conceptual block 

diagram of the whole process which includes data 

acquisition, processing and decision making. Hemodynamic 

parameters regulating the cardiovascular system are 

strongly correlated [20]. 
 

 

Figure 1: Conceptual Block diagram of the ECG processing and decision 
recommendation 

 

Figure 2: a). RR interval from ECG. b) PP interval from pulse pressure c) 

correlation between RR interval and PP interval. 

Figure2 shows an example of such correlation, where RR 

interval (the time between two consecutive R waves in 

ECG measurement) from ECG and pulse pressure interval 

are present on the left and correlation between those are on 

the right. 

2.1      ECG Sensor and Processing 

 
MIMIC database [21] was used for testing; this database 

contains multi-parameter recordings obtained from bedside 

recording of patient. The database includes arterial blood 

pressure, ECG signal and finger PPG signal with each 

recording duration is 10 second with average 10 cycle. The 

systole and diastole are covered 60mmHg to 150 mmHg 

whereas the ECG was recorded with 500 samples/second 

with 12-bit resolution [21]. A study using MRI to diagnose 

myocardial infarction has shown that more emphasis on ST 

segment depression could greatly improve the yield of the 

ECG information in the diagnosis of myocardial infarction 

(sensitivity increase from 50% to 84%) [23]. Pathological Q 

wave indicates prior or current myocardial infarction, after 

QT prolongation (measure of the time between the start of 

the Q wave and the end of the T wave), hyper acute T 

waves are the earliest-described electrocardiographic sign 

of acute ischemia, preceding ST-segment elevation [23]. A 

Matlab GUI was developed for convenience, to determine 

the symptoms for myocardial infarction which runs through 

the ECG signal beat by beat and extracts all necessary 

features. 

 Maintaining all required criteria, bi-orthogonal wavelet 

is the most common choice for ECG signal analysis [22] 

.Using temporal feature conservation ability of bi-

orthogonal wavelet transform, the features such as PQRST 

peak and ST segments can be calculated. Wavelet transform 

with features such as scale, transition, mother wavelet, 

orthogonality can preserve both time and frequency domain 

information at the same time with certain accuracy .The 

shape of mother wavelet is very significant because there 

should be maximum correlation between our signal of 

interest (ECG) and mother wavelet. Using bi-orthogonal 

wavelet transform, the signal can be decomposed into 4 

scales ranging from 21 to 24. The larger scale relates to 

lower frequency and smaller scale relates to higher 

frequency components. Most of the energy of QRS 

complex is found using 23 and 24 on the other hand the 

noises such as electrical interference, muscle activity etc 

remain in 21 and 22 level.  

 

2.2      Blood Pressure and Pulse Oximeter 

System 

 
BP indicates the force of blood through the heart, 

systolic pressure is when the when the blood ejects from 

atrium or ventricle and diastole pressure is when atrium or 

ventricle fills up with blood. On the other hand, the features 

available in ECG also signify the contraction and expansion 

of atrium & ventricle. Pressure generated by heart, duration 

of systole, mean arterial pressure, pulse wave velocity, 

pulse wave reflection and stiffness of the arterial vessels 
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influence the blood pressure. So, not only the systole-

diastole pressure point but also continuously recorded blood 

pressure waveform should be analyzed for appropriate 

representation of cardiac shock. In treated hypertensive 

participants, the heart rate for systolic blood pressure with 

potential myocardial infarction and stroke are less 

pronounced than in participants without treated 

hypertension [24].Hypertensive heart disease is the leading 

cause of death from high blood pressure. Hypertension has 

been shown to be related to risk factors for kidney failure, 

heart failure, and myocardial infarction and stroke [25]. 

 Pulse Oximeter is a simple and low cost sensor which 

provides measurement of oxygen level in blood. A 

percentage over 95 indicates healthy body Oxygen 

saturation. It can be lower than 93% due to respiratory 

disease or congenital heart disease. Therefore,   monitoring 

blood saturation can be used as an indication of one of those 

severe cardiovascular conditions. From pulse Oximeter 

sensor, the irregular heart bit as well as reduction of oxygen 

saturation in blood can be observed. Though oxygen 

saturation is commonly used for monitoring critical patient, 

in  a study [26] baseline SpO2 provided reliable 

information establishing the diagnosis and severity of acute 

heart failure as a complication of acute myocardial 

infarction with a warning cut-off value of <93 percent. The 

use of pulse oximetry for diagnosis purposes may be 

recommended when managing patient with risk of acute 

myocardial infarction [26]. 
 

2.3      Decision Fusion from Sensor 

 
A data fusion system must perform whether the data 

presents different aspect of same event, its redundancy and 

mismatch. Two mainstream data fusion techniques are, 

rule-based decision making and fuzzy logic decision 

making. Here we adopted the rule based approach by taking 

into account measurements of ECG, blood pressure and 

SpO2, these are fused to get more accurate estimation of 

actual patient parameters and status. Fusion of multimodal 

event can be modeled as multidimensional process as 

below: 

O(m) = [A(m) B(m) S(m)]   (1) 

Where m denotes the discrete time and A(m) , B(m) and 

S(m) point to ECG measurement, Blood pressure 

measurement and SpO2 level respectively in equation (1). 

 A(m) = (a(m), a(m+1), a(m+2), a(m+3)..…… ) (2) 

 B(m) = (b(m), b(m+1), b(m+2), b(m+3)..…… ) (3) 

 C(m) = (c(m), c(m+1), c(m+2), c(m+3)..…… ) (4) 

In equation (2) a(m) presents ECG measurement at (m)th 

instant of time, b(m) refers blood pressure and c(m) the 

SpO2 at mth instant respectively by equation (3) and (4). 

 A(m) = [a1(m), a1(m+1), a1(m+2), .. .. ),a2(m), a2(m+1), 

a2(m+2), .. .. )]      (5) 

Here, a1(m) and a2(m) are two parameters of ECG features 

extracted from processed ECG measurements at mth instant 

in equation (5). 

B(m) = [b1(m), b1(m+1), b1(m+2), .... ),b2(m), b2(m+1), 

b2(m+2), .. .. ) ,b3(m), b3(m+1), b3(m+2), .... )]  (6) 

Here, b1(m) , b2(m) and b3(m) are systolic , diastolic and 

mean pressure extracted from patients’ blood pressure 

measurement as in equation (6). 

 C(m) = [c1(m), c1(m+1), c1(m+2), .. .. )]   (7) 

Here, c1(m) presents the SpO2 measurement at mth  as in 

equation (7). Multiple measurements of same data can be 

fused to yield single estimation which get rid of the erratic 

measurement which is wayward than the average of other 

data. Each feature from ECG measurement is analyzed 

from several windows to use the competitiveness of 

collected data. Another aspect of fusing is multimodal or 

integration of overlapping data. In this case, each data 

presents status of part of the total block. The different 

sensors also provide complementary measurement. For 

example, heart rate can be achieved from ECG as well as 

SpO2.  

 
Figure 3: Hierarchical level for data fusion 

 Three hierarchical levels were used for data fusion as 

mention in above figure. They are signal level data fusion, 

feature level data fusion and decision level fusion. Signal 

level considers the individual signal which provides similar 

property of an event to deduce parameter. With data which 

doesn’t provide similar property can be used in feature level 

fusion to come up with a feature vector. Decision level 

fusion is performed at the top level with either raw data or 

feature vector to make higher level decision. A rule based 

decision making implements series of yes/no to check 

whether a particular condition is existing or not. Our 

approach is more towards rule based approach and also 

makes use of the prioritizing aspect of fuzzy logic too. Our 

objective is to produce an early warning heart attack score 

(EWHAS) to predict heart attack conditions  before a 

patient is admitted in a hospital. A new index is produced 

that uses information from only the sensors needed for heart 

attack prediction such as ECG, BP and oxygen saturation 

are included. 

During MI while the cell death occurs, the ST segment 

of the ECG gets elevated which is a sufficient diagnosis to 

start treatment [23]. Pathological Q wave indicates an 

absence of electrical activity in an area of heart that can be 

a result of minor myocardial infarction. After QT 

prolongation, hyper acute T waves are the earliest-described 

electrocardiographic sign of acute ischemia [26]-[27]. 

Hypertension, according to Framingham heart study 

database, is the most common cause of heart failure [28]. 

Hypertension increases the risk of heart failure four to eight 
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fold [29]. A study suggests baseline SpO2 lower than 93% 

can be considered a sign for acute heart failure (AHF) due 

to myocardial infarction and the lower the SpO2 value, the 

higher the probability and severity of AHF [30]. Patients 

with low (<90%) SaO2 had higher rates of worsening heart 

failure at 1 to 6 months and also higher rates of mortality, 

SBP <120 mm Hg was associated with a statistically 

significant increase in mortality at 1 to 6 months, so 

combined low SaO2 and systolic blood pressure (SBP) had 

a particularly strong prognostic implication [31]. 
 

Table 1: Feature weight distribution 

Features/Measures 
Feature 

weight 
Feature 

weight 

abnormal Q wave /Inverted 

or hyper acute T Wave 
1 

 

abnormal QT interval 2 
 

ST_Depressions/ST 

elevation 
4 

 

Hypertension (systolic) 1 (140 -159) 2 (>160) 

Hypotension (systolic) 1 (105-90) 2 (< 90) 

oxygen saturation 1 (93 to  88) 2 (<  88) 

  
 A sensitivity of 50% and specificity of 97% for AMI 

were achieved with only the currently applied ST-segment 

elevation criteria while adding the ST-segment depression 

with elevation increased sensitivity for detection of AMI 

from 50% to 84% [23]. So the highest weight was given to 

ST-segment elevation and depression. In a number of 

epidemiological studies, QT interval prolongation has been 

associated with an increased risk of being markers of 

ventricular hypertrophy or myocardial ischemia [32]. This 

resulted in lower weightage of QT interval. After minor 

myocardial infarction, people with consistent abnormal Q 

wave with symptoms such as ST segment change are at 2.7 

fold excess risk of coronary death compared to those who 

have normalized ECG [33].  When an electrocardiogram 

shows persistent T wave inversion along with ST elevation, 

further ischemia may make the T wave inversion more 

pronounced. The lower weight given by the decision system 

to abnormal Q and T waves reflects their secondary 

importance when compared to changes in the ST segment 

[34].  
Table 2: Local threshold for ECG features  

 
High blood pressure increases the likelihood of MI, while 

excessive drop of blood pressure will hamper coronary 

perfusion severely introducing new acute coronary events 

[34].Local decisions of individual sensors are fused by first, 

for each feature of ECG, care is taken to ensure that an 

abnormality in a feature appears at least in two consecutive 

windows of ECG data to avoid false alarm. The final ECG 

local decision consists of adding the weighted features as 

shown in table 2.  Second, the local decisions made by all 

the sensors are fused to provide a global and final decision.  

 

 
Figure 4: Flowchart for algorithm steps. 

 

The rationale of the global decision uses the fact that prior 

research reveals ST level is highly correlated with potential 

heart attacks. However, relying on ST alone will not 

prevent false alarm from occurring [23].  Table 1 contains 

the weight assigned to different features used by the 

decision system. While features from ECG are checked, the 

weight from extracted features are saved into memory until 

one  finds any relevant reading beyond threshold from 

blood pressure or oxygen saturation to confirm the potential 

alert from ECG. Figure 4 provide a flow chart for automatic 

monitoring and detection of heart health assessment.  

3      Biomedical data analysis  

Testing of the proposed index system was done using 

biomedical data from 150 patients from MIMIC database, 

by extracting necessary features for myocardial infarction. 

The measurements are classified later using simple adaptive 

threshold method. A Matlab GUI was developed to process 

and display relevant features/information forms the 

different sensors.  In the raw ECG wave, the presence of 

baseline wander and high frequency noise was evident. 

Two median filters have been used to remove of the 

baseline wander. The first median filters cancel the 

prominent QRS complex and second median filter cancel P 

peak. 21 to 24 level bi-orthogonal wavelet transform helps to 

reduce high frequency noise. Understandably 24 levels have 

been picked to extract R peak of ECG signal. To get an idea 

about iso-scale line (ISO) and ST segment several other 

points on ECG have to be extracted. P-point with K-point 

constituted ISO line and J-point with T-point constructed 
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ST segments. Using the K and P point, the isoelectric line 

(ISO) can be determined and using J and T point the ST 

segment can be determined. If 95% of the beat shows ST 

elevation, a conclusion can be drawn about accurate ST 

elevation detection. ST depression and pathological Q wave 

of an ECG signal can be determined.  

 

 

Figure 5: Temporary ST Elevation in first two beats creating a false alarm. 

Sometimes, ST elevation or depression or pathological Q 

wave emerge from ECG signal but it does not stay for long. 

It is necessary to calculate information from each beat and 

compare whether the incident is consistent throughout the 

ECG signal of just a onetime deflection. In figure 5, an 

example is shown where the ST elevation happened 

temporarily but it can be concluded as a false symptom of 

MI. 
Table 3: Threshold for decision fusion 

 
The system also takes in to account Blood pressure 

measurements and Oximeter readings to check whether the 

readings are normal or abnormal. Such additional 

information can provide significant insight about the 

conformity of myocardial infarction.In table 3, the 

thresholds for decision fusion have been provided. Oxygen 

saturation decreases with the increase in severity of MI 

condition and to compensate the ischemic region of heart, 

heart rate increases as well [28]-[34], on the other hand 

increase in systolic blood pressure directly relates to risk of 

MI, stroke and even mortality [24] with the risk getting 

higher with pressure getting in to different stage of 

hypertension or hypotension. Thus the threshold values are 

set similar way to the chronological importance of the event 

occurs at onset of MI or potential MI. Here, measurement 

of blood pressure, oximeter are denoted as c_bp and c_ox, 

respectively. Also features from ECG such as ST 

elevation/depression, hyper acute T wave and prolonged Q 

wave are denoted by e, f and g, respectively.  
 

4      Performance evaluation 

Four common performance measures have been used to 

assess the performance of the proposed automatic MI 

monitoring system: specificity (true negative rate), 

sensitivity (true positive rate), accuracy, and predictive 

accuracy.  
Table 4: Count of performance measures 

Type 

TP 

(True 

positive) 

FN 

(False 

negative) 

TN 

(True 

negative) 

FP 

(False 

positive) 

ECG single 

feature 
46 12 62 30 

Fusion of all 

sensor 
56 3 84 7 

 
Table 5: Assessment based on performance measures 

Measures 
Use multi 

sensors 

Using 

only ECG 

Performance 

improvement 

Sensitivity 94.92% 79.31% 15.60% 

Specificity 92.31% 67.39% 24.92% 

Accuracy 93.33% 72.00% 21.33% 

Predictive 

value (positive) 
88.89% 60.53% 28.36% 

Predictive 

value  (negative) 
96.55% 83.78% 12.77% 

Accuracy measures the probability of correctly 

diagnosed both diseased and non-diseased persons in the 

entire population used for testing. Positive predictive value 

is probability of having positive detection of a diseased 

person among all the positive result (including false 

positive result) and negative predictive value is probability 

of having correct negative detection of a  healthy  person 

among all the negative result (including false negative 

result).A population of  150 persons at rest   has been 

analyzed. The relevant data was obtained from physionet 

database [21]. The performance of the proposed technique 

is summarized in table 4 and 5. As shown in Table 5, with 

only the ECG information, the decision algorithm is prone 

to false negative and false positive which keeps the 

sensitivity and specificity lower than acceptable range. 

However, with the support of blood pressure and oximeter 

sensor, the false negative and false positive count reduces 

and sensitivity and specificity improve.  
 

5      CONCLUSIONS AND FUTURE WORK 
 

In this paper, the concept of using multiple 

complementary biomedical sensors was proposed and 

applied to MI disease detection. The performance 

evaluation using 150 patients has shown significant 

improvement in detecting MI with lower false alarm rate 

when the proposed technique is used.  Similar concept will 

be used in the future to tackle diseases such as brain stroke. 

A pre-requisite for proper use of heterogeneous multi 

biomedical sensors is the ability to collect all the sensors 

data at the same time.  Toward this goal, a stand-alone 
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device that collects such data, perform real time diagnosis, 

and communicate diagnosis results to the appropriate 

personnel/facility as need is being developed.  
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Abstract

Human Phenotype Ontology (HPO) is a recently
introduced standard vocabulary for describing disease-
related phenotypic abnormalities in human. Since
experimental determination of HPO categories for hu-
man proteins is a highly resource-consuming task,
developing automated tools that can accurately pre-
dict HPO categories has gained interest recently. In
our previous work, we developed PHENOstruct, an
automated phenotype prediction tool that uses input
features generated from heterogeneous data sources in-
cluding standard bag-of-words features extracted from
biomedical literature. In this work, we introduce novel
co-mention features which are based on co-occurrences
of protein names and HPO terms within a specified
span of text. Our experimental results indicate that
utilizing co-mentions significantly improves the overall
performance and that the most effective span is the
paragraph-level. This is the first study that uses
a knowledge-based approach for generating literature
features for the task of automated protein phenotype
prediction. These findings have implications for practi-
tioners interested in developing automated biocuration
pipelines for phenotypes.

1 Introduction

Phenotypes can be described as any observable char-
acteristics of an organism which have fascinated re-
searchers’ interests since the relationship between a
gene and its phenotypic manifestation was discov-
ered [15]. The Human Phenotype Ontology (HPO)
provides a bioinformatics resource which offers a frame-
work for the analysis of phenotypic abnormalities as-
sociated with human disease [11]. HPO was origi-
nally populated based on databases, such as OMIM
(Online Mendelian Inheritance in Man) [6], which
contain information about rare diseases. Each single
protein is linked to a set of HPO terms based on
the diseases caused by mutation to the corresponding
genes. Currently, only a small portion of human

proteins (about 3,500) have HPO annotations, and
researchers believe there are more genes related to
human diseases (P. Robinson, personal communication,
July 12, 2014). Manually annotating proteins with
HPO categories through wet-lab experiments and/or
clinical studies is a highly-resource-consuming task, and
over the last few years there has been a growing interest
in developing automated tools to predict protein-HPO
term annotations [10, 12, 13, 19]. In fact, automated
protein-HPO term prediction was one of the tasks in
the recent CAFA challenge [7].

The HPO is composed of independent sub-ontologies
that describe various aspects of phenotypes [11]. The
main sub-ontology is Phenotypic abnormality and it
describes clinical abnormalities. The Mode of inheri-
tance sub-ontology describes phenotypes according to
inheritance patterns and contains terms such as Au-
tosomal dominant. The Mortality/Aging sub-ontology
similarly describes the age of death and contains terms
such as Neonatal death or Sudden death. Finally, the
Clinical modifier sub-ontology is composed of terms
such as Incomplete penetrance, and describes typical
modifiers of clinical symptoms [11]. Throughout this
paper, we use the terms Organ, Inheritance, and Onset,
for referring to the Phenotypic abnormality, Mode of
inheritance and Clinical modifier, respectively. Within
each sub-ontology, categories are arranged in a Directed
Acyclic Graph (DAG) structure.

In our previous work, we developed
PHENOstruct [10], which is the first computational
method for automated prediction of protein-HPO
terms. It uses a Structured Support Vector
Machine (SSVM) model for predicting hierarchically
consistent HPO labels. PHENOstruct employs several
heterogeneous data sources as input: protein-protein
interactions, disease variants, experimentally validated
functional annotations, and biomedical literature, and
uses protein-HPO term annotations extracted from the
HPO website as the class labels. PHENOstruct used
simple Bag-of-Words (BoW) features obtained from
the biomedical literature in which all words occurring
in the sentences that contain protein names are used as
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features. However, this is a knowledge-free approach
in which information on actual phenotypes mentioned
in the literature is not utilized.

Over the last few years, there have been several other
automated protein-HPO term prediction tools [10, 12,
13, 19]. Notaro et al. [13] proposed a two-step method
that consists of a flat learning in the first step and a hi-
erarchical combination of the predictions in the second
step. Valentini et. al. presented a novel Hierarchical
Top-Down algorithm that assigns a single classifier to
each HPO term and based on the hierarchical structure
of DAG, it can correct the predictions [19]. Moreover,
Notaro et al. proposed an algorithm that exploits the
information from the ontology terms which specifies the
phenotype information related to each human gene [12].
However, none of these methods use literature as their
input while PHENOstruct extracts literature features
using a knowledge-free approach (i.e. BoW) as opposed
to a knowledge-based approach in which phenotype
information is also considered.

Undoubtedly, the most comprehensive resource on bi-
ological findings, including disease-related phenotypes,
is the biomedical literature. Therefore, extracting
bio-entities from literature and linking them to bio-
ontologies such as HPO has attracted interest within
the text mining community recently [5]. This approach
has high potential for exploiting the data from a
variety of patient reports, case studies, and controlled
trials [5]. In a related study, GOstruct 2.0 [9] utilized
a natural language processing (NLP) pipeline to suc-
cessfully exploit information on protein function (i.e.
Gene Ontology or GO terms [1]) from the literature.
Similarly, Funk et. al. [4] conducted a comprehensive
study on evaluating the usage of the literature feature
for the task of protein-GO term prediction. They, in
addition to simple BoW features, extracted protein
names and GO terms co-mentions (co-occurrences of
protein names and GO terms within a short span of
text) from biomedical literature, and demonstrated the
utility of a knowledge-based approach for that task.
Furthermore, in our previous work that uses the BoW
model with PHENOstruct, we found that the majority
of the most important tokens extracted from literature
(i.e. the tokens that were assigned the highest weights
in the trained SSVM) consist of names of proteins,
genes, and diseases [10]. This suggested that applying a
knowledge-based approach in extracting features would
be more effective for phenotype prediction. Moreover,
co-mentions have the added value that they are easy to
verify by a human curator [10].

In this work, we conduct the most comprehensive
evaluation of extracting literature features for the
task of protein phenotype prediction. We use a
knowledge-based approach and extract protein-

phenotype co-mentions (co-occurrences of protein
names and HPO terms within a specified span of
text) from an extremely large collection of biomedical
literature. Using the various co-mention features as
input to PHENOstruct, we demonstrate the utility
of this approach for the task of automated protein-
HPO term prediction. Outcomes of this study have
implications for the bio-curation community as well
as text mining practitioners interested in utilizing
literature for protein phenotype prediction.

The rest of the paper is organized as follows: Section
2 describes the co-mention features, the text mining
pipeline used for obtaining the said features as well
as the experimental setup, section 3 discusses the
key observations from the experiments, and Section 4
presents conclusions and future directions.

2 Methodology

2.1 Data

In this work, we use CAFA3 Targets
(http://biofunctionprediction.org) as the reference
set of input proteins. We use features generated
from protein-protein interactions (downloaded on
09-26-17), disease variants (downloaded on 07-05-17),
experimentally validated GO annotations (downloaded
on 07-21-17), as well as simple BoW features generated
from biomedical literature as input for PHENOstruct
(as described elsewhere [10]). Combination of variants,
protein-protein iterations and GO features is referred
to as VNG. In addition to the simple BoW features,
we introduce novel protein-HPO term co-mention
features as described below. We use UniProt synonyms
of proteins to improve the coverage when extracting
protein names from literature. In terms of labels, we
use protein-HPO term annotations extracted from the
HPO website on 07-18-17. Table 1 depicts the statistics
on the HPO labels used for this study. We ignored
Mortality/Aging sub-ontology in our experiments.

Table 1: Number of proteins, HPO categories, and
annotations.

Sub-ontology Proteins HPO categories Annotations

Organ 3,407 2,872 291k

Inheritance 3,049 15 10.3k

Onset 1,053 20 4.9k

2.1.1 Literature Features

We employed 27 million Medline abstracts and 1.6
million full text articles for obtaining the literature
features. We generated two different sets of literature
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Table 2: Statistics of co-mentions extracted from both Medline and PubMed

Organ
Span Unique proteins Unique HPO terms Unique co-mentions Total co-mentions

Sentence-level 2,306 2,475 102,726 1,962,332
Paragraph-level 2,348 2,475 157152 7,292,398

Non-sentence-level 2,181 2,475 137,486 5,423,845

Inheritance
Span Unique proteins Unique HPO terms Unique co-mentions Total co-mentions

Sentence-level 1,710 12 5,029 100,086
Paragraph-level 1,763 12 5,930 370,656

Non-sentence-level 1,496 12 4,929 283,740

Onset
Span Unique proteins Unique HPO terms Unique co-mentions Total co-mentions

Sentence-level 399 16 1,126 14,965
Paragraph-level 511 16 1,948 74,602

Non-sentence-level 493 16 1,811 59,886

features: (1) Simple bag-of-words (BoW) features [10],
(2) co-mention features. Details of the feature genera-
tion is described below.

Figure 1: Overview of the NLP pipeline for extracting
features from the literature.

Bag-of-words Features

Bag-of-words (BoW) is a knowledge-free feature rep-
resentation which is broadly used in text mining ap-
plications. We retrieved all the sentences which had
an occurrence of a protein name as candidates and
extracted all the words in those sentences. For each
sentence, we first lowercased all the words in the
sentence and then removed the highly frequent words
(stop words). All the remaining words and their
counts were used as feature-value pairs. A protein is
represented as a vector of variables, each of which is
the count of that specific word.

Co-mentions Features

In this work, we introduce the novel protein-HPO
co-mention (CoM) features which are computed from
co-occurrences of the protein names and HPO terms
within a specified text span. Three text spans were
considered for obtaining co-mentions: sentence-level,
non-sentence-level and paragraph-level. Sentence-level
co-mentions (SCoM) occur in a single sentence and
paragraph-level co-mentions (PCoM) are proteins
and HPO terms which occur in a single paragraph
(i.e. across multiple sentences). Non-sentence-level
co-mentions (NSCoM) are obtained by subtracting
SCoMs from PCoMs. Note that SCoMs and NSCoMs
are proper subsets of PCoMs. Each protein is
represented by a vector in which all the HPO terms
co-occurred with the protein and their counts specify
the feature-value pairs. Statistics on these co-mention
features are given in Table 2.

Text Mining Pipeline

We developed the NLP pipeline shown in Figure 1
in order to obtain the BoW and CoM features. We
used NCBO Virtual Appliance from BioPortal [8, 14]
to extract all the phenotype names from the literature.
Protein name mentions were retrieved from the litera-
ture files using LingPipe [3] trained on GeneTag [18].
In our preliminary studies, we also considered other
alternatives to extract these entities such as OBO
annotator [17] and Bio-Lark CR [5] for extracting
phenotype names and GNormPlus [20] and ABNER [16]
for extracting protein names. However, most of these
systems were either difficult to access or did not provide
desirable results.

125



0.
5
0
0

0
.5

2
0

0.
54

0

0
.5

6
0

0.
58

0

0
.6

0
0

0.
6
20

0
.6

4
0

0.
6
60

0
.6

8
0

0.
7
00

0
.7

2
0

0.
7
40

0.
76

0

0.
7
80

0.
8
0
0

Baseline-SCoM

Baseline-NSCoM

Baseline-PCoM

BoW

SCoM

NSCoM

PCoM

VNG

VNG+BoW

VNG+SCoM

VNG+NSCoM

VNG+PCoM

VNG+SCoM+PCoM

VNG+BoW+SCoM

VNG+BoW+NSCoM

VNG+BoW+PCoM

VNG+BoW+SCoM+NSCoM

VNG+BoW+SCoM+PCoM

0.532
0.548
0.550

0.559
0.604

0.611
0.616

0.681
0.681

0.691
0.693
0.692

0.698
0.693
0.693
0.694

0.699
0.699

macro-AUC

Organ

0.
50

0

0
.5

20

0.
54

0

0.
56

0

0.
58

0

0.
60

0

0.
62

0

0.
64

0

0.
66

0

0.
68

0

0.
70

0

0.
72

0

0.
74

0

0.
76

0

0
.7

80

0.
80

0

Baseline-SCoM

Baseline-NSCoM

Baseline-PCoM

BoW

SCoM

NSCoM

PCoM

VNG

VNG+BoW

VNG+SCoM

VNG+NSCoM

VNG+PCoM

VNG+SCoM+PCoM

VNG+BoW+SCoM

VNG+BoW+NSCoM

VNG+BoW+PCoM

VNG+BoW+SCoM+NSCoM

VNG+BoW+SCoM+PCoM

0.577
0.635

0.622
0.598

0.622
0.645

0.653
0.700

0.664
0.723

0.734
0.744

0.738
0.724

0.739
0.744

0.738
0.740

macro-AUC

Inheritance

0.
50

0

0.
52

0

0.
54

0

0.
56

0

0.
58

0

0.
60

0

0.
62

0

0.
64

0

0.
66

0

0.
68

0

0
.7

0
0

0.
72

0

0
.7

4
0

0.
76

0

0
.7

80

0.
80

0

Baseline-SCoM

Baseline-NSCoM

Baseline-PCoM

BoW

SCoM

NSCoM

PCoM

VNG

VNG+BoW

VNG+SCoM

VNG+NSCoM

VNG+PCoM

VNG+SCoM+PCoM

VNG+BoW+SCoM

VNG+BoW+NSCoM

VNG+BoW+PCoM

VNG+BoW+SCoM+NSCoM

VNG+BoW+SCoM+PCoM

0.548
0.563

0.561
0.547

0.514
0.526

0.564
0.632

0.630
0.640

0.635
0.631

0.635
0.643

0.633
0.545

0.641
0.643

macro-AUC

Onset

Figure 2: PHENOstruct’s performance with different combinations of data sources (VNG: Variants+Network+GO).
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2.2 PHENOstruct

As previously mentioned, PHENOstruct is the first
computational method for automated protein pheno-
type prediction problem [10]. It can capture infor-
mation from the inter-relationships between the HPO
labels and has the advantage of not having to train
multiple classifiers. Moreover, predicted labels are
hierarchically consistent. PHENOstruct employs a
Structured SVM model for HPO term prediction. For
each test protein provided to the trained model, it out-
puts a set of HPO labels and corresponding confidence
scores.

2.3 Experimental Setup

In order to establish baselines, we utilized the SCoMs,
NSCoMs, and PCoMs as the final predictions them-
selves (i.e. without any machine learning) along with
their associated frequencies as the confidence scores. As
mentioned before, PHENOstruct provides confidence
scores for each prediction. Considering the structure
of HPO, all HPO annotations and predictions are
expanded via the true path rule to the root node
of HPO. This rule states that any annotation to a
certain term implicitly indicates annotations to all its
ancestors. Macro-AUROC (Area Under the Receiver
Operative Curve) was used as the evaluation measure
for the predictions. We use a five-fold cross-validation
setting for all our experiments. Separate experiments
were carried out for each sub-ontology. In order to
compare the experiments, we compute p-values using
paired t-tests by considering only the leaves. All the
experiments were performed on a system running Linux
Fedora 26 with a 24-cores processor and 128 GB of
memory. The average running time for each experiment
on the Organ, Inheritance, and Onset sub-ontologies are
36 hours, 20 minutes, and 5 minutes, respectively. Note
that PHENOstruct is not compared to other protein-
phenotype prediction tools [10, 12, 13, 19] because of
the availability of only research-quality code.

3 Results and Discussion

In order to evaluate the effectiveness of the newly
introduced co-mention features, a set of ablation studies
were carried out by feeding different combinations of
features into PHENOstruct as input. Our experimental
results demonstrate that, when using individual co-
mention features as the input, the paragraph-level co-
mentions (PCoMs) provide the best performance in all
three sub-ontologies (see Figure 2). PCoMs consistently
beat SCoMs and NSCoMs for all three sub-ontologies.
These observations suggest that the paragraph level is

the span that is overall better if you are interested in
using a single set of co-mention features. Bada et al. [2]
describes that co-mentions do not necessarily occur in
the same sentence; this may be the justification for the
relatively superior performance of PCoMs.

Moreover, PCoMs by themselves consistently out-
perform BoWs in all three sub-ontologies suggest-
ing that knowledge-based approaches are better than
knowledge-free methods (P-values for Organ, Inher-
itance, and Onset are 7.8E-31, 7.6E-01, and 6.2E-
01, respectively). This observation is also true for
both SCoMs and NSCoMs in many of the cases.
Moreover, co-mention features combined with other
data sources give better performance compared to using
BoW features combined with other data sources.

Another key observation is that, as expected, SCoMs,
NSCoMs, and PCoMs outperform the baseline-SCoM,
baseline-NSCoM, and baseline-PCoM, respectively, in
both Organ and Inheritance sub-ontologies. However,
this is not the case in Onset sub-ontology; further
investigation is required for finding the underlying
reason.

Literature features by themselves provide lower per-
formance compared to when using them in conjunction
with other types of data sources. However, the best
performance in all three sub-ontologies is obtained by
using literature features along with other data sources
(P-values for Organ, Inheritance, and Onset are 1.7E-
61, 1.4E-01, and 2.4E-02, respectively). This suggests
literature features are highly complementary to other
data sources.

Regardless of the data sources/features used, align-
ing with our previous experimental observations [10],
PHENOstruct provides best performance in the Inher-
itance sub-ontology closely followed by the Organ sub-
ontology.

4 Conclusion and Future Work

In this work we conducted a comprehensive study on
evaluating a variety of literature features for the task
of protein phenotype prediction using PHENOstruct.
We demonstrate that knowledge-based features (i.e.
co-mention features) helps improve the overall perfor-
mance and are more effective than their knowledge-
free counterparts. Moreover, we find that paragraph
span best serves this purpose; PCoMs are the most
valuable source of information in comparison with the
other literature feature sets. However, we conclude that
using PCoMs as an individual data source does not
provide the best performance, and it needs to be used
as a complementary set of features to obtain the most
optimum performance.

127



This study opens up many other avenues for fu-
ture investigation. By carefully analyzing the the
performances of baselines, we notice that our NLP
pipeline is generating a large number of false positives
(data not shown). In other words, not every co-
occurrence of a protein and a phenotype represent a
valid relationship. Since our current work does not
consider the context surrounding these entity words,
the next step would be to develop a context-sensitive
co-mention filter/classifier for removing these false pos-
itives and improving the overall quality of generated
co-mentions. Moreover, this classifier by itself can serve
as an important component in a fully automated bio-
curation pipeline for phenotypes.
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Abstract

Herein, we provide a mathematical model to inves-
tigate the dynamics of Hepatitis-C Virus (HCV)
replication, in presence of interferon-α (IFN) treat-
ment. We consider a fractional-order in the model
to represent the intermediate cellular interactions
and intracellular delay of the viral life cycle. We
analyze the steady states and dynamical behavior
of the model. We deduce a threshold parameter R0

(average number of newly infected cells produced
by a single infected cell) in terms of the treatment
efficacy parameter 0 ≤ ε < 1 and other parameters.
The suggested model has the ability to provide ac-
curate descriptions of nonlinear biological systems
with memory. The obtained results give an insight
to understand the dynamics of HCV infection.

Keywords: Mathematical modeling; Hepati-
tis C virus; Interferon-α; Viral dynamics;
Stability

MSC2010: 34, 34C, 34A08, 34C60, 92, 92C, 92C42

1 Introduction

Hepatitis C (HCV) is an infectious disease which
spreads through blood contact. It is estimated that
HCV has infected about 200 million individuals
worldwide [1]. About 50-80% of HCV infected
cases are chronic in nature [2]. Of these chronic
cases, about 10-20% develop into liver cirrhosis of
which, about 5% develop hepatocellular carcinoma
(HCC). The extend of prevalence of HCV varies
widely across geographical locations. In most
countries, the transmission of HCV occurs pri-
marily through injecting drug use (IDU), which is

∗Corresponding: frihan@uaeu.ac.ae (F.A. Rihan)

mainly associated with the sharing of contaminated
syringes/needles. Although evidence for risk of
HCV infection through sharing of other injecting
paraphernalia is increasing and giving rise to a
menace. The absence of reliable screening for HCV
amongst blood donors remains a major challenge in
combating the spread of the disease in the eastern
countries [3]. Geographically, HCV genotypes 1,
2, and 3 occur worldwide, whereas infection with
HCV genotypes 4 and 5 occurs mainly in Africa,
and HCV genotype 6 appears mainly in Asia
[4]. Many mathematical epidemic models quantify
the transmission of Hepatitis C among IDUs in
the population. These models provide alterna-
tive means to define the problems, organize our
the thoughts, understand the data, communicate,
test understanding, and help in predictions among
groups [5]. Now, there is a motivation for further
study of the dynamics and mathematical modeling
of hepatitis C virus in cellular level; See [6] and
references therein.

Mathematical models, using ordinary differential
equations with integer-order, have been proven
valuable in understanding the dynamics of hepatitis
C infections, in cellular level or in one host [7, 8].
Most of these models have been restricted to the
short-term dynamics of the systems. One of the
earliest models was proposed by Neumann et al. [9],
who examine the dynamics of HCV in presence of
Interferon-α (IFN-α) treatment. They find that the
primary role of IFN is in blocking the production of
virions from the infected hepatocytes. Dahari et al.
[7] in a subsequent and improved model, take into
account the homeostatic mechanisms for the liver
by incorporating a growth function.

However, classical mathematical models with
integer-orders ignore the intermediate cellular
interactions and memory effects. For example, the
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kinetic of the viral decline in patients responding
to interferon-α is characterized by bi-phase shape
following a delay about 8-9 hours, likely to
be the sum of interferon-a pharmacokinetics and
pharmacodynamics as well as the intracellular delay
of the ciral life cycle [10]. Therefore, modeling
of the biological systems by fractional-order
differential equations has more advantages than
classical integer-order mathematical modeling, in
which such effects are neglected [11, 12].

Fractional order differential equations are natu-
rally related to systems with memory which exists
in most of biological systems [13, 14]. Also, they are
closely related to fractals [15], which are abundant
in biological systems. Fractional derivatives em-
body essential features of cell rheological behavior
and have enjoyed greatest success in the field of
rheology [16]. This is due to the fact that fractional
derivatives enable the description of the memory
and hereditary properties inherent in various cells
and processes. It has been deduced in [17] that
the membranes of cells of biological organism have
fractional order electrical conductance and then are
classified in groups of non-integer order models.
In this paper, we propose a system of fractional-
order differential equations (FODEs) for modeling
the dynamics of HCV to model as correctly as
possible the dynamics of the target cell population:
uninfected target cells, infected cells, and viral load
in presence of antiviral interferon-α drugs (IFN).
We assume here that the target cells of the model
are hepatocytes.

2 Mathematical Model of HCV

The model that we shall consider for HCV infection
is based on a three dimensional model given by
Dahari et al. [7] and model of Neumann et al. [9].
They assumed a simplified view of HCV infection
and describes the response to interferon therapy
through the coupled evolution of three populations:
the uninfected hepatocytes, the productively in-
fected hepatocytes, and the free HCV virions with
the following ordinary-differential equations

DH = s− µHH − k1V H,

DI = k′1V H − µII,

DV = µbI − µV V.

(1)

Figure 1: Schematic diagram showing the key-players in
HCV infection models. H(t) and I(t) represent target and
infected cells, respectively, and V (t) represents free virus.

Here D ≡ d

dt
, H = H(t) represents the concentra-

tion of uninfected (healthy) hepatocytes, I = I(t)
is the concentration of infected hepatocytes, and
V = V (t) is the concentration of free HCV at time
t. The model assumes that uninfected hepatocytes
are produced at a constant rate s, die at rate µH per
cell and are infected at constant rate k1. Infected
hepatocytes are lost at a rate µI per cell. The HCV,
V , is assumed to infect the hepatocytes at a rate k1,
thereby producing infected hepatocytes, I, and k′1
is the rate at which infected cells become actively
infected. Viral particles (virions) are produced at
rate µb per infected hepatocytes and cleared at rate
µV per virion.

We extend model (1) to include the logistic
proliferation of uninfected hepatocytes and include
fractional-order to the system to naturally relate
the system with memory which exists in viral life
cycle and time required for intracellular interac-
tions. The fraction-order is successful in describing
systems which have long-time memory and long-
range interaction of the disease [18]. The modified
model takes the form

Dα1H = s− µHH + rH

(
1− H + I

Hmax

)
− k1V H,

Dα2I = k1V H − µII,

Dα3V = (1− ε)MµbI − k1V H − µV V.

(2)

for 0.5 < αi ≤ 1, i = 1, 2, 3. In model (2),
we assume that the uninfected hepatocytes H
are being produced at a rate s and proliferate
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logistically
(
1 − H + I

Hmax

)
at a rate r, accompanied

by a natural death rate of µH , and Hmax is the
maximum hepatocyte count in the liver. We assume
that the proliferation of infected cells is neglected,
and physiological conditions µHHmax > s, r > µH .
In the absence of any kind of treatment, the infected
hepatocytes produce HCV at a rate µb, which has
a clearance rate of µV . In this model, the impact of
antiviral interferon-α drugs (IFN) on the dynamics
of viral infection is considered by the coefficients
(1 − ε), where ε is the efficacy of IFN. The viral
production rate is then lowered by a fraction ε. µI is
a blanket death term for infected cells, to reflect the
assumption that we do not initially know whether
the cells die naturally or by bursting. Since M viral
particles are released by each lysing cell, this term
is multiplied by the parameter M to represent the
source for free virus (assuming a one-time initial
infection); See Figure 1. The initial conditions for
infection by free virus are H(0) = H0, I(0) = I0
and V (0) = V0.

When hepatitis C virus first infects a person, the
ensuing dynamics depend on the relative parameter
values (see Table 1). Since newly infected individ-
uals do not know that they are infected, we assume
there is initially no treatment (ε = 0). We might
expect several different scenarios: infection may
fade out without becoming established, infection
may spread with limited success and infect only
part of the liver, or infection may spread rapidly
and infect the whole liver. For untreated cronically
infected with HCV, the mean serum viral load is
approximately 3.5 × 106 IU/ml according to the
WHO HCV RNA standard [19].

To understand the dynamics of system under
acute infection correspond to each of these situa-
tions, it is helpful to walk through the stability of
the steady states. The boundedness of the solutions
is guaranteed by the following theorem.

Theorem 1 The system (2) has a unique solution
(H, I, V )T which remains in R3

+ and bounded by
Hmax; See [20].

2.1 Equilibria and local stability of model (2)

To evaluate the equilibrium points of system (2),
we put Dα1H(t) = Dα2I(t) = Dα3V (t) = 0.

This model admits two steady states, namely the
infection-free steady state E∗

0 = (H0, 0, 0), where

H0 = {r − µH + [(r − µH)2 + 4rsH−1
max]

1/2}/2rH−1
max, (3)

and the infected state, E+ = (H∗, I∗, V ∗), where

H∗ =
µV µI

k′1M(1− ε)µb − k1µI
, I∗ =

k′1H
∗V ∗

µI
,

V ∗ =
µI [(s + (r − µH)H∗)Hmax − rH∗2]

H∗[k′1rH
∗ − k1µIHmax]

.

(4)

The Jacobian matrix J(E0) for system (2) evaluated
at the uninfected steady state E0 is then given by

J(E0) =




−µH + r − 2rH0

Hmax
− rH0

Hmax
−k1H0

0 −µI k′1H0

0 M(1− ε)µb −(k1H0 + µV )


 . (5)

Let us introduce the following definition and
assumption to ease the analysis.

Definition 1 The basic reproductive number of the
virus R0 is defined as the average number of newly
infected cells produced by a single infected cell at the
beginning of the infection. The threshold parameter
R0 has the property that if R0 < 1, then the
endemic infected state does not exist, while if R0 >
1 the endemic infected state persists, where

R0 =
k′1µb(1− ε)MH0

µI(µV + k1H0)
. (6)

The uninfected steady state is asymptotically stable
if all of the eigenvalues λ of the Jacobian matrix
J(E0), given by (5), have negative real parts. The
characteristic equation det(J(E0)− I) = 0 becomes

(λ+ µH − r + 2rH0/Hmax)(λ
2 +Bλ+ C) = 0, (7)

where B = µI + kIH0 + µV , and C = µI(k1H0 +
µV ) − k′1µb(1 − ε)MH0. Hence, the three roots of
the characteristic equation (7) are

λ1 = −µH + r − rH0/Hmax

≡ −
√
(r − µH)2 + 4rsH−1

max < 0, (8)

λ2,3 =
1

2
[−B ±

√
B2 − 4C].

Proposition 1 If R0 ≡ k′1µb(1− ε)MH0

µI(µV + k1H0)
< 1,

then C > 0 and the three roots of the characteristic
equation (7) will have negative real parts.
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Table 1: Parameter definitions and values used in the model.
P Description Units Value Source

s Production rate of uninfected hepatocytes cell ml−1day−1 0.1 [7]

µH Natural death rate of rate of effector cells day−1 0.6 [7]

r Proliferation rate of uninfected hepatocytes day−1 0.05

Hmax maximum hepatocyte count in the liver cells ml−1 2× 106 [7]

k1 Infection rate of hepatocytes ml day−1 virions−1 0.08 [10]

k′
1 The rate o infected cells become infected ml day−1 virions−1 0.45

µI Natural death rate of infected cells day−1 0.28 [10]

µb Production rate of HCV by the infected cells cell −1day−1 1× 10−4

µV Clearance rate of HCV virions virgins day−1 2 ×10−2 [7]

M Source of free virus in the initial infection virion 200 [10]

ε The efficacy of IFN – 0 ≤ ε < 1 –

Assume that

R∗
0 =

k′1µbMH0

µI(µV + k1H0)
> 1 ≥ R0. (9)

Then, under the physiological conditions:
µHHmax > s, and r > µH , we arrive at the
following Remark [21].

Remark 1 In case of uninfected steady state E0,
we have three cases:

(i) If R0 < 1, the uninfected state is asymptot-
ically stable and the infected steady state E+
does not exist (unphysical). The efficacy of the

drug ε should exceed

(
1− 1

R∗
0

)
to eradicate

the virus.

(ii) If R0 = 1, then C = 0 and from (7) im-
plies that one eigenvalue must be zero and the
remaining two eigenvalues have negative real
parts. The uninfected and infected steady state
collide and there is a transcritical bifurcation,

and the efficacy threshold is ε∗ =
(
1− 1

R∗
0

)
.

(iii) If R0 > 1, then C < 0, and thus at least
one eigenvalue will be positive real root. Thus,
the uninfected state E0 is unstable and the
endemically infected state E+ emerges. The

efficacy ε does not exceed

(
1− 1

R∗
0

)
.

To study the local stability of the positive infected
steady states E+ for R0 > 1, we consider the

linearized system of (2) at E+. The Jacobian matrix
at E+ becomes

J(E+) =




−L∗ −rH∗/Hmax −k1H
∗

k′1V
∗ −µI k′1H

∗

k1V
∗ Mµb −(k1H

∗ + µV )


 .(10)

Here

L∗ = −[µH − r + k1V
∗ + r(2H∗ + I∗)/Hmax].

Then the characteristic equation of the linearized
system is

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0, (11)

a1 = µI + µV + k1H
∗ + L∗,

a2 = L∗(µI + µV + k1H
∗) + µI(µV + k1H

∗)− k21H
∗V ∗

− k′1H
∗(Mµb − rV ∗/Hmax),

a3 = k′1H
∗[k1MµbV

∗ − rµV V
∗/Hmax − L∗Mµb]+

L∗µI(µV + k1H
∗)− µIk

2
1H

∗V ∗.

The infected steady state E+ is asymptotically
stable if all of the eigenvalues have negative real
parts. This occurs if and only if Routh-Hurwitz
conditions are satisfied, i.e. a1 > 0, a3 > 0 and
a1a2 > a3.

3 Numerical Simulations

In this section, we carry out some numerical sim-
ulations to display the qualitative behaviours of
model (2) (see Figures 2–3), and fit model (2)
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Figure 2: Numerical simulations of the HCV model (2)

that show a stable infected steady state E+, with different

fractional order α, with parameter values given in Table 1

and ε = 0.0 (R0 > 1).
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to experimental data of HCV RNA replications
(see Figure 4– 5). The numerical simulations
confirm the theoretical results obtained in the above
sections. Figure 2 shows an asymptotically stable
infected steady state E+ for different values of
the fractional order and parameter values given in
Table 1, when R0 > 1. While, Figure 3 shows
a infection-free steady sate E0, when R0 < 1. A
complete recovery is obtained when R0 < 1. Before
treatment ε = 0, a steady state exists where viral
production is balanced by viral clearance and the
production of infected cells is balanced by their
loss. Uninfected hepatocytes are also in steady
state determined by the balance between their
production, death, and loss due to infection. We
notice that the smaller value of the fractional order
α the longer incubational period of the virus in the
beginning stage.

In Figure 4, we fit the model (2) to the exper-
imental data of Table 2, during antiviral therapy
(0 < ε < 1) for HCV infected patient. We
fixed all the parameters except P = [r, k1, µV , ε].
The rest of the parameter take the values s =
0.1 × 102, k′1 = 0.0103, M = 800, Hmax =
1.4 × 103, µH = 0.0107, µI = 0.31. Using least
squares approach, the unknown parameters are
P̂ = [0.0401, 0.017, 0.731, 0.601]. The reproductive
number for the best estimate and infection-free
steady state is R0 = 0.7654 < 1. The decay occurs
rapidly during the treatment and the efficacy of
treatment in blocking virion production ε = 0.950.
The simulation match with the viral-free steady
state E0. Figure 5 shows fitting the model (2) to the
real data of Table 3 for chronically infected patient,
during treatment. The parameter estimates with
such data are P̂ = [0.004, 0.021, 1.701, 0.502].

We employed the implicit Euler’s scheme to solve
the resulting biological (2). Interesting numerical
simulations of the fractional-order model (2), with
step-size h = 0.05 and 0.5 < α ≤ 1 and parameters
values given in the captions.

From the analysis and numerical approximation,
we arrive at the following Remark.

Remark 2 The presence of a fractional-order in
the model can lead to a notable increase in the
complexity of the observed behavior, as the solution
is continuously depends on all the previous states.
This confirms that the fractional-order plays the

role of memory and heredity [23].

4 Conclusions

In this paper, we developed a mathematical model
for hepatitis C dynamics to describe the inter-
actions between healthy liver cells H, infected
liver I, and virus load V . While the model is
overly simple in that it does not account for the
immune response to HCV infection, but it provides
a complex dynamics due to the fractional-order
derivative that considers the longer term behavior
of the HCV kinetics. The basic reproductive
number of the virus, R0, has been deduced in
understanding the persistence of viral infections.
If R0 < 1, the level of virus load and infected
cells will monotonically decrease and ultimately
be eliminated. However for R0 > 1 there will
be a chronic HCV infection. The higher the
reproductive number R∗

0, the higher treatment
efficacy ε is required in order to eradicate the virus.
When R0 < 1, the treatment efficacy ε greater than
(1− 1/R∗

0) leads to complete clearance of infection.

The model prediction is validated by fitting the
model to available data for HCV RNA production
for decay profile case and chronic infected case
during treatment with interferon-α. When R0 < 1,
the decay of the virion occurs rapidly during the
treatment and the estimated efficacy of the drug
(in blocking virion production) is ε = 0.950. While
for the chronic state R0 > 1, the estimated efficacy
parameter is ε = 0.701.

Acknowledgment

The work was funded by UAEU/SQU-2016 research
projects (UAE University).

References

[1] WHO Fact Sheet 164-Hepatitis C, www.who.
int.gate2.inist.fr/mediacentre/factsheets/
fs164/en/, Januray 31, 2014.

[2] B. Roe, W. Hall, Cellular and molecular inter-
actions in coinfection with hepatitis C virus and
human immunodeficiency virus, Expert Rev Mol
Med Oct 20 (2008).

134



Table 2: Hepatitides C verimemia within 14 days of treatment with interferon-α in a patient [9] (Case I).
Time (days) 1 2 3 4 5 6 7

log10 V̄ (t)/liver 8.5 8.6 8.5 10.7 10.5 7.2 4.1

Time (days) 8 9 10 11 12 13 14

log10 V̄ (t)/liver 3.5 2.6 1.6 0.7 0.6 0.4 0.3

Table 3: Hepatitides C verimemia within 25 days of treatment with interferon-α in a patient [9] (Case II).
Time (days) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

log10 V̄ (t)/liver 9.6 10.2 8.5 10.1 10.2 8.2 6.2 4.5 3.6 3.6 4.0 3.8 4.2 4.1

Time (days) 15 16 17 18 19 20 21 22 23 24 25

log10 V̄ (t)/liver 3.7 3.5 4.0 4.2 4.3 4.2 4.3 4.2 4.4 4.4 4.3

[3] A. Mukhopadhya, Hepatitis C in India, J. Biosci.
33 (4) (2008) 465–473.

[4] H. N. Afdhal, The natural history of hepatitis C,
Semin Liver Dis 24 (Suppl 2:38) (2004) 5, 6.

[5] A. Wasley, M. J. Alter, Epidemiology of hepatitis C:
geographic differences and temporal trends, Semin
Liver Dis 20 (1) (2000) 116.

[6] I. Ramirez, Mathematical Modeling of Immune
Responses to Hepatitis C Virus Infection, PhD
thesis: East Tennessee State University, 2014.

[7] H. Dahari, A. Lo, R. M. Ribeiro, A. S. Perelson,
Modeling hepatitis C virus dynamics: Liver
regeneration and critical drug efficacy, J. Theor.
Biol. 47 (2007) 371–381.

[8] A. S. Perelson, Modelling viral and immune system
dynamics (2002).

[9] A. U. Neumann, N. P. Lam, H. Dahari, D. R.
Gretch, T. E. Wiley, T. J. Layden, A. S. Perelson,
Hepatitis C viral dynamics in vivo and the antiviral
efficacy of interferon-α therapy, Science 282 (1998)
103–107.

[10] S. Zeuzem, E. Herrmann, Dynamics of hepatitis C
virus infection, Ann Hepatol. 1 Apr-Jun (2) (2002)
56–63.

[11] F. A. Rihan, Numerical modeling of fractional-
order biological systems, Abst. Appl. Anal. 2013
(2013) 11 pages.

[12] F. Rihan, S. Lakshmanan, A. Hashish,
R. Rakkiyappan, E. Ahmed, Fractional order
delayed predator-prey systems with holling type-ii
functional response, Nonlinear Dynamics 80 (1)
(2015) 777–789.

[13] F. A. Rihan, Current Topics in Salmonella and
Salmonellosis (Ed.: Mihai Mares): Dynamics of
Salmonella Infection, InTech, 2017.

[14] R. L. Magin, Fractional calculus models of complex
dynamics in biological tissues, Comput Math Appl
59 (2010) 1586–1593.

[15] A. Rocco, B. J. West, Fractional calculus and the
evolution of fractal phenomena, Physica A 265
(1999) 535.
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Abstract 

 
Upstream open reading frames (uORFs) are important 

post-transcriptional regulatory elements that occur in 5’ 

untranslated region of mRNA molecules. Misregulation of 

translated uORFs has been associated with important 

diseases such as schizophrenia, bipolar affective disorder, 

and cancer. It is known that mRNA sequence features such 

as mRNA secondary structure and sequence context near 

the start codon are often associated with uORF translation, 

but details of the underlying mechanisms are still unclear. 

In this paper, we have used tree based learning algorithms 

in combination with ribosome profiling data generated 

from Arabidopsis thaliana to identify sequence features 

that are associated with translated uORFs. Using a 

boosting tree and the identified features set, we were able 

to predict 11962 translated uORFs, in 4152 genes. Our 

approach can be used even if ribosome profiling data is not 

available. 

 
keywords: uORF translation, ribosome profiling, sequence 
features, tree based algorithm 

 

1 Introduction 
Upstream open reading frames (uORFs) are important 

post-transcriptional regulatory elements that occur in the 5’ 

untranslated region (UTR) of mRNA molecules. Studies 

have shown that translated uORFs appear in a higher 

frequency in genes with important regulatory roles, such as 

growth factors and transcription factors [1], and that their 

misregulation may lead to important diseases, including 

schizophrenia, bipolar affective disorder, and cancer [2]. 

Although uORFs are prevalent in many organisms - about 

50% of the genes in human and mouse, and about 40% of 

the genes in Arabidopsis contain uORFs [3, 4], only few of 

them are experimentally validated. The biological 

functions and translational status of most uORFs are still 

unclear. 

In general, translated uORF sequences attenuate the 

translation of the downstream main open reading frame, 

but not all uORF sequences are translated [5]. It has been 

shown that the sequence context near the start codon may 

affect how ribosome recognize an uORF [6, 7], however 
the details of the underlying mechanism are still unclear. 

Several methods to identify translation initiation  

 

 

sites, as well as translated open reading frames, including 

translated uORFs, have been developed [8, 9]. In our 

previous study, we have used ribosome profiling (ribo-seq) 

data to identify a set of possible translated uORFs in 

Arabidopsis thaliana [10]. Unfortunately, ~30% of genes 

were not transcribed in our samples. As a consequence, 

ribo-seq data is not available for these genes, and the 

translational status of their uORFs is still missing. 

In this paper, we use tree based learning algorithms to 

identify sequence features that are associated with 

translated uORFs. We show that these sequence features 

can be used to predict translated uORFs without the use of 

additional ribo-seq data. Using a boosting tree in 

combination with the identified feature sets, we predict 

11962 translated uORFs. We have compared our results 

with previous studies: our predictions include 89% of the 

reported, experimentally verified uORFs, and 84% of the 

reported, conserved uORFs. 

 

2 Methods 
 

2.1 Sequence Preprocessing 

We used ribosome footprints and the corresponding 

RNA-seq data from a study in the model plant Arabidopsis 

thaliana (NCBI accession number SRP056795) [11]. After 

preprocessing, sequencing reads were aligned with the 

Arabidopsis genome sequence (version TAIR10, 

http://www.arabidopsis.org/) using Tophat and default 

parameters [12]. Only reads with length in the range 25 – 

40bp that mapped uniquely were considered for the 

following analysis. 

We have  extracted uORF sequences using the same 

method as described in [10]. Subsequently, we performed 

an exhaustive search for all possible uORFs that start with 

a start codon (ATG) in the 5’ UTR region and end with a 

stop codon (TAG, TAA or TGA) in the same reading 

frame. Finally, we assigned the aligned ribo-seq reads to 

uORFs and transcript regions according to the TAIR10 

gene annotation. 
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2.2 Ribosome Profiling Feature Generation 

 
Ribosome profiling features were generated using the 

distribution of ribo-seq reads around uORF regions. 

Ribosomes have different moving patterns during 

translation initiation, elongation and termination. The 

moving patterns are reflected by the distribution of ribo-

seq reads in the corresponding regions of a translated 

uORF. Therefore, a translated uORF should show 

characteristic ribo-seq read distribution patterns. 

We extracted 11 ribosome profiling features for each 

uORF. Below is the description of each feature; more 

details can be found in  [10]. 

1. Distance from uORF to the nearest ribo-seq read 

peak: distance. 

2. Density ribo-seq reads in uORF region: density. 

3. Maximum of ribo-seq read density in uORF region: 

max_density. 

4. Minimum of ribo-seq read density in uORF region: 

min_density. 

5. Ribo-seq read density in the region left of the uORF: 

density_left. 

6. Ribo-seq read density in the region right of uORF: 

density_right. 

7. Variance of the rib-seq read distribution in the uORF 

region: var. 

8. uORFscore: uorf_score. A measure of read 

periodicity [13]. 

9. Ribo-seq read coverage of the first 3 codons in uORF 

region: fn_cov. 

10. Proportion of ribo-seq reads that are in the same 

reading frame as the uORF: uorf_cov. 

11. Ribo-seq read coverage in the uORF region: cov. 

 

2.3 Feature Extraction 

 
We generated an extensive list of features for each uORF 

region. The features can be divided into two groups: 

sequence related features and peptide related features. 

Sequence related features include length of uORF 

(length), relative position of uORFs (order), reading frame 

of uORF with respect to the main ORF (rf), secondary 

structure of uORF measured by minimum free energy 

(mfe), length of 5’ UTR, coding sequence, and 3’ UTR, 

distance between uORF start codon and translation 

initiation site of the main ORF, distance between uORF 

stop codon and translation initiation site of the main ORF, 

an indicator variable to show if the uORF region overlaps 

with other open reading frames, and 15 additional features 

that describe the sequence context near the start codon. 

Peptide related features focus on the protein product of 

the uORF. Peptide related features include amino acid 

composition of the uORF region, for example frequency of 

each  amino acid as well as frequencies of the amino acid 

groups tiny, small, aliphatic, aromatic, nonpolar, polar, 

charged, basic and acidic (35 features in total), molecular 

weight (mw), isoelectric point (pi), hydrophobicity (hb), 

instability index of the uORF peptide (ins) [14], protein 

interaction index (bp) [15], and the codon adaptation index 

of the uORF region (cai) [16]. 

 

2.4 Identification of uORF Translation 

Pattern and Model Learning 

 
To improve the reliability of our features and to reduce 

noise, we have discarded all uORF regions that overlap 

with other uORFs, resulting in a set of 3854 uORFs. We 

then performed k-means clustering based on ribosome 

profiling features on the remaining uORFs. To determine 

the number of groups (k) in our uORF set we used the 

average silhouette value [17].  

Subsequently, we used tree-based learning to identify 

characteristic sequence features in the different uORF 

groups and to predict translated uORFs. Tree-based 

learning algorithms have been successfully used for 

various machine learning tasks, and they are known for 

their accurate and robust performance, ease of 

interpretation, and the ability of learning non-linear 

relationships, see [18] for a detailed description. In our 

study, we have compared the performance of decision trees, 

random forests and boosting trees. A decision tree is a 

classification algorithm in which internal tree nodes 

represent attribute tests, edges correspond to test outcomes, 

and leaf nodes correspond to classification results (in our 

case the translation status of the uORF). Starting at the root, 

each data point will traverse a path through the decision 

tree until it reaches a leaf node where a prediction is made 

[18]. Random forests and boosting trees are ensemble 

approaches based on decision trees. A random forest uses 

bootstrap resampling to grow multiple decision trees, and 

combines their results [19]; boosting trees compute a 

weighted mixture of decision trees [20].  

We used 5-fold cross validation to measure the 

performance of the different algorithms. The entire dataset 

was divided into 2 parts: a training set and a testing set. For 

each algorithm, the model was tuned in a 5-fold cross 

validation experiment using training data only. The model 

that performed best was applied to the test set. 

 

3 Result 

 
3.1 Ribosome profiling Features Show 

Different Pattern among uORF Groups 
 

We extracted a set of ribosome profiling features which 

capture the moving pattern of translating ribosomes for all 

non-overlapping uORFs, see section 2.2. Most of our 

features are uncorrelated, or they show only a small 

positive Pearson correlation value. Only one feature pair: 

137



ribo-seq read coverage (cov) and ribo-seq read coverage of 

the first 3 codons (fn) has a Pearson correlation coefficient 

of 0.8. Subsequently, we performed k-means clustering 

based on Euclidean distance to identify different ribosome 

profiling feature pattern. Average silhouette value was 

used to determine the number of groups (k) in the data. We 

calculated the average silhouette value for different values 

of k and found a clear drop at k=7 (figure 1), suggesting 

k=6 as an appropriate choice. 

 
Figure 1: Average silhouette value of our k-means 

clustering for different values of k. 

 

Figure 2 shows the different pattern of ribosome profiling 

features in the 6 groups. Similar to our results in [10], the 

ribosome profiling features show clear differences that 

suggest the translation status of the corresponding uORFs.  

The uORFs in cluster 1 and 2 have very few ribosome 

profiling reads (the values of density, density_left and 

density_right are small) in their uORF regions, larger 

distance from the nearest density peak (dp) and a small 

variance of their read distribution (var). This suggests that 

ribosome profiling reads are neither accumulated at the 

start codon nor in the main body of the uORF. Likely, 

uORFs from these two groups are not translated. 

The uORFs that belong to cluster 3, 5, or 6 have a 

smaller distance from the nearest density peak (dp) and an 

increased ribosome profiling read density (denisty) as 

compared to the uORFs in clusters 1 or 2. However, their 

read distribution has a small variance (var), which 

indicates that reads occur only at one or few positions with 

the uORF and do not show periodicity. This is inconsistent 

with the characteristics of translated open reading frames 

[9, 21].  

Only the uORFs in cluster 4 show the characteristic 

features of translated uORFs [9, 21], such as accumulation 

of ribosome profiling reads at the start codon, high 

uORFscore and read periodicity, and an increased read 

density along the main body of the uORF (min_density > 

0). 

To further validate our results, we examined the 

distribution of experimentally verified and conserved 

uORFs that are expressed in our samples among the 6 

groups (Figure 3). Consistent with ribosome profiling 

feature pattern, most of the experimentally verified and 

conserved uORFs are in cluster 4, only very few of them 

located in other clusters.  

In summary, our analysis of ribosome profiling feature 

pattern, and the distribution of validated and conserved 

uORFs suggests that most of the translated uORFs are 

located in cluster 4. 

 
Figure 2: ribosome profiling features in different groups 

of our k-means clustering. The length of the bar indicates 

the range of each feature in the cluster. The red dot in the 

figure marks the mean value of a specific feature in the 

entire dataset. 

 

 
Figure 3: distribution of experimental verified and 

conserved uORFs among the different groups. Cluster 6 is 

not shown because there are no experimentally verified or 

conserved uORFs in this cluster. 
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3.2 Sequence Features can be used to 

Predict Translated uORFs 

 

Based on our clustering analysis, we classified the uORF 

sequences into two categories: translated uORFs (cluster 4) 

and untranslated uORFs (the other clusters). To obtain 

more reliable results, we also removed all uORFs with 

length smaller than 6bps; it has been reported that such 

small uORFs are less likely to be functional [22]. Finally, 

we extracted 59 sequence features from each uORF region 

(see methods).  

To learn how well the extracted sequence features predict 

uORF translation, we applied three tree-based 

classification approaches (decision tree, random forest and 

boosting tree). We consider the sequence features as 

explanatory variables and the uORF translation status as 

class label. We have measured model performance in a 5-

fold cross validation experiment using accuracy, precision, 

recall, and F1-score. The different quality measures are 

calculated as follows: 

 Accuracy = (TP+TN)/(TP+FN+TN+FP), 

 Precision = TP/(TP+FP), 

 Recall = TP/(TP+FN), 

 F1-score = 2TP/(2TP+FP+FN), 

where TP, TN, FP, FN denote the number of true 

positives, true negatives, false positives, and false 

negatives.  

Table 1 lists the performance of the three algorithms. 

Random forest and boosting tree show similar results and 

outperform a simple decision tree. To test the predictive 

power of each algorithm, we also permutated the response 

labels and recomputed the classifier performance; all 

results dropped to a value around 0.5. We also provide the 

performance of our previous, ribo-seq feature-based 

algorithm [23]. Since this algorithm uses ribo-seq 

information it performs better than our new algorithm. 

However, it cannot be used in cases where ribo-seq data is 

not available, for example in untranscribed genes.   

 

3.3 Importance of Sequence Features for 

the Prediction of uORF Translation 

 
To investigate how our sequence features affect the 

prediction of uORF translation, we calculated the 

importance score of each sequence feature. The importance 

score of a sequence feature is computed by subtracting the 

out of bag error derived from data where the sequence 

feature has been permuted from the out of bag error of the 

original data, and averaging over all trees [19]. 

Figure 4 shows the 20 features with the highest 

importance scores. The most important feature in our study 

is the start position of the uORF (start) in the 5’UTR. 

uORFs located at the beginning of the 5’UTR are more 

likely to be recognized by ribosomes and trigger translation. 

This is consistent with the findings of a previous study in 

human [24]. Our list includes several other features that 

have been reported in other studies about translation, for 

example uORF length (length), secondary structure near 

uORF region (measured by mfe), distance between uORF 

and its main open reading frame (start_to_cds) and codon 

usage (cai) in uORF region [6, 7, 25, 26]. Codon usage and 

secondary structure are two important factors that 

determine the translation efficiency of open reading frames 

during initiation and elongation stages [25, 26]. 

Additionally, our list includes the length of 3’UTR (tutr), 

molecular weight of the uORF peptide (mw), and length of 

main open reading frames (cds). Interestingly, we also 

found that amino acid composition (e.g. aromatic, aliphatic) 

Table 1: Model performance of our algorithms. RF: random forest, DT: decision tree, BT: boosting tree, RS: the ribo-

seq feature based algorithm described in [26]. The number in the parentheses is the variance. 

True data 

    Algorithm Accuracy Precision Recall F1-score 

RF 0.737 (6.4e-5) 

0.759 

(0.0018) 0.695 (0.0019) 

0.725 

(8.15e-5) 

DT 

0.686 

(9.2e-4) 

0.710 

(0.0012) 

0.648 

(0.0098) 

0.671 

(5.3e-4) 

BT 

0.742 

(3.2e-4) 

0.764 

(0.0019) 

0.701 

(4.9e-4) 

0.730 

(7.7e-5) 

RS 0.9 0.95 0.87 0.91 

Permutated data 

    Algorithm Accuracy Precision Recall F1-score 

RF 

0.449 

(9.5e-4) 

0.457 

(0.0034) 

0.443 

(0.0034) 

0.440 

(4.3e-4) 

DT 

0.486 

(2.0e-4) 

0.494 

(7.3e-4) 

0.386 

(0.0017) 

0.461 

(7.7e-4) 

BT 

0.468 

(6.4e-4) 

0.475 

(0.0026) 

0.502 

(0.0033) 

0.482 

(2.0e-4) 
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and frequency of specific amino acids (e.g. M and L) 

impact our predictions. 

 

 
Figure 4: Top 20 sequence features with the highest 

importance score. 

 

3.4 Genome-wide Identification of 

Translated uORFs  

 

We used a boosting tree, the classifier that performed 

best in our evaluation, to predict translated uORFs in the 

genome of Arabidospis thaliana. We re-trained the model 

using the entire dataset. Model parameters were tuned in a 

5-fold cross validation experiment via grid search. The best 

performance was achieved for following parameter set: 

iteration = 100, maximum tree depth maxdepth = 4, and 

boosting shrinkage parameter nu = 0.1. 

 

Table 2: conserved and experimentally validated uORFs 

identified by our approach 

 

Predict

ed Total Recall 

Experiment

ally verified 
17 19 89.47% 

Conserved 58 69 84.06% 

 

Our approach predicted 11962 translated uORFs in 4152 

genes using sequence features only. About 12% of the 

genes with predicted translated uORFs are untranscribed in 

our samples. Our approach predicts 1500 translated uORFs 

in these genes. A method which relies on ribo-seq 

information would not be able to detect these uORFs. We 

also compared our predictions with experimentally verified 

and conserved uORFs [3, 27-29]. Our approach detects 

89% of the experimentally verified uORFs and 84% of the 

conserved uORFs (Table 2). Our previous ribo-seq feature-

based algorithm detects considerably less uORFs (75% of 

the experimentally verified uORFs and 73% of the 

conserved uORFs) [10].  

 

4 Conclusion 

 
In this paper, we have identified sequence features that 

can be used to predict translated uORFs without the use of 

additional ribo-seq information. Using a boosting tree 

classifier in combination with the sequence features we 

predicted 11962 translated uORFs in the genome of 

Arabidopsis thaliana, promising candidates for future 

functional analyses. We have compared our results with 

previous studies: our predictions include 89% of the 

reported, experimentally verified uORFs, and 84% of the 

reported, conserved uORFs. Remarkably, our previous 

ribo-seq feature-based algorithm detects a considerably 

smaller percentage of these uORFs. We hypothesize that 

this difference is caused by genes for which ribo-seq 

information is not available (for example untranscribed 

genes), or difficult to interpret (for example genes with 

overlapping uORFs). However, not surprisingly, if 

sufficient ribosome profiling information is available, our 

previous ribo-seq feature-based algorithm performs better. 

We plan to combine both approaches in future work. 

 

5 Acknowledgment 
 

Parts of this work were supported by the National 

Science Foundation grant IOS1444561.  

 

References 

 
[1] Selpi, C. H. Bryant, G. J. Kemp, J. Sarv, E. 

Kristiansson, and P. Sunnerhagen, "Predicting 

functional upstream open reading frames in 

Saccharomyces cerevisiae," BMC Bioinformatics, vol. 

10, p. 451, 2009. 

[2] C. Barbosa, I. Peixeiro, and L. Romao, "Gene 

expression regulation by upstream open reading 

frames and human disease," PLoS Genet, vol. 9, p. 

e1003529, 2013. 

[3] A. G. von Arnim, Q. Jia, and J. N. Vaughn, 

"Regulation of plant translation by upstream open 

reading frames," Plant Sci, vol. 214, pp. 1-12, Jan 

2014. 

[4] M. Matsui, N. Yachie, Y. Okada, R. Saito, and M. 

Tomita, "Bioinformatic analysis of post-

transcriptional regulation by uORF in human and 

mouse," FEBS Lett, vol. 581, pp. 4184-8, Sep 04 

2007. 

[5] D. R. Morris and A. P. Geballe, "Upstream open 

reading frames as regulators of mRNA translation," 

Mol Cell Biol, vol. 20, pp. 8635-42, Dec 2000. 

140



[6] A. G. Hinnebusch, "Molecular mechanism of 

scanning and start codon selection in eukaryotes," 

Microbiol Mol Biol Rev, vol. 75, pp. 434-67, first 

page of table of contents, Sep 2011. 

[7] G. L. Chew, A. Pauli, and A. F. Schier, 

"Conservation of uORF repressiveness and sequence 

features in mouse, human and zebrafish," Nat 

Commun, vol. 7, p. 11663, May 24 2016. 

[8] C. Fritsch, A. Herrmann, M. Nothnagel, K. 

Szafranski, K. Huse, F. Schumann, et al., "Genome-

wide search for novel human uORFs and N-terminal 

protein extensions using ribosomal footprinting," 

Genome Res, vol. 22, pp. 2208-18, Nov 2012. 

[9] N. T. Ingolia, L. F. Lareau, and J. S. Weissman, 

"Ribosome profiling of mouse embryonic stem cells 

reveals the complexity and dynamics of mammalian 

proteomes," Cell, vol. 147, pp. 789-802, Nov 11 2011. 

[10] Q. Hu, C. Merchante, A. N. Stepanova, J. M. Alonso, 

and S. Heber, "Genome-Wide Search for Translated 

Upstream Open Reading Frames in Arabidopsis 

Thaliana," IEEE Trans Nanobioscience, vol. 15, pp. 

148-57, Mar 2016. 

[11] C. Merchante, J. Brumos, J. Yun, Q. Hu, Kristina R. 

Spencer, P. Enríquez, et al., "Gene-Specific 

Translation Regulation Mediated by the Hormone-

Signaling Molecule EIN2," Cell, vol. 163, pp. 684-

697. 

[12] C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, 

D. R. Kelley, et al., "Differential gene and transcript 

expression analysis of RNA-seq experiments with 

TopHat and Cufflinks," Nat Protoc, vol. 7, pp. 562-

78, Mar 2012. 

[13] A. A. Bazzini, T. G. Johnstone, R. Christiano, S. D. 

Mackowiak, B. Obermayer, E. S. Fleming, et al., 

"Identification of small ORFs in vertebrates using 

ribosome footprinting and evolutionary 

conservation," EMBO J, vol. 33, pp. 981-93, May 02 

2014. 

[14] H. G. Boman, "Antibacterial peptides: basic facts and 

emerging concepts," J Intern Med, vol. 254, pp. 197-

215, Sep 2003. 

[15] K. Guruprasad, B. V. Reddy, and M. W. Pandit, 

"Correlation between stability of a protein and its 

dipeptide composition: a novel approach for 

predicting in vivo stability of a protein from its 

primary sequence," Protein Eng, vol. 4, pp. 155-61, 

Dec 1990. 

[16] P. Rice, I. Longden, and A. Bleasby, "EMBOSS: the 

European Molecular Biology Open Software Suite," 

Trends Genet, vol. 16, pp. 276-7, Jun 2000. 

[17] P. J. Rousseeuw, "Silhouettes: a Graphical Aid to the 

Interpretation and Validation of Cluster Analysis," 

Computational and Applied Mathematics pp. 53-65, 

1987. 

[18] Y. Y. Song and Y. Lu, "Decision tree methods: 

applications for classification and prediction," 

Shanghai Arch Psychiatry, vol. 27, pp. 130-5, Apr 25 

2015. 

[19] L. Breiman, "Random Forests," Machine Learning, 

vol. 45, pp. 5-32, 2001/10/01 2001. 

[20] Z. Tu, "Probabilistic boosting-tree: learning 

discriminative models for classification, recognition, 

and clustering," Tenth IEEE International Conference 

on Computer Vision (ICCV'05) vol. 1, pp. 1589-1596 

2005. 

[21] N. T. Ingolia, "Genome-wide translational profiling 

by ribosome footprinting," Methods Enzymol, vol. 

470, pp. 119-42, 2010. 

[22] M. Cvijovic, D. Dalevi, E. Bilsland, G. J. Kemp, and 

P. Sunnerhagen, "Identification of putative regulatory 

upstream ORFs in the yeast genome using heuristics 

and evolutionary conservation," BMC Bioinformatics, 

vol. 8, p. 295, 2007. 

[23] Q. Hu, C. Merchante, A. N. Stepanova, J. M. Alonso, 

and S. Heber, "Genome-Wide Search for Translated 

Upstream Open Reading Frames in Arabidopsis 

Thaliana," IEEE Transactions on NanoBioscience, 

vol. 15, pp. 148-157, 2016. 

[24] S. E. Calvo, D. J. Pagliarini, and V. K. Mootha, 

"Upstream open reading frames cause widespread 

reduction of protein expression and are polymorphic 

among humans," Proc Natl Acad Sci U S A, vol. 106, 

pp. 7507-12, May 5 2009. 

[25] M. dos Reis, R. Savva, and L. Wernisch, "Solving the 

riddle of codon usage preferences: a test for 

translational selection," Nucleic Acids Res, vol. 32, pp. 

5036-44, 2004. 

[26] Y. Lavner and D. Kotlar, "Codon bias as a factor in 

regulating expression via translation rate in the 

human genome," Gene, vol. 345, pp. 127-38, Jan 17 

2005. 

[27] A. Imai, Y. Hanzawa, M. Komura, K. T. Yamamoto, 

Y. Komeda, and T. Takahashi, "The dwarf phenotype 

of the Arabidopsis acl5 mutant is suppressed by a 

mutation in an upstream ORF of a bHLH gene," 

Development, vol. 133, pp. 3575-85, Sep 2006. 

[28] F. Alatorre-Cobos, A. Cruz-Ramirez, C. A. Hayden, 

C. A. Perez-Torres, A. L. Chauvin, E. Ibarra-Laclette, 

et al., "Translational regulation of Arabidopsis 

XIPOTL1 is modulated by phosphocholine levels via 

the phylogenetically conserved upstream open 

reading frame 30," J Exp Bot, vol. 63, pp. 5203-21, 

Sep 2012. 

[29] A. Wiese, N. Elzinga, B. Wobbes, and S. Smeekens, 

"A conserved upstream open reading frame mediates 

sucrose-induced repression of translation," Plant Cell, 

vol. 16, pp. 1717-29, Jul 2004. 

 

141



Scalable Approach to Data Driven Transcriptome Dynamics Modeling

Alexandr Koryachko, Samiul Haque, and Cranos Williams
Department of Electrical and Computer Engineering, NCSU

890 Oval Drive, 27606, Raleigh, USA
(akoryac, shaque2, cmwilli5)@ncsu.edu

Abstract

The evolving field of biological experimentation al-
lows for the collection of various types of data describing
different aspects of gene regulation inside a living
cell. However, most of the gene expression dynamic
modeling approaches limit their choice of data to a
time course, which leads to infeasible requirements on
the number of sampling time points to estimate the
multitude of biologically relevant parameters. Thus,
the model scope and parameter identifiability have to be
sacrificed to approximate transciptome dynamics based
on a typical number of time course samples. In this
paper, we propose a scalable framework for building
a model of transcriptome dynamics by aggregating a
collection of experimental data available and suggest
the types of additional experimentation to supplement
the time course efficiently. The described approach is
capable of increasing model descriptive and predictive
power when additional data become available.

keywords: Gene Expression, Mathematical Modeling,
Model Selection, Experimental Design, Nonlinear Dy-
namics, ODEs.

1 Introduction

Living organisms develop and respond to stimuli
through a set of regulations on a molecular level.
The regulation rules are hard-written in a genome
and implemented through the action of transcription
factors which modulate gene activity according to a
given condition. Various types of experiments are
performed to gain insight into that machinery to modify
organisms in novel and strategic ways. Transcriptome
abundance measurements are a widely utilized tech-
nique to estimate the change of gene activity over
time or under a condition of interest. Methods of
various complexity have been used to analyze the
transcriptome (gene expression) data [24, 13]. Out
of those methods the systems of Ordinary Differential
Equations (ODEs) present the most descriptive way of
representing transcriptome dynamics over time within
a cell.

Ordinary Differential Equations (ODEs) gain a grow-
ing interest as a tool for modeling gene expression
dynamics [24], yet a typical limitation of 2 to 8 time
samples per time course [29] is still a barrier for a wide
use in practical applications [2]. This limitation also
leads to formulation of phenomenological models like
linear models [4], Standardized Qualitative Dynamical
Systems (SQUAD) models [20], or nonlinear basis
functions models [8] with a small number of biologically
irrelevant parameters rather than using mathemati-
cal constructs based on molecular kinetics like in S-
Systems [23] or Hill-function kinetics based models [15].
Moreover, a wide range of proposed ODE structures for
modeling transcriptome activity makes the choice of an
appropriate mathematical representation challenging
due to a lack of specific requirements for experimental
data in the corresponding papers.

A number of studies have successfully applied ODEs
to model transcriptome dynamics given a sufficient
amount of information in terms of gene regulatory
network graph and/or the results of various types
of experiments which complemented the time course
data [9, 4, 31]. Despite the findings facilitated by
such modeling and the potential of building on previ-
ous results by collecting additional data, the cases of
gradual model evolution are rather an exception than a
rule. One such exception is the circadian clock effect
in plants, which has been the subject of a number
of ODE models [19, 18], continuously improved over
time by the addition of new feedback loops [17], post-
transcriptional and post-translational regulation [25],
and mutant expression data [26]. In each case the
addition of new data allowed for greater descriptive and
predictive power [3]. However, each iteration required a
reformulation of the previous model structure to incor-
porate new experimental results, making the process of
model improvement long and not intuitive.

In this paper, we propose a methodology for dynamic
model building which allows for a gradual increase
in model complexity when new experimental data
become available. In Section 2 we summarize the
commonly used ODE structures into levels of mathe-
matical complexity where each new level extends the
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previous one based on additional data and propose the
types of experiments allowing for an efficient transition
between the levels. In Section 3 we propose criteria
for data sufficiency at a given level of model com-
plexity and an algorithm for aggregating the available
experimental datasets. Thus, the resulting model will
represent the outcomes of relevant experiments in a
set of uniquely identifiable parameters, provide insights
into transcriptome properties if the parameters are
biologically relevant, and allow for gene expression
predictions in a wide range of conditions combinations.

2 Model Formulation

2.1 Basic Model

Gene expression can be thought of as a balance
between the rate of gene transcription and the rate of
the corresponding mRNA degradation. Assuming both
rates constant at a steady state, one can model gene
expression dynamics with the following ODE:

dx

dt
= a− bx, (1)

where x represents gene expression, a represents the
transcription rate (a > 0), and b represents the
mRNA decay rate (b > 0). With a steady state
assumption (i.e. dx/dt = 0) only one gene expression
measurement xss would suffice to initiate the model
building process and estimate the ratio of the rates at
a steady state (a/b = xss).

Resolving between a and b requires additional experi-
mentation. Time course data, the most common source
of information in modeling approaches, can be used
for this purpose if it captures a sufficient amount of
gene expression dynamics. This scenario is rarely the
case due to the typical sparseness of biological data.
Zak et. al. proposed solving this problem by measuring
the decay rate separately [35]. Barenco et. al. obtained
direct mRNA decay rate measurements to constrain the
tumor suppressor transcription factor p53 model while
fitting it to the time course data [1]. Decay rate values
may also be available in the literature [22, 32]. However,
the reported values should be used with caution since
decay rates are known to be condition specific [6].
Moreover, most experimental protocols are invasive and
might heavily affect cellular physiology [21].

2.2 Transcription Factor Effect

Gene regulation in a cell is modulated through the
activity of transcription factors. Assuming that tran-
scription factors affect a common target gene x indepen-
dently, this modulation can be reflected in Equation (1)

as follows:

dx

dt
= af1(x1)f2(x2) · · · fR(xR)− bx, (2)

where a is a scaling coefficient, xr (r = 1, 2, . . . , R)
is the expression of one of R transcription factors
regulating x, and fr(xr) is the regulator influence
function which is equal to 1 when no regulation occurs,
greater than 1 for activators, and between 0 and 1 for
inhibitors. Influence function parameter estimation is
heavily affected by the ability to differentiate between
regulators’ expression patterns based on sparse and
noisy time course samples. Additional sampling time
points or replicates do not guarantee sufficient resolu-
tion improvements. Thus, time course data should be
supplemented with additional information to estimate
the influence coefficients. Experiments where target
expression is measured while regulator expression is
manipulated can reveal this information.

Regulator knock-out mutant experiments [36, 14] can
uniquely define a linear approximation of the influence
function fr(xr) = 1 + crxr. If transcription factor xr
is an activator with a measured wild-type expres-
sion xWT

r , then target gene expression measurements
in wild-type (xWT ) and mutant (xMA) conditions allow
to approximate the regulator-target dependence with a
line (Figure 1A):

x = xMA +
xWT − xMA

xWT
r

xr,

which leads to a constant impact factor cAr approxima-
tion by associating xMA with the scaling coefficient a
and rewriting the dependence in a form of the linear
influence function:

f (lin)rA (xr) = 1 +
xWT − xMA

xWT
r xMA

︸ ︷︷ ︸
cAr

xr.

However, a linear construct is expected to approximate
the influence in a range that does not extend far
beyond the regulator’s wild type gene expression value.
Otherwise, unrealistically high target expression is
expected in case of activators and negative expression
in case of inhibitors.

Hill-function approximation [7, 15] presents another,
more biologically relevant, way of representing regulator
influence (Figure 1B):

x = xMA +
(
xmax − xMA

) xlr
xlr +Kl

= xMA · f (hill)rA .

Here the target expression value under activator’s
influence is bounded. The bound estimate xmax can
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be obtained through overexpression experiments [27] if
the regulator’s overexpression value is at least several
fold larger than xWT

r . The dissociation constant
K can be estimated using knock-out mutant (xMA)
and overexpression (xmax) experiment values. The
regulator’s protein affinity l can be obtained through
additional experiments, for example, through fluores-
cence correlation spectroscopy in plants [5]. Hence,
each additional parameter in the regulator influence
function requires an experiment to estimate it.
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Figure 1: Influence function fr(xr) under (A) Linear
and (B) Hill-function approximation assumptions.

2.3 Condition Induced Effects

A host of transcriptome research studies are inter-
ested in mechanisms governing organism’s response
to a certain condition like biotic or abiotic stress in
plants [12] or pathogen infection in single cells or
animals [9, 34]. Equation (2) would be sufficient in
describing gene expression dynamics over time under
such condition if the full set of regulators is known,
which is almost never the case at the current stage.
Thus, the model has to account for unknown factors:

dx

dt
= afu(t)

R∏

r=1

fr(xr)− bx, (3)

where R is the number of known regulators, and
fu(t) is a function aggregating the currently unknown
influencing factors which change their activity under a

condition of interest. An example of such influencing
factor could be a change in a currently unknown
condition induced transcription factor which binds to
the target gene’s promoter. fu(t) takes positive values
and turns into 1 in wild-type conditions. The shape of
fu(t) can be obtained using Gaussian process approx-
imation [10]. Another approach would be to represent
the unknown effect as a continuous shift to a new
condition induced equilibrium:

u(t) = uT
1

(τ/t)
r

+ 1
, (4)

where uT represents an impact coefficient (uT > −1),
r quantifies how fast the transition between wild-type
and condition induced steady states occurs (r > 0),
and τ accounts for the transition delay (Figure 2).
Because u(t) turns to 0 when no condition is applied,
an adjustment fu(t) = 1 + u(t) is needed to represent
the unknown regulatory effect function. Parameters
shaping u(t) can be estimated by fitting the model to
time course data under wild-type and the condition of
interest.

0 =

t

0

 0.5 u
T

u
T

u(
t)

r = 0.3
r = 0.1
r = 1

Figure 2: Sigmoid function approximation of unknown
influencing factors effects. uT – scale coefficient, r –
rate coefficient , and τ – delay coefficient.

Additional experiments can help shaping the response
to different levels of the applied condition if the con-
dition levels are quantifiable and the sigmoid function
is used. In such case the parameters shaping u(t) are
affected by the condition level S. We will concentrate
on the condition dependence of the magnitude param-
eter uT while the condition dependence of other two
parameters from Equation (4) can be quantified in a
similar fashion.

Wild-type and condition induced gene expression
values allow for a linear approximation through a range
of condition levels, which might, in some cases, be
significantly far from reality. A more reliable approxi-
mation can be obtained by sampling gene expression at
intermediate condition levels. However, transcriptome
measurements are resource consuming, so the condition
levels should be chosen in an efficient manner to
produce maximum information with minimum exper-
imentation. If the organism of interest exhibits a
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quantifiable change in size, shape, or other easily
accessible physiological parameters under the condition
of interest, a faster and less expensive procedure of
phenotyping can be used under a set of intermediate
condition levels (e.g. micronutrient content level or
pathogen load) to judge whether linear approximation
captures the condition effect. Phenotyping results can
also give clues on which condition levels to choose
for the consequent transcriptome measurement exper-
iments. Figure 3 shows a hypothetical example of
selecting the most informative sampling point and the
magnitude response function based on the results of
phenotyping experiments.

0 S
p

S
mCondition level (S)

0

u
T
 (S

m
)

u
T

Measured levels
Linear approximation
Phenotyping results
Proposed sample
Proposed u

T
(S)

Figure 3: Condition level effect dependence modeling.
Sm− measured condition level of the initial experiment,
Sp−proposed condition level for gene expression
measurements based on phenotyping experiments.

3 Model Fitting

Guidelines for the additional experimentation pro-
posed in the previous section illustrate ways for increas-
ing model complexity and, thus, its descriptive and
predictive power. However, determining whether the
collected data is sufficient for a given model complexity
and combining various types of datasets to train the
model are not trivial tasks considering that each type of
experimentation has an associated measurement noise.
We propose parameter identifiability analysis as a
criteria for data sufficiency when scaling a model up and
Bayesian inference for model parameter optimization.

3.1 Model Scalability Assessment

We require all parameters to be uniquely identifi-
able in the scaled up model representation to accept
it. A parameter is considered non-identifiable if any
deviation in its value produce an equally good model
fit through the corresponding adjustments in other
parameters. For example, any value of decay rate b
can be compensated with a corresponding value of the
transcription rate a in Equation (1) if xss is the only

non wild type measurement at hand. Thus, parameter
non-identifiability indicates a lack of data support for a
given model structure. Several methods such as Differ-
ential Algebra Identifiability of Systems (DAISY) [30],
Exact Arithmetic Rank (EAR) [11], and Profile Likeli-
hood (PL) [28] have been used to detect non-identifiable
parameters. Among these methods, PL is the only one
that relies on experimental data in its identifiability
analysis. We propose using the results of PL analysis
for model discrimination when increasing model com-
plexity based on additional data.

3.2 Parameter Estimation

Bayesian inference methods aggregate different
sources of data by shaping prior distributions
of the corresponding parameters before fitting a
model to the corresponding time course. Each
experiment that we proposed allows for obtaining
mean and standard deviation estimates for a specific
parameter. An assumption on experimental error
distribution (e.g. Gaussian or Poisson) would allow
to construct the corresponding prior distribution.
The model fitting algorithm will sample parameter
values from the corresponding prior distributions while
minimizing the sum of squared differences between the
time course data and gene expression pattern produced
by the model. Parameter values from the regions that
are far from the experimental measurements are highly
unlikely to be sampled which would ensure that the
model describes both the time course data and the
results of the additional experiments.

Due to a nonlinear nature of the differential equations
governing gene expression dynamics we suggest using
the latest generation of Bayessian inference based pa-
rameter estimation algorithm, namely Differential Evo-
lution Adaptive Metropolis (DREAM) software pack-
age [33]. It has been demonstrated that DREAM
outperforms similar software in nonlinear, multimodal,
and high dimensional problems [16].

4 Conclusion

In this paper, we presented a methodology for se-
quential increase in gene expression dynamic model
complexity by aggregating different types of experi-
mental data. The methodology provides a flexible
framework for accumulating the existing knowledge of
a biological process of interest at the transcriptome
level and proposes efficient ways for expanding this
knowledge through additional experimentation. This
paper aims to facilitate modeling efforts in the studies
where time course experiments have been implemented
and the key regulatory connections have been identified.
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Gould, Balázs Fehér, Eva Kevei, Ferenc Nagy,
Matthew S Turner, Anthony Hall, and Andrew J
Millar. Experimental validation of a predicted
feedback loop in the multi-oscillator clock of
arabidopsis thaliana. Molecular systems biology,
2(1):59, 2006.

[18] James CW Locke, Megan M Southern, László
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Abstract

Transcript reconstruction from mammal RNA-Seq
data remains a challenging problem due to several
biases, such as those from sequencing or mapping,
the complexity of mammalian transcriptome generation
from alternative splicing, fragmentary characteristics
of reads, and from the unbalanced sequencing. Here,
IsoRef, a reference-based transcriptome assembler for
RNA-Seq data, is proposed. IsoRef investigates in-
formation from not only sequencing data, but from
transcript annotation as well, in order to build accurate
splice graphs. A flow balancing technique is proposed
to reduce the impact of false positive transcripts and
to narrow the search space of true positive transcripts.
For each of two in silico datasets, IsoRef predicted 1,400
additional correct transcripts than StringTie; for each
of the five actual datasets, IsoRef identified at least
1,500 additional correct transcripts than StringTie,
which improves the transcript-level and gene-level accu-
racy compared to StringTie with a maximum improve-
ment of 20%. IsoRef is available at deepomics.org/
module-instances/2CA682222F734424/.

keywords: transcriptome assembly, splice graph, flow-
balance graph.

1 Introduction
Transcriptome assembly from RNA-Seq data is a

challenging and essential task in profiling, analyzing
and understanding the transcriptome complexity and
molecular mechanisms. It combines the upstream data
preparation (such as sequencing library preparation
and alignment of reads) and the downstream analy-
sis (such as differential gene expression analysis and
alternative splicing analysis) within the procedure of
computational RNA-Seq data processing [3]. Due to
the fragmentary characteristic of sequencing reads, the
biases coming from various sources (such as sequencing
biases and reads alignment biases, the complexity of
mammalian transcriptome resulting from alternative
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Figure 1: Schematic representation of IsoRef. In Step-1,
IsoRef constructs two splice graphs from sequencing data and
reference annotation, respectively. Then, IsoRef integrates these
two graphs to produce a new comprehensive splice graph in Step-
2. After balancing the flows of each node in the integrated graph
in Step-3, IsoRef generates a flow-equilibrium splice graph and
recovers transcripts in Step-4.

splicing [15, 22]), the transcriptome assembly for mam-
mals is full of difficulties and attracts a lot of interests
from researchers [6, 14].

During the last decade, several transcriptome as-
sembly methods were presented. Depending on the
presence of the reference genome, these methods can
be classified into two categories: the reference-based
assembly methods (such as Cufflinks [21], IsoLasso
[12], and StringTie [17]), and the de-novo assembly
methods [6, 20] (such as Oases [18], ABySS [19], and
Velvet [23]). The former methods require a reference
genome for mapping of reads and potential transcripts
are then derived from such alignments. Therefore,
these methods are commonly used for organisms which
genome has been well-annotated [2]. In contrast, the
latter methods do not require reference genomes and
deduct transcripts directly from sequencing reads. Such
methods prevail in processing organisms without the
existing genome [1]. Unsurprisingly, reference-guided
assembly approaches usually produce transcripts with
higher accuracy compared to the performance of de
novo assemblers [13].

Among the reference-based assembly methods, there
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are two popular assemblers gathering reputation from
RNA-Seq data analyzers Cufflinks and StringTie. Cuf-
flinks derives transcripts from an overlap graph in
which nodes denote sequenced fragments and edges
represent the connectivity between nodes supported by
compatible fragments. Cufflinks adopts an ungenerous
strategy to infer transcripts and hence produces a set
of transcripts with the smallest values to construct the
overlapped graph. As regards StringTie, it first builds
a splice graph from aligned reads. The nodes in the
splice graph, different from those in the overlap graph
of Cufflinks, indicate continuous regions of the genome
without splice interruption and edges correspond to
the connectivity between nodes, in case there are sup-
porting reads. Next, StringTie draws transcripts from
the splice graph by applying a network flow algorithm.
However, without using transcriptome annotation, both
assemblers exhibited high error rates on real data [8].

Several factors can affect the performance of the
existing assemblers. Firstly, there is a deficiency of
sufficient reads to bridge the connections between the
exons. Secondly, the reads can lead to inaccurate
connections between exons, resulting in having false
positives. Thirdly, the boundaries of exons are often
wrongly defined, which leads to inaccuracy in the
transcript inference. Aforementioned issues render
assemblers difficult to reach a high accuracy level.
Transcriptome annotations can bring improvement of
the performance [8], since they provide the exon bound-
aries and their connectivity. In view of the fact that
many mammalian reference transcriptomes are well-
annotated, such annotations can be utilized in the
assembly process.

Both Cufflinks and StringTie can employ the annota-
tions, but using different strategies. Cufflinks produces
the annotation transcripts as far as there are reads
mapping to the transcripts, even when there is no
alignment in specific exons of the transcripts. In con-
trast, StringTie generates the annotation transcripts
only if the transcripts are feasible in the splice graph,
which means that each component of the transcript
has supporting reads. In general, Cufflinks produces
transcripts according to the annotation and StringTie
outputs transcripts in accordance with the reads align-
ments.

In this work, we propose IsoRef, a method empha-
sizing the importance of both the RNA-Seq data and
the reference annotations. IsoRef takes the two types
of data to reconstruct transcripts and estimates their
respective expression levels simultaneously. Figure 1
displays the flowchart of IsoRef. Firstly, IsoRef con-
structs two splice graphs from sequencing data and the
reference annotation (Step-1.1, Step-1.2), respectively.
The two splice graphs are then integrated in order
to generate a more comprehensive splice graph for

subsequent procedures (Step-2). If the splice graph
captures the actual expression levels of the exon, then
a node in the graph (different from the source node
and the sink node) should satisfy the flow balance
property; that is, the amount of flows that arrived into
the node is equal to the amount of flows that departed
from it. Inspired by this insight, we proposed a flow-
balance algorithm to balance flows, in order to obtain
the flow-equilibrium splice graph (Step-3). Finally, this
flow-equilibrium graph is adopted to recover transcripts
(Step-4). Experimental results from the simulated data
and the real data show the competitive performance
of IsoRef, especially on the real data, in which IsoRef
exceeded StringTie in terms of gene-level precision by
9.5% in average.

The rest of this paper is organized as follows: we
present the IsoRef methods in detail in the methodology
section. In Section 3 we compare the performance of
IsoRef with Cufflinks and StringTie.

2 Methodology

IsoRef consists of four stages reconstructing
transcripts from both RNA-seq data and the
transcriptome annotation. At each gene locus, it
firstly builds two splice graphs from sequencing data
and annotations, respectively. Then, IsoRef combines
the two splice graphs into a new splice graph. In step
3, IsoRef executes a flow-balance procedure on the
comprehensive splice graph to get a flow-equilibrium
splice graph, in which each node has the same amount
of flows going in, through and out of the node. In step
4, it infers transcripts and calculates its corresponding
abundance from the balanced splice graph.

Splice graph was first proposed in [9] and has
been proven to perform well on many transcriptome
assemblers, such as StringTie. For the sake of inferring
transcripts precisely and fully using the transcript
annotations, IsoRef constructs two splice graphs, if
possible, for each gene pool. The first one is derived
from reads and is called reads-derived splice graph
(Step-1.1), and the other graph is derived from the
relevant transcript annotations and is named as
annotation-derived splice graph (Step-1.2). The nodes
in reads-derived splice graph represent contiguous
genomic regions where there is no interruption. Within
the annotation-derived splice graph, these are exons
or partial exons. Edges, on the other hand, indicate
the connection relationships between nodes supported
by either junction reads or annotation structures.
A source node and a sink node are added to each
graph, linking all starting nodes and ending nodes in
the graphs, respectively. The two graphs may have
different structures, and only reads-derived splice
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graphs possess the flow in their nodes and edges.
The amount of flow of each edge in the reads-derived
splice graph can be calculated as the number of the
supporting junction reads. On the other hand, the
flows in nodes consider the node’s average coverage
as the corresponding value. Besides, flows of edges
spreading out from the source node or into the sink
node are recovered from the flows of connecting nodes.

In Step-2, IsoRef merges the splice graph derived from
reads and the splice graph derived from annotation
and creates a new more comprehensive splice graph.
Nodes from the two graphs having the same definition
and possessing identical connectivity with neighboring
nodes are considered as concordant nodes. Those edges
that link two identical nodes between the two graphs
are concordant edges. The new splice graph retains
all concordant nodes and edges and only manages
those with inconsistency. Firstly, it excludes all nodes
that do not possess any alignments. Nodes that have
different definitions in the two graphs, but overlap in
genomic coordinates are adjusted according to their
definitions in annotation-derived splice graph, except
those nodes which defined by junction reads. Edges
are recovered from both the annotation-derived splice
graph and the reads-derived splice graph as long as
the connection between nodes exists. Loci having the
reads-derived splice graph alone don’t do this merging
step, while those that have only the annotation-derived
splice graph won’t be delivered to subsequent processes.

Ideally, the flows entering in, going through and
out of a specific node (except the source and the sink
node) should be identical. IsoRef tries to achieve
this state by applying a flow-balance algorithm in
Step-3 (in this part we refer to IsoRef as IsoRef+).
Suppose V and E are sets of nodes and edges of
the integrated splice graph, respectively. Thus,
V = {vi|i = 0, 1, ..., N} , v0 and vN are the source node
and the sink node, respectively. The set of edges is
E = {⟨vi, vj⟩ |∀i ∈ [0, N − 1],∀j ∈ [1, N ], vi, vj ∈ V, } .
, and fij indicates the flows in edge ⟨vi, vj⟩ , where
f in
i =

∑N−1
j=0 fji is the total number of flows entering

to vi and fout
i =

∑N
j=1 fij is the sum of flows

going out of vi, while fi represents the number
of flows going through node vi. After balancing is
performed, IsoRef is supposed to reach the state where
∀i ∈ [1, N −1], f

′in
i = f

′out
i = f ′

i , in which f
′in
i , f

′out
i , f ′

i

are the final three types of flows for the node i. IsoRef
adopts the IBM CPLEX library and uses the linear
programming solver to generate a new flow-balanced
splice graph. Denote the flow change of the node i
before and after balancing flow by εi and the change
of edge ⟨vi, vj⟩ by εij . Our objective of the linear
programming problem is:
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Figure 2: Performance of assemblers on simulated datasets
(simA and simB). The upper two figures show the accuracy
(precision and sensitivity) of assemblers. The bottom two figures
display the total number of transcripts inferred by the assemblers,
where the numbers of correctly inferred transcripts are colored.

min
(∑N−1

i=1 εi +
∑N−1

i=0

∑N
j=1 εij

)

s.t. ∀i ∈ [1, N − 1] , εi ≥ 0, εini ≥ 0, εouti ≥ 0

− εi ≤ f
′
i − fi ≤ εi, −εini ≤ f in′

i − f in
i ≤ εini ,

− εouti ≤ fout′
i − fout

i ≤ εouti , f
′in
i = f

′
i = f

′out′
i ;

∀ < vi, vj >∈ E, εij ≥ 0, −εij ≤ f
′
ij − fij ≤ εij ;

where fij and f
′
ij are the flows in edge ⟨vi, vj⟩

before and after balancing, respectively.
Finally, IsoRef obtains transcripts from the flow-

balance splice graph by using a similar method to
the one proposed in StringTie. At each locus, IsoRef
repeatedly searches the transcript (a path from the
source to the sink node) from a node with the highest
number of flows going through it. Then, it is extended
in both directions to the source and to the sink node,
by choosing the edges with the most abundant flows.
IsoRef computes the magnitude of the flow in the
transcript by applying the maximum flow algorithm.
The process for inferring transcripts and its expression
level repeats until the transcript’s flow abundance is
too low or there is no valid path available anymore.

3 Experimental Results

We compared IsoRef with two leading genome-based
transcriptome assemblers, Cufflinks and StringTie, us-
ing both simulated and real data. All the assem-
blers were executed with default parameters. The
reads data were aligned to hg19 genome reference
using Tophat2 [11], HISAT2 [10] and STAR [4]. The
performance of assemblers was evaluated in terms of
accuracy consisting of precision and sensitivity. A
predicted transcript is correct only if both boundaries
of its introns match those of a reference transcripts
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Figure 3: Comparison of predictions produced by Cufflinks, StringTie and IsoRef from HISAT2 alignments. Here, the predictions of
gene TP53 made by the three assemblers are shown. The ‘annotation’ (purple) track shows the isoforms of TP53, the ‘expressed’ (orange)
track shows the expressed isoforms, and ‘Cufflinks’ (cyan), ‘StringTie’ (yellow) and ‘IsoRef’ (green) tracks show the prediction results of
corresponding assemblers.

and the number of exons is the same. The precision
is the ratio of correctly derived transcripts and the
number of predicted transcripts. The sensitivity is the
ratio of correctly derived transcripts and the number of
reference transcripts used in the evaluation. We used
gffcompare [16] to evaluate the performance.

3.1 Performance on in silico data

We firstly compared IsoRef to other assemblers on
simulated data, since the correctness of predicted tran-
scripts can be precisely measured. We used Flux
Simulator [7] to simulate RNA-Seq datasets. The
parameters of Flux Simulator were set according to
the RNA-Seq human protocol, which is provided on
the simulator’s website. Specifically, we simulated
150 million paired-end reads with 75bp length in each
simulation. The reference genome was GRCh37/hg19
downloaded from UCSC Genome Browser. The cor-
responding transcriptome annotation of known RefSeq
Genes was also downloaded from the browser

We simulated two datasets using the same protocol.
However, as the Flux Simulator randomly selected
transcripts to be expressed, at a stochastic expression
level, such two datasets would be different. Therefore,
we named them simA and simB, respectively. We
adopted Tophat2, HISAT2 and STAR to align both
datasets. The alignments were then passed to the
assemblers. To assess the performance accurately, we
employed the confidently expressed transcripts instead
of hg19 annotation in the evaluation.

Figure 2 and Table 1 show the comparative results
among the assemblers. Unsurprisingly, Cufflinks pre-
dominated in terms of sensitivity and the number
of the correct transcripts, as it predicted transcripts
once a reference annotation exists, regardless to its
feasibility. However, the error rates of Cufflinks were
also greatly above those of other assemblers (47.3%,
50.3% and 50% in simA, 47.4%, 50.5% and 50.2% in
simB). Regarding the performance of StringTie and
IsoRef, IsoRef predicted around 3100, 2400 and 1400
more correct transcripts from Tophat2, HISAT2 and
STAR alignments, respectively, than StringTie, while

the accuracy was not harmed. Besides, the expression
correlations of IsoRef were improved compared to those
of StringTie (Table 2). The benefits of using IsoRef,
shown in the figures, demonstrate the superiority of
IsoRef’s strategy that incorporated information from
annotation and reads. The IsoRef strategy helped
discover more reliable transcripts, especially those that
were not explicitly supported through reads. Its effec-
tivity suggests the necessity of using the reference anno-
tation in transcript reconstruction. Regarding IsoRef+,
it predicted even more correct transcripts compared
to IsoRef (above 150 more from Tophat2 alignments
and around 100 more from HISAT2 alignments) and it
had higher accuracy and expression correlations than
both StringTie and IsoRef. The superiority of IsoRef+
compared to IsoRef indicates that balancing the flow of
splice graph was beneficial to transcript reconstruction,
increasing not only the accuracy of assembly, but
also the number of correct transcripts. In Figure 3,
we compared the performances of IsoRef, Cufflinks
and StringTie in building the isoforms of gene TP53
from HISAT2 alignments. TP53, acting as a tumor
suppressor, is the most studied gene in human genome
[5]. From this figure, we know that TP53 has seven
isoforms and only two of them were expressed during
the simulation. Cufflinks predicted all seven isoforms,
while StringTie gave only one correct prediction. In
contrast, IsoRef built the structures for each of the
expressed two isoforms.

3.2 Performance on real data

Next, the comparison on five real datasets is
performed. We used IsoRef that undergoes the flow-
balance technique. The real datasets are publicly
available datasets, where three of them are from [17].
These datasets were downloaded from NCBI and
are represented by “Lung” (GSM981244), “Blood”
(GSM981256), “Monocytes” (GSM984609), “Spleen”
(SRR4421334) and “HepG2” (SRR4422652) datasets.
The dataset Spleen has 5.8 G bases of 100bp paired-end
reads from a male adult’s spleen, while the HepG2
is from the HepG2 cell line containing 2.1 G bases
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of 50bp paired-end reads. Reads were mapped using
Tophat2, HISAT2 and STAR as well.

Table 1: Accuracy of assemblers on simA and simB

Cuff ST Ref Ref+

TH+simA
sens 100 83.1 82.7 83.6
prec 52.7 57.8 63.1 65.3
called 35596 17803 21230 20767
match 18770 10292 13396 13569

HT+simA
sens 100 84.6 84.1 85
prec 49.7 77.7 78.4 78.9
called 37772 13216 16389 16422
match 18773 10274 12849 12952

SR+simA
sens 100 90.2 90.5 90.3
prec 50 79.4 80.7 81
called 37543 16524 18114 118103
match 18763 13127 14662 14663

TH+simB
sens 100 83.4 83.6 84.2
prec 52.6 57.5 63.4 66.1
called 35540 17993 21187 20647
match 18678 10348 13427 13652

HT+simB
sens 100 85 84.2 85.1
prec 49.6 77.6 78.4 78.7
called 37681 13289 16316 16385
match 18672 10312 12797 12887

SR+simB
sens 100 90.5 90.7 90.5
prec 49.8 79.3 80.7 81
called 37481 16602 18128 18087
match 18664 13168 14630 14659

‘TH’=Tophat2, ‘ST’ = HISAT2, ‘SR’ = STAR, ‘Cuff’ = Cufflinks, ‘ST’ =
StringTie, ‘Ref’ = IsoRef, ‘Ref+’ = IsoRef+, ‘sens’ = sensitivity, ‘prec’ =

precision, ‘called’ = # of predicted transcripts, ‘match’ = # of correct
predictions.

Table 2: Expression correlation on simulated data

Cuff ST Ref Ref+

TH+simA pearson 0.9423 0.8337 0.8593 0.8753
spearman 0.9435 0.8409 0.8479 0.8654

HT+simA pearson 0.9381 0.8647 0.8756 0.8918
spearman 0.919 0.8619 0.8709 0.8871

SR+simA pearson 0.9578 0.8612 0.875 0.8925
spearman 0.9576 0.85 0.8672 0.88

TH+simB pearson 0.9449 0.8257 0.8378 0.871
spearman 0.9448 0.8345 0.8368 0.8587

HT+simB pearson 0.9413 0.8544 0.8663 0.8841
spearman 0.9214 0.8544 0.864 0.8815

SR+simB pearson 0.9562 0.8467 0.8692 0.886
spearman 0.9565 0.8332 0.8626 0.874

Figure 4 and Table 3 show the performances of
the assemblers on these datasets. Because in the
actual data we cannot tell which transcripts were truly
expressed, another criterion to evaluate the correct
number of predicted genes is added. A predicted
gene is considered correct if all the introns are exactly
recognized in the order of an annotation. Thus, we
can calculate the sensitivity and the precision for each
assembler, at the gene level.

Similar to the results gained using in silico data,
Cufflinks led the boards of sensitivity and precision
at both transcript level and the gene level, as well
as the board of the number of correct predictions.
Since the exact transcripts that were expressed are
unknown, the performance of Cufflinks was even better
than its performance on simulated data. However,
the number of false positive transcripts generated by
Cufflinks is also higher when considering the above
situation. Generally, for all datasets, IsoRef surpassed
StringTie in most aspects of accuracy, no matter
which tool used in alignment. On both Tophat2 and
HISAT2 alignments, IsoRef held about 5% leads in
major indices than StringTie, especially in the dataset
HepG2, which displayed 22% and 21% higher precision

at gene-level, respectively. Based on STAR alignments,
IsoRef showed a slight advantage over StringTie at
both transcript-level and gene-level accuracy. These
results may be due to the higher rate of uniquely
mapped reads using STAR than that using Tophat2
and HISAT2 (more than 7% unique mapping reads),
which reduced the ambiguity of reads in the assembly
and thus weakened the importance of annotation and
the flow-balance algorithm IsoRef used. Regarding the
number of correct transcripts, regardless of tools used
in the alignment, IsoRef showed a stable improvement
over StringTie on all datasets. Specifically, IsoRef
produced about 2600, 1500 and 1600 more correct
transcripts than StringTie on all the Tophat2, HISAT2
and STAR alignments, respectively.

4 Conclusion

We proposed a novel transcriptome assembly method
IsoRef, which incorporates information from sequencing
data and referred transcriptome annotation. The
extra information from the annotation helps predict
transcripts more precisely. Experimental results from
simulated data and the real data both show the superi-
ority of IsoRef over StringTie in transcripts prediction
accuracy and expression estimation, regardless of the
tools used in the alignment. Moreover, balancing the
flow of the splice graph is proved to be a helpful
technique to increase the number of correctly predicted
transcripts, without harming the estimation of tran-
scripts’ expressions. .
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Figure 4: Performance of assemblers on real datasets.

Table 3: Accuracy of assemblers on real datasets

Lung Blood Monocytes Spleen HepG2
t-level g-level t-level g-level t-level g-level t-level g-level t-level g-level

sens prec sens prec sens prec sens prec sens prec sens prec sens prec sens prec sens prec sens prec
TH+Cuff 100 62.8 100 66.2 100 41.9 100 40.4 100 66.7 100 76.3 100 34.7 100 30.3 100 89.4 100 94.6
TH+ST 74.4 39.5 95.6 42.1 74.9 21.7 94.7 25.9 73.1 44.4 95.7 54 69.6 4.7 95.8 4 66.6 32.2 94.2 38.5
TH+Ref 74.6 44.8 96.3 49.4 74.9 26.8 96.2 33.3 72.9 52.8 97 65.3 69.8 9 97.6 8.1 67.2 46.2 97.3 61
HT+Cuff 100 64.3 100 73.9 100 47.8 100 48.1 100 56.9 100 62.8 100 93.9 100 98 100 98.2 100 99.5
HT+ST 59.4 32.5 70.3 35.8 66.7 24.1 78.4 30 76.3 38.1 96.4 47.9 71.1 5.1 96.9 4.4 70.7 34.6 95.8 41.6
HT+Ref 78.8 47 97 55.3 79.5 31.2 96.5 42.2 75.6 44.5 97.5 57.7 70.3 9.6 98.1 8.8 68.4 47.4 97.7 62.7
SR+Cuff 100 64.8 100 73 100 54.2 100 60.3 100 58 100 63 100 20.7 100 16.7 100 47.9 100 51
SR+ST 81.6 46.6 96.6 52.8 80 42.4 97.5 57.1 82.6 47 97.6 61.3 75.5 8.4 97.9 6.9 79.2 53.7 98.3 67.3
SR+Ref 80.5 49.7 97 56.6 79.1 47.6 98.1 62.5 82.3 51.8 98.1 66.1 75.2 11.2 98.6 9.4 79 59.6 98.6 72.1

‘TH’ = Tophat2, ‘HT’ = HISAT2, ‘SR’ = STAR, ‘Cuff’ = Cufflinks, ‘ST’ = StringTie, ‘Ref’ = IsoRef, ‘t-level’ = transcript level, ‘g-level’ = gene level.
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Abstract 
The continuously growing protein sequence and structure 

data provide an increase in the need and importance of 
protein sequence alignment. Protein sequence alignment 
has been investigated by many researchers as a single-score 
optimization problem where both sequence and structural 
information are taken into account through a single 
combined score function. However, there is usually a trade-
off between the sequence and structure scores, which 
makes it unlikely to generate a single alignment that 
optimizes all the scores. In this paper, we pursue a Multi-
Objective Alignment (MOA) algorithm to obtain 
diversified alignments. The multi-objective alignment 
algorithm yields a better chance of obtaining the correct 
alignments and then achieving protein structure models 
with higher accuracy. The effectiveness of our multi-
objective alignment algorithm is demonstrated in thread-
based protein structure modeling on CASP11 targets. 

1  Introduction 
One of the essential tasks in bioinformatics is sequence 

alignment. As protein sequence alignment is fundamental 
to many problems in biology, such as protein structure 
modeling, protein design, and functional annotation of 
proteins [1] [2]. Generating an alignment between two 
protein sequences is generally done by optimizing an 
alignment scoring function. The most popular approach for 
protein sequence alignment is Dynamic Programming [3] 
[4] [5]. Several enhancements for the dynamic 
programming approach have been introduced. A 
remarkable one is the use of multiple sequence information 
to develop position-specific substitution profiles [6] [7] [8] 
[9]. Also the transformation of this multiple sequence 
alignment into a Hidden Markov Model [10] [11] [12] [13] 
is another addition to this technique. The position-specific 
substitution profiles have been used in several successful 
sequence alignment algorithms. One is CLUSTALW, 
which generates multiple sequence alignment in a pairwise 
manner [14] [15]. Another is SATCHMO, which 

simultaneously constructs a tree and a set of multiple 
sequence alignments, one for each node in the tree [16].  

An important application of sequence alignment in 
protein structure modeling is thread-based protein structure 
modeling. Given a structure template, thread-based protein 
structure modeling aims at aligning every amino acid in the 
target sequence with the template sequence and evaluate 
how well the target fits into the template structure. Thread-
based protein structure modeling is designed to model 
proteins that have the same fold as proteins with 
experiment-determined structures but without having high 
sequence similarity. In addition to sequence profile 
alignment, thread-based modeling also attempts to align 
structural information including secondary structures, 
solvent accessibility, backbone dihedral angles, and 
fragments [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] 
at the same time. The alignments of sequence and structural 
information are usually measured as individual scores, 
which are later linearly combined as a single alignment 
score. Dynamic programming or genetic algorithms are 
often employed to generate alignments by optimizing the 
alignment score [27] [28] [29] [30].  

Correctly aligning the target sequence with the template 
sequence often yields maximum protein structure modeling 
accuracy for this template. Although typically the weights 
used to linearly combine individual scores can be trained 
by various machine learning algorithms, there is unlikely a 
single set of weights that can satisfy alignments of all target 
sequences and templates. This is due to the fact that the 
individual scores of sequence profiles and structural 
information are often conflicting. In this paper, we pursue 
a Multi-Objective Alignment (MOA) algorithm based on 
the Needleman-Wunsch algorithm [3] to obtain a set of 
diversified Pareto-optimal alignments. In theory, the multi-
objective alignment algorithms can be considered as a 
super consensus method [31] [32] [33] whose goal is to 
derive all possible alignments with diversified consensus 
over all positive, linear weigh combinations. As a result, 
compared to finding a single alignment by optimizing a 
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certain combination of individual scores, the multi-
objective alignment algorithm yields a better chance of 
obtaining the correct alignment and then achieving protein 
structure models with higher accuracy. The effectiveness 
of our multi-objective alignment algorithm is demonstrated 
in thread-based protein structure modeling on a set of 
CASP11 targets by deriving alignments based on sequence 
profile score and the structural information score.   

2  Methodology 
We examined the implementation of MOA algorithm for 

protein sequences based on the following objectives: (1) 
sequence profile, (2) secondary structure, and solvent 
accessibility objective functions. 

Multi-Objective Alignment (MOA) Algorithm 
Our idea for MOA is based on the Needleman-Wunsch 

algorithm, but instead of building only one score matrix we 
built a score matrix for each objective function. Tracing 
maximum-match pathway in each matrix will end up by 
generating the optimal alignment for the objective used to 
build this matrix. To get the multi-objectives alignments 
we will trace the maximum-match pathway in all the 
matrices to get each objective optimal alignment. 
Whenever these alignment decisions (match, insert, and 
delete) of the objectives disagree, a new alignment, which 
has the same starting part as the alignment being traced but 
continue by following the alignment decision of the 
disagreeing matrix, will be added. This procedure will be 
done until we generate all the alignments discovered while 
tracing the objective matrices. Finally, the scores of the 
generated alignments will be calculated according to all the 
objectives, and only the non-dominating alignments will be 
kept. The implementation of our method is split into two 
stages: score matrices generation and tracing objective 
matrices to generate the multi-objective alignments. 

Score Matrices Generation 
Given a set of objective functions 𝑓1(. ), … , 𝑓𝑘(. ), for two 

sequences 𝐴 = 𝑎1𝑎2 … 𝑎𝑀  and 𝐵 = 𝑏1𝑏2 … 𝑏𝑁 , a score 
𝑠𝑚,𝑛(𝑓𝑖) is assigned to an aligned pair of residues 𝑎𝑚 and 
𝑏𝑛  based on objective function 𝑓𝑖(. ) . Besides, a gap 
penalty 𝑔(𝑓𝑖) is for aligning a residue from 𝐴/𝐵 to a gap. 
For each objective function 𝑓𝑖(. ), a score matrix 𝐹(𝑓𝑖)  is 
computed according to Needleman-Wunsch algorithm and 
based on 𝑓𝑖(. )  scores, where 𝐹𝑚,𝑛(𝑓𝑖)  is calculated as 
follow: 

𝐹𝑚,𝑛(𝑓𝑖) =

𝑚𝑎𝑥 {

𝐹𝑚−1,𝑛−1(𝑓𝑖) + 𝑠𝑚,𝑛(𝑓𝑖)             𝑚𝑎𝑡𝑐ℎ/𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

𝐹𝑚−1,𝑛(𝑓𝑖) + 𝑔(𝑓𝑖)                                              𝑖𝑛𝑠𝑒𝑟𝑡

𝐹𝑚,𝑛−1(𝑓𝑖) + 𝑔(𝑓𝑖)                                             𝑑𝑒𝑙𝑒𝑡𝑒

  

The cells in 𝐹(𝑓𝑖) are generated one row at a time and 
one cell at a time starting from one at the up left corner. 
Once all the objective matrices are generated 
( 𝐹(𝑓1), ⋯ , 𝐹(𝑓𝑘) ), the multi-objective alignments of 
sequences 𝐴 and 𝐵 with respect to 𝑓1(. ), … , 𝑓𝑘(. ). can be 
generated by tracing these matrices. 

Backtracking the objective Matrices 
Once the score matrices ( 𝐹(𝑓1), ⋯ , 𝐹(𝑓𝑘) ) are 

completely generated, the multi-objective alignments will 
be generated by backtracking. The difference here is that 
the backtracking is done in more than one matrix. The 
backtracking of the multi-objective alignments is 
performed using the following iterating steps: 

1. Initialize a set of alignments  𝑈 where 𝑈 initially holds 
only one alignment 𝑈1. An alignment 𝑈𝑗 is represented 
by two empty strings 𝐴𝐴 ← "" and  𝐴𝐵 ← "" to hold store 
the alignment, and two indices  𝑚 = 𝑀  and 𝑛 = 𝑁  to 
keep track of the current index in each sequence.  

2. For each alignment 𝑈𝑗 ∈ 𝑈, trace the score at the cell of 
indices 𝑚, 𝑛 in every score matrix (𝐹(𝑓1), ⋯ , 𝐹(𝑓𝑘)), to 
determine the source of   𝐹𝑚,𝑛(𝑓1) ⋯ 𝐹𝑚,𝑛(𝑓𝑘). 

a. If all  𝐹𝑚,𝑛(𝑓1) ⋯ 𝐹𝑚,𝑛(𝑓𝑘) come from a match. Update 
𝑈𝑗  accordingly as 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴  , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵 , 
𝑚 = 𝑚 − 1, and 𝑛 = 𝑛 − 1.  

b. If all  𝐹𝑚,𝑛(𝑓1) ⋯ 𝐹𝑚,𝑛(𝑓𝑘) come from an insert. Update 
𝑈𝑗  accordingly as 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴  , 𝐵𝐵 ← " − " + 𝐵𝐵 , 
𝑚 = 𝑚 − 1, and 𝑛 = 𝑛. 

c. If all  𝐹𝑚,𝑛(𝑓1) ⋯ 𝐹𝑚,𝑛(𝑓𝑘) come from a delete. Update 
𝑈𝑗  accordingly as 𝐴𝐴 ← " − " + 𝐴𝐴  , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵 , 
𝑚 = 𝑚, and 𝑛 = 𝑛 − 1. 

d. If ∃ 𝐹𝑚𝑛(𝑓𝑖) coming from an insert while others 𝐹𝑚,𝑛(. ) 
come from match, a new alignment 𝑈𝑥  is added based 
on the insert where 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← " − " + 𝐵𝐵, 
𝑚 = 𝑚 − 1, and 𝑛 = 𝑛. Also,  𝑈𝑗 is updated according 
to the match as 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴  , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵 , 𝑚 =

𝑚 − 1, and 𝑛 = 𝑛 − 1.  
e. If ∃ 𝐹𝑚𝑛(𝑓𝑖) that comes from a delete while the other 

𝐹𝑚,𝑛(. ) come from match, a new alignment 𝑈𝑥  is added 
based on the delete where 𝐴𝐴 ← " − " + 𝐴𝐴  , 𝐵𝐵 ←

𝑏𝑛 + 𝐵𝐵 , 𝑚 = 𝑚, and 𝑛 = 𝑛 − 1. Also, 𝑈𝑗  is updated 
according to the match as 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 +

𝐵𝐵 , 𝑚 = 𝑚 − 1, and 𝑛 = 𝑛 − 1.  
f. If ∃ 𝐹𝑚𝑛(𝑓𝑖) that comes from an insert while the other 

𝐹𝑚,𝑛(. ) come from delete, a new alignment 𝑈𝑥  based on 
the insert where 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴  , 𝐵𝐵 ← " − " + 𝐵𝐵 , 
𝑚 = 𝑚 − 1, and 𝑛 = 𝑛. Also, update 𝑈𝑗  according to 
the delete as 𝐴𝐴 ← " − " + 𝐴𝐴  , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵 , 𝑚 =

𝑚, and 𝑛 = 𝑛 − 1. 
g. If ∃ 𝐹𝑚𝑛(𝑓𝑖) that comes from an insert and ∃ 𝐹𝑚𝑛(𝑓𝑙) 

that comes from a delete while the other 𝐹𝑚,𝑛(. ) come 
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from match, a new alignment 𝑈𝑥 is added based on the 
insert where 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴  , 𝐵𝐵 ← " − " + 𝐵𝐵 , 𝑚 =

𝑚 − 1, and 𝑛 = 𝑛. Also, a new alignment 𝑈𝑦  is added 
based on the delete where 𝐴𝐴 ← " − " + 𝐴𝐴  , 𝐵𝐵 ←

𝑏𝑛 + 𝐵𝐵 , 𝑚 = 𝑚, and 𝑛 = 𝑛 − 1. Besides, 𝑈𝑗 is added 
according to the match as 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 +

𝐵𝐵 , 𝑚 = 𝑚 − 1, and 𝑛 = 𝑛 − 1. 
3. Repeat step 2 until all the alignments in 𝑈 reach indices 

0,0. 
4. For each alignment 𝑈𝑗 ∈ 𝑈, calculate its score according 

to all the objectives. 
5. Remove the dominated alignments from 𝑈. 

Example 

To demonstrate how the algorithm works, a simple 
alignment example is done over the following sequences. 

Sequence A P Q Q Y Y P Q  
Secondary Structure C H H B B C C  
Sequence B P N N Y Q P Y Q 
Secondary Structure H C C C H H B B 

Where the objectives here are the profile and the 
secondary structure and the scoring function for both will 
be 1 for a match and -1 for mismatch or gap. Figure 1 
shows an illustration of the alignments generation. Figure 
2 show the scores for all the generated alignments, while 
Table 1 shows the resulting non- dominated ones. 

3  Results 
The Critical Assessment of Protein Structure Prediction 

(CASP) 11 targets are used to show the effectiveness of 
MOA. Here, we used two scoring functions to measure the 
alignment between the ith residue in the query sequence 
and the jth residue in the template sequence, which result 
in score matrices of the query and template sequences. The 
first one is based on the sequence profile such that 

𝑆𝑠𝑒𝑞(𝑖, 𝑗) = ∑ 𝐹𝑎𝑞(𝑖, 𝑘) + 𝐹𝑏𝑞(𝑖, 𝑘)𝐿𝑡(𝑗, 𝑘)/2

20

𝑘=1

. 

Here, 𝐹𝑎𝑞(𝑖, 𝑘) is the frequency of the kth amino acid at 
the ith position of the multiple sequence alignments (MSA) 
obtained by PSI-BLAST [34] against the non-redundant 
(NR) sequence database with an E-value cutoff of 0.001. 
𝐹𝑎𝑞(𝑖, 𝑘)  is considered as a close alignment frequency. 
𝐹𝑏𝑞(𝑖, 𝑘)  is a more distant frequency generated using a 
higher E-value cutoff of 1.0. The idea of combining distant 
and close sequence profiles comes from [28] [35] [36] [37], 
which helps increase the alignment sensitivity in different 
homologue areas. 𝐿𝑡(𝑗, 𝑘) is the derived log-odds profile of 
template sequence for the kth amino acid at the jth position. 
The template sequence derived log-odds profile generated 
from PSI-BLAST search with an E-value cutoff 0.001. 

The second scoring function is based on structural 
features including predicted secondary structures and 
solvent accessibility.  

𝑆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑖, 𝑗) = 𝑆𝑆(𝑖, 𝑗) + 𝑆𝐴(𝑖, 𝑗).                              
Here, 𝑆𝑆(𝑖, 𝑗)  is the probability that the predicted 

secondary structure of the ith residue of the query sequence 
matches with that of the jth residue of the template 
sequence, i.e.,  

𝑆𝑆(𝑖, 𝑗) = 𝑃𝑟𝑜𝑏 (𝑠𝑠𝑞(𝑖) = 𝑠𝑠𝑡(𝑗))                               
where 𝑠𝑠𝑞(𝑖) and 𝑠𝑠𝑡(𝑗) are the secondary structures of 

the ith residue of the query sequence and the jth residue of 
the template sequence. The secondary structure of the 
query is predicted by Scorpion [38] . Similarly, 𝑆𝐴(𝑖, 𝑗) is 
the probability that the predicted solvent accessibility of 
the ith residue of the query sequence matches with that of 
the jth residue of the template sequence such that 

𝑆𝐴(𝑖, 𝑗) =  𝑃𝑟𝑜𝑏 (𝑠𝑎𝑞(𝑖) = 𝑠𝑎𝑡(𝑗))                           
where 𝑠𝑎𝑞(𝑖) and 𝑠𝑎𝑡(𝑗) are the solvent accessibility of 

the ith residue of the query sequence and the jth residue of 
the template sequence. The solvent accessibility of the 
query is predicted by CASA [39]. 

MOA is compared with two popularly used template 
alignment and selection methods for template-based 
protein structure modeling (Muster [28] and 
GenTHREADER [40]). Each target sequence is aligned 
with the same templates by the structure profile alignment 
method. Then, tertiary protein structure models are 
generated by the Modeller program [41] according to the 
alignments. The Global Distance Test-Total Score (GDT-
TS), which indicates the percentage of the model 
conformation superimposed correctly onto the native 
structure, is used to measure the quality of these models 
and the corresponding alignments. Since MOA generates 
more than one alignment, we only show the one with the 
highest GDT-TS score.  

We first compare MOA and Muster on the top-ranked 
templates of each target specified by Muster. Figure 3 
shows the GDT-TS score for Muster along with the MOA. 
As it appears in the figure that MOA achieved a higher or 
equal GDT-TS score for 102 targets and most of the time 
MOA is higher than Muster. Also MOA GDT-TS score 
was greater than Muster by at least 10 points in seven 
targets. Similar comparison is done between MOA and 
pGenTHREADER, which is shown in Figure 4. In 79 
targets, the GDT-TS scores of models generated by MOA 
are higher than pGenTHREADER, where in 13 of them, 
the gain is at least 10 points or higher. 
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Figure 1.(a) The Needleman alignment matrix based on the profile with the maximum-match path traced to generate the optimal 

alignment. (b) The Needleman alignment matrix based on the secondary structure with the maximum-match path traced to generate the 

optimal alignment. (c), & (d) The optimal profile alignment and the optimal secondary structure alignment respectively. (e), & (f) The 

Needleman alignment matrix based on the profile and the Needleman alignment matrix based on the secondary structure respectively with 

the maximum-match path traced along with the splits due to disagreement of the other matrix, where the decisions taken based on the profile 

are marked on black and the ones based on the secondary structure are marked on red. 

 

Table 1 Non-dominated alignments 

Non-dominated alignment 
Profile 

Score 

Secondary 
Structure 
Score 

P Q Q Y Y P - Q   0 -8 
P N N Y Q P Y Q   
- - - P Q Q Y Y P Q -6 0 
P N N Y Q P Y Q - - 
- - P Q Q Y Y P Q  -3 -3 
P N N Y Q P Y - Q  
- - - P Q Q Y Y P Q -4 -2 
P N N Y Q P - Y - Q 
- P - Q Q Y Y P Q  -3 -3 
P N N Y Q P Y - Q  
- - P - Q Q Y Y P Q -6 0 
P N N Y Q P Y Q - - 
- - P - Q Q Y Y P Q -4 -2 
P N N Y Q P - Y - Q 
P - - Q Q Y Y P Q  -1 -5 
P N N Y Q P Y Q -  
- P - - Q Q Y Y P Q -6 0 
P N N Y Q P Y Q - - 
- P - - Q Q Y Y P Q -4 -2 
P N N Y Q P - Y - Q 
P - - - Q Q Y Y P Q -2 -4 
P N N Y Q P Y Q - - 

Figure 2 Scores of the alignments generated by MOA where the 

red ones represent the dominated alignments and the blue ones 

represent the non-dominated alignments 

             C H H B B C C 
  P Q Q Y Y P Q     P Q Q Y Y P Q 
 0 -1 -2 -3 -4 -5 -6 -7    0 -1 -2 -3 -4 -5 -6 -7 
P -1 1 0 -1 -2 -3 -4 -5  H P -1 -1 0 -1 -2 -3 -4 -5 
N -2 0 0 -1 -2 -3 -4 -5  C N -2 0 -1 -1 -2 -3 -2 -3 
N -3 -1 -1 -1 -2 -3 -4 -5  C N -3 -1 -1 -2 -2 -3 -2 -1 
Y -4 -2 -2 -2 0 -1 -2 -3  C Y -4 -2 -2 -2 -3 -3 -2 -1 
Q -5 -3 -1 -1 -1 -1 -2 -1  H Q -5 -3 -1 -1 -2 -3 -3 -2 
P -6 -4 -2 -2 -2 -2 0 -1  H P -6 -4 -2 0 -1 -2 -3 -3 
Y -7 -5 -3 -3 -1 -1 -1 -1  B Y -7 -5 -3 -1 1 0 -1 -2 
Q -8 -6 -4 -2 -2 -2 -2 0  B Q -8 -6 -4 -2 0 2 1 0 

(a)       (b)  

Optimal profile alignment Optimal secondary structure alignment 

P Q Q Y Y P - Q     - - - P Q Q Y Y P Q 

P N N Y Q P Y Q     P N N Y Q P Y Q - - 

(c)       (d) 

             C H H B B C C 
  P Q Q Y Y P Q     P Q Q Y Y P Q 
 0 -1 -2 -3 -4 -5 -6 -7    0 -1 -2 -3 -4 -5 -6 -7 
P -1 1 0 -1 -2 -3 -4 -5  H P -1 -1 0 -1 -2 -3 -4 -5 
N -2 0 0 -1 -2 -3 -4 -5  C N -2 0 -1 -1 -2 -3 -2 -3 
N -3 -1 -1 -1 -2 -3 -4 -5  C N -3 -1 -1 -2 -2 -3 -2 -1 
Y -4 -2 -2 -2 0 -1 -2 -3  C Y -4 -2 -2 -2 -3 -3 -2 -1 
Q -5 -3 -1 -1 -1 -1 -2 -1  H Q -5 -3 -1 -1 -2 -3 -3 -2 
P -6 -4 -2 -2 -2 -2 0 -1  H P -6 -4 -2 0 -1 -2 -3 -3 
Y -7 -5 -3 -3 -1 -1 -1 -1  B Y -7 -5 -3 -1 1 0 -1 -2 
Q -8 -6 -4 -2 -2 -2 -2 0  B Q -8 -6 -4 -2 0 2 1 0 

(e)       (f) 
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Figure 3 The GDT-TS score of Muster alignment and MOA alignment to CASP 11 targets with the top-ranked template selected 

by Muster. MOA achieved a higher or equal GDT-TS score for 102 targets and most of the time MOA seven of them the difference 

is more than 10 i.e. T0773-D1   
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Figure 4 The GDT-TS score of pGenTHREADER alignment and MOA alignment to CASP 11 targets with the top-

ranked template selected by pGenTHREADER. In 79 targets MOA GDT-TS score is higher or equal pGenTHREADER, 

13 of them MOA GDT-TS score was 10 points higher than pGenTHREADER. i.e. T0840 
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4  Conclusions  
Protein alignment is fundamental to many biological 

problems. Hence, we developed MOA, a multi-objective 
sequence alignment algorithm.  There is usually a trade-off 
between the different objectives used in protein alignment, 
which makes it impossible to generate a single alignment 
that optimize all the objectives. Compared to finding a 
single alignment, MOA yields a better chance of obtaining 
the correct alignment and then achieving protein structure 
models with higher accuracy. MOA was examined on a set 
of CASP11 targets using the following objectives: (1) 
sequence profile, (2) secondary structure, and solvent 
accessibility objective functions. MOA has demonstrated a 
competitive results compared to other state of art methods. 

Despite the competitive results shown from MOA, it 
suffers from two main deficiencies which we will work on 
improving in our future research. First, the MOA algorithm 
will generate a new alignment whenever the objectives 
disagree with each other, which may lead an exponential 
growth of the number of the traces and then end up with a 
large number of alignments. This is very computationally 
costly, particularly when aligning long protein sequences. 
In fact, we are only interested in the non-dominated 
alignments. Second, MOA generate some of the Pareto-
optimal front alignments, but it doesn’t guarantee the 
generation of the entire Pareto-optimal front.  
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Abstract

Previous studies on quality score compression can
be classified into two main lines: lossy schemes and
lossless schemes. Lossy schemes enable a better man-
agement of computational resources. Thus, in practice,
and for preliminary analyses, bioinformaticians may
prefer to work with a lossy quality score representa-
tion. However, the original quality scores might be
required for a deeper analysis of the data. Hence,
it might be necessary to keep them; in addition to
lossy compression this requires lossless compression
as well. We developed a space-efficient hierarchical
representation of quality scores, QScomp, which allows
the users to work with lossy quality scores in routine
analysis, without sacrificing the capability of reaching
the original quality scores when further investigations
are required. Each quality score is represented by a
tuple via a novel decomposition. The first and second
dimensions of these tuples are separately compressed
such that the first-level compression is a lossy scheme.
The compressed information of the second dimension
allows the users to extract the original quality scores.
Experiments on real data reveal that the down-stream
analysis with the lossy part — spending only 0.49 bits
per quality score on average — shows a competitive
performance, and that the total space usage with
the inclusion of the compressed second dimension is
comparable to the performance of competing lossless
schemes.

QScomp is written in C++ and can be downloaded
from https://github.com/voges/qscomp.

This work has been partially supported by The Scientific
and Technological Research Council of Turkey grant number
TÜBİTAK - 114E293.
∗ Corresponding author.

Supplementary Material can be downloaded from
http://www.tnt.uni-hannover.de/∼voges.

1 Introduction

Sequencing data produced by high-throughput se-
quencing machines are typically stored in the FASTQ
format [5]. Due to the growing volumes of sequencing
data, processing, transmission, and storage of the
FASTQ files becomes challenging. Therefore, the
compression of data stored in FASTQ files has been
receiving great interest in the last years [15]. Compact
representations of the data do not only help during
storage and transmission by decreasing the required
disk space or by enabling the possibility to better
manage the available bandwidth, but also help during
the analysis of the huge data volumes when the applied
compression schemes support functionality such as
random access over the compressed data directly. That
dimension, namely compressive genomics, has been
proposed and discussed in previous studies [2, 13].

FASTQ files include four lines per read. The first
and the third line, beginning with the @ and + sym-
bols, respectively, indicate the read identifier and an
optional description. The second line lists the read-
out nucleotides. For each nucleotide in the second line
a corresponding quality score (QS) Q is stored in the
fourth line. The quality scores indicate the accuracy of
the base-calling by Q = −10 · log10 P , where P is the
error probability of the base-calling process [8].

So far, efforts in compressing raw sequencing data
stored in FASTQ files have been focusing on compress-
ing the nucleotide sequences, quality scores, and read
identifiers separately. This approach yields a better per-
formance than jointly compressing the different streams
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since these streams have divergent statistical properties.
Previous studies on quality score compression can be
further separated into two categories: lossy schemes
and lossless schemes. The lossy methods achieve
much better compression ratios by sacrificing some
information. This is done by reducing the alphabet size
of the quality scores according to specific quantization
methods. Although these lossy approaches help a
lot in terms of storage and transmission of the data,
the original values might still be required for further
analyses [20].

The daily practice in sequencing data analysis starts
with regular routines. In further steps of the analysis,
deeper investigations are performed on the reads that
are mapped to regions of interest detected by these
regular routines. Quantized quality scores may work
well during the initial processing unless the incorpo-
rated quantization does impact further steps signifi-
cantly. Thus, when the target regions regarding the
tested hypothesis become clear, necessity to access the
original quality scores of the selected reads may become
unavoidable during further down-stream analyses. Yet
another reason to keep the original values stems from
the underlying thought that the original quality scores
might be required by new methods in the future.
Specifically, in large population genomics projects, the
owners of the data may prefer lossless compression
techniques. Thus, an approach would be preferable
where the users have the choice to work effectively in
the first stage with quality scores represented with a
lossy scheme, but at the same time have the choice to
reach the original values in following analysis steps.

Motivated by this demand, we explore in this study a
two-level approach for the compact representation of
the quality scores. By using a novel decomposition
scheme D, we represent each quality score Q with
a tuple D(Q) → 〈q1, q2〉. The compression of the
q1 values constitutes the first compression level, and
compressing the q2 values creates the second level,
where the q1 values determine the context during the
compression of the q2 sequence. The first level is the
lossy representation of the quality scores Q. Thus,
working with this level corresponds to a lossy scheme.
Given q1 and q2, the inverse decomposition D−1 yields
the original quality scores by Q ← D−1(q1, q2). This
way, we preserve the capability to extract the original
values. With such a two-level approach, both lossy
compression and lossless compression of the quality
scores can be achieved hierarchically. In the scope of
this paper, we evaluate the lossy layer in terms of its
effect on down-stream analyses. The space occupied by
the first level and the second levels is expected to be
competitive to previously proposed lossless schemes.

2 Previous Studies

In a FASTQ file the alphabet for the nucleotides (i.e.,
A, C, G, T, and N) is usually much smaller than that of the
quality scores, which typically stem from an alphabet of
size 40 or 41 [5]. Thus, quality scores at full resolution
are in general more difficult to compress. Therefore,
the overall success of compressing an input FASTQ file
depends more on the representation of the quality scores
than on the compression of the nucleotide sequences.

Lossless compression techniques focus on detecting
regularities in quality score streams [22]. For instance,
some of the quality scores are likely to be more frequent
than others, or several biases may appear in some
positions of the reads due to the underlying sequencing
technology. Remember that a compression scheme
can be viewed as a two-step process, where the first
phase is to devise a context model describing the
data, and the second phase is to encode the data
that is represented with that model using an entropy
coder. General-purpose FASTQ compressors mainly
differ in their context modeling approaches. The
DSRC scheme defines three models for quality score
streams, and represents a given quality score sequence
according to its best-fitting model [6]. SCALCE [9] and
Quip [12] make use of a single standard order-3 context
model, and encode every quality score according to
its three immediate predecessors. Fastqz [3] applies a
more complex scheme that uses relations in the near
predecessors to define the context of the current quality
score.

Lossy compression was considered based on the as-
sumption that the resolution of raw quality scores is
much higher than required for accuracy evaluation,
and that the tools in the analysis pipelines will not
be affected much from a lossy representation. It
was proven that this assumption is true, and more
than that, actually lossy representations improve the
efficiency of down-stream analyses in many cases [23,
17]. The authors of [22] explored different binning
strategies and their effects on the compression effi-
ciency. Besides simple bucketing that uses fixed-length
intervals, variable-length intervals inferred through a
number of different statistical measures have also been
proposed in [4]. Another statistical approach has been
introduced with QualComp [16]. QualComp fits a
Gaussian distribution to the quality score sequences
(i.e., vectors), and provides users with the ability
to define the level of acceptable distortion during
encoding. According to the specified number of bits
to be used per quality score, QualComp performs
the optimal alteration of the quality scores such that
the mean squared error is minimized according to
the precomputed Gaussian model. This idea has
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been further improved by the more recent QVZ and
QVZ 2 compressors [14, 10]. Besides the binning and
statistical inference approaches, there are other efforts
which exploit the information contained in the read-
out nucleotide sequences [11, 23, 21]. For example, the
Quartz compressor [23] sets the quality scores of the
most frequent k-mers to a predefined high value with
the motivation that if a specific nucleotide sequence
is observed many times, then its correctness does not
need any further verification from the quality scores.
Thus, the quality scores can be set to a fixed value.
This way the entropy is reduced and higher compression
performance is achieved.

3 Proposed Method

When an analysis pipeline automatically returns
results for a set of reads (stored in a FASTQ file), the
analyst usually feels the necessity to perform a verifica-
tion of these results by investigating the reads together
with their associated quality scores. A bioinformatician
working on such reads might become suspicious when
she observes low quality scores since those indicate
a possible error in the base-calling process, which
could have then caused problems in the automatically
produced results. Similarly, when quality scores are
larger than a threshold, it does not tell much to the
analyst in most cases as there appears to be not much
practical difference between the 99.999% accuracy with
Q = 50 than 99.9999% with Q = 60. This difference
becomes less and less important as long as the quality
scores get higher. On the other side, due to the
logarithmic nature of the quality scores, Q = 10 is quite
different from Q = 20, since the first case implies 90%
accuracy, while the second indicates 99% accuracy in
the base-calling process.

Therefore, it seems that a simple bucketing approach
with short intervals for the small quality scores and
larger intervals for the higher quality scores might
work well in practical analyses. Hence, we propose to
decompose a quality score Q into the tuple

D(Q)→ 〈q1, q2〉 (1)

such that

q1 = round(
√
Q), (2)

q2 = Q−
(
q21 − q1 + 1

)
. (3)

Notice that given q1 and q2, the inverse decomposition
yields the original quality score as

Q = D−1 (q1, q2) = q21 − q1 + 1 + q2. (4)

This decomposition is inpired by the representation
of integers in an Elias gamma code [7] (or its gener-
alization, the Exp-Golomb code [18]). Assume Q =

q21 + c with c = 1 − q1 + q2. If Q is an n-bit binary
number, then q1 is an n/2 -bit binary number and c
lies in the interval [0, 2b]. Then q1 can be encoded
using any universal coding. Given q1, the number
of bits necessary to represent c can be determined as
log2 (2q1 + 1). However, as the scope of this work is the
two-level representation of quality scores and not the
exploration of sophisticated entropy coding schemes, we
use the well-known general-purpose compressor bzip2
for the compression of the tuples D(Q).

Table 1 shows the decomposition of quality scores
in the interval [30, 43]. The proposed decomposition
creates buckets of length (2 · q1), where typically q1 ∈
{6, 7, 8, 9, 10, 11} since in the FASTQ format the quality
scores are between 33 and 126 (i.e., in the range of
printable ASCII characters). The first (q1 − 1) of the
items in a bucket are promoted to a better quality,
whereas the last q1 are faced with a penalty. Notice
that the (2 · q1) items long bins are relatively short
for the smaller q1 values, which fits to the motivating
observation described above.

Without incorporating the q2 values, the representa-
tion of quality scores (only by their corresponding q1
values) creates a simple lossy scheme. In that sense,
a FASTQ file in which all quality scores are changed
to their q21 values will exhibit a better compressibility
since the alphabet for the quality scores is reduced
to at most 6 symbols instead of 94(= 126 − 33 + 1)
possible characters. Remember that in general the
observed number of symbols is around 40 as opposed
to the theoretically possible 90+ symbols. Similarly,
when the users would like to pertain the capability to
retrieve the original scores, then they need to also keep
the q2 sequence. Instead of handling the q2 sequence
as a single stream, which would force the subsequent
compressor to assume the most general alphabet for the
q2 sequence, clustering the q2 values according to their
corresponding q1 values would improve the compression
ratio (as the q1 value in a tuple specifies the exact
alphabet for the q2 values). Thus, for each distinct q1
value observed in the input FASTQ file, we maintain
a separate sequence of q2 values. Finally, we compress
the q1 values and the multiple q2 sequences individually.
Any general-purpose compressor can be applied. As
already mentioned, we prefer to use bzip2. Surely, the
users of the proposed system can proceed with different
choices at this step.

4 Experimental Results

In this section we provide experimental
results for the evaluation of the proposed
compression scheme QScomp. We compare
QScomp to three competitors, namely Crumble

163



Table 1: An example describing the proposed representation of quality scores.

(q1 − 1) items q21 q1 items
Q 30 31 32 33 34 35 36 37 38 39 40 41 42 43
q1 5 6 6 6 6 6 6 6 6 6 6 6 6 7
q2 9 0 1 2 3 4 5 6 7 8 9 10 11 0

(https://github.com/jkbonfield/crumble), Quartz [23],
and QVZ 2 [10]. For the used versions and an indication
of their support for lossless and lossy compression,
respectively, we refer the reader to the Supplementary
Material. Note that QScomp is the only tool which
truly is able to operate in the lossless and in the lossy
mode.

The data sets used to evaluate the performance of
the selected compression tools originate from the same
individual, namely NA12878. For this individual, the
National Institute of Standards and Technology (NIST)
released a consensus set of variants which we used for
our analyses [24]. Note that similar analyses were
conducted in other works [17, 1, 21]. The selected data
sets are shown in Table 2. For more information on the
used data sets we refer the reader to the Supplementary
Material.

Table 2: Data sets selected for the evaluation.

ID Name Technology Coverage

H01 ERR174324
Illumina

14×
HiSeq 2000

H11 SRR1238539 Ion Torrent 10×
H12

Garvan Illumina
49×

replicate HiSeq X

Moreover, for the evaluation of the proposed com-
pression scheme QScomp, we selected three different
variant calling pipelines. The first pipeline is composed
of GATK [20] variant calling (using the HaplotypeCaller
tool) and SNP extraction with subsequent filtering of
variants using GATK Vector Quality Score Recalibra-
tion (VQSR) with four different filter values. The sec-
ond pipeline is also composed of GATK variant calling
using the HaplotypeCaller tool and SNP extraction
but followed by the more traditional hard filtration
of variants instead of VQSR. The third pipeline uses
Platypus [19] for variant calling. For the individual
commands and tools and auxiliary files used, we refer
the reader to the Supplementary Material.

Each of the mentioned pipelines outputs a set of
variants in the VCF file format. Subsequently, each
set of variants is compared to the consensus set of
variants. We perform this comparison using the tool
hap.py (https://github.com/Illumina/hap.py) released
by Illumina and adopted by the Global Alliance for
Genomics and Health (GA4GH). This benchmarking

tool outputs the following values for each comparison:

� True Positives (T.P.): All those variants that are
both in the consensus set and in the set of called
variants.

� False Positives (F.P.): All those variants that are
in the called set of variants but not in the consensus
set.

� False Negatives (F.N.): All those variants that are
in the consensus set but are not in the set of called
variants.

� Non-Assessed Calls: All those variants that fall
outside of the consensus regions defined by a BED
file.

These values are used to compute the following two
metrics:

� Recall/Sensitivity: This is the proportion of called
variants that are included in the consensus set; that
is, R = T.P./(T.P. + F.N.),

� Precision: This is the proportion of consensus
variants that are called by the variant calling
pipeline; that is, P = T.P./(T.P. + F.P.).

Finally, we measured the maximum memory usage
and the execution time of each tool on each dataset
with GNU time.

4.1 Performance Analysis of the
Proposed Scheme

In this section we first show the compression ratios of
all tools and for all datasets from Table 2.

Figure 1 shows the compression results for all tools in
bits per quality score. In addition to the compression
results for the mentioned tools, we also show the
memoryless entropy per original quality score, which is
3.62 bits per quality score, averaged over all data sets.
Furthermore, we show the gzip and bzip2 compression
results for the raw quality scores, which are 3.54 bits
per quality score and 3.27 bits per quality score, also
averaged over all data sets.

As shown in Figure 1, the lossy quality score rep-
resentation obtained using QScomp with subsequent
bzip2 compression (i.e., “QScomp dim1 (+ bzip2 -9)”)
yields 0.49 bits per quality score on average. This
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Entropy gzip bzip2 ‐9 QVZ 2 T1 QVZ 2 T2 QVZ 2 T4 QVZ 2 T8 QVZ 2 T16
QScomp
dim1

(+ bzip2 ‐9)

QScomp
dim1 and
dim2.*

(+ bzip2 ‐9)

QScomp
dim1 and
dim2_a

(+ bzip2 ‐9)

Crumble ‐1
(+ CRAM)

Crumble ‐9
(+ CRAM)

Quartz
(+ bzip2)

ERR174324, chr11 3.11 3.10 2.86 0.73 0.38 0.13 0.04 0.01 0.15 2.84 2.90 0.41 0.24 0.45
ERR174324, chr20 3.38 3.14 2.91 0.77 0.42 0.16 0.05 0.02 0.16 2.89 2.96 0.41 0.21 0.42
SRR1238539, chr11 4.37 4.43 4.05 1.98 1.56 1.13 0.69 0.35 0.75 4.20 4.50 3.67 3.26 1.41
SRR1238539, chr20 4.38 4.45 4.06 2.00 1.58 1.15 0.71 0.36 0.76 4.22 4.52 3.67 3.27 1.39
Garvan replicate, chr11 3.33 3.04 2.86 0.97 0.70 0.44 0.31 0.18 0.53 2.95 3.14 0.39 0.29 0.75
Garvan replicate, chr20 3.16 3.10 2.92 1.02 0.74 0.47 0.33 0.20 0.56 3.01 3.20 0.39 0.28 0.76
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Figure 1: Compression ratios results.

result is comparable to the results obtained with QVZ 2
when a target mean squared error (MSE) of 8 (i.e.,
“QVZ 2 T8”) is specified, which yields 0.35 bits per
quality score on average.

We can observe from the figure that the lossless qual-
ity score representation of QScomp with subsequent
bzip2 compression (i.e., “QScomp dim1 and dim2.* (+
bzip2 -9)”) is capable of delivering 3.35 bits per quality
score, which is slightly below the entropy, as expected.
The two-level scheme of QScomp with conditional
compression of the second level with respect to first
level is slightly superior to just compressing the quality
scores with gzip, and comparable to compressing the
quality scores with bzip2. Thus, QScomp does not
sacrifice the lossless compression performance, while
combining the lossless and lossy compression via its
unique two-level scheme. We finally show in Figure 1
the results of compressing the joint single sequence of q2
values (i.e., ”QScomp dim1 and dim2 a (+ bzip -9)”).
This experiment yields 3.53 bits per quality score. This
results suggests that the proposed separate compression
of multiple q2 sequences is superior to just compressing
the q2 residues as a single stream.

Furthermore, in the Supplementary Material we show
the maximum RAM usage and the running times,
respectively, of all tools. QScomp exhibits the least
RAM usage of all tools, with 3.4 MB on average, due
to its low algorithmic complexity. The running times
of QScomp are comparable to that of the different runs
of QVZ 2 and even two orders of magnitude lower than
that of Quartz.

4.2 Variant Calling Results

In this section, we show the results of variant calling
with the GATK + VQSR pipeline. For further results
obtained from running the other two pipelines, we

refer the reader to the Supplementary Material. For
the first set of simulations we used the paired-end
run ERR174324 of the NA12878 individual. This run
was sequenced by Illumina on an Illumina HiSeq 2000
system as part of their Platinum Genomes project. The
coverage of this data set is 14×. Due to the size of
the data and the following the approach of [17] we
consider chromosomes 11 and 20. Furthermore, we
averaged the Recall and Precision metrics over the two
chromosomes (11 and 20) and the four VQSR filter
values (θ ∈ {90, 99, 99.9, 100}) which yields 2 plots. In
what follows, we did the same for the other data sets.
Thus, we present in total 6 plots (i.e., 3 data sets × 2
metrics) in this section.

We can observe from Figure 2 that QScomp com-
presses the quality scores down to 0.16 bits per quality
score while the Precision is retained. However, we also
observe a slight drop in Recall, compared to the results
for the uncompressed data.
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Figure 2: Recall and Precision results averaged over
both chromosomes (11 and 20) and all four VQSR
filter values for the Illumina HiSeq 2000 data set
(ERR174324) with a coverage of 14×.
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Next, we show the results for the SRR1238539 run
on the NA12878 individual for which an Ion Torrent
sequencing machine was used. The coverage of this
data set is 10×. Again, chromosomes 11 and 20 were
considered due to the size of the data. Moreover, the
results shown are also the results of averaging over the
same four filter values and both chromosomes. Figure 3
shows that QScomp is the worst performer in terms
of both Recall and Precision. Since all other tools
exhibit a similar performance, we must conclude that
the assumptions used for the construction of the binning
scheme implemented in QScomp do not seem to hold
for the quality score statistics produced by Ion Torrent
sequencing machines.
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Figure 3: Recall and Precision results averaged over
both chromosomes (11 and 20) and all four VQSR filter
values for the Ion Torrent data set (SRR1238539) with
a coverage of 10×.

Finally, we used the first replicate of the sample data
set generated by the Garvan Institute from the Coriell
Cell Repository NA12878 reference cell line. These data
were sequenced on a single lane of an Illumina HiSeq X
machine. The coverage of this data set is 49×. These
results are shown in Figure 4. In terms of Recall and
Precision, QScomp exhibits a similar performance as for
the data set ERR174323, which is shown in Figure 2.
Again, the Precision is retained. However, for this
data set, a better Recall can be observed for all tools,
including QScomp. Due to the high coverage of this
data set, the competing tools are able to spend less bits
per quality score than QScomp. Nevertheless, QScomp
compresses the quality scores down to 0.55 bits per
quality score, yielding a compression factor of 5.9 with
respect to the entropy of the uncompressed data.

5 Conclusions

We presented a hierarchical quality score compression
scheme, which represents the quality scores in two
levels. The first level maps each quality score to its
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Figure 4: Recall and Precision results averaged over
both chromosomes (11 and 20) and all four VQSR
filter values for the Illumina HiSeq X data set (Garvan
replicate) with a coverage of 49×.

nearest square integer, and the second level encodes
the distance of the original quality score to its mapped
value. The impact of the lossy representation of qual-
ity scores on down-stream analyses was investigated
using three different variant calling pipelines. For
data produced by Illumina sequencing machines, the
down-stream analysis results are competitive to the
results obtained with competing lossy quality score
compressors. Here, the Precision is retained, while a
slight drop in Recall was observed. When this lossy
level is accompanied by the second level, we observe
that the compression ratio is around the entropy of the
original quality scores. This shows that the suggested
method to represent each quality score by a tuple does
not have a negative effect on the lossless compression
ratio performance. What is more, we showed that the
proposed separate compression of multiple second level
streams is superior to the compression of the second
level as a single stream. Hence, the incorporation of
other quantization strategies from previous works into
the proposed two-level scheme might be a reasonable
future research avenue. Besides the compression ratios,
the memory consumption and the running times are
also important parameters. Here, with an average of
only approximately 3.4 MB, QScomp shows a signif-
icant reduction in peak memory usage, and achieved
the highest speed in the benchmark.

Previous studies on quality score compression pro-
posed solutions that are either lossless or lossy. Thus,
if a user prefers lossy compression, the possibility to
extract the original quality scores disappears, and in
the reverse case, the user looses the capability to
work with lossy quality scores to reduce the necessary
computing resources. The QScomp scheme introduced
in this study is unique in terms of providing lossless and
lossy compression in a single framework by utilizing a
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hierarchical two-level representation.

In daily practice, we suggest to replace the quality
scores in FASTQ files with the proposed first-level
values, and to perform initial explorations with this
lightweight presentation. The second-level values could
for example be stored in an archive, and when deeper
investigations are required the original quality scores
could be retrieved.
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Abstract

Metagenomic studies identify the species present in
an environmental sample usually by using procedures
that match molecular sequences, e.g., genes, with
the species taxonomy. Here, we formulate the prob-
lem of gene-species matching in the parsimony frame-
work using phylogenetic gene and species trees under
the deep coalescence cost and the assumption that each
gene is paired uniquely with one species. In particular,
we solve the problem in the cases when one of the trees
is caterpillar. Next, we generalize the solution and pro-
pose several heuristic algorithms. Finally, we present
the results of computational experiments on simulated
and empirical datasets.

keywords: deep coalescence, metagenomics, species
taxonomy, gene tree

1 Introduction

One of the primary goals of metagenomic studies
is to identify the species present in an environmental
sample. Such identi�cation from metagenomics data is
usually computationally demanding and requires com-
plex work�ows in which molecular sequences identi�ed
in the sample, i.e., reads, genes or contigs, can be
matched with the species taxonomy. The gene-species
matching can be expressed by using a partially labeled
phylogenetic tree, where a gene tree inferred from a set
of homologous sequences extracted from the sample
is matched with the known species taxonomy. Here,
we formulate the problem in the parsimony framework
using gene and species trees under the deep coalescence
model and the assumption that each gene is paired
uniquely with one species.

Deep coalescence is a major process that can lead to
a discordance between a gene tree and its species tree.
It occurs when the time at which lineages of alleles co-
alesce, predates speciation events of the alleles' species
[1, 2]. The discordance caused by deep coalescence can
be measured by using the deep coalescent cost which,

given two labeled trees, is e�ciently computable in
linear time [3]. Consequently, the cost has been studied
in the context of classical problems in computational
biology, e.g., gene tree parsimony [4�7], tree reconcilia-
tion [8], error correction [9] or tree rooting [10, 11].

In this article, we analyze the deep coalescence cost
for a pair of bijectively labeled gene and species trees.
We investigate into gene-species matching problem
expressed as the minimisation problem, that is, given
two unlabeled trees �nd bijective leaf-labelings for these

trees that minimise the deep coalescence cost. While
several variants of the dual maximising problem can be
solved in polynomial time [12�14], little is known about
the minimising problem. The closest is the minimisa-
tion problem for the general leaf-labelings, i.e., without
the requirement of bijectivity. Usually, such a problem
can be solved by a dynamic programming in polynomial
time [15�17].

In this article, we solve the gene-species problem
for bijectively labeled leaves in the cases when one
of the trees is caterpillar by using two tree ordering
operations. Next, we generalize the solution and
propose several heuristic algorithms the problem for
any gene and species tree topology. Finally, we present
the results of computational experiments on simulated
and empirical datasets.

2 Basic de�nitions

A tree in this article is a rooted binary tree T =
〈V (T ), E(T )〉 such that the edges of T are directed
towards leaves, i.e., if 〈v, w〉 ∈ E(T ) then v is the parent
of w. The edges incident to the root are called top.
By T (v) we denote a subtree of T rooted at a node
v. A cluster of v, denoted CT (v), is the set of all
leaves of T (v). By |T | we denote the size of T , that is,
the number of its leaves. By h(T ) we denote the height
of T , i.e., the maximal number of edges on the path
from the root to a leaf of T . If v is a non-root node,
then vP is the parent of v and vS is the sibling of v.

Let X = {x1, x2, . . . , xn} be a �xed set of n > 1 taxa.
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A labeled tree over X is a tree having exactly n leaves
bijectively labeled by the elements from X. A labeled
tree is often ordered. In such a case, each internal
node v has the left and the right child, denoted vL and
vR, respectively. An ordered tree T induces a labeling

ΛT : [n] → X,1 such that ΛT (1),ΛT (2), . . . ,ΛT (n) are
the taxons obtained from the leaves by the left to right
traversal of T . A labeling that satis�es ΛT (i) = xi, for
i ∈ [n] will be called simple. For a node v, the subtree
T (v) has the labeling inherited from T .

Each edge e ∈ E(T ) can be uniquely identi�ed by
the child, therefore, in notation, we often use an edge
and its terminating node (the child) alternatively. For
instance, the subtree S(v) can be denoted as S(e) if
e = 〈vP , v〉.
In computational biology, we recognize two types of

trees: a gene tree and a species tree. In this article,
they are both labeled trees over the same set of taxa.
Now we introduce the least common ancestor mapping,
in short, LCA-mapping, from a gene tree G to a species
tree S. An example is depicted in Fig. 1.

De�nition 1. LCA-mapping from a gene tree G to

a species tree S is a function LCAS : G → S such that

for a node v of G, LCAS(v) is the lowest node s of S,
such that each taxon from G(v) is present in S(s).

Based on the LCA-mapping we can embed a gene
tree G into S by mapping every edge 〈v, w〉 of G
to the path in S whose endpoints are LCAS(v) and
LCAS(w). The edges of such paths are called lineages.
Embeddings can be visualized in the form depicted in
Fig. 1. If both trees are equal, then the LCA-mapping
is a bijection, and an edge is bijectively mapped to
an edge. Otherwise, the embedding has some number
of extra lineages present on edges of the species tree.
For an edge e ∈ E(S), the number, denoted xl(G, e),
can be de�ned formally as [13]

xl(G, e) = |CS(e)| − ce − 1,

where ce is the number of internal nodes of G that are
mapped to nodes of S(e).

Having this, we de�ne the deep coalescence cost.

De�nition 2. For a gene tree G and a species tree

S the deep coalescence cost is de�ned as dc(G,S) =∑
e∈E(S) xl(G, e).

Equivalently, it can be shown that dc(G,S) =∑
〈v,w〉∈E(S) ‖ LCAS(v), LCAS(w)‖ − 1, where ‖s, s′‖

denote the number of edges on the shortest path
connecting s and s′.

Now, we will investigate into the minimal deep
coalescence cost for �xed tree topologies. For a given

1[n] = {1, 2, . . . , n}

a
b c

d
e f

G

a d
b c e f

S

a d
b c e f

Figure 1: Left: An example of a gene tree G
and a species tree S over X = {a, b, c, d, e, f} with
the LCA-mappings of internal nodes of G. Right:

The embedding, or evolutionary scenario [18], explains
the di�erences between G and S by drawing G inside
S. Here, dc(G,S) = 2 as each top edge of S has one
extra lineage.

tree T (labeled or not) by S(T ) we denote the set of all
labeled trees T ′ over X such that V (T ) = V (T ′) and
E(T ) = E(T ′). In other words, the elements of S(T )
share the tree topology.

Problem 1 (MinDC). Given trees G and S. Find

the minimal dc(G′, S′), denoted d̃c(G,S), in the set of

all pairs 〈G′, S′〉 from S(G)× S(S).

From the practical point of view, the most critical
problem is to infer the minimal labelings, which encode
the gene-species mappings. This can be expressed by
seeking for the optimal gene tree as follows.

Problem 2 (Gene-Species Matching). Given a tree

G and a species tree S. Find G∗ ∈ S(G) such that

dc(G∗, S) = d̃c(G,S).

3 Results

In this section, we show how to solve our problems
when one of the trees is a caterpillar, i.e., the maximum-
height tree Cn.

3.1 Caterpillar species tree

We say that an ordered tree T is size-ordered if for
each internal node v we have |T (vL)| ≤ |T (vR)|.

Theorem 1. Given a size-ordered gene tree G and

a size-ordered species tree Cn. If both are simply labeled

then d̃c(G, Cn) = dc(G, Cn). Furthermore,

d̃c(G, Cn) = d̃c(GL, C|GL|) + d̃c(GR, C|GR|) + |GL| − 1,
(1)

where GL and GR are the left and the right subtree of

G, respectively.

Proof. Without loss of generality, we assume that
the labeling of G is simple. Let us consider any labeling
of Cn. First, we embedGL andGR separately, and then,
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we join them by embedding the top edges. We can write
that,

dc(G, Cn) = dc(GL, C|GL|) + dc(GR, C|GR|) + K, (2)

where K > 0 is the number of additional extra lineages
from the top edges and the intersection of subtrees in
the embedding. Here, the labelings of C|GL| and C|GR|
are inherited from Cn. An example is depicted in Fig. 2.

K = 4, dc(G,S1) = 5 K = 2, dc(G,S2) = 3

Figure 2: Embeddings of a simple labeled gene tree G =
((a, (b, c)), ((d, e), (f, g))) into Cn with two labelings.
The lineages of GL = (a, (b, c)) are red, GR =
((d, e), (f, g)) are green, while the lineages of top edges
of G are black. The contribution to dc is marked next
to edges. The right embedding is optimal, as the tree
is simple labeled and the lineages of GL and GR are
disjoint.

We show that the best labeling of Cn is simple.
The proof is by induction on the size of T . For n = 1
it is trivial. Assume that the statement holds true for
trees of the size smaller than n. We want to minimize
the value of dc(G, Cn).

Let Λ be the labeling of the species tree Cn and let
m = |GL| ≤ |GR|. Let A and the set of indices of taxons
mapped to Cn from GL

2. If Λ is simple, then A = [m]
andK = m−1 as the lineages of GL and GR are disjoint
and there arem−1 lineages of the top edges (see Fig. 2).
In general, for any A, let 0 = l0 < l1 < l2 < . . . < lk = n
be the maximal sequence such that for 1 ≤ j < k either
lj ∈ A ∧ lj + 1 /∈ A or lj /∈ A ∧ lj + 1 ∈ A. E.g.
for the left tree from Fig. 2, k = 4, n = 7, l1 = 1,
l2 = 3, l3 = 5 and l4 = 7. Now we have [n] split into
k parts Pj := {lj−1 + 1, . . . , lj} for j ∈ [k]. We can
imagine a tree Gj as a tree contracted to the set of
taxons from Λ[Pj ]. When embedding G into Cn, we can
inductively embed GL (and similarly GR) as proposed
in formula (2). This can be done by using every second
Gj 's tree and calculating only additional extra lineages
in embeddings of Gj and Gj+2 that are separated
by the embedding of Gj+1. Including the lineages

2Formally, A = Λ−1(ΛG[{1, 2, . . . ,m}]).

of top edges, to calculate K we have the following
observations. Let sj be the LCA-mapping of the root of
Gj . For every 3 ≤ j ≤ k, Gj has to be connected with
Gj−2, which requires |Gj−1| − 1 lineages, located on
the path connecting sj−1 with the parent of sj , shared
with the lineages of Gj−1. Similarly, G2 needs |G1| − 1
lineages between the parent of s2 and the root of S.
Next, if 2 ≤ j < k, there is one more lineage, i.e.,
the edge whose terminating node is sj , shared with
the lineages connecting Gj−1 and Gj+1. We have that

|Gj | = lj− lj−1, hence K = k−2+
∑k

j=2(|Gj−1|−1) =
lk−1 − 1 ≥ min(m,n − m) − 1 = m − 1. So, for
every labeling of Cn, K is bounded, and this boundary
is achieved only when k = 2. By the inductive
assumption, this statement joined with the previous
observations, completes the proof.

The next theorem shows that to compute the minimal
dc for the caterpillar species tree, it is su�cient to order
the gene tree by size.

Theorem 2. If G is a size-ordered gene tree then

d̃c(G, Cn) =
∑

e∈Lft(G)

|G(e)| − 1, (3)

where Lft(G) is the set of all edges in G that connect

a node with its left child.

Proof. It follows immediately from Thm. 1.

Note that we cannot fully classify the minimal cost
trees by writing that for a gene tree G, d̃c(G, Cn) =
dc(G, Cn) if and only if G is a size-ordered tree and
ΛG = ΛCn . This statement does not hold in general,
e.g., we can swap leaves of f and g in the left species
tree from Fig. 2 and the minimal cost will be preserved.

The compact formula (3), or the recursive formula

(1), allows us to compute d̃c in linear time. Now let us
also �x the topology of G to be a complete balanced tree
of height h, i.e., a tree of the size 2h with all 2h leaves
on the same depth, and calculate deep coalescence
cost. We have: d̃c(Bn, Cn) =

∑h
i=1 2i−1 · (2h−i − 1) =

1
2 (
∑h

i=1 2h − 2i) = 1
2 (h · 2h − 2 · 1−2h1−2 ) = 1

2 (n log2 n +
2(1− n)) = n

2 (log2 n− 2) + 1

It shows that d̃c between a complete binary and
a caterpillar tree is ∼ n

2 log2 n. Having this, one

may conjecture, that the maximal d̃c for any gene tree
versus a caterpillar species tree, both of the size n, is
∼ n

2 log2 n.

3.2 Caterpillar gene tree

In this Section, we show how to solve our Problems in
the case when a gene tree is a caterpillar. The solution is
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similar to the previous case, with the di�erence that we
need a new type of order. For a node v ∈ V (T ) a saving
of v, denoted sav(v), is de�ned recursively: sav(v) =
max(sav(vL), sav(vR)) + |T (v)| − 1, where sav(v) = 0 if
v is a leaf. We say that a tree is sav-ordered, if, for
every internal node v we have sav(vL) ≤ sav(vR). An
example of a sav-ordered tree is depicted in Fig. 3.

43
24

4
1

a
13

b
13

1

c
13

d
13

15

e
14

10

f
18

6

g
21

3

h
23

1

i
24

j
24

25

k
8

17

l
15

10
3

m
23

1

n
24

o
24

4
1

p
25

q
25

1

r
25

s
25

T

Figure 3: An example of a sav-ordered tree T with
the decoration showing the values of sav for the internal
nodes, and the weights ωi(T ) each leaf. This is one
of the two smallest trees (to obtain the second one
replace ((a, b), (c, d)) by (a, (b, (c, d)))) showing that
sav-ordeding is signi�cantly di�erent than size-ordering.
Furthermore, this example shows that sav-ordering
cannot be replaced by a potentially simpler ordering
based on the height of subtrees.

Let Ei(T ) denote the set of edges on the path
connecting the root of T with the i-th leaf. Let
ωT (i) =

∑
e∈Ei(T ) |T (e)| − 1 be the weight of the i-

th path. First, we show that, for a sav-ordered tree T ,
ωi(T ) is maximized by the rightmost path.

Lemma 1. For any sav-ordered tree T , maxi ωT (i) =
sav(root(T )) − |T | + 1. Moreover, the maximum is

reached by the rightmost path, i.e., for i = n.

Proof. The proof is by induction on the size of T . For
n = 1 it is trivial. We assume that the statements hold
for trees of the size smaller than n. First, we partition
the set of paths: maxi ωT (i) = max(maxi ωTL

(i) +
|TL| − 1,maxi ωTR

(i) + |TR| − 1). Now, from
the induction assumption and the de�nition of saving
this value equals max(sav(root(TL)), sav(root(TR)))
= sav(root(T )) − |T | + 1, which completes
the �rst part of the proof. For the second
path, observe, that the tree is sav-ordered, hence
max(sav(root(TL)), sav(root(TR))) = sav(root(TR)).
Finally, by induction assumption, we have
sav(root(TR)) = ωT (n).

For a tree S and i ∈ [n], by Si we denote the tree
obtained from S as follows.

• Let v1, v2 . . . vk be nodes on the path from the root
to the i-th leaf.

dc(G,S1) = 6 dc(G,S2) = 4

Figure 4: Embeddings of a simple labeled gene tree G =
(a, (b, (c, (d, (e, (f, g)))))) into species trees S1 and S2.
The rightmost paths are colored in yellow. The number
of extra lineages is shown near the corresponding edges.
S2 has simple labeling, therefore the right embedding is
optimal. In particular, its rightmost path has no extra
lineages.

• For j = 1, 2, . . . , k, if the left child of vj is vj+1

then swap the subtrees of vj .

Obviously, this transformation does not change
the deep coalescence so d̃c(G,S) = d̃c(G,Si) for any
i, G and S. Also, if S is sav-ordered then Sn = S.
Now we can formulate our main theorem for the case
of caterpillar gene trees.

Theorem 3. Let Cn be a caterpillar gene tree, and S
be a species tree. Assume that both are sav-ordered. If

both have simple labeling, then d̃c(Cn, S) = dc(Cn, S).

Proof. For simplicity, let En(S) = E(S) \En(S). Note
that the n-th leaf in a simple labeled Cn is the deepest
node in Cn and ΛCn(n) = xn.

3 By d̃ci(Cn, S) we denote
the minimal dc(Cn, S) in the set of all species trees
S with the labeling satisfying ΛS(i) = xn. We split

the proof into two parts. First, we show that d̃ci(Cn, S)
is determined by the simple labeling of Si and equals∑

e∈En(Si)(|Si(e)| − 1). Secondly, we prove that this
sum is minimal if i = n.

Part I. Let ΛS(i) = xn. Clearly, d̃ci(Cn, S) =

d̃cn(Cn, Si), i.e., we consider Si with the n-th leaf
labeled by xn. Note, that every internal node of
Cn maps to a node from the path En(Si) as xn is
the label of the n-th node from Si and Cn. Hence,
if e = 〈v, w〉 is an edge from En(Si), e is a lineage
for every taxon (leaf) below v when embedding Cn into
Si. Thus, e is exactly |Si(e)| times a lineage, which
gives |Si(e)| − 1 extra lineages. We conclude that

d̃cn(Cn, Si) ≥ ∑
e∈En(Si)(|Si(e)| − 1). Now, we show

that this boundary is reached by the simple labeling
of Si. In such a case, for j < n, the lineages of
the edge adjacent to the j-th leaf of Cn are disjoint with
the rightmost path of Si. Moreover, there is no extra

3Recall that xn is the last taxon from the taxon set X.
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lineage in En(Si) (see the right embedding in Fig. 4).
This completes the proof of the �rst part.

Part II. Let W (S) =
∑

e∈S(|S(e)| − 1). Note that
W (S) = W (Si). It follows from the �rst part that

d̃cn(Cn, Si) =
∑

e∈En(Si)(|Si(e)| − 1) = W (Si) −∑
e∈En

(|Si(e)| − 1) = W (S) − ωn(Si) = W (S) −
ωi(S). Hence, we have d̃c(Cn, S) = mini d̃ci(Cn, S) =
W (S)−maxi ωi(S). Finally, by Lemma 1 we have that

d̃c(Cn, S) = W (S)−ωn(S), i.e., when i = n and Sn = S
is simply labeled. This completes the proof.

Theorem 4. If S is sav-ordered then

d̃c(Cn, S) =
∑

e∈E(S)\En(S)

|S(e)| − 1. (4)

Proof. Under the notation from the second part of
the proof of Thm. 3 we have d̃c(Cn, S) = W (S)−ωn(S).
The rest follows by expanding W (S) and ωn(S).

The formula (4) allows us to compute the minimal
deep coalescence cost in O(n) time. Now we can com-
pute easily the minimal cost for the complete balanced
species tree when n = 2k. We have d̃c(Cn,Bn) =∑k

i=1(2i − 1)(2k−i − 1) =
∑k

i=1(2k − 2i − 2k−i + 1) =
k2k − (2k+1 − 2) − 2k(1 − 2−k) + k = 2k(k − 2 − 1) +
2 + 1 + k = n(log2 n− 3) + log2 n + 3.

It shows that d̃c for the caterpillar and the complete
binary tree is ∼ n log2 n, which is similar to the results
obtained in the previous section. Having this, one may
also conjecture, that the maximal d̃c for a caterpillar
gene tree versus any species tree, both of the size n, is
∼ n

2 log2 n.

3.3 Algorithms for Gene-Species

Matching

Here, we propose several heuristic algorithms for
solving our problems. The algorithms, given the input
consisting of two unlabeled trees of the same size, alter
the ordering of nodes and infer labelings that approx-
imate the minimal deep coalescence cost. Then, to
compute the dc cost for such trees, we use the classical
O(n) algorithm based on LCA queries [3].

Algorithm 1: The simple algorithm

1: Input: Trees G and S of the same size.
2: Output: Approximation of d̃c(G,S).
3: Order G by size and S by saving.
4: Add simple labelings to G and S.
5: Return dc(G,S).

Alg. 1 has a linear time and space complexity. Next, it
follows from Thm. 1 and 3, that the simple algorithm

Algorithm 3: Extended greedy algorithm

1: Input/Output: see Alg. 2.
2: Notation: For a tree T , let K(T ) be the set of maximal

nodes v, such that the left and the right subtree of v
are isomorphic.

3: Order G by size and S by saving.
4: return min(d(G,S),ming∈K(G),s∈K(S) d(G

g, Ss)),
where Gg (and similarly Ss) is a tree obtained from G
by swapping subtrees of vj if, for each j < k, vj+1 is
the left child of vj , where v1, v2, . . . , vk is the path
from the root of G to g.

5: Function d(G,S): all lines ≥ 4 from Alg. 2

is exact if one of the input trees is caterpillar as for
caterpillar trees ordering by size and by saving are
equivalent.

Although the simple algorithm �ts our theorems
perfectly, one could �nd even small counterexample
when the output cost is not optimal. Therefore, we
propose another approach (see Alg. 2), in which we �rst
try to match cherries, which are nodes with precisely
two leaves beneath. Empirical evaluation shows, see
Fig. 5 that the greedy algorithm performs better than
Alg. 1 in terms of the returned cost. Alg. 2 has
a quadratic time complexity. It is also more di�cult to
�nd a counterexample which does not give the lowest
cost.

Extending algorithms. To further improve the perfor-
mance of our algorithms we propose to apply di�erent
kinds of orderings in some nodes of the input trees.
The details how to extend Alg. 2 are depicted in Alg. 3.
Analogously, we extend the simple algorithm. Both
extended algorithms are never worse than the original
ones, and we still have the exact solution for caterpillar
trees. For the other trees, extended algorithms tend
to perform better, which is summarized in Fig. 5. As
the set of nodes K(T ) in Alg. 3 can be computed by
using an O(n log n) the solution proposed by Campbell
et al. [19], the time complexity of the extended greedy
algorithm is O(n4), while the extended variant of
the simple algorithm requires O(n3) time.

The evaluation of all proposed algorithms is depicted
in Fig. 5.

4 Experimental Results

We have performed two computational experiments
on empirical and simulated datasets. In the �rst
experiment, we present a comparative study of the re-
construction algorithms, while in the second, we tested
the quality of labeling inference.

Experiment I. To verify which algorithm yields
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Algorithm 2: The greedy algorithm

1: Input: Trees G and S of the same size. Output: Approximation of d̃c(G,S).
2: Notation: For a tree T and a set of nodes Z ⊆ V (T ) and i ∈ {1, 2, . . . , |Z|}, by Z[i] we denote i-th node from Z when T

is traversed in post-order. By IT we denote the set of internal nodes of a tree T .
3: Order G by size and S by saving.
4: Add the simple labeling to G. Let i := j := 1. Initialize sets MG := MS := ∅.
5: F := CG(root(G)) - the set of unmapped leaves from G; U := CS(root(S)) - the set of unlabeled leaves in S.
6: While j ≤ n− 1
7: A := |F ∩ CG(IG[i])| and B := |U ∩ CG(IS [j])|
8: If |A| = |B| Then map(A,B); i+=1; j+=1;
9: Else If |A ∪MG| = |B ∪MS | Then map(A ∪MG, B ∪MS); MG := MS := ∅; i+=1; j+=1;
10: Else If |A ∪MG| = |B| Then map(A ∪MG, B); MG := ∅; i+=1; j+=1;
11: Else If |A| = |B ∪MS | Then map(A,B ∪MS); MS := ∅; i+=1; j+=1;
12: Else If |A| < |B| Then MG := MG ∪A; i+=1;
13: Else MS := MS ∪B; j+=1;
14: return dc(G,S).
15: Function map(P,Q):
16: For k = 1, 2, . . . , |P |, set the label of Q[k] to be the label of P [k].
17: F := F \ P , U := U \Q.
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Figure 5: Averaged minimal deep coalescence, com-
puted by all four heuristics.

the lowest cost, we generated random trees from
the Yule model [20]. For each tree size between 1
and 150 we generated 7 random tree pairs. Then, we
computed the approximation of the minimal cost by
using our four algorithms. The result, averaged over
sizes of trees, is depicted 5. We observe that the greedy
extended algorithm is the best performing among all
our algorithms.

Experiment II. In practice, we often have some partial
information on the labeling of leaves. Therefore, we
introduce a more practical variant of our problems:

Given a gene tree G with a partial labeling, i.e.,

some leaves of G are unlabeled, and a species tree S.
Find the total labeling for G that minimize the deep

coalescence cost dc(G,S).

The greedy algorithm can be easily modi�ed to solve
the above problem. In line 5 of Alg. 2, it is su�cient

to remove labeled leaves from F and used taxons being
labels from U .
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Figure 6: Averaged quality, computed by the mod-
i�ed greedy algorithm on the trees from TreeFam

dataset [21].

The test was performed on TreeFam dataset, which
consists of 1274 curated gene family trees from
TreeFam v7.0 [21] spanning 25 mostly animal species.
The species tree was based on the NCBI taxonomy.
First, we extracted 295 gene trees with bijectively
labeled leaves. Next, for each such a gene tree G,
we contracted a species tree to the taxons present
in G. Hence, we obtained 295 pairs of bijectively
labeled trees, with the average size of 17.66 taxons.
Finally, for every pair of trees 〈G,S〉, and for each
i = {2, 3, . . . , |G|}, we removed labels of i random leaves
from G and then applied the modi�ed greedy algorithm
to infer total labeling. The quality of a reconstruction
is determined by the number of properly reconstructed
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labels divided by i. The experiment was repeated 10
times. The result, averaged over i, is depicted in Fig. 6.

5 Conclusion

In this article, we gave a closer look at an open ques-
tion of the minimal deep coalescence cost for the �xed
tree topologies and bijective labelings. The particular
cases that we have solved provide a better understand-
ing of the properties of the deep coalescence cost.
While the complexity of our problems remains open,
the methods presented seem to be a good starting
point to the solve the problems in the general case
which we plan to study in future. Also, we plan
to test our solutions on more complex empirical and
simulated datasets, including simulations with more
realistic models.
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Abstract — The demand for efficient genomic data storage 

and distribution has increased substantially as advanced high-

throughput sequencing has dramatically reduced costs and 

processing time required for genomic data collection. 

However, these advances generate a new challenge with data 

storage, transmission, and manipulation. To wit, the sizes of 

genomic databases are often very huge; for example, the 

genomic data in Cancer Genome Atlas database is over 2.5 

petabytes (2.5 million gigabytes).  Data compression would 

be the key to meet the technical and cost challenges of 

genomic data storage, transmission, and access for analysis. 

Recently, there has been growing interest in developing high-

performance compression tools designed specifically for 

genomic data.  This paper provides an overview of state-of-

the-art genomic data compression technology, the commonly 

used tools, and their performance. 

  
Keywords: Genomic data compression, Sequencing Data 

Compression, Reads Compression, Genomic Compression Tools, 

Compression Performance. 

I. INTRODUCTION 

As the next-generation sequencing (NGS), also known 

as high-throughput sequencing (HTS), technology advances, 

sequencing genomes is now much faster and cheaper. It 

makes larger and larger whole-genome projects like 1000 

Genomes feasible [1]. For example, the cost of sequencing a 

whole human genome has dropped from $20 million in 2004 

to $1,000 in 2015 [2]. Sequencing the first human genome 

took 13 years to complete [3] while we only need an hour to 

complete one human genome in 2017 [4]. The data generated 

during the first 6 months by the 1000 Genomes Project, an 

international research effort to establish the most detailed 

catalogue of human genetic variation from 2008 to 2013 [1], 

has exceeded the sequence data accumulated during 21 years 

in the NCBI GenBank database [5].  

The significant cost and time reduction has led to 

massive amounts of genomic data being generated at ever 

increasing rates. Currently, sequencing data is doubling 

approximately every seven months. At such a fast rate, more 

than an exabyte (i.e. 1018 bytes) of genomic data will be 

generated every year, and the total amount of sequencing data 

will reach a zettabyte (i.e., 1021 bytes) by 2025 [6].   

Due to the unique nature of genomic data, whose 

samples may not be available in the future for re-sequencing 

from organisms and/or ever-changing ecosystems, data must 

be stored and preserved without information loss. The rapid 

increase in genomic data generation and resulting huge 

omnipresent HTS datasets lead to great challenges in storing 

and distributing massive amount of genomic data. Obviously, 

data compression is the technology to solve these challenges 

[2, 7-9]. Genomic data compression has attracted many in the 

field to try and develop high performance genome-specific 

methods [2, 7, 9].   

Moreover, current trends in HTS data generation 

indicate that the storage, transmission, and bandwidth costs 

will soon surpass the costs of sequencing.  These issues will 

become the main bottleneck in genomics research and in the 

applications of HTS data to precision medicine. To meet this 

growing demand of HTS data storage and distribution, the 

Moving Picture Expert Group (MPEG) and HTS industry 

formed the MPEG HTS Compression Working Group 

(MPEG-HTS-CWG) in 2015 [10]. The ultimate goal of this 

group is to design and specify genomic data compression and 

transport technology by means of an open standard and 

interoperability among systems. This paper will provide a 

concise overview on genomic data, state-of-the-art 

compression methods including both lossless and lossy 

approaches, existing compression tools, and ongoing 

research and development.   

II. GENOMIC DATA OVERVIEW 

Genomic data refers to the genome and DNA data of an 

organism. It is used in bioinformatics for collecting, storing, 

and processing the genomes of living things. Genomic 

information is presented as genome sequencing, a long 

sequence of DNA nucleotides with specific orders, using 

NGS or whole genomic sequencing (WGS). NGS 

technologies are not able to provide the whole genome 

sequence, but produce a collection of millions of small 

fragments. WGS is the process of determining the complete 

DNA sequencing of an organism’s entire genome at one time 

by many fragments acquired using NGS. Therefore, most of 

the genomic data being stored and analyzed to date is 

comprised of sequencing data produced by NGS technologies.  

The fragments NGS produces are called ‘reads.’  As the 

reads may have a wrong readout of the actual sequencing 

signal, the raw reads include both the reads and their 

corresponding quality scores, indicating the probability of a 

given base that is called incorrectly by the sequencer [2, 11]. 

The number of raw reads in the sequencing data depends on 

the coverage, which the expected number of times a specific 

nucleotide of the genome is sequenced. For most of NGS 

technologies, the read length is of a few hundred base-pairs, 

which is much smaller than a full genome; for comparison, it 

would be about 3 billion base-pairs for a human genome. 
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Each base-pair is a combination of four nucleobases: 

Cytosine (C), Guanine (G), Adenine (A) or Thymine (T).  

Reads are typically stored in FASTQ format, a text-based 

format for storing both the sequence letters and quality score 

which are each encoded with a single ASCII character for 

brevity [12].   

After generating raw sequencing data, NGS mechanisms 

typically apply mapping algorithms [13] to align the reads to 

a reference sequence to determine the corresponding location 

in the reference for each read.  The alignment information 

along with original reads and their quality scores are stored 

in the standard Sequence Alignment Map (SAM) file format 

or Binary Alignment Map (BAM) - a compressed format of 

SAM files.  

NGS also generates other files which contain additional 

information between the original genome and the one used as 

a reference. To illustrate the size of these files, a human 

genome containing 3 billion of base-pairs is about 3GB of 

data if the base-pairs are stored in FASTQ format. Typical 

NGS of a human genome with 200x coverage will generate 

around 6 billion reads, assuming the read length of 100bp. 

The resulting FASTQ file and SAM file will be about 1.5TB 

and 3TB respectively [2].  

III. GENOMIC DATA COMPRESSION METHODS 

Although standard data compression tools like zip and rar 

have been used to compress genomic data, they do not exploit 

the particularities of the data itself and yield a relatively low 

compression gain. As genomic sequences often contain 

repetitive contents and many sequences exhibit high levels of 

similarity, specialized new lossless compression methods 

have been developed in past few years [15-18]. Other existing 

lossless compression algorithms can be categorized into 

Naïve Bit encoding [19, 20], Dictionary-based [21, 22], 

Statistical-based [23, 24], and Reference-based encodings [2, 

25, 26].  

Naïve Bit encoding methods exploit fixed-length 

encodings of two or more symbols in a single byte. Such 

encoding methods were designed for raw DNA sequencing 

and yield a range of compression ratios from 2:1 to 6:1 [9, 15-

18].  Of note, Naïve Bit encoding methods may not be suitable 

to other types of genomic data such as quality scores due to 

the large size of their symbol sets. 

Dictionary-based compression methods replace repeated 

substrings by references, which is a set of previously seen or 

predefined common strings and can be built at runtime. 

Lampel-Ziv-based compression algorithms, such as zip or 

bpzip2, are prominent examples of dictionary-based 

algorithms [27]. Usually the dictionary and reference indices 

are further encoded by entropy coding methods like arithmetic 

coding or integer coding schemes like Golomb codes [28]. 

Such approachs can be applied to any type of genomic data. 

The state-of-the-art dictionary-based genomic compression 

methods achieve a compression ratio in the range of 4:1 to 6:1 

depending on the frequency of repeats in the specific genomes 

being compressed [9, 29, 30]. 

Statistical-based encoding methods derive a probabilistic 

model from the input data. Based on the partial matches of 

subsets of the input, the model predicts the next symbols in 

the sequence. Statistical encoding can be used in all types of 

genomic data. The state-of-the-art statistical based methods 

are able to reach compression ratios in the  range of 4:1 to 8:1 

[9, 24, 31-34] depends on the prediction accuracy.  

Referential approaches replace long substrings of the to-

be-compressed input with references to another string. They 

require that the references are available for both the encoding 

and decoding process as they are not part of input data. 

Reference-based genomic compression algorithms are 

designed to utilize the extremely high level similarity of all re-

sequenced genomes from the same species. Such methods can 

reach very high compression ratios (approaching 400:1) if the 

reference sequences well represent the to-be-encoded 

sequences [9, 35, 36].  

The aforementioned compression methods are all lossless 

or reversible, i.e. the decompressed data is identical to the 

original input data. To compress genomic data even further, 

lossy compression methods have been proposed for the 

quality score portion of the NGS data. However, quality 

scores contain noise induced during sequencing and are harder 

to compress than the corresponding reads; evidence shows 

that quality scores can occupy over 70% of compressed 

genomic data files [2, 37]. 

Quality scores generated by base-calling algorithms in 

HTS are not strictly part of the DNA sequences. The scores 

are supplementary information used in a heuristic (somewhat 

inaccurate) manner when downstream applications operate on 

the reads. Observation of this behavior shows that minor 

perturbation of these values does not affect downstream 

analysis and manipulation tools. Thus, lossy compression is a 

viable technique for compression of quality scores [2]. 

Various lossy compression algorithms for genomic data have 

been proposed [38-41]; their performance is usually shown in 

rate-distortion representations. In some examples, over 10:1 

compression on quality scores had no corresponding negative 

impact on application results [2].    

IV. GENOMIC DATA LOSSLESS COMPRESSION TOOLS AND 

THEIR PERFORMANCE 

Many HTS data compression tools for FASTQ and SAM 

files are available in both commercial markets and open 

source. The MPEG-HTS-CWG has done a comprehensive 

evaluation on most of the available open-source compression 

tools for HTS data, which include both industrial-scale tools 

as well as research-oriented prototypes [10, 42]. In Figure 1, 

we summarized the state-of-the-art compression tools that are 

currently available to compress FASTQ and/or SAM files. 

Compression tools showed in the red box, i.e., pigz (parallel 

gzip), pbzip2 (parallel bzip) and Quip, can be used for both 

FASTQ and SAM files. Pigz and pbzip2 are dictionary-based 
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generic lossless compression tools and commonly used for 

FASTQ compression designed to take advantage of multi-

processor/multi-core systems.  

Specialized FASTQ compressors initially perform a form 

of transformation such as read-identifier tokenization or 2-bit 

nucleotide encoding, followed by statistical modeling and 

entropy coding. Examples of such approaches are DSRC2, 

FQC, Fqzcomp and Fastqz, Slimfastq, and LFQC as showed 

in Figure 1. Because the read order within a FASTQ file is 

arbitrary and most of the underlying genome is repetitive, the 

other approach is re-ordering the reads in a manner that brings 

similar reads together to boost compression ratios. Tools like 

SCALCE, Orcom, Mince, and BEETL use this approach as a 

preprocessing step to improve compression performance.  

Another approach is replacing each read with a pointer to 

the underlying reference genome, assuming such a reference 

genome is available at both encoding and decoding sides.  

FQZip is an example of this approach. Where a reference 

genome is not available, the same technique can be used after 

de novo assembly. Many de novo techniques exist though the 

most common is the assembly of contigs. References to newly 

assembled contigs or de Bruijn paths can then be substituted 

for sequences.  The primary tools that use assembly for data 

compression are Quip, Leon, k-Path, and KIC. However, both 

sequence mapping and assembly are computationally 

intensive tasks. Tools like Orcom, BEETL, Mince, and k-Path 

are designed for FASTQ reads only files. The tools DRSC2, 

Fqzcomp, Fastqz, FQC, CALCE, FQZip, Leon, KIC, etc (in 

purple box) are used for FASTQ full files and reads only files. 

  

Figure 1. Compression Tools for FASTQ and SAM files 

Most SAM files are compressed and stored in the BAM 

format. The compression tools for BAM manipulation are 

Samtools, Picard, and Sambamba. All BAM-based tools 

support arbitrary ordering of the reads and do not require a 

reference during compression or decompression. None of 

them treat various streams in a BAM file differently. The 

reference-based compression for SAM files is CRAM which 

separates different fields in the reads and applies different 

compression techniques on each. CRAM is implemented in 

Cramtools, and Scramble has recently been incorporated into 

Samtools and Picard.  

In both BAM and CRAM formats, reads covering the 

same sequence variant are encoded independently. To reduce 

the redundancy among the same variants, DeeZ implicitly 

assembles the underlying donor genome to encode these 

variants only once. CBC or TSC follows a similar path, 

encoding variants only one time. All of these tools treat each 

SAM field independently and apply a variety of compression 

techniques to each field. Finally, Quip and sam_comp 

employ highly optimized statistical models for various SAM 

fields; they are among the best performing tools in terms of 

pure compression ratio [42].  

To compare the performance of these compression tools, 

the MPEG-HTS-CWG compiled a broad HTS dataset with a 

wide spectrum of characteristics to ensure statistically 

meaningful results from the compression performance 

evaluation. The dataset includes FASTQ and SAM files with 

both deep and shallow coverage; fixed-length and variable 

length reads obtained by sequencing technology from leading 

manufacturers (Illumina, Pacific Biosciences, etc.); genomic 

data from various organisms (Homo sapiens, bacteria, plants, 

etc.); and several sample types (metagenomics, cancer cell 

lines, etc.). We summarize MPEG-HTS-CWG test dataset in 

Table 1 and Table 2.  It contains 7 FASTQ files and 8 SAM 

files respectively. The total data size is about 4 TB [10, 42]. 

Table 1 Selected FASTQ Files 

# Samples Full-

Size 

(MB) 

Reads-

Size 

(MB) 

Cove-

rage 

(MB) 

Organism Techs 

1 SRR554

369  

650 165 25 Pseudomona
s aeruginosa 

Illumina  

GAIIx 

2 SRR327

342  

3881 947 80 Saccharomyc
es cerevisiae  

Illumina  

GAII  

3 MH0001

.081026 

1880 512 N/A Homo 

sapiens gut  

Illumina 

GA 

4 SRR128

4073  

1309 649 140 Escherichia 

coli  

PaciBio 

5 649SRR

870667  

22944 7463 20 Theobroma 

cacao  

Illumina 

GAIIx  

6 ERR174

310  

53869 20966 7 Homo 

Sapiens  

HiSeq  

7 ERP001

775 

2717029 1059387 120 Homo 

Sapiens  

HiSeq 

Table 2 Selected SAM Files 

# Samples Full-Size 

(MB) 

Coverage 

(MB) 

Organism Techs 

1 DH10B  5579 420 E. Coli MiSeq 

2 9827.2.4

9   

21059 2 Homo Sapiens HiSeq  

3 sample-

2-1 

5924 0.6 Homo Sapiens Ion Torrent 

4 K562.LI
D8465  

75915 6 Homo Sapiens RNASeq 

5 dm3 30081 75 Drosophila 

melanogaster 

Pacbio  

6 NA1287

8.PB  

126545 15 Homo Sapiens Pacbio 

7 HCC195

4 

427028 30 Homo Sapiens Cancer cell 

8 NA1287

8.S1 

589038 50 Homo Sapiens HiSeq 
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MPEG-HTS-CWG evaluated the performance of 

genomic data compression tools in term of compression ratio, 

relative encoding and decoding times, memory usage, and 

parallelization capabilities [10]. In this paper, we focus on 

compression ratios and speed; we present MPEG-HTS-CWG 

test results of the top performing tools, while more details can 

be found in references [10] and [42]. Table 3, 4 and 5 show 

the corresponding compression ratios of HTS compression 

tools on FASTQ full files, FASTQ reads only, and SAM files. 

A FASTQ full file includes reads and quality scores. FASTQ 

files are typically compressed by general purpose pigz and 

pbzip2 tools while SAM files are compressed by Samtools.  

Note that pbzip2 performs significantly better than pigz 

in all test samples in Table 3, 4, and 5. Neither pbzip2 nor 

Samtools have the best performance in any cases among the 

HTS specific compression tools. The tools that yield the 

highest compression ratios for each test file are marked in red 

for easy reading. No one tool out-performs on all files.  

Table 3 Compression Ratios on FASTQ Full Files 

Sample 1 2 3 4 5 6 7 

DSRC2 6.2 5.8 4.4 N/A 4.8 4.1 N/A 

Fqzcomp 7.3 6.9 4.9 N/A 5.7 4.8 N/A 

lfqc 9.4 7.9 6.7 3.2 9.5 N/A N/A 

pbzip2 5.2 4.7 3.5 2.8 4.1 3.6 11.2 

pigz 4.1 3.8 2.8 2.4 3.3 2.9 8.9 

Quip 7.3 7.2 5.1 3.1 5.9 4.8 14.8 

SCALCE 8.6 8.0 4.6 3.1 6.2 5.0 16.9 

slimfastq 6.9 7.7 5.4 N/A 5.4 4.9 15.3 

Table 4 Compression Ratios on FASTQ Reads Only Files 

Sample 1 2 3 4 5 6 7 

DSRC2 4.0 3.7 4.0 N/A 4.0 4.0 N/A 

Fqzcomp 4.5 4.7 4.3 N/A 4.8 4.5 N/A 

lfqc 9.7 7.3 5.0 4.2 N/A N/A N/A 

pbzip2 3.8 3.8 3.7 3.7 4.0 3.8 11.0 

pigz 3.4 3.4 3.4 3.5 3.5 3.5 10.1 

Quip 4.5 5.2 4.5 4.1 5.1 4.6 13.3 

SCALCE 9.7 13.9 7.2 4.0 7.5 6.9 37.2 

slimfastq 5.5 6.4 4.9 N/A 5.3 4.7 13.6 

BEETL 7.2 8.1 4.5 N/A 6.2 5.4 N/A 

k-Path 11.8 21.0 8.3 N/A 11.3 10.0 N/A 

Mince 16.5 25.6 10.2 N/A 10.9 10.7 N/A 

Orcom 15 26.3 10.0 N/A 9.0 11.7 153.1 

Among the tested FASTQ tools, the best compression 

ratios are offered by tools that reorder reads. Sequence-

mapping and assembly-based tools like lfqc may also provide 

good compression ratios, but they are often slow with high 

memory costs. Table 3 and 4 show lfqc and SCALCE are the 

best tools for FASTQ full files while Orcom and Mince yield 

the highest compression ratios for FASTQ reads-only files. 

Note that the majority of the available tools are optimized for 

Illumina-style short, fixed-length reads; many tools are not 

capable of compressing long variable-length read collections 

such as data from Pacific Biosciences (PacBio).  

For SAM files, it is possible to achieve better compression 

ratios than those achieved by Samtools. However, unlike 

Samtools, they do not provide random-access capability. 

Among the available tools, only BAM and CRAM-family 

tools, DeeZ and TSC are able to conduct random-access. 

Table 5 shows DeeZ and Quip with reference reach the best 

compression ratios. The integrated tool sam_comp at the last 

row of Table 5 yields the best compression ratios. The 

integrated solution chooses the specific approach which out 

performs on input data type with respect to the performance 

measure, i.e.  compression ratio in Table 5.  

Table 5 Compression Ratios on SAM Files 

Sample 1 2 3 4 5 6 7 8 

Cram2 5.2 5.6 5.1 7.3 4.0 3.3 4.4 N/A 

Cram3  6.5 6.4 5.8 8.2 4.6 3.7 5.2 8.8 

Cram3NR* 6.2 5.0 5.3 7.7 2.8 2.8 4.9 8.1 

DeeZ 7.6 7.7 6.5 10.5 4.6 3.7 5.7 11.0 

pbzip2 5.2 4.0 5.3 7.4 3.1 2.9 4.3 6.6 

picard 3.9 3.2 4.0 5.5 2.3 2.2 3.2 N/A 

Pigz 4.2 3.5 4.3 5.9 2.4 2.4 3.6 5.2 

Quip 5.1 4.8 4.8 6.8 3.3 3.0 4.3 6.1 

Quip  Ref 6.9 N/A N/A 8.7 4.7 N/A N/A 9.1 

Samtools 4.0 3.2 4.0 5.5 2.3 2.2 3.2 4.8 

sam_comp 8.0 7.9 6.7 10.8 3.6 3.9 10.0 11.1 

Cram3NR*: CRAM Version 3 without Reference 

In general, there is trade-off among compression ratio, 

compression (encoding) and decompression (decoding) 

speed, memory cost, etc. Table 6 and 7 show the encoding 

and decoding speed measures of selected FASTQ tools. The 

processing speed is usually measured as a ratio of data size 

over processing time, e.g. MB/sec, and depended on the 

power of processor. For the purpose of comparing different 

tools, the speed measures are defined as the ratio of the 

processing times of a given tool over a reference tool. 

Therefore, the smaller the speed measure, the faster the actual 

speed and the lower the computation cost.  

Table 6 FASTQ Encoding Speed Measures 

Sample 1 2 3 4 5 6 7 

DSRC2 0.22 0.26 0.24 N/A 0.21 0.2 N/A 

Fqzcomp 0.34 0.37 0.41 N/A 0.33 0.32 N/A 

lfqc 18.53 18.5 21.1 18.03 14.5 N/A N/A 

pbzip2 1.19 1.45 1.29 0.74 0.99 0.81 0.21 

pigz 1 1 1 1 1 1 1 

Quip 0.5 0.53 0.47 0.36 0.48 0.46 0.38 

SCALCE 0.77 0.63 0.8 0.67 0.6 0.59 0.57 

slimfastq 0.55 0.47 0.54 N/A 0.51 0.47 0.49 

Table 7 FASTQ Decoding Speed Measures 

Sample 1 2 3 4 5 6 7 

DSRC2 2.11 3.09 1.91 N/A 1.39 1.22 N/A 

Fqzcomp N/A 7.54 N/A N/A N/A 3.29 N/A 

lfqc 315 310 339.9 386 N/A N/A N/A 

pbzip2 5.97 6.85 6.35 6.99 3.61 2.83 1.23 

pigz 1 1 1 1 1 1 1 

Quip 10.7 11.5 11.37 10.6 5.57 5.22 4.64 

SCALCE 9.05 8.23 12.17 9.78 4.89 4.57 1.94 

slimfastq 11.46 9.55 11.32 N/A 5.8 4.76 5.94 

 

Table 6 shows the encoding speed measures, which are 

calculated using the corresponding encoding time divided by 

pigz encoding time. Similarly, the decoding speed measures 

in Table 7 are computed using the corresponding decoding 

time divided by pigz decoding times. The fastest tools are 

again marked in red. DSRC2 and pbzip2 are the fastest 

FASTQ encoding tools while pigz and DSRC2 are fastest 
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decoding ones. Comparing with Table 3, we can see that the 

best FASTQ tools, lfqc and SCALCE, marked in green in 

Table 6 and 7, are the costliest ones in terms of encoding and 

decoding times.  

Table 8 SAM Encoding Speed Measures 

Sample 1 2 3 4 5 6 7 8 

Cram2 0.93 1.42 2.12 1.7 0.93 1.01 1.28 N/A 

Cram3  0.23 0.29 0.62 0.38 0.14 0.31 0.27 0.1 

Cram3NR 0.29 1.18 0.45 0.43 0.21 0.46 0.37 0.1 

DeeZ 0.91 1.23 3.49 2.01 0.71 1.22 1.66 0.41 

pbzip2 1.65 1.93 4.04 3.57 0.72 0.94 1.62 0.46 

picard 1.42 1.04 1.82 1.48 0.74 0.55 1.18 N/A 

pigz 0.77 1.55 1.48 1.06 1.39 1.37 1.4 0.13 

Quip 10.7 7.81 4.43 8.27 7.52 9.87 9.05 2.18 

Quip  Ref 10.1 N/A N/A 8.2 7.19 N/A N/A 2.2 

Samtools 1 1 1 1 1 1 1 1 

Sam_comp 0.68 0.76 1.2 0.71 0.51 0.59 0.62 0.37 

Table 9 SAM Decoding Speed Measures 

Sample 1 2 3 4 5 6 7 8 

Cram2 1.71 1.67 4.93 2 2.05 2.39 1.5 N/A 

Cram3  0.76 0.66 1.58 0.67 0.58 0.84 0.71 0.5 

Cram3NR 0.74 0.63 1.06 0.78 1.14 1.54 0.79 0.47 

DeeZ 10.1 5.6 9.86 7.91 4.86 6.67 6.39 1.9 

pbzip2 3.16 3.39 3.72 2.46 2.93 3.94 3.23 0.59 

picard 2.76 1.52 2.1 2.44 1.09 1 1.91 N/A 

pigz 0.63 0.82 0.49 0.7 0.79 0.7 0.91 0.6 

Quip 10.7 7.81 4.43 8.27 7.52 9.87 9.05 2.18 

Quip  Ref 10.1 N/A N/A 8.02 7.19 N/A N/A 22 

Samtools 1 1 1 1 1 1 1 1 

Sam_comp 3.36 2.95 6.54 3.56 5.49 5.42 3.25 2 

Similarly, Table 8 and 9 show the comparison results of 

the encoding and decoding speed measures of SAM tools. 

The encoding speed measures in Table 8 are the ratios of 

encoding time of different tools divided by Samtools’ 

encoding time. The values in Table 9 are the decoding time 

of different tools divided by Samtools’ decoding time. Cram3 

and Cram3NR are the fastest encoding tools while pigz, 

cram3 and CramNR are the fastest decoding tools for SAM 

files. Comparing with Table 5, the tools that yield the highest 

compression ratios, DeeZ and Quip with reference, are 

marked in green in Table 8 and 9. Their encoding speeds lay 

in the middle compared with other SAM tools, but their 

decoding speeds are among the slowest. The integrated 

solution sam_comp yields the highest compression ratios in 

Table 3; its encoding and decoding speeds are in reasonably 

fast ranges in Table 8 and 9. Therefore, the integrated 

solution provides the best overall outcomes in term of 

compression ratio and speed.  

V. CONCLUSION 

As NGS technology continually advances, it is estimated 
that genomic data will be doubled every seven months. Data 
compression would be a key technology for efficient genomic 
data storage and distribution. In this paper, we have provided 
an overview of the state-of-the-art compression techniques for 
genomic data compression and summarized the performance 
evaluation results of widely used genomic data compression 
tools using the MPEG HTS dataset.   

Genomic data mainly contains HTS datasets, which are 

stored in FASTQ or SAM formats. Their sizes and contents 

vary significantly based on the applications. The MPEG-

HTS-CWG’s evaluation results show that HTS data-specific 

compression tools achieve higher compression ratios than 

generic lossless compression tools, but no method performs 

the best in all test cases. The compression ratios of these 

state-of-the-art tools depend on the datasets and are typically 

perform below 10:1. Research to develop new methods to 

compress genomic data more efficiently and effectively is 

needed in the future of genomic data processing.   

There are trade-offs between compression ratios and 

their corresponding encoding/decoding speeds. Integrated 

solutions are able to provide better performance in terms of 

compression ratios and provide reasonable encoding and 

decoding speed. 

Various lossy compression methods have also been 

developed for the quality scores of HTS data, and research 

shows that over 10:1 compression on quality scores has no 

negative impact on application results. The MPEG-HTS-

CSG is currently developing a standard format for 

compressed files to integrate the best features of the tools and 

formats. In our view, new algorithms to compress genome 

data producing both a high compression ratio and high 

quality of decompressed data in the future will be needed. 

The integrated solution would consist a dynamic combination 

of lossless and lossy methods targeting the original reads and 

their quality scores respectively. 
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Abstract 

Plasmodium falciparum (P.f.), the malaria pathogen, has 

shown substantial resistance to treatment and vaccine 

thereby requiring urgent, holistic and broad approach to 

prevent an endemic. Understanding the biology of the 

malaria parasite has been identified as a vital approach to 

overcome the threat of malaria. This study reconstructed 

the iPfa Genome-scale metabolic model (GEM) of 3D7 

strain of Plasmodium falciparum by filling gaps in the 

model with nineteen (19) metabolites and twenty-three 

(23) reactions obtained from MetaCyc database. Biomass 

reactions and exchange reactions were removed since they 

are mainly used to evaluate changes in flux which is not 

required in our approach. Twenty (20) currency 

metabolites were removed from the network because they 

have been identified to produce shortcuts that are 

biologically infeasible. The resulting modified iPfa GEM 

was model using reaction graph and a k-shortest path 

algorithm was applied to identify alternative metabolic 

pathways of Plasmodium falciparum. Five alternative 

paths were predicted in the glycolysis pathway. 

Keywords: Graph based technique, k-shortest path, 

Plasmodium falciparum, metabolic pathway. 

1  Introduction 

1.1 The Overview of Plasmodium falciparum 

Malaria remains one of the leading global health challenge, 

especially in tropical and subtropical areas, where about 

212 million clinical cases and more than 429,000 estimated 

cases of deaths recorded in the year 2015 [1]. According to 

World health Organization (WHO), 88% of malaria 

incidence and death in 2015 are estimated to have occurred 

in Africa. The major cause of the ailment in human is an 

organism known as Plasmodium falciparum (P.f.). There 

exist five variants of the plasmodium clan, these are; 

Plasmodium falciparum, Plasmodium vivax, Plasmodium 

ovale, Plasmodium malariae and Plasmodium knowlesi, 

out of which Plasmodium falciparum and Plasmodim vivax 

are the most dangerous. There have been concerted effort 

by the governments of Nations and global health body 

(WHO) in the area of funding, research and drug 

development to halt the devastating trend of the malaria 

endemic especially in Africa, however the scourge is still 

pervasive. Understanding the biology of the malaria 

parasite has been identified as a vital approach to 

overcome the threat of malaria [2].  

The comprehensive Plasmodium falciparum lifecycle 

comprises of 3 important developmental stages: the 

mosquito stage, the liver stage, and the blood stage [3]. 

The malaria parasite metabolic pathways are in a number 

of ways different from that of a human being because of 

the uniqueness in the malaria parasite life-cycle, thus it 

becomes very possible for the malaria parasite to take 

advantage of the uniqueness of its pathways to design 

therapeutic strategies [4]–[6] by traversing alternative 

pathways for its activities which helps the parasite to 

resisting existing drugs and makes it a core responsibility 

to discover new drugs[7], [8],[9].  

Four major biological networks have been widely studied 

for the comprehensive understanding of the biology of the 

malaria parasite, they include: metabolic networks of 

enzyme catalyzed biochemical reactions between 

metabolic substrates; protein interaction networks 

comprising of the physical interactions between an 

organism's proteins which provides conceptual framework 

for more insight into the functional organization of the 

whole complement of proteins that exist within a cell, 

tissue or organism; transcriptional regulatory networks 

which depict the regulatory relationships between various 

genes[10] and the signal transduction network[9]. It 

enables better understanding how a gene or set of genes 

determines expression of other genes.  

1.2 Metabolic Network 

Metabolism can either be catabolism which is the breaking 

down of complex compound in living organisms to 

generate smaller ones alongside release of energy which is 

used by the organism to sustain life or metabolism can be 

anabolism which is the build-up of complex compounds 

from simpler ones in living organism. The metabolic 

network of a specific cell or a living organism is the entire 

network of metabolic reactions of the cell. In order to make 

sense of the available metabolic network data, metabolic 

networks are usually constructed as compound graphs, 

reaction graphs, enzyme graphs bipartite graph or hyper-

graph and a path finding technique is used to enumerate the 

paths. In this context, we would like to clarify the 
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difference between a path and a (metabolic) pathway. In 

graph theory, a path is defined as a linear sequence of 

nodes connected by edges such that each node pair is 

connected by only one edge and each path node, including 

the start and the end node, can be found at most once in a 

path. However, metabolic pathway is similar to a path but 

may contain branches, cycles, and multiple instances of the 

same compound [11]. 

1.3  Metabolic pathways of P.f. 

A metabolic pathway is a collection of enzyme catalysed 

biochemical reactions by which a living organism 

transforms a source (initial) compound into a target (final) 

compound. A metabolic pathway could likewise be 

presented as an interconnected sub-network of the 

metabolic network either depicting particular activities or 

characterized by functional limits, e.g., the network 

between glucose (source substance) and pyruvate (target 

substance).The theory upon which the path finding 

approaches is based is that finding directed paths between 

the source compound and the destination compound in the 

entire metabolic network will give clear understanding into 

the intermediate reactions/compounds utilized in the 

metabolic pathway between the source and destination 

compounds.Metabolism in eukaryotes is classified into 

several categories which include; Amino acid metabolism, 

Nucleic acid metabolism, Carbohydrate metabolism and 

Lipid metabolism.  

1.4  k-shortest Path Algorithm 

Faust et al., (2010) stated that a simple approach towards 

the prediction of a pathway is to find the shortest path(s) 

between a given start and end node in the network. The k-

shortest paths problem is a network optimization problem 

where the objective is not only to identify the shortest path, 

but also the second, the third, the fourth,..., to the kth 

shortest path from source node s to target node t in a 

network. A good number of k-shortest path algorithms  

such as [12]–[20]list all shortest paths between a given pair 

of nodes have been applied to several types of networks 

including biological networks. However, when using them 

to predict metabolic pathways, two issues specific to 

metabolic networks need to be considered theses are; 

reaction directionality and the hub compound problem 

[11]. Hence, the application of k-shortest path technique 

must considerably consider these two issues and 

adequately tackle their effects. 

2  Materials and Methods 

2.1 Reconstruction of the metabolic network 

In this study the iPfa Genome-scale metabolic model 

(GEM) [21] which is the latest model was chosen because 

it represents the most comprehensive, stage-specific P. 

falciparum metabolic reconstruction to date. iPfa includes 

325 genes and 670 metabolic reactions localized within 

five intracellular compartments: the nucleus, the 

apicoplast, the cytosol, the endoplasmic reticulum and the 

mitochondrion. iPfa also accounts for transport reactions: 

236 potential uptakes, i.e. transports from the medium 

(host cell cytosol or blood serum) to the parasite's cytosol, 

and 155 transports between intracellular compartments. 

Nineteen (19) metabolites and twenty-three (23) reactions 

were obtained from MetaCyc database [22] to fill gaps in 

the iPfa GEM while biomass reactions and exchange 

reactions were removed since they are mainly used to 

evaluate changes in flux to obtain a modified GEM for the 

metabolic network. The details about the twenty three (23) 

reactions obtained from MetaCyc database can be found in 

Appendix A.  

Hub compounds or pool metabolites or currency 

metabolites are compounds that are commonly involved in 

metabolic reactions and cause shortcuts without biological 

meaning when computing paths in a simple graph [23] 

(e.g. Proton, Water). Kim et al., (2015) identified twenty-

five (25) currency metabolites out of which we eliminated 

20 of such from the network before reconstructing the 

graph. The remaining five (5) currency metabolites 

identified by Kim et al., (2015) were retained in the 

network since their presence does not have significant 

effect that could lead to shortcuts without biological 

meaning; this therefore partially addresses the issue of hub 

compounds. Reaction interaction graph was used to model 

the metabolic network where the vertices are the reactions 

and the edges represent the interaction between the 

reactions and uniform weight was assigned to all edges in 

the network.  

2.2  The Algorithm 

T-star algorithm was selected among other k-shortest paths 

techniques because of its superior computational 

performance [22], see table 1. T-star requires a topological 

sort of the graph nodes as its input. Topological sort is only 

possible for a Directed Acyclic Graph, hence we 

implemented the algorithm to avoid loops/cycles. We 

enhanced the prediction precision of the graph based 

approach by incorporating a heuristic function which 

favors paths that are biologically related to the annotated 

pathway between a given pair of compounds. Our 

approach is based on the theory that the malaria parasite 

uses the shortest route to a particular product, hence the 

assumption that the currently known annotated pathways 

contain the shortest paths utilized by the pathogen, 

therefore the heuristic function uses the reactions in the 

annotated pathways to rank paths that share similar 

reactions above others. The enhanced T* algorithm was 

applied to the reconstructed network to obtain k-shortest 

paths for selected metabolic pathways where k = 20. 
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Table 1: Time Complexity of T*, K*, Yen, Feng, EA and 

LVEA algorithms.(Source: Kadivar, 2016) 

 

Algorithm Time Complexity 

T* O(m + nk log d) 

K* O(m + n log n + k) 

LVEA O(m+n log n+k log k) 

EA O(m+n log n+k log k) 

Feng O(kn(m+n log n)) 

Yen O(1/2(Kn3)) 

 

The reactions within the annotated pathway for a given 

biological process such as glycolysis are referred to as the 

Known nodes in the algorithm shown below. 

1:   H = [Known nodes] 

2:   next = source; 

3:   while next != target do 

4:   Update(P[next] by P[j], j ∈ A─ (next));  

5:   Reward(P[next] for each h in P[next], h ∈ H) 

6:   next = next + 1; 

7:   end while 

8:   Update(P[i] by P[j], j ∈ A─ (i)) 

9:   Make min-priority queue MQ(i) by P1j ∈ P[j] for  

j ∈ A─ (i) according to L(P1j ) +     cji values. 

10:  while MQ(i) ≠ ∅ and |P[i]| < k do 

11: Move P at root of MQ(i) to P[i] and replace  

the moved item by its neighbor in    the  

source list from which it came and update  

the nodes values traversing up in MQ(i)  

along the path of the moved item. 

12: end while 

 

 
Figure 1: Modified T* Algorithm Flow chart. The boxes labelled in red signifies the point where heuristic function 

was applied to the algorithm 

3  Results 

We applied our method to the following two metabolic 

pathways to enumerate k-shortest paths, where k = 5; 

Glycolysis Pathway and Pentose Phosphate Pathway. 

Eight (8) additional metabolic reactions were 

predicted to be involved in the glycolysis pathway 

which could provide an alternative path for conversion 

of glucose to pyruvate. The list of the 8 reactions are 

given in Table 2. Also, figure 2 shows the 5 predicted 

alternative paths for the pathway. 

Table 2: Predicted reactions involved in glycolysis 

pathway 
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Reaction 

name in 

KEGG 

Description of 

Reaction 

Associated 

E.C 

Number 

R00345 phosphate:oxaloaceta

te carboxy-lyase 

4.1.1.31 

R00662 Uridine triphosphate 

pyrophosphohydrolas

e 

3.6.1.8         

3.6.1.19 

R01138 dATP:pyruvate 2-O-

phosphotransferase 

2.7.1.40 

R00156 ATP:UDP 

phosphotransferase 

2.7.4.6 

R08845 UTP:monosaccharide

-1-phosphate 

uridylyltransferase 

2.7.7.64 

R00769 UTP:D-fructose-6-

phosphate 1-

phosphotransferase 

2.7.1.11 

R00341 ATP:oxaloacetate 

carboxy-lyase 

(transphosphorylating

;phosphoenolpyruvat

e-forming) 

4.1.1.49 

R00289 UTP:alpha-D-

glucose-1-phosphate 

uridylyltransferase 

2.7.7.9         

2.7.7.64 

 

 

 

 

k=1:5 

Figure 2: Predicted paths for glycolysis pathway 

Five (5) additional metabolic reactions were predicted 

to be involved in the Pentose Phosphate pathway 

which could provide an alternative path for conversion 

of D-Glucose 6-phosphate to D-Glyceraldehyde 3-

phosphate. The list of the 5 reactions are given in 

Table 3. Also, figure 3 shows the 5 predicted 

alternative paths for the pathway. 
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Table 3: Predicted reactions involved in Purine 

metabolism 

Reaction 

name in 

KEGG 

Description of 

Reaction 

Associated 

E.C Number 

R01015 D-glyceraldehyde-3-

phosphate aldose-

ketose-isomerase 

5.3.1.1 

R01010 Glycerone phosphate 

phosphohydrolase 

3.1.3.1         

3.1.3.2 

R00756 ATP:D-fructose-6-

phosphate 1-

phosphotransferase 

2.7.1.11 

R02568 D-Fructose 1-

phosphate D-

glyceraldehyde-3-

phosphate-lyase 

4.1.2.13 

R01068 D-fructose-1,6-

bisphosphate D-

glyceraldehyde-3-

phosphate-lyase 

(glycerone-

phosphate-forming). 

4.1.2.13 

 

 

k=1:5 

Figure 3: Predicted paths for Pentose Phosphate pathway 

4  Discussion 

The application of our method on the metabolic 

network of P.f. to predict alternative paths within two 

(2) metabolic pathways reveals that there are potential 

reactions that could be involved in the metabolic 

pathways of the organism that could serve as 

redundant links between source and destination 

reactions in the case where the primary link is 

unavailable or blocked by vaccines. Some of the 

predicted reactions yet to be validated have red outline 

in figure 2 and 3. The predicted paths is ordered left to 

right starting from k=1 to k=5. The implication of 

these alternative paths is that if path 1 is unavailable 

for the metabolic activities of the parasite it attempts 
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to use path 2 and so on and this has been highlighted 

as the major cause of the drug resistance by the 

parasite. 

5  Conclusion 

This study applied T* Algorithm enhanced with 

heuristic algorithm to predict alternative paths within 

the metabolic network of P.f. The predicted paths 

could provide valuable insight into the biology of the 

organism which will aid in effective therapy and 

vaccine development and subsequently reduce the 

mortality and morbidity rate of malaria disease. 

Finally, we observed that dataset used is a GEM 

prepared for constraint-based modelling and not 

graph-theoretical path finding approaches which was 

employed in this study and this has a considerably 

effect on our prediction. 
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7  Appendix A 

Table 6: Reactions obtained from MetaCyc database to fill gaps in the iPfa GEM 

NAME EQUATION EC-NUMBER SUBSYSTEM 

L-threonine 

aldolase 

L-Threonine[c] <=> Acetaldehyde[c] 

+ Glycine[c] 

4.1.2.48, 4.1.2.5 Glycine, serine and 

threonine metabolism 

glycine 

hydroxymethyltran

sferase 

L-Serine[c] + Tetrahydrofolate[c] 

<=> Glycine[c] + 5,10-Methylene-

tetrahydrofolate[c] + H2O[c] 

2.1.2.1 Glycine, serine and 

threonine metabolism 

serine-glyoxylate 

transaminase 

Glyoxylate[c] + L-Serine[c] 

<=>Hydroxypyruvate[c] + 

Glycine[c] 

2.6.1.45 Glycine, serine and 

threonine metabolism 

ornithine 

cyclodeaminase 

L-Ornithine[c] <=> L-Proline[c] + 

NH3[c] 

4.3.1.12 Arginine and proline 

metabolism 

 (S)-1-Pyrroline-5-carboxylate[c] <=> 

L-Glutamate 5-semialdehyde[c] 

 Arginine and proline 

metabolism 

aspartate 4-

decarboxylase 

L-Aspartate[c] <=> L-Alanine[c] + 

CO2[c] 

4.1.1.12 Alanine, aspartate and 

glutamate metabolism 

citrate (Si)-

synthase 

Acetyl-CoA[c] + H2O[c] + 

Oxaloacetate[c] <=> Citrate[c] + 

CoA[c] 

2.3.3.1 Alanine, aspartate and 

glutamate metabolism 

glutamine-pyruvate 

transaminase 

L-Glutamine[c] + Pyruvate[c] <=> 2-

Oxoglutaramate[c] + L-Alanine[a] 

2.6.1.15 Alanine, aspartate and 

glutamate metabolism 

2-oxoglutaramate 

amidase 

2-Oxoglutaramate[c] + H2O[c] <=> 

2-Oxoglutarate[c] + NH3[c] 

3.5.1.111 Alanine, aspartate and 

glutamate metabolism 

cystathionine 

gamma-synthase 

L-Cysteine[c] + O-succinyl-L-

homoserine[c] <=> succinate[c] + L-

cystathionine[c] + H+[c] 

2.5.1.48 Cysteine and methionine 

metabolism 

cystathionine beta-

lyase 

L-cystathionine[c] + H2O[c] <=> 

ammonium[c] + pyruvate[c] + L-

homocysteine[c] 

4.4.1.8 Cysteine and methionine 

metabolism 

methionine 

synthase 

L-homocysteine[c] + N5-

methyltetrahydrofolate[c] <=> L-

Methionine[a] + tetrahydrofolate[c] 

2.1.1.13 Cysteine and methionine 

metabolism 

5-

methyltetrahydropt

eroyltriglutamate-

homocysteine S-

methyltransferase 

L-homocysteine[c] + N5-

methyltetrahydropteroyl tri-L-

glutamate[c] <=> L-Methionine[a] + 

tetrahydropteroyl tri-L-glutamate[c] 

2.1.1.14 Cysteine and methionine 

metabolism 

cystathionine 

gamma-lyase 

L-cystathionine[c] + H2O[c] <=> 2-

oxobutanoate[c] + L-Cysteine[c] + 

ammonium[c] 

4.4.1.1 Cysteine and methionine 

metabolism 
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inositol-

tetrakisphosphate 

5-kinase 

D-myo-inositol (1,3,4,6)-

tetrakisphosphate[c] + ATP[c] <=> 

D-myo-inositol 1,3,4,5,6-

pentakisphosphate[c] + ADP[c] + 

H+[c] 

2.7.1.140 Inositol phosphate (vit 

B8) metabolism 

inositol-1,3,4-

trisphosphate 5/6-

kinase 

D-myo-inositol (1,3,4)-

trisphosphate[c] + ATP[c] <=> D-

myo-inositol (1,3,4,6)-

tetrakisphosphate[c] + ADP[c] + 

H+[c] 

2.7.1.159 Inositol phosphate (vit 

B8) metabolism 

inositol-1,3,4-

trisphosphate 5/6-

kinase 

D-myo-inositol (1,3,4)-

trisphosphate[c] + ATP[c] <=> D-

myo-inositol (1,3,4,5)-

tetrakisphosphate[c] + ADP[c] + 

H+[c] 

2.7.1.159 Inositol phosphate (vit 

B8) metabolism 

inositol-1,4-

bisphosphate 1-

phosphatase 

D-myo-inositol (1,3,4)-

trisphosphate[c] + H2O[c] <=> D-

myo-inositol (3,4)-bisphosphate[c] + 

phosphate[c] 

3.1.3.57 Inositol phosphate (vit 

B8) metabolism 

phosphatidylinosito

l-3,4-bisphosphate 

4-phosphatase 

D-myo-inositol (3,4)-bisphosphate[c] 

+ H2O[c] <=> 1D-myo-Inositol 3-

phosphate[c] + phosphate[c] 

3.1.3.66 Inositol phosphate (vit 

B8) metabolism 

inositol-

polyphosphate 

multikinase 

D-myo-inositol (1,4,5)-

trisphosphate[c] + ATP[c] <=> D-

myo-inositol (1,4,5,6)-

tetrakisphosphate[c] + ADP[c] + 

H+[c] 

2.7.1.151 Inositol phosphate (vit 

B8) metabolism 

inositol-

polyphosphate 

multikinase 

D-myo-inositol (1,4,5,6)-

tetrakisphosphate[c] + ATP[c] <=> 

D-myo-inositol 1,3,4,5,6-

pentakisphosphate[c] + ADP[c] + 

H+[c] 

2.7.1.151 Inositol phosphate (vit 

B8) metabolism 

inositol-

trisphosphate 3-

kinase 

D-myo-inositol (1,4,5)-

trisphosphate[c] + ATP[c] <=> D-

myo-inositol (1,3,4,5)-

tetrakisphosphate[c] + ADP[c] + 

H+[c] 

2.7.1.127 Inositol phosphate (vit 

B8) metabolism 

inositol-

pentakisphosphate 

2-kinase 

D-myo-inositol 1,3,4,5,6-

pentakisphosphate[c] + ATP[c] 

<=>phytate[c] + ADP[c] + H+[c] 

2.7.1.158 Inositol phosphate (vit 

B8) metabolism 
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Abstract

We consider the problem of aligning multiple time
series gene expression data with the goal of achieving
minimum SP (sum of pairwise) distance score. The
transcription level of genes often change over time. For
a gene, the rate of change of transcription values can
vary across different members of a population. There-
fore, alignment of such data has great potential to reveal
how the cellular activities of different samples deviate
from each other. We develop an algorithm for alignment
of multiple time series expression data using dynamic
time warping approach. Our experiments demonstrate
that our method always improves the alignment score.
We observe that the correlation between significant
gene pairs show drastic improvement after our method
is applied, which helps in uncovering key functional
characteristics from biological perspective. Further-
more, the alignment strategy is independent of the
length of different time series under consideration.

keywords: gene expression, time series, multiple
alignment, dynamic time warping

1 Introduction
Genes are segments within DNA which contains

within themselves instructions for producing molecules
to carry out various functions within cells. The
process by which the information contained within
a gene transforms into the product called RNA is
called transcription or expression. Typically not all
gene products are needed all the time. Even when a
specific set of gene products are needed, the amount
of time it takes to produce them and the rate at
which a gene produces them varies. In fact, it will
be energy inefficient for a cell to express every gene
all the time. Further, some gene products are harmful
to the cell if it is not produced at the right time or
quantity. Recent technology such as high throughput
sequencing makes it possible to record expression values
for thousands of genes in parallel by means of gene
expression profiling. This results in huge amount of
transcription information.

Gene expression data is usually represented in a
matrix or tabular form where each row represents a gene
or probe. Each column typically represents a sample.
Each entry of this matrix is the expression level of a
particular gene for a particular sample. Several existing
efforts has already been done to analyze such data in
order to extract meaningful biological knowledge [3].
Most of the studies on transcriptome are limited to
static expression analysis, where a value is a snapshot
of the expression of genes in different samples at a
particular time point. There are also studies which
measure the transcription values of a sample multiple
times over a period of time [17]. We call such datasets
as time series gene expression data. Studying of time
series data is extremely important since it has great
potential to reveal the process through which cells react
to transcriptional variations, external stimulants (such
as drugs), or major disorders (such as cancer) over a
period of time.

One major hurdle in studying time series expression
data arises from inherent characteristics of cells. The
genes of different samples (eg., different individuals)
often vary in their rates at which they react to tran-
scriptional alterations. For instance, the same gene
from a young and old individual may have different
reaction rate. Also different samples may possess
varying genetic or epigenetic mutations or may be
subject to external stimulants (such as drugs) or they
may be at different stages of a disease. As a result
of such variation, the specific time points in time series
expression of a sample may not match to the same time
point in the time series expression of another sample.
Thus, finding which time point in a time series sample
correspond to which time point(s) in a given set of
time series sample is essential in studying such data.
As expression levels can be measured across time in
different organisms including humans, it is useful to
compare the expression changes across different time
points between two or more time series data. Since the
common biological processes may function at varying
rates in different individuals or organisms, methods are
required that will allow to map the expression states
between different time series. Such analyses reveal

978-1-943436-11-8 / copyright ISCA, BICOB 2018 
March 19-21, 2018, Las Vegas, Nevada, USA

190



temporal features of gene expression changes, such as
acceleration or delay in transcription values. This
temporal change in gene expression values play a vital
role in the biology of an organism since the information
from a gene is used in the synthesis of proteins. One
such example is inter-species time series expression data
comparison [5]. In this work, the authors compared the
similarities between temporal expression data between
two species (Saccharomyces cerevisiae, Schizosaccha-
romyces pombe) that are separated by more than 400
million years of evolution by means of global alignment.

There are several methods that employed the concept
of dynamic time warping (DTW) to address temporal
alignment problems. DTW is a type of time series
alignment algorithm for measuring similarity between
two time series data that may vary in speed. DTW
was originally developed to address speech recognition
problems [13, 14]. Aach and Church [2] introduced the
concept of DTW for gene expression data. This has
been further developed by other groups [15, 10, 16].
Although there is a substantial amount of research on
DTW, to the best of our knowledge they are limited
to comparing only two time series [12]. ‘Continuous
Profile Model’ [9] was primarily developed for speech
waveform time series data where frequent sampling of
data is a reasonable approach. Here, smoothness in
time is necessary for the ‘continuous’ CPM alignment
which is not feasible for real time gene expression
data. Therefore, it is not appropriate to apply CPM
alignment to the breast cancer dataset considered here.

In this paper, we develop a method to tackle the
problem of alignment of multiple time series expres-
sion data using the DTW approach. Our method
adopts the progressive alignment strategies used for
aligning multiple nucleotide or amino acid sequences
[18, 11, 7] to DTW of multiple transcription data. We
define a score-based progressive alignment algorithm by
means of dynamic programming technique on successive
branches of a guide tree. Guide tree decides the
order of alignment in the progressive multiple alignment
heuristic. It finds the optimal alignment between a
pair of one or more than one time series with respect
to a given scoring function. This study addresses two
major challenges that are inherent characteristics of
time series data:

• Often time series data are sampled at non-uniform
time intervals. The time points observed in one
time series may not correspond to measured time
points in another time series.
• The time series may be of variable size. One time

series data may contain fewer observations than
another.

We organize the rest of the paper as follows. We
present our algorithm in Section 2. We discuss our

experimental results in Section 3 and conclude in
Section 4.

2 Methodology

We develop an algorithm to align multiple gene
expression time-series data. By alignment of gene-
expression data, we mean a mapping from time coor-
dinates in each series to those of the remaining ones
such that the expression values at those time points
are similar. In this section, we present a detailed
description of our method. We present the basic
notation we use in this paper in Section 2.1. We then
describe two distance measures. Section 2.2 discusses
how we measure the distance while allowing flexibility
to the amount of time in order to capture the best
possible mapping or alignment between a pair of time-
series data. We then elaborate on each step of our
method, which works for multiple time-series data, in
detail in Section 2.3.

2.1 Notation

We start by describing the notation that will be
used in the rest of this paper. Let us assume that
a given temporal dataset contains m samples, where
each sample is the expression level of a given gene of a
patient measured over a period of time. We denote the
samples in the given dataset with S1, S2,· · · , Sm. Let us
denote the number of time points at which transcription
of the given gene is measured for the ith sample with
ni. We represent each sample Si using a vector as
Si = [vi,1, vi,2,· · · , vi,ni

], where each entry vi,j shows
the transcription level of the gene under consideration
belonging to the ith sample observed at the jth time
point.

2.2 Measuring distance between time
series data

Consider two time series samples Si and Sj . Also,
consider the following two assumptions: (i) Si and Sj
have the same number of measurements (i.e., ni =
nj), and (ii) for all time points k, where 1 ≤ k ≤ ni,
the measurement taken at the kth time point of Si
(vi,k) corresponds to that of Sj (vj,k). Under these
two assumptions, the distance between Si and Sj
is often computed as a simple vector norm of the
difference Si − Sj . First and second vector norms
are among the most commonly used distance measure
in the literature. These norms are also known as
the Manhattan and the Euclidean distances, and are

computed as
∑
k |vi,k − vj,k| and

√∑
k (vi,k − vj,k)

2
,

respectively.

Although the vector norms discussed above are used
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(a) Aligned dynamic states (b) Stretched dynamic states

Figure 1: An illustration of time-warping of two hypothetical samples, Si and Sj . Each circle (square) represents a time point. The

time points of Si are labeled with values from vi,1 to vi,6. The time points of Sj is labeled with values from vj,1 to vj,5. In left figure 1a

the two solid line curves show the actual patterns of the two dynamic states. Dashed lines show the time-warping alignment of the two

dynamic states. The right figure 1b shows the time points that are aligned with multiple time points from the other states are duplicated

and stretched to match them along the time axis.

commonly for different time series datasets, they cannot
easily be used for gene expression time series data.
This is because the two underlying assumptions leading
to these norms do not hold when applied to gene
expression sequences for several reasons. First, the
transcription measurements of different samples can
be taken at different number of time points (i.e., it
is possible to have ni 6= nj). Second and more im-
portantly even when ni = nj , two samples can exhibit
longitudinal variance. In other words, the kth time
point of Si does not necessarily represent the same
state of Sj at the kth time point as the same gene
in two different samples can have different response
time to transcriptional regulation. Such variation in
response time happens for many reasons. Gene copy
number variations and epigenetic mutations are only
two examples to those reasons. Regardless of the
biological reason, the net outcome observed is that in
such scenarios, the transcriptional values of two samples
can have similar values but the time it takes to reach
this value may differ. We say that such times series
expression values are stretched along the time axis.

Time-warping distance takes into account temporal
distortions. Briefly, time-warping distance aligns two
given temporal vectors in order to find a mapping
between their time points. It does this by stretching
them to bring their similar values close to each other.
Figure 1 shows the alignment of two hypothetical
time series data using time-warping distance. In this
example, the time series on the top contains values for
six time points labeled from vi,1 to vi,6. The other
time series has values for five time points labeled from

vj,1 to vj,5. In Figure 1a, the dashed lines between
two time points, one from each time series, show the
aligned time points. Notice that one time point of
one series can align with multiple time points of the
other. We say that the measurements at such time
points are stretched along the time axis. We represent
this process by making multiple copies of such values
consecutively. Figure 1b shows how the two time series
data are stretched along the time dimension to match
their time points. For instance, in Figure 1a, vi,2 is
aligned with both vj,2 and vj,3. We reflect this in
Figure 1b by making two copies of vi,2. Notice that,
after stretching the two sequences, they both have the
same number of time points. Once the two dynamic
states are aligned, this measure computes the distance
as the Manhattan distance between the two stretched
time series data. As we stretch the time series, the
number of time points grow. To accomodate for this
change, we normalize the distance between two time
series data by dividing their Manhattan distance with
the number of time points in the stretched time axis.

There are two major challenges in computing time
warping distance is to determine which time points
will be stretched and by how much. We address these
challenges by using dynamic programming technique
to align two given time series data as follows. Let us
denote the distance between the first k values of Si and
the first r values of Sj with γ(Si, k, Sj , r). We compute
this function as follows:

γ(Si, k, Sj , r) = |vi,k−vj,r|+min{γ(Si, k−1, Sj , r−1),

γ(Si, k − 1, Sj , r), γ(Si, k, Sj , r − 1)} (1)
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The min function consists of the following three scenar-
ios:

• The first scenario arises when the first k− 1 values
of Si are aligned to the first r − 1 values of Sj .
• The second scenario corresponds to the case that

the first k− 1 values of Si are aligned to the first r
values of Sj . In other words, Sj is stretched along
the time axis.
• The third scenario occurs when the first k values of
Si are aligned to the first r − 1 values of Sj . That
is, Sj is contracted along the time axis.

Let k ∈ [1 : k], which denotes the first k values of Si and
r = 1, which denotes the first value of Sj . Then there
is only one possible warping path between Si(1 : k) and
Sj(1 : 1) having a total distance as

γ(Si, k, Sj , 1) =

k∑

n=1

|vi,n − vj,1|

This determines the stopping criteria in order to min-
imize an expected cost. Similarly, we compute the
optimal distance between Si when k = 1 and Sj when
r ∈ [1 : r], which represents the first r values of Sj as

γ(Si, 1, Sj , r) =

r∑

n=1

|vi,1 − vj,n|

2.3 Algorithm

In this section, we present our method in detail. Our
method takes a set of m vectors, where each vector
Si represents a sample having transcription values for
ni time points as input. It works in three steps as
follows: (i) Generation of initial distance matrix D.
(ii) Construction of guide tree T . (iii) Construction
of alignment matrix A

2.3.1 Generating initial distance matrix

Given a set of m vectors, we construct an m×m matrix
called the distance matrix and denote it with D. This
is an upper triangular matrix. For all 1 ≤ i < j ≤ m,
D[i, j] is equal to the time warping distance between Si
and Sj . We do not need to store the diagonal of the
matrix as the distance between a time series with itself
is always zero. Also we do not store its lower triangular
part as the time warping distance is commutative (i.e.,
D[i, j] = D[j, i],∀i 6= j). Figure 2a shows a hypothetical
distance matrix D5 consisting of five time series S1, S2,
S3, S4 and S5. Each cell within the matrix consists
of a pairwise time warping distance between two time
series. For example, the time warping distance between
two time series S1 and S3 is represented as d13.

2.3.2 Constructing guide tree

Once we generate the initial distance matrix D, we
construct a tree called the guide tree using D. Guide

(a) Initial distance matrix
consisting of five time series
S1, S2, S3, S4 and S5.

(b) Guide Tree

Figure 2: A hypothetical initial distance matrix and guide tree.

tree is a rooted and bifurcating tree (i.e., each internal
node has two child nodes). It determines the ordering
at which we align the time series samples. More
specifically, guide tree aims to order the alignment of
the entire dataset of m time series in a way such that
the closely related series are aligned before the relatively
distant ones. Figure 2b illustrates a hypothetical guide
tree, where each leaf node represents a unique time
series sample. Therefore, S1, S2, S3, S4 and S5 are
the time series represented by the leaf nodes in Figure
2b. Next we discuss in detail how we generate this guide
tree.

We build guide tree in an iterative manner with the
help of the distance matrix D. Each iteration contains
two steps:

(1) We pick the pair of samples (Si, Sj) with the
least pairwise distance. This corresponds to the
entry D[i, j] in D with the smallest value among
all i < j. If there are multiple such sample pairs
with the same value, we pick one arbitrarily. We
then construct an internal node of the guide tree
which takes Si and Sj as two children.

(2) We remove Si and Sj from the sample set and
replace them with the new hypothetical sample
corresponding to their alignment. We explain how
we align them in Section 2.3.3. This reduces the
number of samples by one. We update the distance
matrix accordingly by computing the distance
between the new sample and all the remaining
samples.

At the end of each iteration we construct one internal
node of the guide tree. More specifically, the new inter-
nal node is connected to the two nodes corresponding to
the two time series Si and Sj selected at that step. The
new internal node denotes the new hypothetical time
series generated at that iteration from Si and Sj . We
repeat this process until we have only one time series
left. The final (hypothetical) time series denotes the
root of the guide tree.

2.3.3 Building alignment matrix

Once we complete the construction of the guide tree, we
are ready to align all the time series expression data.
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We do this iteratively. Let us denote the given set of m
time series data with S = {S1, S2, · · · , Sm}. Recall that
each leaf level node of the guide tree contains a time
series data from the set S. Briefly, at each iteration, we
pick an internal node of the guide tree such that both
children of that node contains a time series expression
data or an alignment of a set of time series data. We
then align the two time series data corresponding to
it’s children using dynamic time warping and place the
resulting alignment at that internal node. Thus at the
end of each iteration, we populate one internal node of
the guide tree with the alignment of all the time series
data located at the leaf nodes of the clade rooted at that
internal node. We repeat this process until we reach the
root node of the guide tree. The alignment contained
at the root node is the multiple alignment of the entire
time series dataset.

Notice that, the internal node selected at each it-
eration falls into one of the three possible scenarios
depending on it’s two children.

• Both children nodes contain single time series data.
This happens when both children are leaf nodes.
• One child node contains a time series data and the

other contains an alignment of a set of time series.
This happens when one child is a leaf node and the
other is an internal node.
• Both children nodes contain the alignment of a

set of time series data. This happens when both
children are internal nodes.

Of the above three scenarios, the first one is straight-
forward. We use the dynamic programming method
described in Section 2.2 to align the given pair of time
series data. The challenge lies in the remaining two
cases, where, at least one of the two children is the
alignment of a set of time series. Notice that the second
case is special form of the third one since a time series
can be considered as a set containing only one series.
In the following, we explain how we address the third
case.

Our solution follows from the observation that each
internal node represent a set of time series that are
already aligned. It preserves this alignment while
aligning that set with another. Consider an internal
node Ti of the guide tree T . Let us denote the set of
time series contained in the clade rooted at Ti with

Si = {Sπ1
, Sπ2

, · · · , Sπi
},∀Si ⊆ S

and π1, π2, · · · , πi ∈ {1, 2, · · · ,m}. For instance, for
the guide tree in Figure 2b, the set of time series for
the internal node c is Sc = {S1, S2, S3}. Recall that
the time warping distance potentially stretches the time
series in set Si while aligning them. We denote the
alignment of the time series in Si with matrix Ai as

Ai =




vπ1,σ1,1
vπ1,σ1,2

· · · vπ1,σ1,p

vπ2,σ2,1 vπ2,σ2,2 · · · , vπ2,σ2,p

...
...

. . .
...

vπi,σi,1 vπi,σi,2 · · · vπi,σi,p




Each row in this notation denotes a time series in Si
after it is aligned with the rest of the time series in
that set. For instance, the first row denotes Sπ1 , the
second one denotes Sπ2 , and so on. The subscript
σi,k is a monotonically non-decreasing value with k
(∀k, σi,k ≤ σi,k + 1). It refers to the index of a par-
ticular value within the time series Sπi

after stretching
it. For simplicity, we will refer to each entry vπi,σi,k

in
the matrix Ai as vr,s, where r denotes the time series
index and s denotes the position index within a time
series after stretching it. We denote the entry in the
rth row and sth column of Ai as Ai[r][s] = vr,s. For
instance, in Figure 2b, we express the alignment of the
time series in Sc = {S1, S2, S3}, rooted at the internal
node c with the matrix Ac as

Ac =



v1,1 v1,2 · · · v1,p
v2,1 v2,2 · · · v2,p
v3,1 v3,2 · · · v3,p




Notice that Ai is the partial alignment of all the time
series in set Si.

Let us consider another subset of j time series Sj ,
where Sj ⊆ Sm \ Si. Let Aj be the alignment matrix of
the times series in Sj . Next, we explain how we align
the two sets Si and Sj .

When we align two internal nodes i and j in the guide
tree, it means we are trying to align a partial alignment
Ai with that of Aj . The following equation calculates
the distance between first q values of Ai with that of
first r values of Aj by means of dynamic programming
technique as

γ(Ai, q,Aj , r) =

|Si|∑

x=1

|Sj |∑

y=1

|vπx,q − vπy,r|

+min{γ(Ai, q − 1,Aj , r − 1), γ(Ai, q − 1,Aj , r),
γ(Ai, q,Aj , r − 1)} (2)

In matrix notation, we rewrite the above equation as

γ(Ai, q,Aj , r) =

|Si|∑

x=1

|Sj |∑

y=1

|Ai[x][q]−Aj [y][r]|

+min{γ(Ai, q − 1,Aj , r − 1), γ(Ai, q − 1,Aj , r),
γ(Ai, q,Aj , r − 1)} (3)

Notice that this equation follows from Equation 1.
The main difference is that the first term considers all
combination of sequence pairs instead of one pair. The
following equation shows the stopping condition, which
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aligns q values for each time series of Ai with one value
for each time series of Aj .

γ(Ai, q,Aj , 1) =

q∑

n=1

(

|Si|∑

x=1

|Sj |∑

y=1

|Ai[x][n]−Aj [y][1]|) (4)

Computation of final alignment score. Let Am
be the final alignment matrix for the given set of m
time series data, S = {S1, S2, · · · , Sm}. As discussed
above, each row inAm represents a time series stretched
to align with the other time series in the dataset S,
therefore, a total of m rows. Let, the stretched version
of S has a total of p columns. Am is shown below. Each
element vi,j represents the transcription value of the ith
row and jth column.

Am =




v1,1 v1,2 · · · v1,p
v2,1 v2,2 · · · , v2,p

...
...

. . .
...

vm,1 vm,2 · · · vm,p




The final alignment score of Am is calculated as the
total of the sum of the pairwise distance between all
possible pairs per column, for all columns, divided by
the number of columns. The formulation of alignment
score is as below:

SPdist = 1/p(

p∑

z=1

m∑

x,y=1
x<y

|v[x][z] − v[y][z]|) (5)

Here after, we refer to the final alignment score as SP
(sum of pairwise) distance.

3 Experimental Results
In this section, we extensively evaluate the perfor-

mance of our method on a real breast cancer dataset.
We measure the performance in terms of both quan-
titative and qualitative analysis. In the following, we
describe in detail about the dataset and the analysis on
experiments. We have tested our method on simulated
datasets as well described in [1].

3.1 Experimental Setup

We use the breast cancer dataset (DataSet Record:
GDS4088) from Gene Expression Omnibus (GEO)
dataset [6]. This dataset provides transcription values
of breast tumor samples preserved using two different
RNA stabilization methods. Time series of eleven
breast cancer samples subjected to different cold
ischemic stress of up to 3 hour post tumor excision is
reported in this dataset. The dataset contains tumor
tissue samples that are collected from 11 previously
untreated breast cancer patients at surgery and
divided into 8 portions. For our analysis, we consider

the dataset on RNAlater stabilization method which
provides values for 6 time points (baseline, 20, 40,
60, 120 and 180 minutes) accross 11 patients. This
dataset contains the time series gene expression values
for 21,775 genes. Many genes have multiple time series
data arising from multiple probes in the dataset. After
filtering of the duplicate genes we have 13,630 unique
genes in the dataset. In order to select genes relevant
to breast cancer, we referred to 12 datasets on breast
cancer for Homo sapiens from Molecular Signatures
Database (MSigDB) [8]. We took union of all the
genes from these 12 datasets to form a larger dataset of
1,842 genes. We intersect this dataset with the 13,630
unique genes in our breast cancer dataset leading to
1,412 genes. This filtering enables us to select the most
relevant genes in this scenario. We organize each gene
in a dataset as a matrix where each row represents a
sample of a particular patient and each column denotes
a time point in increasing order. Each value in this
matrix is the gene expression value at a certain time
point for that sample.

3.2 Quantitative analysis

In order to quantitatively analyze our method, we
first pre-process the data where we select a subset of
relevant genes from the entire set of more than 13,500
genes originally produced in this dataset. We employ
two mechanisms: statistical pre-processing and domain-
specific (biological) pre-processing for this purpose.
Statistical pre-processing filters the genes whose expres-
sions do not change significantly over time. This is
because, alignment of the transcription of such genes is
trivial as all values are almost identical. Furthermore,
we conjecture that such genes are less likely to be
associated with the disease progression as their values
remain unchanged over time. To do this, we calculate
the coefficient of variation of the gene expression values
of each gene per patient across 6 given time points.
The coefficient of variation cv for a set of observations
is defined as standard deviation σ of the observations
divided by their mean µ. We calculate coefficient
of variation for each gene per patient as cv = σ/µ.
The coefficient of variation gives a measure of the
spread of expression values that describes the amount of
variability relative to the mean. We get a total 11 such
values of cv per gene, one for each of 11 patients. Next,
we calculate the average of cv of each gene for all the 11
patients to get a single value for each gene. We perform
this operation for all the genes in the dataset and rank
the entire gene list in descending order of this measure.
We set a cut-off value at 0.25. We select all the genes
having coefficient of variation above this cut-off. This
results in 681 genes.

For biological pre-processing, we collect 12 gene sets
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Figure 3: Comparison of sum of pairwise distance (SP distance)

between no time warping (along x-axis) and our method (with

time warping, along y-axis) on the 1,412 biologically significant

genes. Our method always yields a lower SP distance compared

to no time warping.

related to breast cancer from CGP (chemical and ge-
netic perturbations), C2(curated gene sets) of MSigDB
(Molecular Signatures Database) [8]. There are in total
1,842 unique genes in this dataset. An intersection of
this set of genes extracted from MsigDB with that of
the entire time-series dataset of more than 13,500 genes
resulted in a filtered dataset of 1,412 genes. Whereas,
an intersection of the same set of 1,842 breast cancer
related genes with that of the 681 genes extracted by
means of statistical pre-processing (explained before)
resulted in 39 genes.

In this manner, we build an initial subset of 2,054
relevant genes (681 statistical significant genes + 1,412
biologically significant genes - 39 common genes). Fig-
ure 3 shows a scatter plot where each dot represents a
gene from the biologically significant geneset of 1,412
genes. We plot along x-axis and y-axis, the SP distance
distance without and with time-warping, respectively.
It is seen from the figure that our method with time-
warping always yield a lower SP distance. Among the
biologically significant genes, we observe a significant
reduction of 40% to 20% on SP distance after time-
warping. Figure 4 shows SP distance of the top 20 genes
with highest SP gain among all statistically significant
genes. Per gene, it shows SP distance with and without
time warping. Here too our method dramatically
reduces the SP distance cost over the alignment without
time warping. Our algorithm reduces the SP distance
by a maximum of 46%.

3.3 Qualitative results

Pairwise gene correlation: Correlation can be viewed
as the relationship between transcription levels of gene
pairs across different samples. Thus high correlation
is observed when time points of different samples are
aligned correctly. We perform this experiment in order

Figure 4: Sum of pairwise distance (Genes retrieved from

statistical pre-processing).

Figure 5: Pairwise gene correlation for 39 genes (statistical

intersect biological geneset).

to test the improvement of gene pairs in terms of
correlation. The improvement in pairwise correlation
is measured in terms of SP distance before and after
warping. This experiment is performed on the geneset
of 39 genes that are present in both the statistical
and biological geneset. For each pair of genes, we
calculate the correlation between the two matrices, one
for each gene. As mentioned earlier in Section 3.1
(Real Dataset), a matrix for a gene represents 11 time
series data (for 11 patients) across 6 time points. We
first compute the Pearson’s correlation on the raw data
before we apply the dynamic time warping algorithm.
Next, we calculate the pairwise correlation again on the
stretched version of data after we apply our algorithm.
Figure 5 shows a scatter-plot of the gene correlation
values before and after stretching. Along the x-axis
we plot the correlation before stretching. Along the
y-axis we plot that after stretching. We consider a
correlation value between two genes gi and gj , to be
significant if the absolute value of their correlation is
at least 0.4. Our results demonstrate that all the
gene pairs (except for one) have a low correlation value
before stretching (within ±0.4). However, after aligning
them using our method, the stretched time series of
a substantial number of genes yield high correlation
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Table 1: The four gene pairs (highlighted in Figure 5 by red

dots), having highest absolute correlation value after warp is

shown in this table. Each row represents a gene pair information

(column A) with correlation without warping (column B), with

warping (column C) and shortest path length (column D) in the

biological network, retrieved from STRING database.

A B C D
{DZIP1, IGF2BP3} 0.26 0.65 2

{PELO, TAPT1} 0.08 0.63 3
{ITGB1, STK3} 0.29 0.62 2
{DST, MYO1B} -0.01 -0.60 3

values. Of all the gene pairs, the four gene pairs
that have correlation ≥ 0.6 and correlation ≤ −0.6
are highlighted with red dots in Figure 5. Table 3.3
shows the correlation before time warping and after
time warping for each of these four pairs. It can be seen
that there is a substantial improvement of correlation
after applying our algorithm. In order to determine
the biological significance of these pairs, we calculate
the shortest path length between the two genes in each
pair in the human network extracted from STRING
database [4]. Table 3.3 shows shortest path length for
each gene pair calculated on human network extracted
from STRING. The minimum and maximum shortest
path length is 2 and 3, respectively. The conjecture
is that the less the shortest path distance, the more
the biological significance in terms of carrying out a
common biological process or molecular function. This
signifies that with so less shortest path length, the gene
pairs carry out common biological functions.

4 Conclusion

In this paper, we developed a method to align
multiple time series gene expression data by using
dynamic-time warping approach. Our algorithm first
generates an initial distance matrix by calculating
pairwise time warping distance between all possible
combinations of time series data. It then constructs
a guide tree that determines the ordering at which we
should align the time series samples, in an iterative
manner. The guide tree tends to align the time series
pairs with minimum time warping distance first. Next,
we build alignment matrix in an iterative manner to
align all time series data in an order as determined
in the previous step. At a particular iteration of
alignment, we align a time series or a group of time
series with an already aligned group of time series while
preserving all their initial alignments. The alignment is
independent of the length of different time series under
consideration. Our results on real dataset show that
pairwise gene correlation of biologically related genes
improve significantly after our method.

References

[1] Technical report: Identifying temporal variation of tran-
scription in populations. https://www.cise.ufl.edu/

~sarkar/MultipleTimeSeriesAlignment_TR.pdf.

[2] John Aach and George M Church. Aligning gene expression
time series with time warping algorithms. Bioinformatics,
17(6):495–508, 2001.

[3] Riccardo Bellazzi and Blaž Zupan. Towards knowledge-
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Abstract 

Leishmaniasis is a virulent parasitic infection that causes a 

significant threat to human health worldwide. The existing 

drugs are becoming less effective due to the ability of 

Leishmania spp. to alter its metabolism to adapt to harsh 

environments. Understanding how this parasite manipulates its 

metabolism inside the host (e.g. sandfly and human) might 

underpin new ways to prevent the disease and develop 

effective treatment strategies. 

Despite significant advances in omics technologies, 

biochemistry of parasites still lacks the understanding of 

molecular components that determine the metabolic behavior 

under varying conditions. Metabolic network modeling might 

be of interest to identify physiologically relevant nodes in a 

metabolic network.  

The present work proposes a metabolic model iSK570 (an 

extension of the iAC560 model) with additional reactions for 

the metabolism of lipids, long chain fatty acids and 

carbohydrates to study the metabolic behavior of this parasite. 

Gene Inactivity Moderated by Metabolism and Expression 

(GIMME) algorithm was used to verify the consistency 

between model flux predictions and gene expression data. 

Improved flux distributions were obtained, allowing a more 

accurate understanding of stage-specific metabolism in of 

promastigotes and amastigotes.  

1. Introduction 
Protozoan parasites from the genus Leishmania belong to the 

family Trypanosomatidae, and cause a spectrum of human 

diseases affecting around 12 million people worldwide 

(www.who.int). Existing treatment therapies involving drugs 

such as e.g. sodium stibogluconate and meglumine 

antimoniate, amphotericin B and miltefosine are limited by 

various features, including in some cases host toxicity and 

lack of efficacy [1,2]. Considering endemic severity of the 

disease, there is an urgent need for understanding Leishmania 

metabolism which can subsequently help in developing novel 

anti-leishmanial therapies.  

Significant alterations have been observed in the metabolism 

exhibited by Leishmania at different stages of its life cycle, 

where it faces different nutritional environments [3]. For 

example, the promastigote form (inside sandfly) of 

Leishmania preferably uses glucose and L-proline via 

glycolysis pathways and TCA cycle; while amastigote uses 

glucosamine (GlcN) and its derivative N-acetylglucosamine 

(GlcNAc)along with some lipids and amino acids [4,5]. 

Availability of various sugars, such as hexoses (e.g. glucose, 

mannose, and galactose) and amino sugars (e.g. GlcN and 

GlcNAc) are determining factors for parasitic metabolic 

phenotype, especially for synthesizing essential glycans and 

glycoconjugates [6].  

Unfortunately, no previous studies have explained the 

metabolic basis leading to the biosynthesis of glycans and 

glycoconjugates in the presence of different environments. In 

fact, it is still unknown if observed metabolic changes are 

resulting from, or arising out of the different parasitic stages. 

For example, under promastigote stage, only a few enzymes 

from the TCA cycle are active, while in amastigote stage, 

glycolytic enzymes are less functional. 

Metabolic network modeling is an effective and sophisticated 

approach for systematically study the metabolic behaviour of 

an organism, as well as to understand the relationship between 

its genotype and phenotype. Previously, these methods have 

been used to understand the cellular metabolism as well as to 

identify essential genes in many medically important 

organisms, such as Mycobacterium tuberculosis [7], 

Acinetobacter baumanii [8], Francisella tularensis [9] 

including human parasites like Leishmania major [10] and 

Plasmodium falciparum [11]; though with the low prediction 

accuracy. One of the most probable and obvious reasons for 

the low prediction accuracy might be associated with the lack 

of use of experimental data (e.g. transcriptomics, proteomics, 

and metabolomics etc.) to constrain the model and 

unavailability of the suitable strategies to use omics data in the 

metabolic network analyses.  

Integrating omics data with metabolic network analysis can 

improve our understanding on various aspects, such as 

metabolic alterations associated with the environmental 

conditions, essential genes and metabolic flux variability of 

the essential reactions [12]. The relevant data can be 

integrated into the metabolic model to provide an extra layer 

of metabolic flux constraints to improve its overall prediction 

efficiency. Various methods like GIMME [13], iMAT [14], 

MADE [15], E-Flux [15] and PROM [16] have been made 

available for the integration of transcriptomics and genomics, 

fluxomics [17], and metabolomics [18] data into metabolic 

models. Successful examples include the integration of 

RNAseq data into the Leishmania infantum model [19],  

proteomics data into a metabolic model of Enterococcus 

faecalis [20], and multi-omics data into metabolic models of 

Escherichia coli [21] to understand the metabolism and 

associated phenotypes. The strategy has also improved drug 

target predictions in many medically important organisms 

such as Aspergillus fumigatus [22], Plasmodium falciparum 

[23] and L. major [24]. 

In spite of the availability of abundant omics data and various 

methodologies, only a few studies have employed these 

strategies to understand the metabolism of Leishmania 

[10,19,25]. Here, we applied omics data with metabolic 

modeling approaches to understand the metabolic profile of L. 
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major under different environmental conditions. The 

workflow mainly includes the integration of gene expression 

data from promastigote and amastigote stages into our 

metabolic model using Gene Inactivity Moderated by 

Metabolism and Expression (GIMME) method [13].  

2. Methodology 

2.1. Model extension and refinement  

The existing metabolic model iAC560 [10] was extended to 

include sugar nucleotides biosynthetic pathways, which 

reactions and enzyme-coding genes were collected from 

databases like KEGG [26] and LeishCyc [27]. As some of the 

reaction steps were not associated with a specific gene, 

homology search tools like BLAST [1], were applied to find 

the highest scoring gene sequences (% identity ≥ 40%, 

alignment length ≥ 70% and E-value 1.0e
-30

), as described in 

[19] and associate those to the corresponding reactions. 

Additionally, based on experimental evidence, several 

metabolic reactions were altered in terms of reversibility 

and/or compartments, while new transport reactions for sugar 

nucleotides, lipids, and fatty acids were also included. Refer to 

Supplementary material S1 for added, deleted or altered 

reactions. 

 

2.2. Biomass composition 
 

The macromolecular composition of L. major cells was also 

corrected. Protein, DNA and RNA contents were estimated 

from L. donovani studies [19], while carbohydrates, lipids, and 

polyamine contents were calculated using experimental data 

from protozoan Tetrahymena [28,29] and L. mexicana [30]. 

Individual carbohydrates, such as mannan, lipophosphoglycan 

(LPG), glycoinositol phospholipid (GIPL), and N-glycans, 

were estimated as follows: mannan contents were assumed to 

represent 80% and 90 % of all carbohydrates in promastigote 

and amastigote stage, respectively [30], while LPG, GIPL, and 

N-glycans would represent 20% and 10% in total, 

respectively. The relative mass fractions (w/w) of LPG, GIPL, 

and N-glycans were estimated based on previous studies [31–

34]. Further details on biomass calculations can be found in 

Supplementary material S2. 

 

2.3. In-silico media formulation 

2.3.1. Modified Media for Promastigote (MMP)  

MMP was formulated for L. major growth under promastigote 

stage, which includes 16 nutrient sources: L-arginine, L-

cysteine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-

methionine, L-phenylalanine, L-threonine, L-tyrosine, L-

valine, hypoxanthine, phosphate, oxygen, proline, and 

glucose. The nutrients, in particular, glucose and proline were 

considered based on the previous studies [35,36], explaining 

that both the compounds are major carbon source for 

Leishmania promastigote, while remaining ones were included 

considering the experimental studies [37,38] and 

computational predictions in [10], which concluded that 

Leishmania can grow in these nutrients. 

 

2.3.2. Modified Media for Amastigote (MMA)  

MMA includes all 16 nutrients from MMP with additional 

amino sugars, amino acids, lipids and fatty acids, making a 

total of 21 nutrients. GlcN and GlcNAc sugars were added 

considering findings from Naderer et al. (2010) studies [4] that 

showed the degradation of glycosaminoglycans inside 

macrophages to provide GlcN and GlcNAc as carbon sources 

during the amastigote stage. Fatty acids like stearyl acid and 

lipids, e.g. phosphatidylethanolamine were also considered, 

based on different studies that show that Leishmania utilizes 

lipids from host cells and transports them into the cytosol 

[39,40]. The consumption of the lipids and fatty acids during 

amastigote stages were also supported by other experimental 

studies discussing the possibility of growth of Leishmania 

axenic amastigote in lipid and fatty acid-rich medium [41–43]. 

The amino acids aspartate and alanine were also added to 

MMA, based on higher consumption measurements of these 

amino acids as carbon sources by amastigotes [44]. 

 

2.4. Reaction flux constraints in FBA-based 
simulations 

 

Model simulations under amastigote and promastigote stages 

were estimated using different reaction constraints. For 

example, the uptake flux for proline was reduced by 90% in 

amastigote compared to promastigote simulations, based on 

the previous study showing a decrease in the consumption of 

this particular amino acid in L. mexicana amastigotes [35]. 

Also, glucose uptake flux was constrained to 90% less than 

that in the promastigote stage, considering previous findings 

[45,46], which concluded that parasitophorous vacuole is a 

compartment poor in glucose. Furthermore, the oxygen uptake 

in amastigote stage was significantly reduced as compared to 

that in the promastigote stage, considering the fact that 

Leishmania-infected macrophage is an oxygen-deficient entity 

[47,48]. The upper and lower limits for uptake fluxes for all 

other nutrients were set unconstrained (See Supplementary 

material S2). 

 

2.5. Metabolic network analysis 
 

The gene expression data (FPKM
1
 values) of 10275 genes 

from Leishmania spp. [49] was integrated with the extended 

metabolic model (termed as iSK570) by applying GIMME 

approach. OptFlux modules [50] were used to run GIMME 

algorithm and to perform FBA-based analyses under different 

environmental conditions.  

Briefly, GIMME implementation considers genes (and 

associated reactions) with an expression level below the 

threshold as inactive, and thus removes those from the 

simulation. The algorithm may reconsider few of these 

                                                           
1
 FPKM (Fragments Per Kilobase Million) is method for estimating relative 

abundance of transcripts in terms of fragments observed in RNA-Seq 
experiment. 
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inactive reactions, especially the essential ones and so-called 

metabolically important reactions (MIRs), back in the 

simulation to achieve an optimal solution. The remaining 

reactions are blocked and termed as metabolically unwanted 

reactions (MURs) in that particular metabolic state. 

Inconsistencies between the metabolic model and gene 

expression data are estimated based on MIRs that are re-

inserted in the model; however, GIMME solves a linear 

programming (LP) on reconsidered reactions to minimize this 

inconsistency. As such, inconsistency scores (IS) are 

calculated and associated with each metabolic reaction. 

Accordingly, metabolic reactions can be categorized as 

follow:  

 

 

Figure 1: A) Workflow for integrating gene expression data 

into the metabolic. B) An exemplifying scheme for calculating 

inconsistency score (IS) using gene expression and flux 

values. 

 

(1) inactive (expression levels below the threshold and 

metabolic flux
2
 equal to zero); 

(2) potentially inactive (expression levels below the 

threshold and metabolic flux
2
 is non-zero);  

(3) potentially active (expression levels above the 

threshold and metabolic flux
2
 equal to zero); 

(4) active (expression levels above the threshold and 

metabolic flux
2
 is non-zero). 

Different threshold values were tested, and inconsistency 

scores (IS) were recalculated as described in [13] (Figure 1). 

Furthermore, flux spans
3
 based on Flux Variability Analysis 

(FVA) and PFBA flux distributions were compared. The 

predicted changes in metabolic operability of reactions after 

GIMME implementation were also compared with proteomic 

data from Pawar et al. (2014) [51]. 

 

3. Results and Discussion 
 

3.1. Consistency between metabolic model 
iSK570 and gene expression data in 
promastigote conditions 

 

Based on different tests, where the gene expression threshold 

values were changed, it was observed that IS values increase 

with the threshold values (Figure 2A), particularly above 

threshold values of 11 (Figure 2B). Below this threshold, IS 

values are close to zero, indicating that there are only a few 

inconsistencies between predicted fluxes and gene expression 

levels associated to the corresponding reactions. As such, 

while increasing the threshold value more reactions with 

predicted fluxes different from zero, but with low expression 

levels, i.e. reactions that should be active, are included, which 

increases the level of inconsistency between expression data 

and flux predictions. Although the number of potentially 

inactive reactions, i.e. reactions with expression levels below 

the threshold and predicted zero flux, increases with the 

threshold value, agreeing with metabolic predictions; the fact 

is that increasing the threshold value tends to exclude 

reactions that should be active as predicted by FBA-based 

simulations.  

 

                                                           
2
 Metabolic flux was calculated by performing GIMME which uses  

Parsimonious Flux Balance Analysis (PFBA) to run simulations. 
3
 Flux span refers to the difference between maximum and minimum flux 

values that a reaction can carry according to FVA analysis. 
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Figure 2: Evaluating inconsistencies between iSK570 model 

predictions and gene expression data from L. major 

promastigote cells. A) Inconsistency scores (IS) were 

calculated for different expression threshold values, while 

estimating the number of reactions with gene expression levels 

below a threshold value and predicted flux values equal and 

different from zero. B) Zoom in of plot A for lower threshold 

values, showing the variation in the inconsistency score and 

the number of reactions with gene expression below threshold 

flux values different and equal to zero. 

As shown in Figure 2A, the number of potentially inactive 

reactions (i.e. with gene expression less than the threshold and 

predicted flux equal to zero) increases to a maximum of 400 at 

the highest expression threshold value (368). In general, 

GIMME considers these reactions as MURs (or metabolically 

unwanted reactions) and, ultimately they do not have an 

impact on the flux distribution. Similarly, potentially active 

reactions (i.e. with gene expression less than threshold and 

flux equal to zero) can be associated with MIRs and GIMME 

might need to reconsider some of these reactions during the 

simulation process. These are almost 250 at a maximum 

threshold value of 368. Although the number of MIRs are 

lower than the number of MURs at a particular threshold 

value, these contribute far more to increase IS values. 

Therefore a threshold value should be carefully selected. In 

the following analysis, a threshold value of 12 (equivalent IS = 

5.9×10
2
) was chosen to perform GIMME simulations, which 

predicted 30 genes (out of 570) with expression levels below 

the threshold value, corresponding to 23 reactions from which 

16 were considered MURs and 7 MIRs. 

 

3.2. FVA and PFBA analyses  
 

FVA analyses were performed based on GIMME results using 

a threshold value of 12. Briefly, the idea was to evaluate 

changes in metabolic predictions imposed by GIMME 

constraints (especially blocked reactions or MURs) and 

estimate the impact in the predicted metabolic flexibility under 

the defined conditions. Therefore, FVA analyses with and 

without GIMME constraints were compared. Reactions were 

categorized as such: type1, minimum and maximum FVA 

fluxes equal to zero; type2, minimum and maximum FVA 

fluxes different from zero (either positive or negative); and 

type3, minimum and maximum FVA fluxes equal to upper 

and lower bounds of reactions (Table 1). 

Results show that the number of reactions type3 decreased, 

while reactions type1 and type2 increased, which suggests that 

GIMME-based constraints reduced metabolic flexibility 

associated with large FVA spans as defined by FVA fluxes of 

type 3 reactions. Also, reactions type 1 with FVA spans of 

zero (i.e. blocked reactions) contribute to decrease this 

metabolic flexibility, as the number of possible alternatives for 

carbon distribution within the network also decreases. 

Minimum and maximum flux values from FVA analyses with 

and without GIMME constraints for each reaction are 

presented in Supplementary material S1. 

 

Table 1: Number of reactions classified as type1, type2 and 

type3 from FVA results considering simulations with and 

without GIMME-based constraints (i.e. deleting MURs).  

Reaction 

Category 

Minimum (min) and 

maximum (max) 

FVA values 

Number of reactions 

  Without 

GIMME-

based 

constraints 

With 

GIMME-

based 

constraints 

type1 min = 0 and 

max = 0 

472 493 

type2 min/max< 0  

or min/max > 0 

239 256 

type3 min =lower bound and 

max=upper bound 

466 428 

 

Additionally, PFBA and GIMME flux distributions were 

compared. In general, flux distributions did not change 

significantly, most likely because of small differences in the 

number of active and non-active reactions (Figure 3A); 

however, few reactions changed their flux values from zero to 

non-zero and vice-versa. The reactions with these binary 

changes are mostly transport reactions, but reactions 

associated with metabolic pathways like “Glycerolipid 

metabolism” (30.3 %) and “Pyrimidine metabolism” (9.09%) 

(Figure 3B) were also found. Changes in flux operability of 

these reactions can be supported by proteomic data for L. 

major from Pawar et al., 2014 [51], which showed that genes 

associated with eight reactions (out of ten) that changed their 

fluxes from zero to non-zero, are expressed at the protein level 

(Table 2). This indicates that GIMME-based flux analyses 

improve model predictions. 
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Table 2: List of reactions which showed binary changes (zero 

to non-zero) in their fluxes after GIMME implementation 

(threshold value of 12), and which associated enzymes have 

positive expression at protein level. 

Reaction ID 

 
PFBA flux value Associated 

genes  
Protein 

expression 

[51] 
 Without 

GIMME 
With 

GIMME  
  

R_AGPATi_L

M  

0 4.80 LmjF32.1960 yes 

R_CDPDSPm_
LM  

0 3.26 LmjF14.1200 yes 

R_GPAM_LM  0 4.80 LmjF34.1090 yes 

R_HEXg  0 99.30 (LmjF21.0250 

or 
LmjF36.2320) 

or 

LmjF21.0240) 

yes 

R_ME1x  0 162.49 LmjF24.0770 yes 

R_PAPAm_LM  0 1.04 (LmjF18.0440 

or 

LmjF19.1350) 

yes 

R_PNS1  0 10000 LmjF29.2800 yes 

R_UPPRTr  0 -10000 LmjF34.1040 yes 

 

 
 

  

Figure 3: A) Changes in the number of reactions with 

predicted flux = 0 or ≠ 0 after GIMME implementation. B) 

Percentage cellular distribution of the reactions which showed 

binary changes in their fluxes after GIMME. 

4. Conclusion 

 
The work described the application of GIMME algorithm in 

combination with flux-based analysis to integrate gene 

expression data into genome-scale models to determine 

consistency between data and metabolic model iSK570. The 

strategy has been used to put an extra layer of stoichiometric 

constraints on reactions to predict more accurate fluxes across 

various pathways of L. major. The predicted 

activation/inactivation of the metabolic reactions in a 

particular environment was supported by expression of the 

associated enzymes at the protein level. Improved flux 

distribution further used to describe stage-specific metabolism 

and drug target predictions in Leishmania (not described here 

due to page limitations). All supplementary data mentioned in 

this manuscript can be provided on demand. 
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Abstract 

 

 

Despite progressive development in technologies for breast 

cancer treatment, many challenging issues still persist. 

Among these challenges, relapse of breast cancer cells was 

found to be most critical aspect. These cells have tumor-

initiating and metastatic potential. The combination of 

ALDH+ and CD44+/CD24- is widely recognized as 

potential biomarker for the identification and 

characterization of breast cancer stem cells. In recent 

studies, it has been reported that ALDH+ breast cancer 

cells are 100 fold more tumorigenic that ALDH- cells. 

High level of tumorigenicity has been observed in breast 

cancer cells exhibiting positive expression of CD44 and 

negative expression of CD24. CD44 expression is 

significantly correlated with Estrogen Receptor-negative 

(ER-) breast cancer cells. The association between ALDH+ 

or CD44+/CD24- with Estrogen Receptor-positive (ER+) 

breast cancer cells in terms of gene expression still remains 

unresolved. In the present study, the up- and down-

regulation of gene expression have been studied  that 

strongly correlate with ALDH+ or CD44+/CD24- 

expression in ER- and ER+ breast cancer cells by using 

next-generation sequencing method. For the effective 

breast cancer therapy, this novel strategy of targeting 

significant genes can be used as biomarkers to reduce 

breast cancer stem cells growth that is likely to suppress 

breast cancer relapse. 

 

Keywords:  Cancer relapse, Breast cancer stem cells, 

Biomarkers, Estrogen receptor, Next Generation 

Sequencing. 

 

1. Introduction 

Breast cancer is found to be leading cause of deaths 

specifically in women, adversely affecting survival rates. 

According to World Health Organization (WHO) it has 

been estimated that breast cancer is the most frequently 

observed and affects millions all over the world. 

GLOBOCAN 2012 report has stated that breast cancer 

ranks second after lung cancer, accounting 15.4% deaths in 

developed and 14.3% deaths of all cancers in developing 

countries [1-3]. Despite tremendous progressive 

development of techniques for reducing death rates caused 

by breast cancer, there are many unresolved problems. The 

most critical aspect of breast cancer treatment is the 

recurrence of cancer cells that leads to metastasis [3]. A 

small subset of breast cancer cell population has self-

renewal and differentiation potential, termed as breast 

cancer stem cells or breast tumour-initiating cells. These 

cells cause tumour initiation, tumour propagation and 

metastasis [4, 5]. Early diagnosis of breast cancer needs 

targeting of breast cancer stem cells. According to Kai et 

al., targeting of breast cancer stem cells by combining 

histone deacetylase and salinomycin can be used for 

effective inhibition of tumour growth [6-7]. Such targeting 

can be possible with the development of biomarkers to 

identify and characterize breast cancer stem cells. Selective 

and specific inhibition of cancer stem cells can be possible 

by using molecular markers [8]. Among different 

biomarkers, combination of Aldehyde dehydrogenases 

(ALDHs) or CD44 and CD24 are known to be potential 

markers to diagnose breast cancer stem cells growth. This 

combination of markers can be used as a prognostic marker 

for detecting breast cancer recurrence [9]. ALDHs 

represent a class of nicotinamide-adenine dinucleotide 

phosphate-positive (NAD(P)+)-dependent enzymes. These 

are involved in catalyzing oxidation of endogenous 

including (amino acids, lipids and vitamins) exogenous 

(drugs and ethanol) aldehyde substrates to their 

corresponding carboxylic acids. In breast cancer, ALDH 

acts as a significant predictor of tumour progression by 

regulating breast cancer stem cells growth [10, 11]. ALDH 

strongly affects growth of breast cancer stem cells in 

multiple ways such as gene expression, protein translation 
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and signalling pathways [12]. Functionally, ALDHs are 

involved in modulation of retinoic acid signalling pathway 

to enhance differentiation of breast cancer stem cells, 

reduction of reactive oxygen species to protect breast 

cancer stem cells under oxidative stress, chemotherapy 

resistance to cause breast cancer relapse [13]. ALDHs 

affect ER negative breast cancer cell lines. 

Breast cancer stem cells expressing CD44+/CD24- 

phenotypes have been used as another potential marker. 

Sheridan et al., reported that breast cancer stem cells 

exhibit CD44+/CD24- phenotypes are highly invasive and 

facilitate metastasis detection. CD44 is a transmembrane 

glycoprotein, encoded by CD44 gene on chromosome 11 in 

humans [14]. It acts as a receptor for hyaluronan or 

hyaluronic acid. CD44 constitutes major component of 

extracellular matrix and mediates cell-cell and cell-matrix 

interaction in metastatic growth of breast cancer stem cells. 

It has been identified as a cancer stem cell marker [15]. 

CD24 gene on chromosome 6 encodes CD24 which is a 

small cell surface protein attached to glycosyl-

phosphatidyl-inositol. It was obtained in mice as heat 

stable antigen. CD24 exhibits variety of physiological 

functions due to high glycosylation activity and plays 

important role in cell-cell and cell-matrix interactions [16]. 

Breast cancer can be classified as Estrogen receptor-

positive (ER+) and Estrogen receptor-negative (ER-) 

cancer types. ER+ tumours of breast cancer possess high 

gene expression of luminal cells and also known as luminal 

group. It has been estimated that 75% breast cancers are 

ER+ type. Besides, ER- cells express low level of Estrogen 

receptor accounting nearly 30% of breast cancer. Due to 

low expression level of Estrogen receptor, breast cancer 

stem cells exhibit high level of drug resistance that 

ultimately results in high rate of breast cancer relapse in 

ER- cells [17]. Breast cancer cell line i.e., BT-474 has been 

identified as ER- whereas MDA-MB-231 has shown 

positive expression for Estrogen receptor [18]. 

In the present study, gene expression pattern has been 

observed in ER- and ER+ breast cancer in context of 

ALDH+/CD44+/CD24- biomarkers in order to predict 

significant genes as well as their up- and down-regulation 

in breast cancer stem cells. Genes of breast cancer stem 

cells were identified from the population of breast cancer 

cell line by using retrieved data of ALDH+/CD44+/CD24- 

markers through mapping and alignment methods of Next 

Generation Sequencing approach. Based on gene finding, 

network models have been designed to obtain association 

of significant genes with signalling pathways. 

 

2. Material and methods 

2.1. Data retrieval 

Three Sequence Read Archive (SRA) data were 

downloaded from National Centre for Biotechnology 

Information (NCBI). First data was associated with 

transcriptional characterization of different states of cancer 

stem cells in triple negative breast cancer using 

ALDH+/CD44+/CD24- markers. Second and third data 

containing regulatory analysis of nuclear receptor 

signalling in MDA-MB-231 and BT474 breast cancer cell 

lines were downloaded. Figure 1 represents the overview 

of proposed methodology. 

 

Figure 1: Overview of proposed methodology 

Figure 2 depicts the basic steps of proposed methodology. 

This figure elaborates filtering and mapping tools used in 

the present study. 

 

Figure 2: Basic steps of proposed methodology 
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2.2. Conversion of SRA data into FASTQ 

The file format of downloaded .sra files were converted 

into .fastq format using sratoolkit 2.8. A series of 

independent data dump utilities constitute SRA Toolkit for 

the conversion of file formats. SRA Toolkit works on 

compression by reference using aligned data. This tool 

stores differences in base pairs between sequence data and 

the segment it aligns on. 

2.3. Quality Control analysis  

The quality checking of raw SRA data of three samples 

were carried out using NGSQC Toolkit 2.3.3. The filtered 

data for three samples were obtained through quality 

checking. The NGSQC Toolkit is based on Perl script 

supported by both Windows and Linux. It provides 

packages for quality check of sequencing data, trimming of 

raw data and statistics of quality scores. 

2.4. Reference genome retrieval 

The reference genome was searched using ensemble 

database. If the reference genome was available, then the 

filtered data were used as input for indexing using Bowtie 

indexer. 

2.5. Gene expression analysis with TopHat and 

Cufflinks 

The gene expression analysis of three retrieved data were 

taken as input for generating index by using Bowtie with 

DNA sequence in Fasta format. By using TopHat, the 

alignment of RNA sequence reads to the reference genome 

was carried out. The specificity of TopHat lies in mapping 

splice junctions. The transcriptomic assembly from 

downloaded RNA sequence data was performed with 

cufflinks. The input file in BAM (Binary equivalent SAM 

file) format was used to generate assembled isoforms in 

.gtf format. Cuffmerge module was used to merge 

transcript assemblies of three retrieved data. Using 

Cuffdiff, the expression of significant genes were 

determined. 

2.6. Network modelling for predicted genes 

Based on predicted genes, the network modelling was 

carried out using Cytoscape. The network models were 

prepared to find the connectivity of genes with signalling 

pathways. 

3. Results and Discussion 

The significant genes were predicted on the basis of P-

value and fold change. The values of P-value and fold 

change depict up-regulation and down-regulation of genes 

shown in Table 1 and Table 2. On the basis of fold change 

of +2 and P-value of 0.05, the up-regulated genes were 

predicted whereas down-regulated genes were obtained 

using fold change of -2 and P-value of 0.05. 

Table 1: List of significant genes with their P-value and 

fold change of ER- cancer cell line of MDA-MB-231 

S.No. Gene name Log2Fold 

Change 

P-value 

1. PKMP1 10.88 8.10E-06 

2. RP11-500G10.5 9.47 6.37E-05 

3.  AL359878.1 9.36 1.64E-05 

4. ANKRD1 9.23 1.59E-05 

5. TMPRSS12 9.63 8.90E-06 

6.  ATP5C1P1 14.4 4.68E-06 

7. RP11-64K12.10 8.92 4.16E-05 

8. CORO2B 10.71 3.77E-05 

9. CTB-134H23.2 9.94 2.30E-06 

10. CTC-786C10.1 9.29 1.06E-05 

11. RP11-416I2.1 8.31 7.15E-05 

12. CTD-2231E14.6 9.36 6.99E-06 

13. CTD-2291D10.1 9.02 5.59E-05 

14. CTC-471F3.5 9.93 1.58E-05 

15. AC080125.1 9.10 7.32E-05 

16. ADAMTS6 10.0 8.07E-05 

17. CTC-329D1.2 9.57 6.80E-05 

18. DUSP4 10.1 5.24E-05 

19. RP11-187C18.3 10.8 4.54E-05 

20. RP11-436G20.1 10.8 4.23E-05 

21. RP11-111F5.2 9.91 5.49E-06 

22. AL772307.1 9.94 4.38E-06 

23. RNU6ATAC 9.72 4.19E-06 

24. RNA5-8SP6 12.4 1.37E-05 

25. RP4-561L24.3 12.0 5.06E-08 

26. PRELP -8.77 2.56E-05 

 

Among twenty five upregulated significant genes shown in 

Table 1, genes such as ANKRD1, TMPRSS12, CORO2B, 

ADAMTS6 and DUSP4 were observed to be upregulated 

and significantly involved in tumorigenesis. In recent 

studies of Xie et al., ADAMTS6 belongs to a family of A 

Disintegrin And Metalloproteinase with ThromboSpondin 

motifs. The dysregulation of ADAMT6 results in the tumor 

development. The high expression level of ADAMT6 has 

shown favourable prognosis in breast cancer patients [20]. 

206



The up-regulation of ADAMTS6 has been observed in ER- 

breast cancer cell line. Another gene was found to be up-

regulated i.e., TMPRSS12, a transmembrane protease 

serine 12 protein coding gene possesses endopeptidase 

activity. ANKRD1gene encodes Ankyrin repeat domain 1 

protein. Its expression level is stimulated by the 

overexpression of p53 and Rac1. Research studies of Kojic 

et al. [21]  reported the peculiar role of ANKRD1 gene as a 

transcriptional co-activator regulating p53 activity .The 

functional involvement of  ANKRD1 has been observed in 

monitoring YAP (Yes associated protein). The YAP 

protein plays key role in tumorigenesis by enhancing self-

renewal property and migration of cancer stem cells [22]. 

In this study, ANKRD1 seems to be involved in ER- breast 

cancer. Functionally, CORO2B gene encoding actin 

binding protein i.e, Coronin like protein 2B and mainly 

contributes in reorganization of actin structure. Previous 

studies of Toro et al., analyzed the expression of CORO2B 

in ER+ tumour in context of obesity as one of the risk 

factor causing breast cancer in postmenopausal women 

[23]. Its high expression level has been observed in the 

present work. The Dual specificity phosphatase 4 (DUSP4) 

gene has significant effect in modulating tumor initiation, 

mammosphere formation and expression level of 

CD44
+
/CD24

- 
markers. It has been reported as negative 

regulator of MAPK signalling pathway [24]. As shown in 

Figure 3, the DUSP4 is directly involved in the modulation 

of MAPK pathway.  

 

Figure 3: Network model of predicted genes of ER-

negative cell line. Physical interactions (pink lines), 

Predicted genes (Orange), genetic interactions (green), 

Pathways (cyan). 

The proline/arginine rich repeat protein (PRELP) encoded 

by PRELP gene, expressed in cartilage and bone matrices. 

It inhibits osteoclastogenesis by reducing NF-κB activity. 

It represses the growth of breast tumour in causing 

metastasis through the interaction with microenvironment 

[25].  The down-regulation of PRELP was observed which 

needs to be up-regulated for inhibiting breast cancer 

metastasis.The predicted significant genes in ER+ breast 

cancer line show different forms of miRNAs, C6orf48 and 

CD83 as shown in Table 2.   

Table 2: List of significant genes based on P-value and fold 

change of ER+ cancer cell line of BT474. 

S.N

o. 

Gene name Log2Fold 

Change 

P-value 

1. MIR17 

MIR17HG 

MIR18A 

MIR19A 

MIR19B1 

MIR20A 

MIR92A1 
 

10.29 2.03E-06 

2. AC016739.2 10.81 4.52E-06 

3. RNA5SP149 12.79 4.56E-06 

4. C6orf48 13.12 1.81E-07 

5. Metazoa_SR

P 

8.94 1.23E-05 

6. RNA5-8SP6 10.93 1.50E-07 

7. CD83 -8.33 1.49E-05 

 

Previous studies of Yang et al. [26], revealed the critical 

role of up-regulated miR-17 in breast tumour progression. 

The microRNAs are small 20-25 nucleotides and acting as 

negative regulators of oncogenes. These promote breast 

carcinogenesis by modulating multiple processes including 

cellular proliferation, differentiation and metastasis. The 

finding of present work validates the involvement of 

miRNA-17 in breast cancer progression. It has been 

reported that miRNA-18A is closely associated with Dicer 

dysregulation by suppressing its expression and enhancing 

Paclitaxel resistance [27]. The high expression level of 

miRNA-18A has shown its role in breast cancer stem cells 

in causing drug resistance. The down-regulation of 

miRNA-20A was observed in breast cancer previously [28] 

but its up-regulation has been analysed in the present work. 

CD83 is primarily used as a marker for mature dendritic 

cells (DC) and also expressed by activated B and T cells. 

The expression on DC and T cells is essentially important 

in modulating immune response [29]. Based on studies of 

Poindexter et al. [30] the low expression level of CD83 
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was observed in tumour containing sentinel lymph nodes 

of breast cancer patients. CD83 was found to be down-

regulated in breast cancer in this work. Based on prediction 

of significant genes of ER+ breast cancer cell line using 

combination of ALDH+/CD44+/CD24- markers, network 

model was generated to find the connectivity of signalling 

pathway with predicted genes. Figure 4 shows the network 

model of ER+ breast cancer cell line. 

 

Figure 4: Network model of predicted genes of ER+ breast 

cancer cell line. 

In this model (Figure 4), the NF-κB pathway is associated 

with predicted significant genes in ER+ cell line of BT474. 

4. Conclusion 

In order to reduce breast cancer recurrence, the targeting of 

genes in the small sub-population of cancer stem cells can 

be considered as important therapeutic strategy. The 

present work identifies significant genes such as 

ANKRD1, TMPRSS12, CORO2B, ADAMTS6 and 

DUSP4 in ER- whereas genes including C6orf48 and 

CD83 and miRNAs in ER+ breast cancer cell line. These 

significant genes can be used as potent biomarkers for the 

identification and characterization of breast cancer stem 

cells for reducing many obstacles of successful cancer 

therapy such as tumorigenesis, drug resistance and 

metastasis. The targeting of signalling pathways of breast 

cancer stem cells such as MAPK and NF-κB and finding 

their association with predicted genes can be further 

exploited for the effective treatment of breast cancer. 
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Abstract 

Malaria, a major deadly disease which is still a threat to 

human life’s even though numerous efforts has been put to 

fight it, still affects over two hundred million people each 

year amongst which over a million individuals dies. 

Twitter happens to be an important and comprehensive 

source of information that is quite subjective to individual 

sentiments towards public health care. In this study, we 

extracted tweets from the social network twitter, we pre-

processed the tweets extracted and built a model to fit our 

data using a machine learning approach for text 

classification to determine the contextual polarity of every 

tweet on the subject of malaria in the bid to harvest 

peoples’ opinion towards malaria and understand how well 

research and recent development in the aid to tackle 

malaria has affected the opinions of the public towards the 

subject malaria. This study finds that tweets extracted, pre-

processed and classified in this study were majorly 

classified as negative (-ve) due to the fact that tweets 

tweeted were majorly about different occurrence of death, 

misinformation and need for donations to save a life, hence 

a major awareness is needed. 

Keywords: Sentiment Analysis, Machine Learning 

Technique, Malaria, Twitter, Data Mining. 

1. Introduction 

The dominance of malaria resistance to all identified anti-

malarial drugs in current circulation has given rise to the 

increase of anti-malarial drug discovery research [1]–[3]. 

Hence, research towards the development of novel drug 

which would serve as effective solutions for malaria 

treatment are urgently needed [2]–[5] because despite the 

colossal efforts put in to fight malaria, the disease still 

affects up to over 200 million people every year amongst 

which close to half a million dies [1], [5]–[9]. Considering 

the declaration “Action and Investment to defeat Malaria 

2016–2030 (AIM) – for a malaria-free world” [10], we 

have decided to examine public opinion towards the 

subject malaria. Opinions are central to almost all human 

activities because they are key influencers of our 

behaviours. As humans we love to find out what the public 

feels or think about a particular brand, topic or subject area 

this does not leave out finding out what people think about 

a particular disease and how research and recent 

developments are affecting the public opinion. With the 

proliferation of Web to applications such as micro-

blogging, forums and social networks, reviews, comments, 

recommendations, ratings and feedbacks have been made 

very easy as users can generate content about virtually 

anything.Twitter, which is a micro blogging platform 

permits the fast exchange of personal ideas and thoughts, 

therefore allowing users to tweet messages of about 140 

characters [11]–[13]. With the explosion of this user 

generated content, came the need for companies, service 

providers, social psychologists, analysts and researchers to 

mine and analyze these contents for different relevant uses, 

this is quite significant bearing in mind that tweets are 

often treated as facts and are cited in information outlets 

for example news media [14]. The research community 

and organizations are not left out in the need to find out 

how their research and recent developments are affecting 

the public opinion towards their discoveries and novel 

implementations in a particular subject area, hence, the 

reason for sentiment analysis. In this study, we have 

decided to examine if the ground-breaking research and 

recent developments on the subject malaria have really 

affected people’s opinion and awareness on the subject 

malaria. 

1.1 Natural Language Processing 
Natural languages are those languages spoken or written by 

humans for the purposes of communication. Natural 

Language processing (NLP) can be defined as “a 

theoretically motivated range of computational techniques 

for analysing and representing naturally occurring texts at 

one or more levels, for the purpose of achieving human-

like language processing of tasks and applications”[15], 

[16]. The field of NLP involves making computers to 

perform useful tasks with the natural languages for human 

use. The input and output of an NLP system can be either 

Speech or Written Text. Below are the different stages in 

natural language processing. 
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Phonology: This deals with organizing sound 

systematically. Phonetics and phonology deal with the 

articulatory and acoustic properties of speech sounds, how 

they are produced, and how they are perceived, and the 

rules that govern them [17], [18]. 

Lexical Analysis:identifying and analysing the structure of 

words. Lexicon of a language means the collection of 

words and phrases in a language [19], [20]. 

Morphological Analysis:Thisrefers to the study of 

construction of words from primitive meaningful units. 

Since the meaning of each morphemes are the same across 

words human can break down an unknown word into 

constituent’s morphemes in order to understand its 

meaning [21], [22].  

Syntactic Analysis: This involves determining the 

structural role of words in the sentence and in phrases. The 

words are transformed into structures that show how the 

words are related to each other. This requires the grammar 

and the parser. The output of this level of processing is a 

representation of the sentence that reveals the structural 

dependencies and relationships between the words [17], 

[18], [22]. 

Semantic Analysis:It is concerned with the meaning of 

words and how to combine words into meaningful phrases 

and sentences. It assigns meanings to natural language 

utterances. A semantic representation must be precise and 

unambiguous. It draws the exact meaning or the dictionary 

meaning from the text. The text is checked for 

meaningfulness. It is done by mapping syntactic structures 

and objects in the task domain [15], [20], [22]. 

Discourse Analysis: It deals with how the immediately 

preceding sentence can affect the interpretation of the next 

sentence. For example the word “it” in the sentence “she 

wanted it” depends upon the prior discourse context. The 

meaning of any sentence depends upon the meaning of the 

sentence just before it. In addition, it also brings about the 

meaning of immediately succeeding sentences [15], [17], 

[20], [21]. 

1.2 Text Mining 

Text mining, also known as Intelligent Text Analysis or 

Knowledge-Discovery in Text (KDT), refers generally to 

the process of extracting interesting and non-trivial 

information and knowledge from unstructured text [23]–

[26]. Text mining is now widely being applied to many 

domains, some of its application areas include: Sentiment 

analysis, Educational application, Security applications, 

biomedical applications, Digital humanities and 

Computational sociology etc. 

1.3 Sentiment Analysis 

Sentiment analysis gives room of harvesting opinions from 

reviews or expression of different users on a particular 

subject matter or product. This groups opinions into either 

negative, positive or neutral helping to determine the 

attitude or opinion of a particular writer or speaker with 

respect to certain topics [27]–[29].Sentiment Analysis is 

considered a classification process. 3 major classification 

levels makes up sentiment analysis which are the Sentence-

level whose its objective is classifying sentiment expressed 

in subjective sentences as either negative or positive 

sentiments, the Document-Level whose its objective is 

classifying sentiment of the whole document as expressing 

as either negative or positive sentiments and the Aspect 

Level whose its objective is classifying sentiment with 

respect to the specific aspects of entities [30]–[35]. 

1.3.1 Applications of Sentiment Analysis 

Sentiment analysis has been applied to various real world 

scenarios and a few has been considered in this study. 

Reputation Monitoring: sentiment analysis has been 

applied to monitor the reputation of different brands on 

Facebook and twitter as they are the core of sentiment 

analysis in this domain [36] 

Product and Service Reviews: sentiment analysis has been 

applied to the reviews of consumer products and services 

using websites that provide automated summaries of 

reviews about products and about their specific aspects 

[27], [37] 

Result Prediction: sentiment analysis has been applied to 

predict the probable outcome of a particular event [38]. For 

instance, sentiment analysis can provide substantial value 

to candidates running for various positions enabling 

campaign track how voters feel about different issues and 

how they relate to the speeches and actions of the 

candidates [38] 

Decision Making: sentiment analysis has been applied to 

help decision making process [39]. There are numerous 

news items, articles, blogs, and tweets about each public 

company. A sentiment analysis system can use these 

various sources, articles that discuss the companies and 

aggregate the sentiment about them as a single score that 

can be used by an automated trading system [29], [39] 

1.3.2 Sentiment Classification 

The major aim of sentiment classification is classifying 

documents or reviews into a definite number of predefined 

categories. The expressions of opinions in a sentence, 

document etc. could either be done using a scaling system 

or binaries (negative and positive).  

Feature Selection in Sentiment Classification: Feature 

selection gives a better understanding of data by giving 
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their important features. Feature selection is an important 

step in text categorization problems; not all the features in 

a document are required to classify it. Feature selection 

helps in removing unimportant or redundant words of text 

and thereby reduces the dimensionality of documents [29], 

[40]. 

1.3.3 Sentiment Classification Techniques 

It can be roughly divided into machine learning approach 

and lexicon based approach, the lexical based approach 

relies on a sentiment lexicon, a collection of known and 

precompiled sentiment terms.  

Lexicon-based approach: Opinion words are employed in 

many sentiment classification tasks. Positive opinion 

words are used to express some desired states, while 

negative opinion words are used to express some undesired 

states. There are also opinion phrases and idioms which 

together are called opinion lexicon [35], [38], [41], [42].  

Machine learning (ML) Approach: Machine learning 

techniques first trains the algorithm with a training data set 

before applying it to the actual data set [43]. The text 

classification methods using machine learning approach 

can be roughly divided into supervised and unsupervised 

learning methods [43], [44]. 

2. Materials and Method 

2.1 Phases of the Methodology 

Represented in table 1 are the method and techniques used 

in different phases of this study. 

Table 1: Method and techniques used in different phases 

2.2 Design Considerations for the Sentiment 

Analysis Model 

The approach for the development of our sentiment 

analysis model which involves tweets preprocessing, 

feature extraction, Machine learning text clustering and 

classification techniques is being described. 

Tweets used were obtained through the Twitter streaming 

API using python. These sets of tweets serve as the input 

data for our model. These tweets were preprocessed by 

removing stop words and harsh tags. Thereafter, 

lemmatization, POS tagging, were performed to enable the 

efficient extraction of features for the classification of 

sentiments of the tweets. After these tweets have been 

preprocessed, feature vectors were extracted and these 

vectors were analyzed using machine learning algorithms 

of clustering and classification techniques, the algorithms 

to be used include Naïve Bayes and Support vector 

Machine algorithms. 

2.3 System Architecture  

This shows the formal description and representation in a 

way that supports reasoning about the structure and 

behaviour of the system. It comprises of the individual 

components and the way they work together to implement 

the sentiment analysis model. Figure 1 shows the System 

architecture and its various components. 

                                                    

 

 

 

 

 

 

 

Figure 1: The system architecture of our study 
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2.4 Framework of the Sentiment Analysis 

Model 

Here the different stages involved in the development of 

this study sentiment analysis model are comprehensively 

outlined. It explains the process and components for 

analysis, design and implementation of the model. Figure 2 

shows the entire life cycle of this model which is in 4 

major phases namely Tweet Pre-processing, Feature 

Extraction, Semantic Analysis, and Machine learning 

Classification. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Framework of the Sentiment Analysis Model 

2.4.1 Tweets Preprocessing 

This is the first stage of the development process.  Natural 

language text can’t be processed directly; it must be pre-

processed first in order to obtain accurate results at the end 

of this project. In light of that, the Pre-processing phase 

includes Tokenization, Language detection, Stop words 

removal. These processes would be explicitly explained 

below with corresponding examples. 

Tokenization: We tokenized the text to make it easy to 

separate out other unnecessary symbols and punctuations, 

and leave out only those words that can add value to the 

sentimental polarity score of the text. For a sample input 

text says "Tunde said the food he bought is bad". 

Tokenizing divides the strings into lists of substrings 

known as the tokens. 

Language detection: This enables only the detection of 

tweets in English since we are mainly interested in English 

text only. This is possible by using NLTK's language 

detection feature. 

Stop words Removal: In this process, we removed very 

common words such as “all", “almost", “alone", etc. The 

reason for this is because their appearance in a tweet does 

not provide any useful information in classifying a tweet as 

positive, negative or neutral. 

2.4.2 Part of speech (POS) tagging 

POS tagging assigns a tag to each word in a text and 

classifies a word to a specific morphological category such 

as noun, verb, adjective, etc. POS taggers are efficient for 

explicit feature extraction in terms of accuracy. 

2.4.3 Feature Extraction 

The improved dataset after pre-processing has a lot of 

distinctive properties. The feature extraction method, 

extracts the adjective from the dataset. Later this adjective 

would be used to show the positive and negative polarity in 

a sentence which is useful for determining the opinion of 

individuals. This would be done using a Unigram model. 

Unigram model extracts the adjective and segregates it. It 

discards the preceding and successive word occurring with 

the adjective in the sentences. For above example, i.e. 

“painting ugly” through unigram model, only ugly is 

extracted from the sentence. 

2.4.4 Tweets Classification and Identification 

of Sentiment Polarity 

When using a machine learning approach, the ways 

features are selected are very important to the success rate 

of the classification. In this study, we used 2 major 

machine learning algorithms which are Support Vector 

Machine (SVM) Algorithm and Naïve Bayes (NB) 

Algorithm. SVM & NB algorithms are trained using the 

features generated which results into the training model. 

3. Results 

3.1 Tweets Collection 

Twitter Application Programming Interface (API) which 

was implemented in python language was used to collect 

English-language tweets relating to malaria over a period 

of several weeks. The corpus consists of thousands of 

tweets from search tags like ‘malaria’, ‘malaria Africa’, 

‘malaria Mozambique’, ‘malaria Nigeria’, etc. This task 

was performed by different experts.  

Table 2: Sample of tweets collected 

Sample of tweets collected Sample of tweets collected 

@Y1079FM 

@iambrownberry 

@deejayLoft 

@LukmanEvergreenHelo 

brown berry u make my 

sunday morning amazing 

wooow.cant s\xe2\x80\xa6 

https://t.co/o2x1DPUT7z 

Currently sat under my 

@SandeshRishi 

@altnews_in @mepratap 

@timesofindia You are so 

right, the girl died because 

of Malaria !\xe2\x80\xa6 

https://t.co/CibEtxBtk7 

Do you know that hunger 

kills more people annually 

than AIDS, malaria and 

Identified 

Sentiment 

Polarity 
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mosquito. net listening to 

TMS in Nigeria suffering 

with malaria! #bbccricket 

#TMS 

RT @fulelo: Extreme 

gardening to help tackle 

malaria 

https://t.co/ojaXL51W6J 

RT @Beanchesterr: Latest 

research has it that bank 

alerts can cure malaria. 

Extreme gardening to help 

tackle malaria 

https://t.co/ojaXL51W6J 

@GRadioRockstar Lmao 

and the you read through 

and find out "Big Daddy 

Juix was exposed to 

malaria" damn headlines 

tuberculosis 

combined?\xe2\x80\xa6 

https://t.co/51bh4ItiiD 

Is there a way to threat 

Malaria without taking pills 

or injections??? 

RT @scienmag: Chances of 

surviving malaria may be 

higher when host consumes 

fewer calories 

https://t.co/NCF8WH7JFP 

https://t.co/AAxOaotUz3 

@Blackkout__ I got very 

sick at they little age...  I 

was down with malaria 3+. 

I was very OK but the 

stress was too much. And 

it's not like I did any 

tedious work. Just moving 

about caused malaria. 

RT @ISGLOBALorg: 

Beatriz Galatas 

@beagalatas: Working on 

#malaria elimination in 

#Mozambique 

https://t.co/esVX5jrSmX 

@Manhica_CISM 

@FundlaC\xe2\x80\xa6 

After taking malaria meds i 

always think to myself 

"dont go to sleep, dont go 

to sleep..." 

https://t.co/egUI8rPWWe 

RT @PaulUithol: Second 

day of @sotmafrica! 

Kicking off with  

Before he was diagnose of 

malaria in during the week 

and couldn't make it by 

weekend.So sad. I wish the 

Olajide's fortitude to bear 

the loss 

RT @PreventionTips: 

Malaria, Mosquitoes and 

Man: Prevention &amp; 

Control 

https://t.co/9Ingffq6xk 

https://t.co/eMEM1cxZCP 

Expert wants increased 

awareness on malaria to 

save more\xc2\xa0lives 

https://t.co/0jl4tNTWsv 

https://t.co/iWnEODQh8y 

Don't forget to take your 

#Malaria pill! 

 

3.2 Linguistic analysis 

The tweets are pre-processed removing stop words, hash 

tags, duplications and languages that are not known to be 

English language hereby leaving us with the tweets needed 

for feature extraction. Below is a sample of the pre-

processed tweets. 

Table 3: Pre-processed tweets 

Pre-processed tweets Pre-processed tweets 

extreme gardening to help 

tackle malaria 

latest research has it that 

bank alerts can cure 

Before he was diagnose of 

malaria in during the week 

and couldn't make it by 

weekend.so sad. i wish the 

malaria 

after taking malaria meds i 

always think to myself dont 

go to sleep, dont go to sleep 

researchers find that simple 

blood test predicts anemia 

risk after malaria treatment 

My barber's friend died last 

Friday fine boy, waiting for 

nysc. everything smooth he 

died of malaria 

olajide's fortitude to bear 

the loss 

wants increased awareness 

on malaria to save more 

2tweetaboutit Africa is the 

epicentre of malaria. soon 

there will be an malaria 

epidemic in Europe 

 

a human trial for a malaria 

vaccine has achieved up to 

100% protection against 

infection for at least 10 

weeks 

mapbox using mapping and 

visualizations to fight 

malaria 

is there a way to threat 

malaria without taking pills 

or injections ?? 

chances of surviving 

malaria may be higher 

when host consumes fewer 

calories 

baygon is almost 2k which 

is hilarious bc it's 

technically cheaper for me 

to get malaria and treat it. 

world's first malaria 

vaccine will be given to 

thousands of babies in 

Africa 

Heavy rainfall + poor 

drainage = mosquitoes 

having the time of their life 

spreading malaria. 

indigenous knowledge 

systems and innovations in 

malaria control in Nigeria 

No wonder Nigeria is still 

fighting malaria. 

everywhere waterlogged as 

fuck 

Mosquitoes in Nigeria will 

give you malaria. 

Mosquitoes in Philippines 

will give you dengue fever, 

which is very deadly. 

malaria control in African 

schools dramatically cuts 

infection and reduces risk 

of anaemia 

u.s. malaria donations 

saved almost 2m African 

children 

i got very sick at they little 

age..i was down with 

malaria 

you can help us save lives 

by giving the gift of malaria 

treatment, which quickly 

restores 

antimalarials of unproven 

quality rampant in africa - 

sub-saharanafrica 

king mswati ii of Swaziland 

calls for increased domestic 

investments to eliminate 

malaria in Africa 

did you know: in Nigeria it 

is cheaper to get malaria 

and treat it than to buy 

insecticide 

touching needs donations to 

save children in Nigeria 

from malaria-please donate 

3.3 Feature Extraction 
Below is an improved dataset after extracting the adjective 

from the pre-processed dataset which becomes useful when 

classifying the polarities into negative, neutral or positive 

polarities. 

Table 4: Feature vectors 

Sample feature vectors Sample feature vectors 

extreme gardening help diagnose malaria week make 
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tackle malaria 

taking malaria meds think 

myself dont sleep dont 

sleep 

friend died Friday fine boy 

waiting nysc smooth died 

malaria 

malaria donations saved 

African children 

chances surviving malaria 

higher host consumes 

fewer calories 

baygon hilarious bc 

technically cheaper 

malaria treat 

sad wish fortitude bear loss  

got sick little age malaria 

calls strong regulation local 

production antimalarials 

defeat malaria Africa 

malaria vaccine given 

thousands babies Africa 

malaria death rate Africa 

fell  

Gambia massive progress 

malaria elimination sight 

 

3.4 Classifier Performance 
Our classifier labelled tweet sentiment with an accuracy of 

about 72.41%. Importantly, no positively classified tweets 

were manually labelled as negative, and only 2% of the 

negatively classified tweets were manually labelled as 

positive by assigning a positive polarity to them. The 

misclassifications were predominantly for tweets with non-

neutral sentiment classified as being neutral. As such, the 

overwhelming majority of misclassified tweets did not 

entail complete reversal of sentiment. Below are the 

accuracy of the five classifiers that were combined and 

used in this study. 

Table 5b: Combinations of Naïve Bayes Classifiers 

𝑪𝒐𝒎𝒃𝒊𝒏𝒂𝒕𝒊𝒐𝒏𝒔𝒐𝒇𝑵𝒂𝒊𝒗𝒆𝑩𝒂𝒚𝒆𝒔𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓𝒔, 𝒇𝒐𝒓𝒅𝒂𝒕𝒂𝒔𝒆𝒕𝒔𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 

𝑶𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝑵𝒂𝒊𝒗𝒆 𝑩𝒂𝒚𝒆𝒔 𝑨𝒍𝒈𝒐 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒑𝒆𝒓𝒄𝒆𝒏𝒕 74.54819277108435 

𝑴𝑵𝑩_𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒑𝒆𝒓𝒄𝒆𝒏𝒕 73.94578313253012 

𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊𝑵𝑩_𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒑𝒆𝒓𝒄𝒆𝒏𝒕 73.64457831325302 

Table 5c: Combinations of Support Vector Machine 

Classifiers 

𝑪𝒐𝒎𝒃𝒊𝒏𝒂𝒕𝒊𝒐𝒏𝒔𝒐𝒇𝑺𝒖𝒑𝒑𝒐𝒓𝒕𝑽𝒆𝒄𝒕𝒐𝒓𝑴𝒂𝒄𝒉𝒊𝒏𝒆𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓𝒔, 𝒇𝒐𝒓𝒅𝒂𝒕𝒂𝒔𝒆𝒕𝒔𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 

𝑳𝒊𝒏𝒆𝒂𝒓𝑺𝑽𝑪_𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒑𝒆𝒓𝒄𝒆𝒏𝒕 70.03012048192771 

𝑵𝒖𝑺𝑽𝑪_𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒑𝒆𝒓𝒄𝒆𝒏𝒕 69.87951807228916 

 
3.4.1 F1-Score 
 

The table 5a below shows the performance analysis of the 

corpus used for training the classifiers. 

Precision Score = tp / (tp + fp) 

Recall Score = tp / (tp + fn) 

F1-Score: F1 = 2 * (precision * recall) / (precision + recall) 

Where:  tp = true positives, fp = false positives, fn= false 

negatives. 

Table 5a: F1-score 

 Precision recall f1-score support 

pos 0.87 0.86 0.87 1600 

Neg 0.83 0.89 0.87 1600 

Avg / total 0.85 0.88 0.87 3200 

 

3.5 Sentiment Analysis 

Every tweet after feature extraction was done separately on 

them after the model has been trainedwere assigned 

polarities based on the how it was classified by the model 

ranging from neutral (0.25, 0.5, 0.75, 1), to negative (0.25, 

0.5, 0.75, 1), to positive (0.25, 0.5, 0.75, 1) respectfully. 

Below are samples of polarities assigned to tweets and a 

graph diagrammatically representing the polarities of 

tweets of a period of time? 

Table 6: Polarity of tweets extracted  

Sample of tweets polarity Sample of tweets polarity 

taking malaria meds think 

myself dont sleep dont sleep 

|neg|1.0 

friend died friday fine boy 

waiting nysc smooth died 

malaria |neg|1.0 

baygon hilarious bc 

technically cheaper 

malaria treat |neg|1.0 

American donations fight 

malaria Africa saved lives 

nearly million |pos|0.75 

people die malaria yearly 

reduce clean environment 

join movement |neg|1.0 

children world die malaria 

|neg|0.75 

diagnose malaria week 

make sad wish fortitude 

bear loss |neg|1.0 

got sick little age malaria 

|neg|1.0 

leaders adopt new strategic 

framework end aids tb 

malaria |pos|1.0 

antimalarials unproven 

quality rampant Africa 

scidevnet report malaria 

|neg|0.75 

Gambia massive progress 

malaria elimination sight 

|neu|1 

heavy rainfall poor 

drainage mosquitoes having 

time life spreading malaria 

|neg|1.0 

 

Figure 3: Graph to represent polarities of tweet 
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4. Discussion 

In this study, we extracted tweets relating to malaria over a 

period of time from the social network twitter, we pre-

processed the tweets extracted to eliminate unimportant 

tweets and redundancy, and we built a model to fit our data 

using machine learning approach for text classification to 

determine the contextual polarity of every tweet on the 

subject of malaria in a bid to harvest peoples opinion 

towards malaria and understand how well research and 

recent development in the aid to tackle malaria has affected 

the opinions of people towards the subject malaria. This 

study finds that though lots of ground breaking research 

are ongoing, awareness on malaria treatment and 

prevention needs to be on the increase and ground breaking 

research in this area needs to be communicated to the 

public appropriately through the appropriate authorities 

because tweets extracted, pre-processed and classified in 

this study were majorly classified as negative due to the 

fact that tweets tweeted were majorly about different 

occurrence of death, misinformation and need for 

donations to save a life. We hereby proposed that 

periodical analysis be done on the subject malaria, also 

expanding the source of data to closely monitor the 

awareness of the public and the opinions of the public on 

the subject malaria which would help benchmark how 

effective research beencarried out are affecting the public 

and their level of awareness on malaria prevention and 

treatments.  
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